rustc_target/callconv/mod.rs
1use std::{fmt, iter};
2
3use rustc_abi::{
4 AddressSpace, Align, BackendRepr, CanonAbi, ExternAbi, HasDataLayout, Primitive, Reg, RegKind,
5 Scalar, Size, TyAbiInterface, TyAndLayout,
6};
7use rustc_macros::HashStable_Generic;
8
9pub use crate::spec::AbiMap;
10use crate::spec::{HasTargetSpec, HasX86AbiOpt};
11
12mod aarch64;
13mod amdgpu;
14mod arm;
15mod avr;
16mod bpf;
17mod csky;
18mod hexagon;
19mod loongarch;
20mod m68k;
21mod mips;
22mod mips64;
23mod msp430;
24mod nvptx64;
25mod powerpc;
26mod powerpc64;
27mod riscv;
28mod s390x;
29mod sparc;
30mod sparc64;
31mod wasm;
32mod x86;
33mod x86_64;
34mod x86_win32;
35mod x86_win64;
36mod xtensa;
37
38#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
39pub enum PassMode {
40 /// Ignore the argument.
41 ///
42 /// The argument is a ZST.
43 Ignore,
44 /// Pass the argument directly.
45 ///
46 /// The argument has a layout abi of `Scalar` or `Vector`.
47 /// Unfortunately due to past mistakes, in rare cases on wasm, it can also be `Aggregate`.
48 /// This is bad since it leaks LLVM implementation details into the ABI.
49 /// (Also see <https://github.com/rust-lang/rust/issues/115666>.)
50 Direct(ArgAttributes),
51 /// Pass a pair's elements directly in two arguments.
52 ///
53 /// The argument has a layout abi of `ScalarPair`.
54 Pair(ArgAttributes, ArgAttributes),
55 /// Pass the argument after casting it. See the `CastTarget` docs for details.
56 ///
57 /// `pad_i32` indicates if a `Reg::i32()` dummy argument is emitted before the real argument.
58 Cast { pad_i32: bool, cast: Box<CastTarget> },
59 /// Pass the argument indirectly via a hidden pointer.
60 ///
61 /// The `meta_attrs` value, if any, is for the metadata (vtable or length) of an unsized
62 /// argument. (This is the only mode that supports unsized arguments.)
63 ///
64 /// `on_stack` defines that the value should be passed at a fixed stack offset in accordance to
65 /// the ABI rather than passed using a pointer. This corresponds to the `byval` LLVM argument
66 /// attribute. The `byval` argument will use a byte array with the same size as the Rust type
67 /// (which ensures that padding is preserved and that we do not rely on LLVM's struct layout),
68 /// and will use the alignment specified in `attrs.pointee_align` (if `Some`) or the type's
69 /// alignment (if `None`). This means that the alignment will not always
70 /// match the Rust type's alignment; see documentation of `pass_by_stack_offset` for more info.
71 ///
72 /// `on_stack` cannot be true for unsized arguments, i.e., when `meta_attrs` is `Some`.
73 Indirect { attrs: ArgAttributes, meta_attrs: Option<ArgAttributes>, on_stack: bool },
74}
75
76impl PassMode {
77 /// Checks if these two `PassMode` are equal enough to be considered "the same for all
78 /// function call ABIs". However, the `Layout` can also impact ABI decisions,
79 /// so that needs to be compared as well!
