
Learning Programs:

A Hierarchical Bayesian Approach

ICML - Haifa, Israel June 24, 2010

Percy Liang Michael I. Jordan Dan Klein

Motivating Application: Repetitive Text Editing

I like programs, but I wish programs
would just program themselves since
I don’t like programming. =⇒

I like <i>programs</i>, but I wish <i>programs</i>
would just <i>program</i> themselves since
I don’t like <i>programming</i>.

2

Motivating Application: Repetitive Text Editing

I like programs, but I wish programs
would just program themselves since
I don’t like programming. =⇒

I like <i>programs</i>, but I wish <i>programs</i>
would just <i>program</i> themselves since
I don’t like <i>programming</i>.

Goal: Programming by Demonstration

If the user demonstrates italicizing the first occurrence,
can we generalize to the remaining?

2

Motivating Application: Repetitive Text Editing

I like programs, but I wish programs
would just program themselves since
I don’t like programming. =⇒

I like <i>programs</i>, but I wish <i>programs</i>
would just <i>program</i> themselves since
I don’t like <i>programming</i>.

Goal: Programming by Demonstration

If the user demonstrates italicizing the first occurrence,
can we generalize to the remaining?

Solution: represent task by a program to be learned

1. Move to next occurrence of word with prefix program
2. Insert <i>
3. Move to end of word
4. Insert </i>

2

Motivating Application: Repetitive Text Editing

I like programs, but I wish programs
would just program themselves since
I don’t like programming. =⇒

I like <i>programs</i>, but I wish <i>programs</i>
would just <i>program</i> themselves since
I don’t like <i>programming</i>.

Goal: Programming by Demonstration

If the user demonstrates italicizing the first occurrence,
can we generalize to the remaining?

Solution: represent task by a program to be learned

1. Move to next occurrence of word with prefix program
2. Insert <i>
3. Move to end of word
4. Insert </i>

Challenge: learn from very few examples
2

General Setup

Goal:

(X1, Y1)
· · ·

(Xn, Yn)

Training data

3

General Setup

Goal:

(X1, Y1)
· · ·

(Xn, Yn)
=⇒ Z such that (Z Xj) = Yj

Training data Consistent program

3

General Setup

Goal:

(X1, Y1)
· · ·

(Xn, Yn)
=⇒ Z such that (Z Xj) = Yj

Training data Consistent program

Challenge:

When n small, many programs consistent with training data.

I like <i>programs</i>, but I wish programs
would just program themselves since
I don’t like programming.

Move to beginning of third word, ...
Move to beginning of word after like, ...
Move 7 spaces to the right, ...
Move to word with prefix program, ...
· · ·

3

General Setup

Goal:

(X1, Y1)
· · ·

(Xn, Yn)
=⇒ Z such that (Z Xj) = Yj

Training data Consistent program

Challenge:

When n small, many programs consistent with training data.

I like <i>programs</i>, but I wish programs
would just program themselves since
I don’t like programming.

Move to beginning of third word, ...
Move to beginning of word after like, ...
Move 7 spaces to the right, ...
Move to word with prefix program, ...
· · ·

Which program to choose?
3

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples =⇒ Z

4

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples =⇒ Z

What’s the right complexity metric (prior)?

4

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples =⇒ Z

What’s the right complexity metric (prior)? No general answer.

4

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples =⇒ Z

What’s the right complexity metric (prior)? No general answer.

Multiple tasks:

Task 1 examples =⇒ Z1

· · · · · ·
Task K examples =⇒ ZK

4

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples =⇒ Z

What’s the right complexity metric (prior)? No general answer.

Multiple tasks:

Task 1 examples =⇒ Z1

· · · · · ·
Task K examples =⇒ ZK

Find programs that share common subprograms.

4

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples =⇒ Z

What’s the right complexity metric (prior)? No general answer.

Multiple tasks:

Task 1 examples =⇒ Z1

· · · · · ·
Task K examples =⇒ ZK

Find programs that share common subprograms.

• Programs do tend to share common components.

4

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples =⇒ Z

What’s the right complexity metric (prior)? No general answer.

Multiple tasks:

Task 1 examples =⇒ Z1

· · · · · ·
Task K examples =⇒ ZK

Find programs that share common subprograms.

• Programs do tend to share common components.

• Penalize joint complexity of all K programs.

4

Outline of Proposed Solution

Program representation: What are subprograms?

Combinatory logic +

∗ I

B I

S

B 1
C

5

Outline of Proposed Solution

Program representation: What are subprograms?

