<3

NVIDIA

NVIDIA Driver Settings
Programming Guide

PG-5116-001-v02

Version Date Authors Description of Change

1.0 2/19/2010 li/cc Initial Release

1.1 6/1/2010 cc Removed NDA requirement
2.0 1/19/2011 li/cc Edited code sample in “How to

display all information related to a
profile” on page -9.

Preface

Welcome to the NVIDIA Driver Settings Programming guide. This
document explains how the NVIDIA set of drivers handle preferences and
how these features are exposed through the NVIDIA NVAPI interface.

The NVIDIA Control Panel-provided with all NVIDIA drivers- allows the
user to control the behavior of all the NVIDIA drivers in the system. But
for those users who want a more in-depth control of the preferences in the
NVIDIA driver, as well as for those users that wish to write their own
Control Panel, this guide is for you. It explains the basic principles that
constitute the NVIDIA settings framework and details how to program
using NVAPI in order to retrieve and change any setting.

The NVIDIA team wishes you good luck on your endeavors!

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | ii

(] = ol S i

(I 1314 eTe [F T 4 {o] o LR 1
2 NVIDIA Driver Settings ConCePtS ..ccoviiiiiiiiiiieireesesssssssssssssssssssscnes 2
D V=T Y= u] = PP 2

o (o) i 1 L= P 2
Profile HierarChyeiiiiii i e 3
Setting Application Behaviorcoviiiiiiiiiiiiiiiiiiiii it eees 3

3 NVAPI Programming GUIdecceeiiiiiiiiiiiiiieiieeeeeeeeeeeeeeseeecceccecanns 4
N7\ 2 W T el d foTe [F et u o] o I PPN 4
Driver Settings Code EXamples.eeiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieaaaaaanns 5
How to write a driver setting: disabling v-synC..........cccevvviiiiinna... 5

How to enumerate all the profiles in the system.........cccovvnnna... 8

How to display all information related to a profile 9

4 NVIDIA Driver Settings - Best Programming Practicescccceevvveeeennn 12
5 NVAPI Function Documentationccceeeeeeennnnennenccecssessesscsscsssnnes 13
N A7 o T Y 1 = 1= 13
NVAP|_GetErrorMesSage (). . uuuuuuuueeeeeeeiiiiiiiiineeeeeseeessasaeeaaaannnns 13
NVAPI_DRS_CreateSession() ..veueeeeeeeeeteniieieeeeeernnnieeeeeeeennnnnnnnns 13
NVAPI_DRS_DeStroySeSSiON() «.uuuuueeeeeiiinieniiiiieeieeeeiiaensaeaenaannns 14
NVAPI_DRS_L0oadSettings()..cceeeeeiiuueeeeeiieiiiiineeeeeeeeesnnneeeeeeeanns 14
NVAPI_DRS_SaveSettings() ..uuuueeeueeeeeriiiiiiieiiiiiiieeiiainiinaaaeaaannns 14
NVAPI_DRS_GetBaseProfile€() «..uuueeeeiiiiiiiiiiiiiiiiiiiiiiiiiiiieiieeaannns 14
NVAPI_DRS_SetSetting()...ceeeteieiiiiiiiiiiiiiieeteeeeiiieneeeeeaanns 14

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | iii

INTRODUCTION

The purchase of an NVIDIA card, whether GeForce or Quadro, opens a whole new
horizon of possibilities to a computer. Advanced DirectX graphics, the latest OpenGL
standard, the ability to program multicores with CUDA and OpenCL, and the ability to
drive several of the largest displays on the market simultaneously are some of the new
possibilities open by using an NVIDIA card.

For each new technology offered by NVIDIA there are many preferences exposed in
order to make the system behave exactly how the user wants it. Examples of such
preferences are the type of SLI rendering to use or whether high antialias rendering
should always be used.

The NVIDIA Control Panel exposes all the preferences to the user, and allows
customizing the computer to match the user's needs.

With the Release 256 NVIDIA driver all the internals of the preferences, or driver
settings, have changed. NVIDIA now exports through NVAPI the interface to query and
change the system driver settings. This is the same API that the NVIDIA Control Panel
uses to access the system driver settings.

