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would just <i>program</i> themselves since
I don’t like <i>programming</i>.

Goal: Programming by Demonstration

If the user demonstrates italicizing the first occurrence,
can we generalize to the remaining?

Solution: represent task by a program to be learned

1. Move to next occurrence of word with prefix program

2. Insert <i>

3. Move to end of word

4. Insert </i>

Challenge: learn from very few examples
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General Setup

Goal:
(X17 Yl)
—> Z such that (Z X;) =Y,
(X, Yn)
Training data Consistent program
Challenge:

When n small, many programs consistent with training data.
Move to beginning of third word, ...

I like <i>programs</i>, but I wish programs Move to beginning of word after like, ...
would just program themselves since .
I don’t like programming. Move 7 spaces t_o the n_ght,

Move to word with prefix program, ...

Which program to choose?
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Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples — 74

What's the right complexity metric (prior)? No general answer.
Multiple tasks:

Task 1 examples — | Z; ~
Task K examples — |Zg

Find programs that share common subprograms.

e Programs do tend to share common components.

e Penalize joint complexity of all K programs.
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Representation: What Language?
Goal: allow sharing of subprograms

Our language:
Combinatory logic [Schonfinkel, 1924]

+ higher-order combinators (new)

+ routing intuition, visual representation (new)

Properties: no mutation, no variables = simple semantics

Result:
e Programs are trees

e Subprograms are subtrees
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Programs with One Argument

Example: z — 2% +1

C
1 4/\
A\ B 1
S
S 3 T
™
* 1
Lambda calculus Combinatory logic

Intuition:

Combinators {B, C, S, I} encode placement of arguments

Semantics:
r Rules:
7Yy T T Bga)=(f (g0)

r e {B,C,S, I}




Programs with One Argument

Example: Apply 2 — 22 +1to 5

10




Programs with One Argument

Example: Apply 2 — 22 +1to 5

&
5
/\
+ S
4/\
B |
S\

10




Programs with One Argument

Example: Apply 2 — 22 +1to 5

/\ /\
C 5 C * & U
E/\l CC/\y €T z
-F/\S route left
A/\
B |
S\

10




Programs with One Argument

Example: Apply 2 — 22 +1to 5

B 5
_— — route left
-+ S
/\
B |
S\

10




Programs with One Argument

Example: Apply 2 — 22 +1to 5

C/\Z /<\
<~ Y
/CI- x/\y y \

B 5
— route left
TR
R R ON
AN B SRS
* 1 :C/\y TH-

route right

10




Programs with One Argument

Example: Apply 2 — 22 +1to 5

C/\Z /<\
<~ Y
+ route left

S 5
/\A
R, B/\Z@fc/>\
* 1 Yy g %

route right

10




Programs with One Argument

Example: Apply 2 — 22 +1to 5

C/\Z /<\
<~ Y
+ route left

S 5
/\A
R, B/\Z@fc/>\
* 1 Yy g %

e N

i r z Yy =z

route left and right

10




Programs with One Argument

C/\Z /<\
<~ Y
PN Y

Example: Apply 2 — 22 +1to 5

i Y
+ route left
B 5 I 5 N />\
S\ B N
* 1 Yy g %

e N

i r z Yy =z

route left and right

10




Programs with One Argument

C/\Z /<\
<~ Y
/\y T %

Example: Apply 2 — 22 +1to 5

i T
+ route left
R o5 1S RN
=
* 1 :U/\y TH-
route right
S/\z m
=
33/\y Tz z U Zz I/\Q; < X

route left and right stop

10




Programs with One Argument

Example: Apply 2 — 22 +1to 5

=
1 £ )
+ route left
D
R0 'SR ION
* 1 :U/\y TH-
route right
S/\z m
N
33/\y Tz z U Zz I/\Q; < Z

route left and right stop

10




Programs with One Argument

C/\Z /<\
<~ Y
/\y T %

X

Example: Apply 2 — 22 +1to 5

] route left
-+ PN
0D gg/\y TH-
route right
S/\z m
-
33/\y Tz z U Zz I/\Q; <~ I

route left and right stop

10




Programs with Multiple Arguments

Example: (z,y) — min(z,y)

