Learning Programs:
A Hierarchical Bayesian Approach

ICML - Haifa, Israel June 24, 2010

Percy Liang Michael |. Jordan Dan Klein

Motivating Application: Repetitive Text Editing

I like programs, but I wish programs
would just program themselves since
I don’t like programming.

—

I like <i>programs</i>, but I wish <i>programs</i>
would just <i>program</i> themselves since
I don’t like <i>programming</i>.

Motivating Application: Repetitive Text Editing

I like programs, but I wish programs
would just program themselves since
I don’t like programming.

—

I like <i>programs</i>, but I wish <i>programs</i>
would just <i>program</i> themselves since
I don’t like <i>programming</i>.

Goal: Programming by Demonstration

If the user demonstrates italicizing the first occurrence,
can we generalize to the remaining?

Motivating Application: Repetitive Text Editing

I like programs, but I wish programs
would just program themselves since
I don’t like programming.

—

I like <i>programs</i>, but I wish <i>programs</i>
would just <i>program</i> themselves since
I don’t like <i>programming</i>.

Goal: Programming by Demonstration

If the user demonstrates italicizing the first occurrence,
can we generalize to the remaining?

Solution: represent task by a program to be learned

1. Move to next occurrence of word with prefix program

2. Insert <i>

3. Move to end of word

4. Insert </i>

Motivating Application: Repetitive Text Editing

I like programs, but I wish programs
would just program themselves since
I don’t like programming.

—

I like <i>programs</i>, but I wish <i>programs</i>
would just <i>program</i> themselves since
I don’t like <i>programming</i>.

Goal: Programming by Demonstration

If the user demonstrates italicizing the first occurrence,
can we generalize to the remaining?

Solution: represent task by a program to be learned

1. Move to next occurrence of word with prefix program

2. Insert <i>

3. Move to end of word

4. Insert </i>

Challenge: learn from very few examples

Goal:

(X1, Y1)
(X, Vo)

Training data

General Setup

Goal:

(X1, Y1)
(X, Vo)

Training data

General Setup

—> Z such that (Z X;) =Y,

Consistent program

General Setup

Goal:
(X1, Y1)
(XY
Training data
Challenge:

—> Z such that (Z X;) =Y,

Consistent program

When n small, many programs consistent with training data.

I like <i>programs</i>, but I wish programs
would just program themselves since
I don’t like programming.

Move to beginning of third word, ...
Move to beginning of word after like, ...
Move 7 spaces to the right, ...

Move to word with prefix program, ...

General Setup

Goal:
(X17 Yl)
—> Z such that (Z X;) =Y,
(X, Yn)
Training data Consistent program
Challenge:

When n small, many programs consistent with training data.
Move to beginning of third word, ...

I like <i>programs</i>, but I wish programs Move to beginning of word after like, ...
would just program themselves since .
I don’t like programming. Move 7 spaces t_o the n_ght,

Move to word with prefix program, ...

Which program to choose?

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples — 74

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples — 74

What's the right complexity metric (prior)?

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples — 74

What's the right complexity metric (prior)? No general answer.

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples — 74

What's the right complexity metric (prior)? No general answer.
Multiple tasks:

Task 1 examples — Z2;

Task K examples — Zg

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples — 74

What's the right complexity metric (prior)? No general answer.
Multiple tasks:

Task 1 examples — Z;

Task K examples — Zg

Find programs that share common subprograms.

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples — 74

What's the right complexity metric (prior)? No general answer.
Multiple tasks:

Task 1 examples — Z;
Task K examples — Zg

Find programs that share common subprograms.

e Programs do tend to share common components.

Key Intuition

One task:

Want to choose a program which is simple (Occam’s razor).

Examples — 74

What's the right complexity metric (prior)? No general answer.
Multiple tasks:

Task 1 examples — | Z; ~
Task K examples — |Zg

Find programs that share common subprograms.

e Programs do tend to share common components.

e Penalize joint complexity of all K programs.

Outline of Proposed Solution

Program representation: What are subprograms?

