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Motivation: Multivariate density estimation

Goal: to model the dependencies between a set of

random variables

?
?
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Hypertrees
Use Markov networks. Control complexity by limiting tree-width k.

k=1 k=2

Weight of a hyperedge (clique) quantifies the importance of

modeling the dependencies between the variables in the hyperedge.

The maximum hypertree problem:
Input: weights of all candidate k-hyperedges

Output: a maximum weight k-hypertree
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1-windmill farms
A windmill farm is a subset of the hyperedges of a hypertree.

a 1-windmill (star)

a 1-windmill farm in the tree

a tree

a 1-windmill farm in the tree
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2-windmill farms

a 2-windmill

a 2-windmill farm in a 2-hypertree

a 2-hypertree

a 2-windmill farm in a 2-hypertree
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Using windmills to approximate hypertrees

• A linear programming relaxation finds a windmill farm

with weight 1
8kk! of the maximum windmill farm

• The maximum windmill farm captures at least 1
(k+1)! of

the weight of a hypertree

• Conclusion: The LP-based algorithm can find a

hypertree with weight 1
8kk!(k+1)! of the optimal hypertree
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Analyzing the windmill coverage ratio

Ck = the fraction of the weight of a k-hypertree that can be

captured by a maximum weight k-windmill farm

1
(k+1)! ≤ Ck ≤ 1

k+1

Previous lower bound Previous upper bound

Question: What is Ck?

Approach: find the “worst” hypertrees for which the weight of the

maximum windmill farm is minimized
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Analyzing the windmill coverage

Assume all weights are non-negative and weight of the hypertree

w(T ) = 1.

1. Given a weighted hypertree (T,w), find

the maximum weight windmill farm F .

Ck(T,w) = max
F⊂T

w(F )
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Analyzing the windmill coverage

Assume all weights are non-negative and weight of the hypertree

w(T ) = 1.

1. Given a weighted hypertree (T,w), find

the maximum weight windmill farm F .

Ck(T,w) = max
F⊂T

w(F )

2. Given an unweighted hypertree structure

T , find the “worst” weights w.

Ck(T ) = min
w

max
F⊂T

w(F )
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Analyzing the windmill coverage

Assume all weights are non-negative and weight of the hypertree

w(T ) = 1.

1. Given a weighted hypertree (T,w), find

the maximum weight windmill farm F .

Ck(T,w) = max
F⊂T

w(F )

2. Given an unweighted hypertree structure

T , find the “worst” weights w.

Ck(T ) = min
w

max
F⊂T

w(F )

3. Find the “worst” weighted hypertree

(T,w).
Ck = inf

T
min

w
max
F⊂T

w(F )
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Analyzing the windmill coverage

Assume all weights are non-negative and weight of the hypertree

w(T ) = 1.

1. Given a weighted hypertree (T,w), find

the maximum weight windmill farm F .

Ck(T,w) = max
F⊂T

w(F )

2. Given an unweighted hypertree structure

T , find the “worst” weights w.

Ck(T ) = min
w

max
F⊂T

w(F )

3. Find the “worst” weighted hypertree

(T,w).
Ck = inf

T
min

w
max
F⊂T

w(F )

Plan: solve problems 1, 2, and 3 for trees and then for hypertrees.
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Problem 1: Ck=1(T,w) = max
F⊂T

w(F )
Goal: find the maximum weight windmill farm in a weighted tree.
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w(F ) = 1 + 4 + 4 + 6 + 2 + 3 + 5 + 9 + 9 + 5 + 1 + 1 = 50
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Problem 1: Ck=1(T,w) = max
F⊂T

w(F )
Solve using dynamic programming:

e
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Problem 1: Ck=1(T,w) = max
F⊂T

w(F )
Find the maximum weight windmill farm given the state of the root

vertex. 3 vertex states:
free
regular
blocked

fv,i,s = maximum weight of a 1-windmill farm in subtree (v, i) with

vertex v in state s
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Problem 1: Ck=1(T,w) = max
F⊂T

w(F )

3 vertex states:
free
regular
blocked

+=

fv,i,× = fv,i+1,× + fci,1,◦
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Problem 1: Ck=1(T,w) = max
F⊂T

w(F )

+

+ +

= max{ ,

}
3 vertex states:

free
regular
blocked

fv,i,• = max{ fv,i+1,• + fci,1,◦,

fv,i+1,• + fci,1,× + wv,ci
}
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Problem 1: Ck=1(T,w) = max
F⊂T

w(F )