80 pub fn eq_abi(&self, other: &Self) -> bool {
81 match (self, other) {
82 (PassMode::Ignore, PassMode::Ignore) => true,
83 (PassMode::Direct(a1), PassMode::Direct(a2)) => a1.eq_abi(a2),
84 (PassMode::Pair(a1, b1), PassMode::Pair(a2, b2)) => a1.eq_abi(a2) && b1.eq_abi(b2),
85 (
86 PassMode::Cast { cast: c1, pad_i32: pad1 },
87 PassMode::Cast { cast: c2, pad_i32: pad2 },
88 ) => c1.eq_abi(c2) && pad1 == pad2,
89 (
90 PassMode::Indirect { attrs: a1, meta_attrs: None, on_stack: s1 },
91 PassMode::Indirect { attrs: a2, meta_attrs: None, on_stack: s2 },
92 ) => a1.eq_abi(a2) && s1 == s2,
93 (
94 PassMode::Indirect { attrs: a1, meta_attrs: Some(e1), on_stack: s1 },
95 PassMode::Indirect { attrs: a2, meta_attrs: Some(e2), on_stack: s2 },
96 ) => a1.eq_abi(a2) && e1.eq_abi(e2) && s1 == s2,
97 _ => false,
98 }
99 }
100}
101
102// Hack to disable non_upper_case_globals only for the bitflags! and not for the rest
103// of this module
104pub use attr_impl::ArgAttribute;
105
106#[allow(non_upper_case_globals)]
107#[allow(unused)]
108mod attr_impl {
109 use rustc_macros::HashStable_Generic;
110
111 // The subset of llvm::Attribute needed for arguments, packed into a bitfield.
112 #[derive(Clone, Copy, Default, Hash, PartialEq, Eq, HashStable_Generic)]
113 pub struct ArgAttribute(u8);
114 bitflags::bitflags! {
115 impl ArgAttribute: u8 {
116 const NoAlias = 1 << 1;
117 const NoCapture = 1 << 2;
118 const NonNull = 1 << 3;
119 const ReadOnly = 1 << 4;
120 const InReg = 1 << 5;
121 const NoUndef = 1 << 6;
122 }
123 }
124 rustc_data_structures::external_bitflags_debug! { ArgAttribute }
125}
126
127/// Sometimes an ABI requires small integers to be extended to a full or partial register. This enum
128/// defines if this extension should be zero-extension or sign-extension when necessary. When it is
129/// not necessary to extend the argument, this enum is ignored.
130#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
131pub enum ArgExtension {
132 None,
133 Zext,
134 Sext,
135}
136
137/// A compact representation of LLVM attributes (at least those relevant for this module)
138/// that can be manipulated without interacting with LLVM's Attribute machinery.
139#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
140pub struct ArgAttributes {
141 pub regular: ArgAttribute,
142 pub arg_ext: ArgExtension,
143 /// The minimum size of the pointee, guaranteed to be valid for the duration of the whole call
144 /// (corresponding to LLVM's dereferenceable_or_null attributes, i.e., it is okay for this to be
145 /// set on a null pointer, but all non-null pointers must be dereferenceable).
146 pub pointee_size: Size,
147 /// The minimum alignment of the pointee, if any.
148 pub pointee_align: Option<Align>,
149}
150
151impl ArgAttributes {
152 pub fn new() -> Self {
153 ArgAttributes {
154 regular: ArgAttribute::default(),
155 arg_ext: ArgExtension::None,
156 pointee_size: Size::ZERO,
157 pointee_align: None,
158 }
159 }
160
161 pub fn ext(&mut self, ext: ArgExtension) -> &mut Self {
162 assert!(
163 self.arg_ext == ArgExtension::None || self.arg_ext == ext,
164 "cannot set {:?} when {:?} is already set",
165 ext,
166 self.arg_ext
167 );
168 self.arg_ext = ext;
169 self
170 }
171
172 pub fn set(&mut self, attr: ArgAttribute) -> &mut Self {
173 self.regular |= attr;
174 self
175 }
176
177 pub fn contains(&self, attr: ArgAttribute) -> bool {
178 self.regular.contains(attr)
179 }
180
181 /// Checks if these two `ArgAttributes` are equal enough to be considered "the same for all
182 /// function call ABIs".
183 pub fn eq_abi(&self, other: &Self) -> bool {
184 // There's only one regular attribute that matters for the call ABI: InReg.
185 // Everything else is things like noalias, dereferenceable, nonnull, ...
186 // (This also applies to pointee_size, pointee_align.)
