Linear Programming in Bounded Tree-width Markov Networks

Percy Liang Nati Srebro U. Toronto

Motivation: Multivariate density estimation

Goal: to model the dependencies between a set of random variables

Hypertrees

Use Markov networks. Control complexity by limiting tree-width k.

Weight of a hyperedge (clique) quantifies the importance of modeling the dependencies between the variables in the hyperedge. The maximum hypertree problem:

Input: weights of all candidate k-hyperedges

Output: a maximum weight k-hypertree

1-windmill farms

A windmill farm is a subset of the hyperedges of a hypertree.

a 1-windmill farm in the tree

a 1-windmill farm in the tree

2-windmill farms

a 2-windmill

a 2-windmill farm in a 2-hypertree

a 2-hypertree

a 2-windmill farm in a 2-hypertree

Using windmills to approximate hypertrees

- A linear programming relaxation finds a windmill farm with weight $\frac{1}{8^k k!}$ of the maximum windmill farm
- The maximum windmill farm captures at least $\frac{1}{(k+1)!}$ of the weight of a hypertree
- Conclusion: The LP-based algorithm can find a hypertree with weight $\frac{1}{8^k k! (k+1)!}$ of the optimal hypertree

 C_k = the fraction of the weight of a k-hypertree that can be captured by a maximum weight k-windmill farm

Question: What is C_k ?

Approach: find the "worst" hypertrees for which the weight of the maximum windmill farm is minimized

Assume all weights are non-negative and weight of the hypertree w(T)=1.

1. Given a weighted hypertree (T, w), find the maximum weight windmill farm F.

$$C_k(T, w) = \max_{F \subset T} w(F)$$

Assume all weights are non-negative and weight of the hypertree w(T)=1.

- 1. Given a weighted hypertree (T, w), find the maximum weight windmill farm F.
- $C_k(T, w) = \max_{F \subset T} w(F)$
- 2. Given an unweighted hypertree structure T, find the "worst" weights w.

$$C_k(T) = \min_{w} \max_{F \subset T} w(F)$$

Assume all weights are non-negative and weight of the hypertree w(T) = 1.

- 1. Given a weighted hypertree (T, w), find the maximum weight windmill farm F.
- $C_k(T, w) = \max_{F \subset T} w(F)$
- 2. Given an unweighted hypertree structure $C_k(T) = \min_{w} \max_{F \subset T} w(F)$ T, find the "worst" weights w.

$$C_k(T) = \min_{w} \max_{F \subset T} w(F)$$

3. Find the "worst" weighted hypertree $C_k = \inf_T \min_w \max_{F \subset T} w(F)$ (T,w).

$$C_k = \inf_{T} \min_{w} \max_{F \subset T} w(F)$$

Assume all weights are non-negative and weight of the hypertree w(T) = 1.

- 1. Given a weighted hypertree (T, w), find the maximum weight windmill farm F.
- $C_k(T, w) = \max_{F \subset T} w(F)$
- 2. Given an unweighted hypertree structure $C_k(T) = \min_{w} \max_{F \subset T} w(F)$ T, find the "worst" weights w.

$$C_k(T) = \min_{w} \max_{F \subset T} w(F)$$

3. Find the "worst" weighted hypertree $C_k = \inf_T \min_w \max_{F \subset T} w(F)$ (T,w).

Plan: solve problems 1, 2, and 3 for trees and then for hypertrees.

Problem 1: $C_{k=1}(T, w) = \max_{F \subset T} w(F)$

Goal: find the maximum weight windmill farm in a weighted tree.

$$w(F) = 1 + 4 + 4 + 6 + 2 + 3 + 5 + 9 + 9 + 5 + 1 + 1 = 50$$

Problem 1:
$$C_{k=1}(T, w) = \max_{F \subset T} w(F)$$

Solve using dynamic programming:

Problem 1:
$$C_{k=1}(T, w) = \max_{F \subset T} w(F)$$

Find the maximum weight windmill farm given the state of the root vertex.

3 vertex states:

- o free
- regular
- × blocked

 $f_{v,i,s} = \text{maximum weight of a 1-windmill farm in subtree } (v,i)$ with vertex v in state s

Problem 1: $C_{k=1}(T, w) = \max_{F \subset T} w(F)$

3 vertex states:

- o free
- regular
- × blocked

$$f_{v,i,\times} = f_{v,i+1,\times} + f_{c_i,1,\circ}$$

Problem 1:
$$C_{k=1}(T, w) = \max_{F \in T} w(F)$$

3 vertex states:

- o free
- regular
- × blocked

$$f_{v,i,ullet} = \max \{ f_{v,i+1,ullet} + f_{c_i,1,\circ}, \ f_{v,i+1,ullet} + f_{c_i,1, imes} + w_{v,c_i} \}$$