B 1

Combinatory logic +/\B/s\I
PN
£

Outline of Proposed Solution

Program representation: What are subprograms?

B 1

Combinatory logic +/\B/s\I
PN
£

Probabilistic model: Which programs are favorable?

Nonparametric Bayes @

n

Outline of Proposed Solution

Program representation: What are subprograms?

B 1

Combinatory logic +/\B/s\I
PN
£

Probabilistic model: Which programs are favorable?

Nonparametric Bayes @

n

Statistical inference: How do we search for good programs?

rg ror

MCMC I}B\/r\z - &

Ty 7

Outline of Proposed Solution

Program representation: What are subprograms?

B 1

Combinatory logic +/\B/s\I
PN
£

Representation: What Language?

Goal: allow sharing of subprograms

Representation: What Language?

Goal: allow sharing of subprograms

Our language:
Combinatory logic [Schonfinkel, 1924]

Representation: What Language?

Goal: allow sharing of subprograms

Our language:
Combinatory logic [Schonfinkel, 1924]

+ higher-order combinators (new)

+ routing intuition, visual representation (new)

Representation: What Language?

Goal: allow sharing of subprograms

Our language:
Combinatory logic [Schonfinkel, 1924]

+ higher-order combinators (new)

+ routing intuition, visual representation (new)

Properties: no mutation, no variables = simple semantics

Representation: What Language?
Goal: allow sharing of subprograms

Our language:
Combinatory logic [Schonfinkel, 1924]

+ higher-order combinators (new)

+ routing intuition, visual representation (new)

Properties: no mutation, no variables = simple semantics

Result:
e Programs are trees

e Subprograms are subtrees

Programs with No Arguments

Example: compute min(3,4)

Programs with No Arguments

Example: compute min(3,4)
(if (<34)34)

Programs with No Arguments

Example: compute min(3,4)
(if (<34)34)

if

Programs with No Arguments

Example: compute min(3,4)
(if (<34)34)

if
< 3

General:

/. = result of applying function = to argument y
LY

Programs with No Arguments

Example: compute min(3,4)
(if (<34)34)

if
< 3

General:

/. = result of applying function = to argument y
LY

Arguments are curried

Programs with No Arguments

Example: compute min(3,4)

(if (< 34)34) (if true 3 4)
4
3 4
if = 3
4 if true
< 3
General:

/. = result of applying function = to argument y
LY

Arguments are curried

Programs with No Arguments

Example: compute min(3,4)

(if (< 34)34) (if true 3 4)
4
It ? = 3 ! = 3
4 if true
< 3
General:

/. = result of applying function = to argument y
LY

Arguments are curried

Programs with One Argument

Example: z — 2% +1

Programs with One Argument

Example: z — 2% +1

AT .

I

. ambda calculus

Programs with One Argument

Example: z — 2% +1

C
1 ‘/\
Ao B 1
X + S
£ B I
S\
oI |

Lambda calculus Combinatory logic

Programs with One Argument

Example: z — 2% +1

C
1 4/\
A\ B 1
S
S 3 T
™
* 1
Lambda calculus Combinatory logic

Intuition:

Combinators {B, C, S, I} encode placement of arguments

Programs with One Argument

Example: z — 2% +1

C
1 4/\
A\ B 1
S
S 3 T
™
* 1
Lambda calculus Combinatory logic

Intuition:
Combinators {B, C, S, I} encode placement of arguments

Semantics:

Programs with One Argument

Example: z — 2% +1

C
1 4/\
A\ B 1
S
S 3 T
™
* 1
Lambda calculus Combinatory logic

Intuition:

Combinators {B, C, S, I} encode placement of arguments

Semantics:
r Rules:
7Yy T T Bga)=(f (g0)

r e {B,C,S, I}

Programs with One Argument

Example: Apply 2 — 22 +1to 5

10

Programs with One Argument

Example: Apply 2 — 22 +1to 5

&
5
/\
+ S
4/\
B |
S\

10

Programs with One Argument

Example: Apply 2 — 22 +1to 5

/\ /\
C 5 C * & U
E/\l CC/\y €T z
-F/\S route left
A/\
B |
S\

10

Programs with One Argument

Example: Apply 2 — 22 +1to 5

B 5
_— — route left
-+ S
/\
B |
S\

10

Programs with One Argument

Example: Apply 2 — 22 +1to 5

C/\Z /<\
<~ Y
/CI- x/\y y \

B 5
— route left
TR
R R ON
AN B SRS
* 1 :C/\y TH-

route right

10

Programs with One Argument

Example: Apply 2 — 22 +1to 5

C/\Z /<\
<~ Y
+ route left

S 5
/\A
R, B/\Z@fc/>\
* 1 Yy g %

route right

10

Programs with One Argument

Example: Apply 2 — 22 +1to 5

C/\Z /<\
<~ Y
+ route left

S 5
/\A
R, B/\Z@fc/>\
* 1 Yy g %

e N

i r z Yy =z

route left and right

10

Programs with One Argument

C/\Z /<\
<~ Y
PN Y

Example: Apply 2 — 22 +1to 5

i Y
+ route left
B 5 I 5 N />\
S\ B N
* 1 Yy g %

e N

i r z Yy =z

route left and right

10

Programs with One Argument

C/\Z /<\
<~ Y
/\y T %

Example: Apply 2 — 22 +1to 5

i T
+ route left
R o5 1S RN
=
* 1 :U/\y TH-
route right
S/\z m
=
33/\y Tz z U Zz I/\Q; < X

route left and right stop

10

Programs with One Argument

Example: Apply 2 — 22 +1to 5

=
1 £)
+ route left
D
R0 'SR ION
* 1 :U/\y TH-
route right
S/\z m
N
33/\y Tz z U Zz I/\Q; < Z

route left and right stop

10

Programs with One Argument

C/\Z /<\
<~ Y
/\y T %

X

Example: Apply 2 — 22 +1to 5

] route left
-+ PN
0D gg/\y TH-
route right
S/\z m
-
33/\y Tz z U Zz I/\Q; <~ I

route left and right stop

10

Programs with Multiple Arguments

Example: (z,y) — min(z,y)

11

Programs with Multiple Arguments

Example: (z,y) — min(x, y)
Classical: first-order combinators {B, C, S, I}

Complete basis, so can implement min, but cumbersome

11

Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

11

Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

BB |
if

A

11

Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

BB |
if

A

11

Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

BB |
if

A

11

Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

S 4
_— T~
C I
/\
B 3

11

Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

S 4
—
C I
4/\
B 3

11

Programs with Multiple Arguments

Example: (z,y) — min(z,y)
Classical: first-order combinators {B, C, S, I}
Complete basis, so can implement min, but cumbersome
New: higher-order combinators {B,C, S, 1}*
Infinite basis, but resulting programs are more intuitive
e.g., CS routes 1st arg. left, 2nd arg. left and right

if

11

Using Combinators for Refactoring

min

BB I
P
f <

max

BB 1
P
f >

12

Using Combinators for Refactoring

min max
CS CS
/\ /\
SC | SC |
/\ /\
BB | BB |
P PN
f < f >

No significant sharing of subtrees (subprograms)

12

Using Combinators for Refactoring

min max
CS CS
/\ /\
SC | SC |
/\ /\
BB | BB |
P PN
f < f >

No significant sharing of subtrees (subprograms)
Refactored:

/\ /\
CCS < CCS >
— —
CSC | CSC I
‘/\ ‘/\
BBB 1 BBB 1
P P

it 1 f I

12

Using Combinators for Refactoring

min max
CS CS
/\ /\
SC | SC |
/\ /\
BB | BB |
P PN
f < f >

No significant sharing of subtrees (subprograms)
Refactored:

/\ /\
CCS < CCS >
A ‘/\

CSC | CSC ||
‘/\ ‘/\

BBB 1 BBB 1

P P

f 1 f I

Fruitful sharing of subtrees (subprograms)

12

Summary

Introduced new combinatory logic basis (intuition: routing)

13

Summary

Introduced new combinatory logic basis (intuition: routing)

Purpose of these combinators:
e Represent multi-argument functions
e Allow refactoring to expose common substructures

13

Summary

Introduced new combinatory logic basis (intuition: routing)

Purpose of these combinators:
e Represent multi-argument functions
e Allow refactoring to expose common substructures

Achieved uniformity: Every subtree is a subprogram

13

Outline of Proposed Solution

Probabilistic model: Which programs are favorable?