The first part of this document describes in detail the concepts that model the NVIDIA

driver settings. The second part of this document goes in detail how to program against
the NVAPI interface in order to access, query, or change the system driver settings.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 1

NVIDIA DRIVER SETTINGS CONCEPTS

At any given time in a computer there are a number of programs running. More than one
of those programs might be interacting with the NVIDIA driver at the same time. This
section will detail the concepts upon which NVIDIA has built a system to control, on a
per application basis and on a system basis, the settings selected by the user.

Driver Setting

A driver setting is any preference that affects the behavior of the NVIDIA driver. The SLI
rendering mode is a driver setting. Choosing whether to sync to the vertical sync on the
display is a driver setting.

As of this writing, not all driver settings are publicly exposed through the NVAPI
interface. There are a number of settings that are internal to the NVIDIA driver. These
settings might change from version to version of the driver.

On an installed system there are two types of settings. Those that were installed with the
NVIDIA driver are called predefined settings. Those that were edited by the user after
installation are called user settings.

Profile

The NVIDIA driver organizes settings in profiles. A profile is a collection of settings
which can have one or more applications associated with them. A computer with an
NVIDIA card has several profiles installed on it. The profiles customize the driver
behavior to optimize each game and application's performance and stability.

A profile can have any number of settings, but it cannot have the same setting twice.
Profiles are uniquely identified by their name.

The profiles that were shipped with the NVIDIA driver are called predefined profiles.
The profiles that were created by the user after installation are called user profiles. A
user profile can only contain user settings, while a predefined profile might contain user
settings as well as predefined settings.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 2

Chapter :

A profile can have any number of applications associated to it. A given application can
only be associated with a single profile in the whole system.

A profile with one or more applications is called an Application Profile. Applications
that have a profile have their settings applied automatically when the application starts.

The Base Profile is a profile that always exists and is not associated with a specific
application. The settings in the Base Profile are applied to all processes on the system
automatically.

A profile with no applications is called a Global Profile. The settings from a Global
Profile are applied to all processes on the system, but only if that profile is selected to be
the Current Global Profile in the system.

Profile Hierarchy

When an application starts, there might be three profiles contesting to provide settings to
the NVIDIA driver: the Application Profile, the Current Global Profile and the Base
Profile.

The settings from the Application Profile have the highest priority and override any
settings on the other two profiles. Next in priority order comes the Current Global
Profile, and finally the Base Profile.

Setting Application Behavior

The NVIDIA driver loads and applies its settings only at the time the process is
initializing the NVIDIA dll. Thus, writing an application that loads the DirectX or
OpenGL driver and then after that wishes to make changes to the NVIDIA Driver
Settings will not obtain the desired behavior without restarting the application.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 3

NVAPI PROGRAMMING GUIDE

This section provides guidance with detailed explanations and examples of how to
interact with driver settings using NVAPIL

First the document provides an overview of what NVAPI is and how it is used. Then it
provides some example programs and explains what each part does.

NVAPI Introduction

NVAPI is the API provided by NVIDIA to query, access, and interact with the NVIDIA
driver and its capabilities.

» NVAPIis a DLL shipped with every NVIDIA driver and loaded dynamically by the
applications using it.

The nvapi.lib used to link against is nothing more than a wrapper layer that will load
the installed nvapi.dll.
» NVAPI is forwards and backwards compatible.

Trying to call an NVAPI function that is not implemented in the current NVAPI dll
will result on NVAPI_NO_IMPLEMENTATION. It is easy to program and handle cases
where your application is running on a system that does not support a specific
function.

» NVIDIA provides the NVAPI SDK to download from the NVIDIA web site.

The NVAPI SDK includes the main nvapi.h header and nvapi.lib to link against.
The nvapi.h header contains comments for each exported function. The NVAPI SDK
from Release 256 onwards includes NvApiDriverSettings.h. This header contains
all the NVIDIA driver settings publicly exported through NVAPL

» NVAPI functions always return an NvAPI_Status enum.