Combinatory logic +

∗ I

B I

S

B 1
C

Probabilistic model: Which programs are favorable?

Nonparametric Bayes
α0

p0

{Gt} Zi Yij Xij

n
K

5

Outline of Proposed Solution

Program representation: What are subprograms?

Combinatory logic +

∗ I

B I

S

B 1
C

Probabilistic model: Which programs are favorable?

Nonparametric Bayes
α0

p0

{Gt} Zi Yij Xij

n
K

Statistical inference: How do we search for good programs?

MCMC
x y

r1Br z

r0

⇒ x

y z

r′
1

r′
0r

5

Outline of Proposed Solution

Program representation: What are subprograms?

Combinatory logic +

∗ I

B I

S

B 1
C

Probabilistic model: Which programs are favorable?

Nonparametric Bayes
α0

p0

{Gt} Zi Yij Xij

n
K

Statistical inference: How do we search for good programs?

MCMC
x y

r1Br z

r0

⇒ x

y z

r′
1

r′
0r

6

Representation: What Language?

Goal: allow sharing of subprograms

7

Representation: What Language?

Goal: allow sharing of subprograms

Our language:

Combinatory logic [Schönfinkel, 1924]

7

Representation: What Language?

Goal: allow sharing of subprograms

Our language:

Combinatory logic [Schönfinkel, 1924]

+ higher-order combinators (new)

+ routing intuition, visual representation (new)

7

Representation: What Language?

Goal: allow sharing of subprograms

Our language:

Combinatory logic [Schönfinkel, 1924]

+ higher-order combinators (new)

+ routing intuition, visual representation (new)

Properties: no mutation, no variables ⇒ simple semantics

7

Representation: What Language?

Goal: allow sharing of subprograms

Our language:

Combinatory logic [Schönfinkel, 1924]

+ higher-order combinators (new)

+ routing intuition, visual representation (new)

Properties: no mutation, no variables ⇒ simple semantics

Result:

• Programs are trees

• Subprograms are subtrees

7

Programs with No Arguments

Example: compute min(3, 4)

8

Programs with No Arguments

Example: compute min(3, 4)
(if (< 3 4) 3 4)

8

Programs with No Arguments

Example: compute min(3, 4)
(if (< 3 4) 3 4)

if

< 3
4

3
4

8

Programs with No Arguments

Example: compute min(3, 4)
(if (< 3 4) 3 4)

if

< 3
4

3
4

General:

x y
⇒ result of applying function x to argument y

8

Programs with No Arguments

Example: compute min(3, 4)
(if (< 3 4) 3 4)

if

< 3
4

3
4

General:

x y
⇒ result of applying function x to argument y

Arguments are curried

8

Programs with No Arguments

Example: compute min(3, 4)
(if (< 3 4) 3 4) (if true 3 4)

if

< 3
4

3
4
⇒

if true
3

4

General:

x y
⇒ result of applying function x to argument y

Arguments are curried

8

Programs with No Arguments

Example: compute min(3, 4)
(if (< 3 4) 3 4) (if true 3 4)

if

< 3
4

3
4
⇒

if true
3

4 ⇒ 3

General:

x y
⇒ result of applying function x to argument y

Arguments are curried

8

Programs with One Argument

Example: x 7→ x2 + 1

9

Programs with One Argument

Example: x 7→ x2 + 1

λx . +

∗ x
x

1

Lambda calculus

9

Programs with One Argument

Example: x 7→ x2 + 1

λx . +

∗ x
x

1

+

∗ I

B I

S

B 1
C

Lambda calculus Combinatory logic

9

Programs with One Argument

Example: x 7→ x2 + 1

λx . +

∗ x
x

1

+

∗ I

B I

S

B 1
C

Lambda calculus Combinatory logic

Intuition:

Combinators {B,C,S, I} encode placement of arguments

9

Programs with One Argument

Example: x 7→ x2 + 1

λx . +

∗ x
x

1

+

∗ I

B I

S

B 1
C

Lambda calculus Combinatory logic

Intuition:

Combinators {B,C,S, I} encode placement of arguments

Semantics:

x y

r
⇔ (r x y)

r ∈ {B,C,S, I} 9

Programs with One Argument

Example: x 7→ x2 + 1

λx . +

∗ x
x

1

+

∗ I

B I

S

B 1
C

Lambda calculus Combinatory logic

Intuition:

Combinators {B,C,S, I} encode placement of arguments

Semantics:

x y

r
⇔ (r x y)

r ∈ {B,C,S, I}

Rules:
(B f g x) = (f (g x))
... 9

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B I

S

B 1
C 5

10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B I

S

B 1
C 5

x y
C z ⇔

x z
y

route left

10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B I

S

B 5
1 x y

C z ⇔
x z

y

route left

10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B I

S

B 5
1 x y

C z ⇔
x z

y

route left

x y
B z ⇔ x

y z

route right

10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B I

S 5

1 x y
C z ⇔

x z
y

route left

x y
B z ⇔ x

y z

route right

10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B I

S 5

1 x y
C z ⇔

x z
y

route left

x y
B z ⇔ x

y z

route right

x y
S z ⇔

x z y z

route left and right
10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B 5 I 5

1 x y
C z ⇔

x z
y

route left

x y
B z ⇔ x

y z

route right

x y
S z ⇔

x z y z

route left and right
10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B 5 I 5

1 x y
C z ⇔

x z
y

route left

x y
B z ⇔ x

y z

route right

x y
S z ⇔

x z y z

route left and right

I x ⇔ x

stop
10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ I

B 5
5

1 x y
C z ⇔

x z
y

route left

x y
B z ⇔ x

y z

route right

x y
S z ⇔

x z y z

route left and right

I x ⇔ x

stop
10

Programs with One Argument

Example: Apply x 7→ x2 + 1 to 5

+

∗ 5
5

1

x y
C z ⇔

x z
y

route left

x y
B z ⇔ x

y z

route right

x y
S z ⇔

x z y z

route left and right

I x ⇔ x

stop
10

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)

11

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)
Classical: first-order combinators {B,C,S, I}

Complete basis, so can implement min, but cumbersome

11

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)
Classical: first-order combinators {B,C,S, I}

Complete basis, so can implement min, but cumbersome

New: higher-order combinators {B,C,S, I}∗

Infinite basis, but resulting programs are more intuitive

e.g., CS routes 1st arg. left, 2nd arg. left and right

11

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)
Classical: first-order combinators {B,C,S, I}

Complete basis, so can implement min, but cumbersome

New: higher-order combinators {B,C,S, I}∗

Infinite basis, but resulting programs are more intuitive

e.g., CS routes 1st arg. left, 2nd arg. left and right

if <

BB I

SC I

CS

11

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)
Classical: first-order combinators {B,C,S, I}

Complete basis, so can implement min, but cumbersome

New: higher-order combinators {B,C,S, I}∗

Infinite basis, but resulting programs are more intuitive

e.g., CS routes 1st arg. left, 2nd arg. left and right

if <

BB I

SC I

CS 3
4

11

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)
Classical: first-order combinators {B,C,S, I}

Complete basis, so can implement min, but cumbersome

New: higher-order combinators {B,C,S, I}∗

Infinite basis, but resulting programs are more intuitive

e.g., CS routes 1st arg. left, 2nd arg. left and right

if <

BB I

SC I

CS 3
4

11

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)
Classical: first-order combinators {B,C,S, I}

Complete basis, so can implement min, but cumbersome

New: higher-order combinators {B,C,S, I}∗

Infinite basis, but resulting programs are more intuitive

e.g., CS routes 1st arg. left, 2nd arg. left and right

if
< 3

B 3
C I

S 4

11

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)
Classical: first-order combinators {B,C,S, I}

Complete basis, so can implement min, but cumbersome

New: higher-order combinators {B,C,S, I}∗

Infinite basis, but resulting programs are more intuitive

e.g., CS routes 1st arg. left, 2nd arg. left and right

if
< 3

B 3
C I

S 4

11

Programs with Multiple Arguments

Example: (x, y) 7→ min(x, y)
Classical: first-order combinators {B,C,S, I}

Complete basis, so can implement min, but cumbersome

New: higher-order combinators {B,C,S, I}∗

Infinite basis, but resulting programs are more intuitive

e.g., CS routes 1st arg. left, 2nd arg. left and right

if

< 3
4

3
4

11

Using Combinators for Refactoring

min max

if <

BB I

SC I

CS

if >

BB I

SC I

CS

12

Using Combinators for Refactoring

min max

if <

BB I

SC I

CS

if >

BB I

SC I

CS

No significant sharing of subtrees (subprograms)

12

Using Combinators for Refactoring

min max

if <

BB I

SC I

CS

if >

BB I

SC I

CS

No significant sharing of subtrees (subprograms)

Refactored:

if I

BBB I

CSC I

CCS <

if I

BBB I

CSC I

CCS >

12

Using Combinators for Refactoring

min max

if <

BB I

SC I

CS

if >

BB I

SC I

CS

No significant sharing of subtrees (subprograms)

Refactored:

if I

BBB I

CSC I

CCS <

if I

BBB I

CSC I

CCS >

Fruitful sharing of subtrees (subprograms)
12

Summary

Introduced new combinatory logic basis (intuition: routing)

13

Summary

Introduced new combinatory logic basis (intuition: routing)

Purpose of these combinators:

• Represent multi-argument functions

• Allow refactoring to expose common substructures

13

Summary

Introduced new combinatory logic basis (intuition: routing)

Purpose of these combinators:

• Represent multi-argument functions

• Allow refactoring to expose common substructures

Achieved uniformity: Every subtree is a subprogram

13

Outline of Proposed Solution

Program representation: What are subprograms?