11




Programs with Multiple Arguments

Example: (z,y) — min(x, y)
Classical: first-order combinators {B, C, S, I}

Complete basis, so can implement min, but cumbersome

11




Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

11




Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

BB |
if

A

11




Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

BB |
if

A

11




Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

BB |
if

A

11




Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

S 4
_— T~
C I
/\
B 3

11




Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

S 4
—
C I
4/\
B 3

11




Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

if

11




Using Combinators for Refactoring

min

BB I
P
f <

max

BB 1
P
f >

12




Using Combinators for Refactoring

min max
CS CS
/\ /\
SC | SC |
/\ /\
BB | BB |
P PN
f < f >

No significant sharing of subtrees (subprograms)

12




Using Combinators for Refactoring

min max
CS CS
/\ /\
SC | SC |
/\ /\
BB | BB |
P PN
f < f >

No significant sharing of subtrees (subprograms)
Refactored:

/\ /\
CCS < CCS >
— —
CSC | CSC I
‘/\ ‘/\
BBB 1 BBB 1
P P

it 1 f I

12




Using Combinators for Refactoring

min max
CS CS
/\ /\
SC | SC |
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BB | BB |
P PN
f < f >

No significant sharing of subtrees (subprograms)
Refactored:

/\ /\
CCS < CCS >
A ‘/\

CSC | CSC ||
‘/\ ‘/\

BBB 1 BBB 1

P P

f 1 f I

Fruitful sharing of subtrees (subprograms)

12
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Summary

Introduced new combinatory logic basis (intuition: routing)

Purpose of these combinators:
e Represent multi-argument functions
e Allow refactoring to expose common substructures

Achieved uniformity: Every subtree is a subprogram

13




Outline of Proposed Solution

Probabilistic model: Which programs are favorable?

Nonparametric Bayes @

n
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Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:
Return a random primitive combinator (e.g., +, 3, I)
Else:
Choose a type s
r < GENINDEP(s— 1)
y «— GENINDEP(s)
return (z,y)

Example:

GENINDEP(int—int) — */?\1

- 3
Problem: No encouragement to share subprograms
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Adaptor Grammars [Johnson, 2007]

C'y < |] for each type t [cached list of combinators]
(notation: return® ¢ adds ¢ to C and returns c¢)

GENCACHE(t): [returns a combinator of type t]

: .o+ Nid,
With probability SWSRTGAE

With probability Ag:

Return® a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s

r <+ GENCACHE(s — )
y «— GENCACHE(S)
Return® (x,y)

Else:

Return® 2z € C; with probability

—d
|C| Nyd

Interpretation of cache C;: library of generally useful
(unnamed) subroutines which are reused.
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Statistical inference: How do we search for good programs?

MCMC

Outline of Proposed Solution
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Inference via MCMC

User provides tree structure that encodes set of programs U

Objective: sample from posterior given program in U

Use Metropolis-Hastings
Proposal: sample a random program transformation

Program transformations maintain invariant that

program is correct (likelihood is 1)

Two types of transformations:
1. Switching
2. Refactoring

18
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Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

S S
X
Data: {(2,8)} */?\2 & N
(@ — (2 + 2)] [z — 2]

Purpose: change generalization

Refactoring: Change form, preserve total semantics
S N

TN e RO

£ R
[x — z(x + 2)] [z — x(z + 2)]

Purpose: expose different subprograms for sharing

19
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Text Editing Experiments

Setup:

Dataset of [Lau et al., 2003]

K = 24 tasks

Each task: train on 2-5 examples, test on = 13 examples
10 random trials

Example task:
Cardinals 5, Pirates 2.

4

GameScore| winner "Cardinals’; loser 'Pirates’; scores [5, 2]].
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Experimental Results

25 |

@ Uniform prior

2 :
0 B Independent prior

m Joint prior

15

error

10

Observations:
e Independent prior is even worse than uniform prior

e Joint prior (multi-task learning) is effective
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Summary

X = | program | = Y

Key challenge: learn programs from few examples

Main idea: share subprograms across multiple tasks

Tools:
e Combinatory logic: expose subprograms to be shared

e Adaptor grammars: encourage sharing of subprograms

e Metropolis-Hastings: proposals are program transformations
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