If the function succeeds, the enum is NVAPI_OK. All the error enum are described in
nvapi.h.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 4

Driver Settings Code Examples

How to write a driver setting: disabling v-sync

This example program disables VSYNC for the whole system:

"nvapi.h"
"NvApiDriverSettings.h"
<stdlib.h>

<stdio.h>

Chapter :

/*
This function is used to print to the command line a text message
describing the nvapi error and quits
*/
PrintError (status)
{
szDesc = {0};

NvAPI GetErrorMessage (status, szDesc);
printf (" NVAPI error: %s\n", szDesc);
exit (-1);

main (argc, **argv)
status;
// (0) Initialize NVAPI. This must be done first of all
status = NVAPI Initialize();
(status != NVAPI OK)

PrintError (status);

// (1) Create the session handle to access driver settings

hSession = 0;
status = NVAPI DRS CreateSession(&hSession);
(status != NVAPI OK)

PrintError (status);

// (2) load all the system settings into the session
status = NvVAPI DRS LoadSettings (hSession);

(status != NVAPI OK)

PrintError (status);

// (3) Obtain the Base profile. Any setting needs to be inside
// a profile, putting a setting on the Base Profile enforces it

// for all the processes on the system
hProfile = 0;
status = NVAPI DRS GetBaseProfile (hSession, &hProfile);
(status != NVAPI OK)
PrintError (status);

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 5

Chapter :

// (4) Specify that we want the VSYNC disabled setting
// first we fill the NVDRS SETTING struct, then we call the function
drsSetting = {0};

drsSetting.version = NVDRS SETTING VER;

drsSetting.settingId = VSYNCMODE ID;

drsSetting.settingType = NVDRS DWORD TYPE;

drsSetting.u32CurrentValue = VSYNCMODE FORCEOFE;

status = NVAPI DRS SetSetting(hSession, hProfile, &drsSetting);
(status != NVAPI OK)
PrintError (status);

// (5) Now we apply (or save) our changes to the system
status = NvVAPI DRS SaveSettings (hSession);

(status != NVAPI OK)

PrintError (status);

// (6) We clean up. This is analogous to doing a free /()
NvAPI DRS DestroySession (hSession);
hSession = 0;
0;
}

This program sets the VSYNCMODE setting to have the value VSYNCMODE FORCEOFFE for
the whole system.

The function PrintError takes an NVAPI Status, retrieves from NVAPI a string
describing the error, prints it on the screen and exits.

There are 6 main pieces of code, marked with the number in the comments. Following is
the expanded explanation:

» (0) This code initializes the NV API interface. It makes sure that all NVAPI functions
can be called. This function needs to be called before any other NVAPI functions. If
this function fails, no NVAPI functionality is available.

» (1) This function creates a session handle. All interactions with the driver settings
need a session handle.

» (2) The session must be loaded with all the settings on the system in order to interact
with those settings.

» (3) As described in the concept session, the Base Profile is the profile with settings that
apply to all processes in the system. Most of the time we want to update the settings in
the Base Profile. This code retrieves a profile handle to the base profile.

» (4) This is the code that actually specifies the setting. It starts by filling a
NVDRS SETTING structure. The important fields to fill are:

e version: This field is used by NVAPI to ensure that the size of the structure is
correct.

* settingId: This field specifies which setting we want to modify. The ID for the
setting comes from the nvApiDriverSettings.h header.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 6

Chapter :

e settingType: NVAPI supports settings of binary, dword and wstring types. The
setting type needs to be specified and agree with what field of the structure holds

the setting value.

e u32CurrentValue: Thisis the field to specify dword settings. The value
assigned here also comes from the nvApiDriverSettings.h header.

» (5) After doing any modifications to the session as a whole, we must call the function
to save the settings if we intend to actually modify the system settings. This is the call

that saves the settings.