Combinatory logic +

∗ I

B I

S

B 1
C

Probabilistic model: Which programs are favorable?

Nonparametric Bayes
α0

p0

{Gt} Zi Yij Xij

n
K

Statistical inference: How do we search for good programs?

MCMC
x y

r1Br z

r0

⇒ x

y z

r′
1

r′
0r

14

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]

15

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]
With probability λ0:

15

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]
With probability λ0:

Return a random primitive combinator (e.g., +, 3, I)

15

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]
With probability λ0:

Return a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s
x← GenIndep(s→ t)

15

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]
With probability λ0:

Return a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s
x← GenIndep(s→ t)
y ← GenIndep(s)

15

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]
With probability λ0:

Return a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s
x← GenIndep(s→ t)
y ← GenIndep(s)
return (x, y)

15

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]
With probability λ0:

Return a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s
x← GenIndep(s→ t)
y ← GenIndep(s)
return (x, y)

Example:

GenIndep(int→ int) =⇒ + 1

15

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]
With probability λ0:

Return a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s
x← GenIndep(s→ t)
y ← GenIndep(s)
return (x, y)

Example:

GenIndep(int→ int) =⇒ ∗

− 3
1

15

Probabilistic Context-Free Grammars

GenIndep(t): [returns a combinator of type t]
With probability λ0:

Return a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s
x← GenIndep(s→ t)
y ← GenIndep(s)
return (x, y)

Example:

GenIndep(int→ int) =⇒ ∗

− 3
1

Problem: No encouragement to share subprograms

15

Adaptor Grammars [Johnson, 2007]

Ct ← [] for each type t [cached list of combinators]

16

Adaptor Grammars [Johnson, 2007]

Ct ← [] for each type t [cached list of combinators]
(notation: return∗ c adds c to Ct and returns c)

16

Adaptor Grammars [Johnson, 2007]

Ct ← [] for each type t [cached list of combinators]
(notation: return∗ c adds c to Ct and returns c)

GenCache(t): [returns a combinator of type t]

With probability α0+Ntd
α0+|Ct|

:

16

Adaptor Grammars [Johnson, 2007]

Ct ← [] for each type t [cached list of combinators]
(notation: return∗ c adds c to Ct and returns c)

GenCache(t): [returns a combinator of type t]

With probability α0+Ntd
α0+|Ct|

:

With probability λ0:
Return∗ a random primitive combinator (e.g., +, 3, I)

Else:
Choose a type s
x← GenCache(s→ t)
y ← GenCache(s)
Return∗ (x, y)

Else:

16

Adaptor Grammars [Johnson, 2007]

Ct ← [] for each type t [cached list of combinators]
(notation: return∗ c adds c to Ct and returns c)

GenCache(t): [returns a combinator of type t]

With probability α0+Ntd
α0+|Ct|

:

With probability λ0:
Return∗ a random primitive combinator (e.g., +, 3, I)

Else:
Choose a type s
x← GenCache(s→ t)
y ← GenCache(s)
Return∗ (x, y)

Else:

Return∗ z ∈ Ct with probability Mz−d
|Ct|−Ntd

16

Adaptor Grammars [Johnson, 2007]

Ct ← [] for each type t [cached list of combinators]
(notation: return∗ c adds c to Ct and returns c)

GenCache(t): [returns a combinator of type t]

With probability α0+Ntd
α0+|Ct|

:

With probability λ0:
Return∗ a random primitive combinator (e.g., +, 3, I)

Else:
Choose a type s
x← GenCache(s→ t)
y ← GenCache(s)
Return∗ (x, y)

Else:

Return∗ z ∈ Ct with probability Mz−d
|Ct|−Ntd

Interpretation of cache Ct: library of generally useful
(unnamed) subroutines which are reused.

16

Outline of Proposed Solution

Program representation: What are subprograms?

Combinatory logic +

∗ I

B I

S

B 1
C

Probabilistic model: Which programs are favorable?