187 if self.regular.contains(ArgAttribute::InReg) != other.regular.contains(ArgAttribute::InReg)
188 {
189 return false;
190 }
191 // We also compare the sign extension mode -- this could let the callee make assumptions
192 // about bits that conceptually were not even passed.
193 if self.arg_ext != other.arg_ext {
194 return false;
195 }
196 true
197 }
198}
199
200impl From<ArgAttribute> for ArgAttributes {
201 fn from(value: ArgAttribute) -> Self {
202 Self {
203 regular: value,
204 arg_ext: ArgExtension::None,
205 pointee_size: Size::ZERO,
206 pointee_align: None,
207 }
208 }
209}
210
211/// An argument passed entirely registers with the
212/// same kind (e.g., HFA / HVA on PPC64 and AArch64).
213#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
214pub struct Uniform {
215 pub unit: Reg,
216
217 /// The total size of the argument, which can be:
218 /// * equal to `unit.size` (one scalar/vector),
219 /// * a multiple of `unit.size` (an array of scalar/vectors),
220 /// * if `unit.kind` is `Integer`, the last element can be shorter, i.e., `{ i64, i64, i32 }`
221 /// for 64-bit integers with a total size of 20 bytes. When the argument is actually passed,
222 /// this size will be rounded up to the nearest multiple of `unit.size`.
223 pub total: Size,
224
225 /// Indicate that the argument is consecutive, in the sense that either all values need to be
226 /// passed in register, or all on the stack. If they are passed on the stack, there should be
227 /// no additional padding between elements.
228 pub is_consecutive: bool,
229}
230
231impl From<Reg> for Uniform {
232 fn from(unit: Reg) -> Uniform {
233 Uniform { unit, total: unit.size, is_consecutive: false }
234 }
235}
236
237impl Uniform {
238 pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
239 self.unit.align(cx)
240 }
241
242 /// Pass using one or more values of the given type, without requiring them to be consecutive.
243 /// That is, some values may be passed in register and some on the stack.
244 pub fn new(unit: Reg, total: Size) -> Self {
245 Uniform { unit, total, is_consecutive: false }
246 }
247
248 /// Pass using one or more consecutive values of the given type. Either all values will be
249 /// passed in registers, or all on the stack.
250 pub fn consecutive(unit: Reg, total: Size) -> Self {
251 Uniform { unit, total, is_consecutive: true }
252 }
253}
254
255/// Describes the type used for `PassMode::Cast`.
256///
257/// Passing arguments in this mode works as follows: the registers in the `prefix` (the ones that
258/// are `Some`) get laid out one after the other (using `repr(C)` layout rules). Then the
259/// `rest.unit` register type gets repeated often enough to cover `rest.size`. This describes the
260/// actual type used for the call; the Rust type of the argument is then transmuted to this ABI type
261/// (and all data in the padding between the registers is dropped).
262#[derive(Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
263pub struct CastTarget {
264 pub prefix: [Option<Reg>; 8],
265 /// The offset of `rest` from the start of the value. Currently only implemented for a `Reg`
266 /// pair created by the `offset_pair` method.
267 pub rest_offset: Option<Size>,
268 pub rest: Uniform,
269 pub attrs: ArgAttributes,
270}
271
272impl From<Reg> for CastTarget {
273 fn from(unit: Reg) -> CastTarget {
274 CastTarget::from(Uniform::from(unit))
275 }
276}
277
278impl From<Uniform> for CastTarget {
279 fn from(uniform: Uniform) -> CastTarget {
280 Self::prefixed([None; 8], uniform)
281 }
282}
283
284impl CastTarget {
285 pub fn prefixed(prefix: [Option<Reg>; 8], rest: Uniform) -> Self {
286 Self { prefix, rest_offset: None, rest, attrs: ArgAttributes::new() }
287 }
288
289 pub fn offset_pair(a: Reg, offset_from_start: Size, b: Reg) -> Self {
290 Self {
291 prefix: [Some(a), None, None, None, None, None, None, None],
292 rest_offset: Some(offset_from_start),
293 rest: b.into(),
294 attrs: ArgAttributes::new(),
295 }
296 }
297
298 pub fn with_attrs(mut self, attrs: ArgAttributes) -> Self {
299 self.attrs = attrs;
300 self
301 }
302
303 pub fn pair(a: Reg, b: Reg) -> CastTarget {
304 Self::prefixed([Some(a), None, None, None, None, None, None, None], Uniform::from(b))
305 }
306
307 /// When you only access the range containing valid data, you can use this unaligned size;
308 /// otherwise, use the safer `size` method.