» (6) This last call frees any resources associated with the session. This also frees
resources associated with profile handles.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 7

Chapter :

How to enumerate all the profiles in the system

This program will enumerate all profiles in the system.

void EnumerateProfilesOnSystem /()

{
NvAPI Status status;

// (0) Initialize NVAPI. This must be done first of all
status = NVAPI Initialize();
if (status != NVAPI OK)

PrintError (status) ;

// (1) Create the session handle to access driver settings

NvDRSSessionHandle hSession = 0;
status = NvVAPI DRS CreateSession(&hSession);
if (status != NVAPI OK)

PrintError (status);

// (2) load all the system settings into the session
status = NvVAPI DRS LoadSettings (hSession);
if (status != NVAPI OK)

PrintError (status) ;

// (3) Enumerate through all the profiles. Do so until the
// return value is NVAPI END ENUMERATION.
NvDRSProfileHandle hProfile = 0;
unsigned int index = 0;
while ((status = NvAPI DRS EnumProfiles (hSession, index, &hProfile))
== NVAPI OK) {
// (4) hProfile is now a valid Profile handle.
// retrieve information from the Profile
printf ("Profile in position %d:\n", index);
DisplayProfileContents (hSession, hProfile);

index++;
}
if (status == NVAPIiENDiENUMERATION) {

// this is expected at the end of the enumeration
} else if (status != NVAPI OK)

PrintError (status);

// (6) We clean up. This is analogous to doing a free ()
NvAPI DRS DestroySession (hSession);
hSession = 0;

Points (0) through (2) and (6) are the same as in the previous example.

Point (3) is how Profile enumeration works. It is possible to obtain the total number of
profiles in the system or, as the example code does, keep calling the function
incrementing the index for the profile to retrieve until we obtain the NVAPI status that

indicates that there are not more profiles.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 8

Chapter :

How to display all information related to a profile

This code is a function that assumes we have a valid session and profile handles. It will
retrieve all information related to a profile, its name, all associated applications, and all
associated settings.

bool DisplayProfileContents (NvDRSSessionHandle hSession,
NvDRSProfileHandle hProfile)

// (0) this function assumes that the hSession and hProfile are
// valid handles obtained from nvapi.
NvAPI Status status;

// (1) First, we retrieve generic profile information
// The structure will provide us with name, number of applications
// and number of settings for this profile.
NVDRS PROFILE profileInformation = {0};
profileInformation.version = NVDRS PROFILE VER;
status = NvVAPI DRS GetProfileInfo (hSession,
hProfile,
&profileInformation);
if (status != NVAPI OK) {
PrintError (status);
return false;

wprintf (L"Profile Name: %s\n", profilelnformation.profileName);

printf ("Number of Applications associated with the Profile: %d\n",
profileInformation.numOfApps) ;

printf ("Number of Settings associated with the Profile: %d\n",
profileInformation.numOfSettings) ;

printf ("Is Predefined: $d\n", profilelnformation.isPredefined);

// (2) Now we enumerate through all the applications on the profile,
// 1f there is any
if (profileInformation.numOfApps > 0) {
NVDRS APPLICATION *appArray =
new NVDRS APPLICATION[profileInformation.numOfApps];
NvU32 numAppsRead = profileInformation.numOfApps, 1i;
// (3) It is possible to enumerate all applications one by one,
// or all at once on a preallocated array. The numAppsRead
// represents the number of NVDRS APPLICATION structures
// allocated in the array. It will be modified on return of the
// function contain the number of actual applications that have
// been filled by NVAPI
appArray[0] .version = NVDRS APPLICATION VER;
status = NvAPI DRS EnumApplications (hSession,
hProfile,
OI
&numAppsRead,
appArray) ;
if (status != NVAPI OK) {

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 9

Chapter :

PrintError (status);
delete[] appArray;
return false;
}
for (i=0; i<numAppsRead; i++) |
wprintf (L"Executable: %s\n", appArray[i].appName) ;
wprintf (L"User Friendly Name: %s\n",
appArray[i] .userFriendlyName) ;
printf ("Is Predefined: $d\n", appArray|[i].isPredefined);
}
delete[] appArray;