Nonparametric Bayes @

n

14

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]

15

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:

15

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:
Return a random primitive combinator (e.g., +, 3, I)

15

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:
Return a random primitive combinator (e.g., +, 3, I)
Else:
Choose a type s
r < GENINDEP(s— 1)

15

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:
Return a random primitive combinator (e.g., +, 3, I)
Else:
Choose a type s
r < GENINDEP(s— 1)
y «— GENINDEP(s)

15

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:
Return a random primitive combinator (e.g., +, 3, I)
Else:
Choose a type s
r < GENINDEP(s— 1)
y «— GENINDEP(s)
return (z,y)

15

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:
Return a random primitive combinator (e.g., +, 3, I)
Else:
Choose a type s
r < GENINDEP(s— 1)
y «— GENINDEP(s)
return (z,y)

Example:

GENINDEP(int—int) — 2\

15

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:
Return a random primitive combinator (e.g., +, 3, I)
Else:
Choose a type s
r < GENINDEP(s— 1)
y «— GENINDEP(s)
return (z,y)

Example:

GENINDEP(int—int) — */?\1

- 3

15

Probabilistic Context-Free Grammars

GENINDEP(): [returns a combinator of type t]
With probability Ap:
Return a random primitive combinator (e.g., +, 3, I)
Else:
Choose a type s
r < GENINDEP(s— 1)
y «— GENINDEP(s)
return (z,y)

Example:

GENINDEP(int—int) — */?\1

- 3
Problem: No encouragement to share subprograms

15

Adaptor Grammars [Johnson, 2007]

C'y < |] for each type t [cached list of combinators]

16

Adaptor Grammars [Johnson, 2007]

C'y < |] for each type t [cached list of combinators]
(notation: return® ¢ adds ¢ to C and returns c¢)

16

Adaptor Grammars [Johnson, 2007]

C'y < |] for each type t [cached list of combinators]
(notation: return® ¢ adds ¢ to C and returns c¢)

GENCACHE(t): [returns a combinator of type t]

With probability &7

16

Adaptor Grammars [Johnson, 2007]

C'y < |] for each type t [cached list of combinators]
(notation: return® ¢ adds ¢ to C and returns c¢)

GENCACHE(t): [returns a combinator of type t]

' iy, 0t Nid,
With probability SWSRTGAE

With probability Ag:
Return® a random primitive combinator (e.g., +, 3, I)
Else:
Choose a type s
r <+ GENCACHE(s —)
y «— GENCACHE(S)
Return® (x,y)
Else:

16

Adaptor Grammars [Johnson, 2007]

C'y < |] for each type t [cached list of combinators]
(notation: return® ¢ adds ¢ to C and returns c¢)

GENCACHE(t): [returns a combinator of type t]

. ‘1 apg+Ned.,
With probability SWSRTGAE

With probability Ag:

Return® a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s

r <+ GENCACHE(s —)
y «— GENCACHE(S)
Return® (x,y)

Else:

Return® 2z € C; with probability

—d
|C| Nyd

16

Adaptor Grammars [Johnson, 2007]

C'y < |] for each type t [cached list of combinators]
(notation: return® ¢ adds ¢ to C and returns c¢)

GENCACHE(t): [returns a combinator of type t]

: .o+ Nid,
With probability SWSRTGAE

With probability Ag:

Return® a random primitive combinator (e.g., +, 3, I)
Else:

Choose a type s

r <+ GENCACHE(s —)
y «— GENCACHE(S)
Return® (x,y)

Else:

Return® 2z € C; with probability

—d
|C| Nyd

Interpretation of cache C;: library of generally useful
(unnamed) subroutines which are reused.