309 pub fn unaligned_size<C: HasDataLayout>(&self, _cx: &C) -> Size {
310 // Prefix arguments are passed in specific designated registers
311 let prefix_size = if let Some(offset_from_start) = self.rest_offset {
312 offset_from_start
313 } else {
314 self.prefix
315 .iter()
316 .filter_map(|x| x.map(|reg| reg.size))
317 .fold(Size::ZERO, |acc, size| acc + size)
318 };
319 // Remaining arguments are passed in chunks of the unit size
320 let rest_size =
321 self.rest.unit.size * self.rest.total.bytes().div_ceil(self.rest.unit.size.bytes());
322
323 prefix_size + rest_size
324 }
325
326 pub fn size<C: HasDataLayout>(&self, cx: &C) -> Size {
327 self.unaligned_size(cx).align_to(self.align(cx))
328 }
329
330 pub fn align<C: HasDataLayout>(&self, cx: &C) -> Align {
331 self.prefix
332 .iter()
333 .filter_map(|x| x.map(|reg| reg.align(cx)))
334 .fold(cx.data_layout().aggregate_align.abi.max(self.rest.align(cx)), |acc, align| {
335 acc.max(align)
336 })
337 }
338
339 /// Checks if these two `CastTarget` are equal enough to be considered "the same for all
340 /// function call ABIs".
341 pub fn eq_abi(&self, other: &Self) -> bool {
342 let CastTarget {
343 prefix: prefix_l,
344 rest_offset: rest_offset_l,
345 rest: rest_l,
346 attrs: attrs_l,
347 } = self;
348 let CastTarget {
349 prefix: prefix_r,
350 rest_offset: rest_offset_r,
351 rest: rest_r,
352 attrs: attrs_r,
353 } = other;
354 prefix_l == prefix_r
355 && rest_offset_l == rest_offset_r
356 && rest_l == rest_r
357 && attrs_l.eq_abi(attrs_r)
358 }
359}
360
361/// Information about how to pass an argument to,
362/// or return a value from, a function, under some ABI.
363#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
364pub struct ArgAbi<'a, Ty> {
365 pub layout: TyAndLayout<'a, Ty>,
366 pub mode: PassMode,
367}
368
369// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
370impl<'a, Ty: fmt::Display> fmt::Debug for ArgAbi<'a, Ty> {
371 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
372 let ArgAbi { layout, mode } = self;
373 f.debug_struct("ArgAbi").field("layout", layout).field("mode", mode).finish()
374 }
375}
376
377impl<'a, Ty> ArgAbi<'a, Ty> {
378 /// This defines the "default ABI" for that type, that is then later adjusted in `fn_abi_adjust_for_abi`.