// (4) Now we enumerate all the settings on the profile
if (profileInformation.numOfSettings > 0) {
NVDRS SETTING *setArray =
new NVDRS SETTING[profileInformation.numOfSettings];
NvU32 numSetRead = profileInformation.numOfSettings, 1i;
// (5) The function to retrieve the settings in a profile works
// like the function to retrieve the applications.
setArray[0].version = NVDRS SETTING VER;
status = NvVAPI DRS EnumSettings (hSession,
hProfile,
OI
&numSetRead,
setArray);
if (status != NVAPI OK) ({
PrintError (status);
return false;
}
for (i=0; i<numSetRead; 1i++) {
if (setArray[i].settinglLocation !=
NVDRS CURRENT PROFILE LOCATION) {
// (6) The settings that are not from the Current Profile
// are inherited from the Base or Global profiles. Skip them.
continue;
1
wprintf (L"Setting Name: %s\n", setArray[i].settingName);
printf ("Setting ID: %X\n", setArray[i].settingld);
printf ("Predefined? : %d\n",
setArray[i].isCurrentPredefined);
switch (setArray[i].settingType) |
// (7) a setting can be of different types and be using
// different fields on the NVDRS SETTING union
case NVDRS DWORD TYPE:
printf ("Setting Value: %X\n",
setArray[i] .u32CurrentValue);
break;
case NVDRS BINARY TYPE:
{
unsigned int len;
printf ("Setting Binary (length=%d) :",
setArray[i] .binaryCurrentValue.valuelLength);
for (len=0;

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 10

Chapter :

< [1i] ;
+4)
{
(" %02x",
[i]. . [1)
}
("\n") ;
}
break;
case NVDRS WSTRING TYPE:
(L"Setting Value: %s",
[i].) ;
break;

}
(H\nll) ,.
return true;

}

» (1) This code retrieves the generic Profile information. This contains a name, the
number of applications and settings, and whether this profile is predefined or not.

» (2) This if statement contains the code to enumerate all applications. For each
application, we retrieve the name of the executable, the Friendly name and whether it
was added as a predefined application or not.

» (3) Enumerating applications can be done the same way profiles were enumerated in
the previous example. In this case, we use the second way of enumerating all
applications. We know how many applications are there, we allocate an array to hold
information for all applications and with a single call we obtain them all.

» (4) In the same way we enumerated applications, this code enumerates settings.

» (5) The function to enumerate settings follows the same footprint as the function to
enumerate application.

» (6) When settings are enumerated you obtain all settings for a profile, even the
inherited settings. Skip the settings that do not belong to the requested profile.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 11

NVIDIA DRIVER SETTINGS - BEST
PROGRAMMING PRACTICES

The section contains a few suggestions and general warnings to consider when
programming with NVAPI for the NVIDIA Driver Settings.

» NVIDIA advises loading Settings at the beginning of the program and save them only
at the end of the program. The session can hold all of your current changes.

P Processes only load their settings at loading time. Save the settings to disk before a
new process runs in order to have it use the new settings.

» You can have as many Sessions open as you want. If another process modifies the
NVIDIA driver settings while your process has an open session, you will not be
notified. Saving the session and loading it again is a good way to update your session.

» There are functions to reset the state of a setting for all settings in a Profile as well as
for the whole system. Each individual function restores the state of a setting, profile,
or the system to what amounts to a clean driver install. The functions are:

¢ NvAPI_DRS_RestoreProfileDefaultSetting()
o NvAPI_DRS_RestoreProfileDefault()
e NVAPI_DRS_RestoreAllDefaults()

CAUTION:On Release R256 Session merging is not implemented. This
means that when you save your session settings, if another process had
modified the system settings, their modifications will be lost. This
issue affects systems where multiple processes are trying to modify
settings at the same time. Please advise your users to run your appli-
cation modifying settings alone, without the NVIDIA Control Panel
opened in the background. This limitation is expected to be removed
in a future release.

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 12

NVAPI FUNCTION DOCUMENTATION

The full documentation of all NVAPI functions is the nvapi.h header itself. The comments
in the header are the most up to date documentation for the NVAPI functions. Here we
list the NVAPI functions used in the first code example.

NVAPI_Initialize()

The function NVAPI_Initialize needs to be called before any other NVAPI function is
called. This function can be called several times safely.

NVAPI INTERFACE NvAPI Initialize();

NVAPI_GetErrorMessage()

The function NVAPI_GetErrorMessage provides a string describing the error from an
NvVAPI_Status enum. The string is returned in the szDesc parameter.