= max{

+

}+ +

,

,

3 vertex states:
free
regular
blocked

fv,i,◦ = max{ fv,i,•,

fv,i+1,◦ + fci,1,◦,

fv,i+1,× + fci,1,• + wv,ci
}
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Problem 1: Ck=1(T,w) = max
F⊂T

w(F )
Compute all dynamic programming states fv,i,s in O(|V |)
time:

fv,i,× = fv,i+1,× + fci,1,◦
fv,i,• = max{ fv,i+1,• + fci,1,◦,

fv,i+1,• + fci,1,× + wv,ci
}

fv,i,◦ = max{ fv,i,•,

fv,i+1,◦ + fci,1,◦,

fv,i+1,× + fci,1,• + wv,ci
}
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Problem 2: Ck=1(T ) = min
w

max
F⊂T

w(F )
Preliminary step: convert the dynamic program into an equivalent

linear program.

Compute froot(T ),1,◦
fv,i,× = fv,i+1,× + fci,1,◦
fv,i,• = max{ fv,i+1,• + fci,1,◦,

fv,i+1,• + fci,1,× + wv,ci }
fv,i,◦ = max{ fv,i,•,

fv,i+1,◦ + fci,1,◦,
fv,i+1,× + fci,1,• + wv,ci }
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Problem 2: Ck=1(T ) = min
w

max
F⊂T

w(F )
Preliminary step: convert the dynamic program into an equivalent

linear program.

Compute froot(T ),1,◦
fv,i,× = fv,i+1,× + fci,1,◦
fv,i,• = max{ fv,i+1,• + fci,1,◦,

fv,i+1,• + fci,1,× + wv,ci }
fv,i,◦ = max{ fv,i,•,

fv,i+1,◦ + fci,1,◦,
fv,i+1,× + fci,1,• + wv,ci }

⇔

Minimize froot(T ),1,◦
fv,i,× ≥ fv,i+1,× + fci,1,◦
fv,i,• ≥ fv,i+1,• + fci,1,◦
fv,i,• ≥ fv,i+1,• + fci,1,× + wv,ci
fv,i,◦ ≥ fv,i,•
fv,i,◦ ≥ fv,i+1,◦ + fci,1,◦
fv,i,◦ ≥ fv,i+1,× + fci,1,• + wv,ci
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Problem 2: Ck=1(T ) = min
w

max
F⊂T

w(F )
Preliminary step: convert the dynamic program into an equivalent

linear program.

Compute froot(T ),1,◦
fv,i,× = fv,i+1,× + fci,1,◦
fv,i,• = max{ fv,i+1,• + fci,1,◦,

fv,i+1,• + fci,1,× + wv,ci }
fv,i,◦ = max{ fv,i,•,

fv,i+1,◦ + fci,1,◦,
fv,i+1,× + fci,1,• + wv,ci }

⇔

Minimize froot(T ),1,◦
fv,i,× ≥ fv,i+1,× + fci,1,◦
fv,i,• ≥ fv,i+1,• + fci,1,◦
fv,i,• ≥ fv,i+1,• + fci,1,× + wv,ci
fv,i,◦ ≥ fv,i,•
fv,i,◦ ≥ fv,i+1,◦ + fci,1,◦
fv,i,◦ ≥ fv,i+1,× + fci,1,• + wv,ci

max
F⊂T

w(F ) = min
Af≥Bw

froot(T ),1,◦
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Problem 2: Ck=1(T ) = min
w

max
F⊂T

w(F )

max
F⊂T

w(F ) = min
f :Af≥Bw

froot(T ),1,◦
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Problem 2: Ck=1(T ) = min
w

max
F⊂T

w(F )

min
w

w≥0;
∑

wi=1

max
F⊂T

w(F ) = min
w

w≥0;
∑

wi=1

min
f :Af≥Bw

froot(T ),1,◦
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Problem 2: Ck=1(T ) = min
w

max
F⊂T

w(F )

min
w

w≥0;
∑

wi=1

max
F⊂T

w(F ) = min
w

w≥0;
∑

wi=1

min
f :Af≥Bw

froot(T ),1,◦

A single linear program:

min
w,f

w≥0;
∑

wi=1;Af≥Bw

froot(T ),1,◦

Linear Programming in Bounded Tree-width Markov Networks / Problem 2 (trees) 17



Problem 3: Ck=1 = inf
T

min
w

max
F⊂T

w(F )

• Observation: A weighted tree with a weight 0 edge is

equivalent to a weighted tree without the edge

• Construct a family of tree structures

{Tb,h | b, h = 1, 2, 3, . . . } (branching factor b, height h)

that contains each tree structure

• Ck=1 = lim
b,h→∞

Ck=1(Tb,h)

We solve the linear program and get Ck=1 = 1
2
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k-windmill farms (definition)
Hyperedges of windmill = root-to-leaf paths in representing tree

k = 1

...

representing tree of a 1-windmill

1-windmill farm in a tree

1-windmill

k = 1
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k-windmill farms (definition)
k = 2

representing tree of a 2-windmill

2-windmill

k = 2
...