379 pub fn new(
380 cx: &impl HasDataLayout,
381 layout: TyAndLayout<'a, Ty>,
382 scalar_attrs: impl Fn(&TyAndLayout<'a, Ty>, Scalar, Size) -> ArgAttributes,
383 ) -> Self {
384 let mode = match layout.backend_repr {
385 BackendRepr::Scalar(scalar) => {
386 PassMode::Direct(scalar_attrs(&layout, scalar, Size::ZERO))
387 }
388 BackendRepr::ScalarPair(a, b) => PassMode::Pair(
389 scalar_attrs(&layout, a, Size::ZERO),
390 scalar_attrs(&layout, b, a.size(cx).align_to(b.align(cx).abi)),
391 ),
392 BackendRepr::SimdVector { .. } => PassMode::Direct(ArgAttributes::new()),
393 BackendRepr::Memory { .. } => Self::indirect_pass_mode(&layout),
394 };
395 ArgAbi { layout, mode }
396 }
397
398 fn indirect_pass_mode(layout: &TyAndLayout<'a, Ty>) -> PassMode {
399 let mut attrs = ArgAttributes::new();
400
401 // For non-immediate arguments the callee gets its own copy of
402 // the value on the stack, so there are no aliases. It's also
403 // program-invisible so can't possibly capture
404 attrs
405 .set(ArgAttribute::NoAlias)
406 .set(ArgAttribute::NoCapture)
407 .set(ArgAttribute::NonNull)
408 .set(ArgAttribute::NoUndef);
409 attrs.pointee_size = layout.size;
410 attrs.pointee_align = Some(layout.align.abi);
411
412 let meta_attrs = layout.is_unsized().then_some(ArgAttributes::new());
413
414 PassMode::Indirect { attrs, meta_attrs, on_stack: false }
415 }
416
417 /// Pass this argument directly instead. Should NOT be used!
418 /// Only exists because of past ABI mistakes that will take time to fix
419 /// (see <https://github.com/rust-lang/rust/issues/115666>).
420 #[track_caller]
421 pub fn make_direct_deprecated(&mut self) {
422 match self.mode {
423 PassMode::Indirect { .. } => {
424 self.mode = PassMode::Direct(ArgAttributes::new());
425 }
426 PassMode::Ignore | PassMode::Direct(_) | PassMode::Pair(_, _) => {} // already direct
427 _ => panic!("Tried to make {:?} direct", self.mode),
428 }
429 }
430
431 /// Pass this argument indirectly, by passing a (thin or wide) pointer to the argument instead.
432 /// This is valid for both sized and unsized arguments.
433 #[track_caller]
434 pub fn make_indirect(&mut self) {
435 match self.mode {
436 PassMode::Direct(_) | PassMode::Pair(_, _) => {
437 self.mode = Self::indirect_pass_mode(&self.layout);
438 }
439 PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
440 // already indirect
441 }
442 _ => panic!("Tried to make {:?} indirect", self.mode),
443 }
444 }
445
446 /// Same as `make_indirect`, but for arguments that are ignored. Only needed for ABIs that pass
447 /// ZSTs indirectly.
448 #[track_caller]
449 pub fn make_indirect_from_ignore(&mut self) {
450 match self.mode {
451 PassMode::Ignore => {
452 self.mode = Self::indirect_pass_mode(&self.layout);
453 }
454 PassMode::Indirect { attrs: _, meta_attrs: _, on_stack: false } => {
455 // already indirect
456 }
457 _ => panic!("Tried to make {:?} indirect (expected `PassMode::Ignore`)", self.mode),
458 }
459 }
460
461 /// Pass this argument indirectly, by placing it at a fixed stack offset.
462 /// This corresponds to the `byval` LLVM argument attribute.
463 /// This is only valid for sized arguments.
464 ///
465 /// `byval_align` specifies the alignment of the `byval` stack slot, which does not need to
466 /// correspond to the type's alignment. This will be `Some` if the target's ABI specifies that
467 /// stack slots used for arguments passed by-value have specific alignment requirements which
468 /// differ from the alignment used in other situations.
469 ///
470 /// If `None`, the type's alignment is used.
471 ///
472 /// If the resulting alignment differs from the type's alignment,
473 /// the argument will be copied to an alloca with sufficient alignment,
474 /// either in the caller (if the type's alignment is lower than the byval alignment)
475 /// or in the callee (if the type's alignment is higher than the byval alignment),
476 /// to ensure that Rust code never sees an underaligned pointer.
477 pub fn pass_by_stack_offset(&mut self, byval_align: Option<Align>) {
478 assert!(!self.layout.is_unsized(), "used byval ABI for unsized layout");
479 self.make_indirect();
480 match self.mode {
481 PassMode::Indirect { ref mut attrs, meta_attrs: _, ref mut on_stack } => {
482 *on_stack = true;
483
484 // Some platforms, like 32-bit x86, change the alignment of the type when passing
485 // `byval`. Account for that.