16

Statistical inference: How do we search for good programs?

MCMC

Outline of Proposed Solution

rg ror

/\ —

rnBr <~ = Z r
/\

Ty 7

17

Inference via MCMC

User provides tree structure that encodes set of programs U
Objective: sample from posterior given program in U

18

Inference via MCMC

User provides tree structure that encodes set of programs U
Objective: sample from posterior given program in U

Use Metropolis-Hastings
Proposal: sample a random program transformation

18

Inference via MCMC

User provides tree structure that encodes set of programs U
Objective: sample from posterior given program in U

Use Metropolis-Hastings
Proposal: sample a random program transformation

Program transformations maintain invariant that

program is correct (likelihood is 1)

18

Inference via MCMC

User provides tree structure that encodes set of programs U

Objective: sample from posterior given program in U

Use Metropolis-Hastings
Proposal: sample a random program transformation

Program transformations maintain invariant that

program is correct (likelihood is 1)

Two types of transformations:
1. Switching
2. Refactoring

18

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

Data: {(2,8)}

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

S
Data: {(2,8)} */?\2

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

S S
N
x S
Data: {(2,8)} */?\2 & */\I

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

7y
Data: {(2,8)} */?\2 o A
(@ — (2 + 2)] [z — 2]

Purpose: change generalization

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

S S
X
Data: {(2,8)} */J?\Q & N
(@ — (2 + 2)] [z — 2]

Purpose: change generalization

Refactoring: Change form, preserve total semantics

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

S S
X
Data: {(2,8)} */J?\Q & N
(@ — (2 + 2)] [z — 2]

Purpose: change generalization

Refactoring: Change form, preserve total semantics

*%\
+ 2

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

7y
Data: {(2,8)} */?\2 o A
(@ — (2 + 2)] [z — 2]

Purpose: change generalization

Refactoring: Change form, preserve total semantics

S N
B 2
*/>\ AN /&
+ 2 * +

19

Program transformations (MCMC moves)

Switching: Change content, preserve empirical semantics

S S
X
Data: {(2,8)} */?\2 & N
(@ — (2 + 2)] [z — 2]

Purpose: change generalization

Refactoring: Change form, preserve total semantics
S N

TN e RO

£ R
[x — z(x + 2)] [z — x(z + 2)]

Purpose: expose different subprograms for sharing

19

Text Editing Experiments

Setup:

Dataset of [Lau et al., 2003]

K = 24 tasks

Each task: train on 2-5 examples, test on = 13 examples
10 random trials

20

Text Editing Experiments

Setup:

Dataset of [Lau et al., 2003]

K = 24 tasks

Each task: train on 2-5 examples, test on = 13 examples
10 random trials

Example task:
Cardinals 5, Pirates 2.

4

GameScore| winner "Cardinals’; loser 'Pirates’; scores [5, 2]].

20

Experimental Results

@ Uniform prior
B Independent prior
m Joint prior

21

error

25 A

20

15

10

Experimental Results

@ Uniform prior
B Independent prior
m Joint prior

21

25 |

20

15

error

10

Observations:

Experimental Results

@ Uniform prior
B Independent prior
m Joint prior

e Independent prior is even worse than uniform prior

21

Experimental Results

25 |

@ Uniform prior

2 :
0 B Independent prior

m Joint prior

15

error

10

Observations:
e Independent prior is even worse than uniform prior

e Joint prior (multi-task learning) is effective

21

X =

Summary

= Y

22

X =

Summary

program

= Y

22

Summary

X = | program | = Y

Key challenge: learn programs from few examples

22

Summary

X = | program | = Y

Key challenge: learn programs from few examples

Main idea: share subprograms across multiple tasks

22

Summary

X = | program | = Y

Key challenge: learn programs from few examples

Main idea: share subprograms across multiple tasks

Tools:
e Combinatory logic: expose subprograms to be shared

e Adaptor grammars: encourage sharing of subprograms

e Metropolis-Hastings: proposals are program transformations

22