NVAPI INTERFACE NVAPI GetErrorMessage (NVAPI Status nr,
NvAPI ShortString szDesc);

NVAPI_DRS_CreateSession()

All interactions with the NVIDIA driver settings requires a NvDRSSessionHandle. This is a
handle that represents the current interaction with NVAPI and the driver settings. The
function NVAPI_DRS_CreateSession creates this handle and must be called to retrieve a
handle to use on all subsequent NVAPI calls.

NVAPI INTERFACE NvAPI DRS CreateSession (NvDRSSessionHandle *phSession);

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 13

Chapter :

NVAPI_DRS_DestroySession()

The function NvAPI_DRS_DestroySession destroys the session handle. After this function
call, the session handle is not valid anymore and should not be used. Failure to call this
function might result in memory leaks.

NVAPI INTERFACE NvAPI DRS DestroySession (NvDRSSessionHandle hSession);

NVAPI_DRS_LoadSettings()

The function NVAPI_DRS_LoadSettings loads all the system settings on the specified
session. The settings from the system are not loaded until this function is called. In order
to browse settings or to set settings this function needs to be called.

NVAPI INTERFACE NvAPI DRS LoadSettings (NvDRSSessionHandle hSession);

NVAPI_DRS_SaveSettings()

The function NVAPI_DRS_SaveSettings saves all modifications done to the session passed
as a parameter to the system. Until this function is called, nothing has been modified on
the system. If this function is not called, then no modifications are performed on the
system.

NVAPI INTERFACE NvAPI DRS SaveSettings (NvDRSSessionHandle hSession);

NVAPI_DRS_GetBaseProfile()

The function NvAPI_DRS_GetBaseProfile retrieves a handle to the Base Profile in the
system. This handle can be used to interact with the profile by adding, removing, or
iterating through the settings in the profile.

NVAPI INTERFACE NvAPI DRS GetBaseProfile (NvDRSSessionHandle hSession,
NvDRSProfileHandle *phProfile);

NVAPI_DRS_SetSetting()

The function NVAPI_DRS_SetSetting specifies the value for a given setting on a given
profile. If the setting exists, the previous value is overwritten.

This function does not delete a setting. To delete a setting, call
NvAPI_DRS_DeleteProfileSetting.

NVAPI INTERFACE NvAPI DRS SetSetting(NvDRSSessionHandle hSession,
NvDRSProfileHandle hProfile,
NVDRS_SETTING *pSetting);

NVIDIA Driver Settings Programming Guide PG-5116-001-v02 | 14

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, "MATERIALS") ARE BEING PROVIDED "AS IS." NVIDIA MAKES
NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS
FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

Macrovision Compliance Statement

NVIDIA Products that are Macrovision enabled can only be sold or distributed to buyers with a valid and
existing authorization from Macrovision to purchase and incorporate the device into buyer's products.

Macrovision copy protection technology is protected by U.S. patent numbers 5,583,936; 6,516,132;
6,836,549; and 7,050,698 and other intellectual property rights. The use of Macrovision's copy protection
technology in the device must be authorized by Macrovision and is intended for home and other limited
pay-per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or
disassembly is prohibited.

OpenCL
OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.
Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright
© 2010 NVIDIA Corporation. All rights reserved.

@

www.nvidia.com NVIDIA.

	Preface
	01 Introduction
	02 NVIDIA Driver Settings Concepts
	Driver Setting
	Profile
	Profile Hierarchy
	Setting Application Behavior

	03 NVAPI Programming Guide
	NVAPI Introduction
	Driver Settings Code Examples
	How to write a driver setting: disabling v-sync
	How to enumerate all the profiles in the system
	How to display all information related to a profile

	04 NVIDIA Driver Settings - Best Programming Practices
	05 NVAPI Function Documentation
	NvAPI_Initialize()
	NvAPI_GetErrorMessage()
	NvAPI_DRS_CreateSession()
	NvAPI_DRS_DestroySession()
	NvAPI_DRS_LoadSettings()
	NvAPI_DRS_SaveSettings()
	NvAPI_DRS_GetBaseProfile()
	NvAPI_DRS_SetSetting()