486 if let Some(byval_align) = byval_align {
487 // On all targets with byval align this is currently true, so let's assert it.
488 debug_assert!(byval_align >= Align::from_bytes(4).unwrap());
489 attrs.pointee_align = Some(byval_align);
490 }
491 }
492 _ => unreachable!(),
493 }
494 }
495
496 pub fn extend_integer_width_to(&mut self, bits: u64) {
497 // Only integers have signedness
498 if let BackendRepr::Scalar(scalar) = self.layout.backend_repr
499 && let Primitive::Int(i, signed) = scalar.primitive()
500 && i.size().bits() < bits
501 && let PassMode::Direct(ref mut attrs) = self.mode
502 {
503 if signed {
504 attrs.ext(ArgExtension::Sext)
505 } else {
506 attrs.ext(ArgExtension::Zext)
507 };
508 }
509 }
510
511 pub fn cast_to<T: Into<CastTarget>>(&mut self, target: T) {
512 self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32: false };
513 }
514
515 pub fn cast_to_and_pad_i32<T: Into<CastTarget>>(&mut self, target: T, pad_i32: bool) {
516 self.mode = PassMode::Cast { cast: Box::new(target.into()), pad_i32 };
517 }
518
519 pub fn is_indirect(&self) -> bool {
520 matches!(self.mode, PassMode::Indirect { .. })
521 }
522
523 pub fn is_sized_indirect(&self) -> bool {
524 matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: None, on_stack: _ })
525 }
526
527 pub fn is_unsized_indirect(&self) -> bool {
528 matches!(self.mode, PassMode::Indirect { attrs: _, meta_attrs: Some(_), on_stack: _ })
529 }
530
531 pub fn is_ignore(&self) -> bool {
532 matches!(self.mode, PassMode::Ignore)
533 }
534
535 /// Checks if these two `ArgAbi` are equal enough to be considered "the same for all
536 /// function call ABIs".
537 pub fn eq_abi(&self, other: &Self) -> bool
538 where
539 Ty: PartialEq,
540 {
541 // Ideally we'd just compare the `mode`, but that is not enough -- for some modes LLVM will look
542 // at the type.
543 self.layout.eq_abi(&other.layout) && self.mode.eq_abi(&other.mode) && {
544 // `fn_arg_sanity_check` accepts `PassMode::Direct` for some aggregates.
545 // That elevates any type difference to an ABI difference since we just use the
546 // full Rust type as the LLVM argument/return type.
547 if matches!(self.mode, PassMode::Direct(..))
548 && matches!(self.layout.backend_repr, BackendRepr::Memory { .. })
549 {
550 // For aggregates in `Direct` mode to be compatible, the types need to be equal.
551 self.layout.ty == other.layout.ty
552 } else {
553 true
554 }
555 }
556 }
557}
558
559#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable_Generic)]
560pub enum RiscvInterruptKind {
561 Machine,
562 Supervisor,
563}
564
565impl RiscvInterruptKind {
566 pub fn as_str(&self) -> &'static str {
567 match self {
568 Self::Machine => "machine",
569 Self::Supervisor => "supervisor",
570 }
571 }
572}
573
574/// Metadata describing how the arguments to a native function
575/// should be passed in order to respect the native ABI.
576///
577/// The signature represented by this type may not match the MIR function signature.
578/// Certain attributes, like `#[track_caller]` can introduce additional arguments, which are present in [`FnAbi`], but not in `FnSig`.
579/// While this difference is rarely relevant, it should still be kept in mind.
580///
581/// I will do my best to describe this structure, but these
582/// comments are reverse-engineered and may be inaccurate. -NDM
583#[derive(Clone, PartialEq, Eq, Hash, HashStable_Generic)]
584pub struct FnAbi<'a, Ty> {
585 /// The type, layout, and information about how each argument is passed.