2-windmill farm in a hypertree
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Problem 1: Ck(T,w) = max
F⊂T

w(F )
Analyze the windmill coverge for hypertrees.

k = 2

2-hyperedge

hyperedge in windmill farm

representing forest

How do we decompose a hypertree?
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Problem 1: Ck(T,w) = max
F⊂T

w(F )
Incidence tree structure: represents how the hypertree is connected

k = 2

hyperedge-nodes

separator-nodes
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Problem 1: Ck(T,w) = max
F⊂T

w(F )

representing forest of the windmill farmincidence tree structure

3 vertex states:
free
regular
blocked

k = 1

k = 2

k = 12
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Problem 1: Ck(T,w) = max
F⊂T

w(F )
Dynamic programming states: fg,i,s, fh,S

fg,i,s = max
s→S

{
fg,i+1,s′ + fh,S + w(h)[[S is a path]]

}
fh,S =

∑
i

fgi,1,restrict(S,gi)

(g, i+1, s′)

(g, i, s)

(h, S)
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Problem 2: Ck(T ) = min
w

max
F⊂T

w(F )
Apply the duality technique from before.

min
w

w≥0;
∑

wi=1

max
F⊂T

w(F ) = min
w

w≥0;
∑

wi=1

min
s,f :Af≥Bw

froot(T ),1,s

A single linear program:

min
w,f

w≥0;
∑

wi=1;Af≥Bw

froot(T ),1,◦
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Problem 3: Ck = inf
T

min
w

max
F⊂T

w(F )
Construct a family of hypertrees {Tk,b,h} such that:

• Each hypertree is contained in some Tk,b,h (branching

factor b, height h)

• Ck = lim
b,h→∞

Ck(Tk,b,h)
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Problem 3: Ck = inf
T

min
w

max
F⊂T

w(F )
Tk=2,b,h b = 1 b = 2 b = 3 . . .

h = 1 . . .

h = 2 . . .

h = 3 . . .
... ... ... ...
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Problem 3: Ck = inf
T

min
w

max
F⊂T

w(F )
Tk=2,b,h b = 1 b = 2 b = 3 . . .

h = 1 0.5 0.5 0.5 . . .

h = 2 0.5 0.364 0.308 . . .

h = 3 0.333 0.269 0.263 . . .
... ... ... ...

Converges to Ck=2.
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Achieving a tighter upper bound

• Use weights obtained from the LP solution to construct a

sequence of weighted hypertrees {(Tk,h, wk,h)}

• Compute lim
h→∞

Ck(Tk,h, wk,h) (involves solving Problem 1)

wk,h: weight of a hyperedge is 2−height of hyperedge
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Achieving a tighter upper bound

• Use weights obtained from the LP solution to construct a

sequence of weighted hypertrees {(Tk,h, wk,h)}

• Compute lim
h→∞

Ck(Tk,h, wk,h) (involves solving Problem 1)

wk,h: weight of a hyperedge is 2−height of hyperedge

k = 2

. . .

Tk=2,h=1 Tk=2,h=2 Tk=2,h=3 Tk=2,h=4 . . .

0.5 0.353 0.308 0.286 . . .

2/4 6/17 16/52 40/140 . . . 2h+2
9h−1 →

2
9
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Achieving a tighter upper bound
Ck = min

T,w
Ck(T,w) = min

T
min

w
max
F⊂T

w(F )

k ≤ Ck Ck lim
h→∞

Ck(Tk,h, wk,h) ≥ Ck ≥ Ck

Windmill Cover Previous upper

Theorem bound

1 0.5 0.5 0.5 0.5

2 0.166666. . . ? 0.2222222. . . 0.33333. . .

3 0.041666. . . ? 0.0953932. . . 0.25

4 0.008333. . . ? 0.0515625 0.2

5 0.001389. . . ? 0.0258048 0.16666. . .

6 0.000198. . . ? 0.0123157. . . 0.14286. . .

k 1/(k + 1)! ? < 1/2k? 1/(k + 1)
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Conclusions

• Motivation: using windmill farms to approximate the

maximum likelihood Markov network

• We described an algorithmic technique for providing

bounds on the windmill farm coverage
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Conclusions

• Motivation: using windmill farms to approximate the

maximum likelihood Markov network

• We described an algorithmic technique for providing

bounds on the windmill farm coverage

• The exact windmill coverage Ck is open for k > 1

• Future work: apply the duality technique to other

problems (shortest path, minimum cut)
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