Problem 1: $C_{k=1}(T, w) = \max_{F \subset T} w(F)$

3 vertex states:

- o free
- regular
- × blocked

$$\begin{split} f_{v,i,\circ} &= \max \{ \ f_{v,i,\bullet}, \\ f_{v,i+1,\circ} + f_{c_i,1,\circ}, \\ f_{v,i+1,\times} + f_{c_i,1,\bullet} + w_{v,c_i} \ \} \end{split}$$

Problem 1: $C_{k=1}(T, w) = \max_{F \subset T} w(F)$

Compute all dynamic programming states $f_{v,i,s}$ in O(|V|) time:

$$f_{v,i,\times} = f_{v,i+1,\times} + f_{c_i,1,\circ}$$

$$f_{v,i,\bullet} = \max\{ f_{v,i+1,\bullet} + f_{c_i,1,\circ},$$

$$f_{v,i+1,\bullet} + f_{c_i,1,\times} + w_{v,c_i} \}$$

$$f_{v,i,\circ} = \max\{ f_{v,i,\bullet},$$

$$f_{v,i+1,\circ} + f_{c_i,1,\circ},$$

$$f_{v,i+1,\times} + f_{c_i,1,\bullet} + w_{v,c_i} \}$$

Problem 2:
$$C_{k=1}(T) = \min_{w} \max_{F \subset T} w(F)$$

Preliminary step: convert the dynamic program into an equivalent linear program.

```
\begin{array}{ll} \text{Compute } f_{\mathsf{root}(T),1,\circ} \\ f_{v,i,\times} &= f_{v,i+1,\times} + f_{c_i,1,\circ} \\ f_{v,i,\bullet} &= \max\{ \ f_{v,i+1,\bullet} + f_{c_i,1,\circ}, \\ f_{v,i+1,\bullet} + f_{c_i,1,\times} + w_{v,c_i} \ \} \\ f_{v,i,\circ} &= \max\{ \ f_{v,i,\bullet}, \\ f_{v,i+1,\circ} + f_{c_i,1,\circ}, \\ f_{v,i+1,\times} + f_{c_i,1,\bullet} + w_{v,c_i} \ \} \end{array}
```

Problem 2:
$$C_{k=1}(T) = \min_{w} \max_{F \subset T} w(F)$$

Preliminary step: convert the dynamic program into an equivalent linear program.

Problem 2:
$$C_{k=1}(T) = \min_{w} \max_{F \subset T} w(F)$$

Preliminary step: convert the dynamic program into an equivalent linear program.

$$\max_{F \subset T} w(F) = \min_{Af \ge Bw} f_{\mathsf{root}(T),1,\circ}$$

Problem 2:
$$C_{k=1}(T) = \min_{w} \max_{F \subset T} w(F)$$

$$\max_{F \subset T} w(F) =$$

$$\min_{f:Af\geq Bw} f_{\mathsf{root}(T),1,\circ}$$

Problem 2:
$$C_{k=1}(T) = \min_{w} \max_{F \subset T} w(F)$$

$$\min_{w \geq 0; \sum_{i=1}^{w} w_i = 1} \max_{F \subset T} w(F) = \min_{w \geq 0; \sum_{i=1}^{w} w_i = 1} \min_{f: Af \geq Bw} f_{\mathsf{root}(T), 1, \circ}$$

Problem 2:
$$C_{k=1}(T) = \min_{w} \max_{F \subset T} w(F)$$

$$\min_{w \geq 0; \sum_{i=1}^{w} w_i = 1} \max_{F \subset T} w(F) = \min_{w \geq 0; \sum_{i=1}^{w} w_i = 1} \min_{f: Af \geq Bw} f_{\mathsf{root}(T), 1, \circ}$$

A single linear program:

$$\min_{\substack{w,f\\w\geq 0; \sum w_i=1; Af\geq Bw}} f_{\mathsf{root}(T),1,\circ}$$

Problem 3:
$$C_{k=1} = \inf_{T} \min_{w} \max_{F \subset T} w(F)$$

- Observation: A weighted tree with a weight 0 edge is equivalent to a weighted tree without the edge
- Construct a family of tree structures $\{T_{b,h} \mid b,h=1,2,3,\dots\}$ (branching factor b, height h) that contains each tree structure

$$\bullet \ C_{k=1} = \lim_{b,h \to \infty} C_{k=1}(T_{b,h})$$

We solve the linear program and get $C_{k=1}=rac{1}{2}$

k-windmill farms (definition)

Hyperedges of windmill = root-to-leaf paths in representing tree k=1

representing tree of a 1-windmill

1-windmill

1-windmill farm in a tree

k-windmill farms (definition)

k = 2

representing tree of a 2-windmill

2-windmill

2-windmill farm in a hypertree

Problem 1: $C_k(T, w) = \max_{F \subset T} w(F)$

Analyze the windmill coverge for hypertrees.

$$k = 2$$

How do we decompose a hypertree?