586 pub args: Box<[ArgAbi<'a, Ty>]>,
587
588 /// The layout, type, and the way a value is returned from this function.
589 pub ret: ArgAbi<'a, Ty>,
590
591 /// Marks this function as variadic (accepting a variable number of arguments).
592 pub c_variadic: bool,
593
594 /// The count of non-variadic arguments.
595 ///
596 /// Should only be different from args.len() when c_variadic is true.
597 /// This can be used to know whether an argument is variadic or not.
598 pub fixed_count: u32,
599 /// The calling convention of this function.
600 pub conv: CanonAbi,
601 /// Indicates if an unwind may happen across a call to this function.
602 pub can_unwind: bool,
603}
604
605// Needs to be a custom impl because of the bounds on the `TyAndLayout` debug impl.
606impl<'a, Ty: fmt::Display> fmt::Debug for FnAbi<'a, Ty> {
607 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
608 let FnAbi { args, ret, c_variadic, fixed_count, conv, can_unwind } = self;
609 f.debug_struct("FnAbi")
610 .field("args", args)
611 .field("ret", ret)
612 .field("c_variadic", c_variadic)
613 .field("fixed_count", fixed_count)
614 .field("conv", conv)
615 .field("can_unwind", can_unwind)
616 .finish()
617 }
618}
619
620impl<'a, Ty> FnAbi<'a, Ty> {
621 pub fn adjust_for_foreign_abi<C>(&mut self, cx: &C, abi: ExternAbi)
622 where
623 Ty: TyAbiInterface<'a, C> + Copy,
624 C: HasDataLayout + HasTargetSpec + HasX86AbiOpt,
625 {
626 if abi == ExternAbi::X86Interrupt {
627 if let Some(arg) = self.args.first_mut() {
628 arg.pass_by_stack_offset(None);
629 }
630 return;
631 }
632
633 let spec = cx.target_spec();
634 match &spec.arch[..] {
635 "x86" => {
636 let (flavor, regparm) = match abi {
637 ExternAbi::Fastcall { .. } | ExternAbi::Vectorcall { .. } => {
638 (x86::Flavor::FastcallOrVectorcall, None)
639 }
640 ExternAbi::C { .. } | ExternAbi::Cdecl { .. } | ExternAbi::Stdcall { .. } => {
641 (x86::Flavor::General, cx.x86_abi_opt().regparm)
642 }
643 _ => (x86::Flavor::General, None),
644 };
645 let reg_struct_return = cx.x86_abi_opt().reg_struct_return;
646 let opts = x86::X86Options { flavor, regparm, reg_struct_return };
647 if spec.is_like_msvc {
648 x86_win32::compute_abi_info(cx, self, opts);
649 } else {
650 x86::compute_abi_info(cx, self, opts);
651 }
652 }
653 "x86_64" => match abi {
654 ExternAbi::SysV64 { .. } => x86_64::compute_abi_info(cx, self),
655 ExternAbi::Win64 { .. } | ExternAbi::Vectorcall { .. } => {
656 x86_win64::compute_abi_info(cx, self)
657 }
658 _ => {
659 if cx.target_spec().is_like_windows {
660 x86_win64::compute_abi_info(cx, self)
661 } else {
662 x86_64::compute_abi_info(cx, self)
663 }
664 }
665 },
666 "aarch64" | "arm64ec" => {
667 let kind = if cx.target_spec().is_like_darwin {
668 aarch64::AbiKind::DarwinPCS
669 } else if cx.target_spec().is_like_windows {
670 aarch64::AbiKind::Win64
671 } else {
672 aarch64::AbiKind::AAPCS
673 };
674 aarch64::compute_abi_info(cx, self, kind)
675 }
676 "amdgpu" => amdgpu::compute_abi_info(cx, self),
677 "arm" => arm::compute_abi_info(cx, self),
678 "avr" => avr::compute_abi_info(self),
679 "loongarch32" | "loongarch64" => loongarch::compute_abi_info(cx, self),
680 "m68k" => m68k::compute_abi_info(self),
681 "csky" => csky::compute_abi_info(self),
682 "mips" | "mips32r6" => mips::compute_abi_info(cx, self),
683 "mips64" | "mips64r6" => mips64::compute_abi_info(cx, self),