Nonparametric Bayes
α0

p0

{Gt} Zi Yij Xij

n
K

Statistical inference: How do we search for good programs?

MCMC
x y

r1Br z

r0

⇒ x

y z

r′
1

r′
0r

17

Inference via MCMC

User provides tree structure that encodes set of programs U

Objective: sample from posterior given program in U

18

Inference via MCMC

User provides tree structure that encodes set of programs U

Objective: sample from posterior given program in U

Use Metropolis-Hastings

Proposal: sample a random program transformation

18

Inference via MCMC

User provides tree structure that encodes set of programs U

Objective: sample from posterior given program in U

Use Metropolis-Hastings

Proposal: sample a random program transformation

Program transformations maintain invariant that

program is correct (likelihood is 1)

18

Inference via MCMC

User provides tree structure that encodes set of programs U

Objective: sample from posterior given program in U

Use Metropolis-Hastings

Proposal: sample a random program transformation

Program transformations maintain invariant that

program is correct (likelihood is 1)

Two types of transformations:

1. Switching

2. Refactoring

18

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2, 8)}

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2, 8)} ∗
+ 2

S

[x 7→ x(x + 2)]

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2, 8)} ∗
+ 2

S

[x 7→ x(x + 2)]

⇔
∗
∗ I

S

S

[x 7→ x3]

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2, 8)} ∗
+ 2

S

[x 7→ x(x + 2)]

⇔
∗
∗ I

S

S

[x 7→ x3]

Purpose: change generalization

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2, 8)} ∗
+ 2

S

[x 7→ x(x + 2)]

⇔
∗
∗ I

S

S

[x 7→ x3]

Purpose: change generalization

Refactoring: Change form, preserve total semantics

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2, 8)} ∗
+ 2

S

[x 7→ x(x + 2)]

⇔
∗
∗ I

S

S

[x 7→ x3]

Purpose: change generalization

Refactoring: Change form, preserve total semantics

∗
+ 2

S

[x 7→ x(x + 2)]

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2, 8)} ∗
+ 2

S

[x 7→ x(x + 2)]

⇔
∗
∗ I

S

S

[x 7→ x3]

Purpose: change generalization

Refactoring: Change form, preserve total semantics

∗
+ 2

S

[x 7→ x(x + 2)]

⇔ ∗ +
BS 2

[x 7→ x(x + 2)]

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2, 8)} ∗
+ 2

S

[x 7→ x(x + 2)]

⇔
∗
∗ I

S

S

[x 7→ x3]

Purpose: change generalization

Refactoring: Change form, preserve total semantics

∗
+ 2

S

[x 7→ x(x + 2)]

⇔ ∗ +
BS 2

[x 7→ x(x + 2)]

Purpose: expose different subprograms for sharing
19

Text Editing Experiments

Setup:

Dataset of [Lau et al., 2003]
K = 24 tasks
Each task: train on 2–5 examples, test on u 13 examples
10 random trials

20

Text Editing Experiments

Setup:

Dataset of [Lau et al., 2003]
K = 24 tasks
Each task: train on 2–5 examples, test on u 13 examples
10 random trials

Example task:

Cardinals 5, Pirates 2.
⇒

GameScore[winner ’Cardinals’; loser ’Pirates’; scores [5, 2]].

20

Experimental Results

Uniform prior

Independent prior

Joint prior

21

Experimental Results

2 3 4 5

5

10

15

20

25

er
ro

r

Uniform prior

Independent prior

Joint prior

21

Experimental Results

2 3 4 5

5

10

15

20

25

er
ro

r

Uniform prior

Independent prior

Joint prior

Observations:

• Independent prior is even worse than uniform prior

21

Experimental Results

2 3 4 5

5

10

15

20

25

er
ro

r

Uniform prior

Independent prior

Joint prior

Observations:

• Independent prior is even worse than uniform prior

• Joint prior (multi-task learning) is effective

21

Summary

X ⇒ ⇒ Y

22

Summary

X ⇒ program ⇒ Y

22

Summary

X ⇒ program ⇒ Y

Key challenge: learn programs from few examples

22

Summary

X ⇒ program ⇒ Y

Key challenge: learn programs from few examples

Main idea: share subprograms across multiple tasks

22

Summary

X ⇒ program ⇒ Y

Key challenge: learn programs from few examples

Main idea: share subprograms across multiple tasks

Tools:

• Combinatory logic: expose subprograms to be shared

• Adaptor grammars: encourage sharing of subprograms

•Metropolis-Hastings: proposals are program transformations

22