Problem 1:
$$C_k(T,w) = \max_{F \subset T} w(F)$$
 Incidence tree structure: represents how the hypertree is connected

Incidence tree structure: represents how the hypertree is connected k=2

Problem 1: $C_k(T, w) = \max_{F \subset T} w(F)$

Problem 1: $C_k(T,w) = \max_{F \subset T} w(F)$ Dynamic programming states: $f_{g,i,s}$, $f_{h,S}$

$$f_{g,i,s} = \max_{s \to S} \{ f_{g,i+1,s'} + f_{h,S} + w(h)[[S \text{ is a path}]] \}$$

$$f_{h,S} = \sum_{i} f_{g_i,1,\operatorname{restrict}(S,g_i)}$$

(g,i,s)

Problem 2: $C_k(T) = \min_{w} \max_{F \subset T} w(F)$

Apply the duality technique from before.

$$\min_{w \geq 0; \sum w_i = 1} \max_{F \subset T} w(F) = \min_{w \geq 0; \sum w_i = 1} \min_{s, f : Af \geq Bw} f_{\mathsf{root}(T), 1, s}$$

A single linear program:

$$\min_{\substack{w,f\\w\geq 0;\sum w_i=1;Af\geq Bw}}f_{\mathsf{root}(T),1,\circ}$$

Problem 3: $C_k = \inf_T \min_w \max_{F \subset T} w(F)$

Construct a family of hypertrees $\{T_{k,b,h}\}$ such that:

- Each hypertree is contained in some $T_{k,b,h}$ (branching factor b, height h)
- $ullet C_k = \lim_{b,h o \infty} C_k(T_{k,b,h})$

Problem 3: $C_k = \inf \min \max_{F \subset T} w(F)$ $T_{k=2,b,h}$ b = 1 b = 2 b = 3 ...

$$T_{k=2,b,h}$$

$$b=1$$

$$b = 2$$

$$b = 3$$
 ...

$$h = 1$$

$$h=2$$

$$h = 3$$

Problem 3:
$$C_k = \inf_T \min_w \max_{F \subset T} w(F)$$
 $T_{k=2,b,h}$ $b=1$ $b=2$ 0.5 0.5 0.5 0.5 0.5 0.308 $0.$

Achieving a tighter upper bound

- Use weights obtained from the LP solution to construct a sequence of weighted hypertrees $\{(T_{k,h}, w_{k,h})\}$
- Compute $\lim_{h\to\infty} C_k(T_{k,h},w_{k,h})$ (involves solving Problem 1)

 $w_{k,h}$: weight of a hyperedge is $2^{-\text{height of hyperedge}}$

Achieving a tighter upper bound

- Use weights obtained from the LP solution to construct a sequence of weighted hypertrees $\{(T_{k,h}, w_{k,h})\}$
- Compute $\lim_{h\to\infty} C_k(T_{k,h},w_{k,h})$ (involves solving Problem 1)

 $w_{k,h}$: weight of a hyperedge is $2^{-\text{height of hyperedge}}$

$$k=2$$

$$T_{k=2,h=1} \qquad T_{k=2,h=2} \qquad T_{k=2,h=3} \qquad T_{k=2,h=4} \qquad \cdots$$
0.5 0.353 0.308 0.286 \cdots
2/4 6/17 16/52 40/140 \cdots \frac{2h+2}{9h-1} \rightarrow \frac{2}{9}

Achieving a tighter upper bound

 $C_k = \min_{T, w} C_k(T, w) = \min_{T} \min_{w} \max_{F \subset T} w(F)$

$oxed{k}$	$\leq C_k$	C_k	$\lim_{h\to\infty} \frac{C_k(T_{k,h},w_{k,h})\geq C_k}{C_k}$	$\geq C_k$
	Windmill Cover			Previous upper
	Theorem			bound
1	0.5	0.5	0.5	0.5
2	0.166666	?	0.222222	0.33333
3	0.041666	?	0.0953932	0.25
4	0.008333	?	0.0515625	0.2
5	0.001389	?	0.0258048	0.16666
6	0.000198	?	0.0123157	0.14286
\overline{k}	1/(k+1)!	?	$<1/2^k$?	1/(k+1)

Conclusions

- Motivation: using windmill farms to approximate the maximum likelihood Markov network
- We described an algorithmic technique for providing bounds on the windmill farm coverage

Conclusions

- Motivation: using windmill farms to approximate the maximum likelihood Markov network
- We described an algorithmic technique for providing bounds on the windmill farm coverage
- The exact windmill coverage C_k is open for k>1
- Future work: apply the duality technique to other problems (shortest path, minimum cut)