684 "powerpc" => powerpc::compute_abi_info(cx, self),
685 "powerpc64" => powerpc64::compute_abi_info(cx, self),
686 "s390x" => s390x::compute_abi_info(cx, self),
687 "msp430" => msp430::compute_abi_info(self),
688 "sparc" => sparc::compute_abi_info(cx, self),
689 "sparc64" => sparc64::compute_abi_info(cx, self),
690 "nvptx64" => {
691 if abi == ExternAbi::PtxKernel || abi == ExternAbi::GpuKernel {
692 nvptx64::compute_ptx_kernel_abi_info(cx, self)
693 } else {
694 nvptx64::compute_abi_info(self)
695 }
696 }
697 "hexagon" => hexagon::compute_abi_info(self),
698 "xtensa" => xtensa::compute_abi_info(cx, self),
699 "riscv32" | "riscv64" => riscv::compute_abi_info(cx, self),
700 "wasm32" | "wasm64" => wasm::compute_abi_info(cx, self),
701 "bpf" => bpf::compute_abi_info(self),
702 arch => panic!("no lowering implemented for {arch}"),
703 }
704 }
705
706 pub fn adjust_for_rust_abi<C>(&mut self, cx: &C)
707 where
708 Ty: TyAbiInterface<'a, C> + Copy,
709 C: HasDataLayout + HasTargetSpec,
710 {
711 let spec = cx.target_spec();
712 match &*spec.arch {
713 "x86" => x86::compute_rust_abi_info(cx, self),
714 "riscv32" | "riscv64" => riscv::compute_rust_abi_info(cx, self),
715 "loongarch32" | "loongarch64" => loongarch::compute_rust_abi_info(cx, self),
716 "aarch64" => aarch64::compute_rust_abi_info(cx, self),
717 _ => {}
718 };
719
720 for (arg_idx, arg) in self
721 .args
722 .iter_mut()
723 .enumerate()
724 .map(|(idx, arg)| (Some(idx), arg))
725 .chain(iter::once((None, &mut self.ret)))
726 {
727 // If the logic above already picked a specific type to cast the argument to, leave that
728 // in place.
729 if matches!(arg.mode, PassMode::Ignore | PassMode::Cast { .. }) {
730 continue;
731 }
732
733 if arg_idx.is_none()
734 && arg.layout.size > Primitive::Pointer(AddressSpace::ZERO).size(cx) * 2
735 && !matches!(arg.layout.backend_repr, BackendRepr::SimdVector { .. })
736 {
737 // Return values larger than 2 registers using a return area
738 // pointer. LLVM and Cranelift disagree about how to return
739 // values that don't fit in the registers designated for return
740 // values. LLVM will force the entire return value to be passed
741 // by return area pointer, while Cranelift will look at each IR level
742 // return value independently and decide to pass it in a
743 // register or not, which would result in the return value
744 // being passed partially in registers and partially through a
745 // return area pointer. For large IR-level values such as `i128`,
746 // cranelift will even split up the value into smaller chunks.
747 //
748 // While Cranelift may need to be fixed as the LLVM behavior is
749 // generally more correct with respect to the surface language,
750 // forcing this behavior in rustc itself makes it easier for
751 // other backends to conform to the Rust ABI and for the C ABI
752 // rustc already handles this behavior anyway.
753 //
754 // In addition LLVM's decision to pass the return value in
755 // registers or using a return area pointer depends on how
756 // exactly the return type is lowered to an LLVM IR type. For
757 // example `Option<u128>` can be lowered as `{ i128, i128 }`
758 // in which case the x86_64 backend would use a return area
759 // pointer, or it could be passed as `{ i32, i128 }` in which
760 // case the x86_64 backend would pass it in registers by taking
761 // advantage of an LLVM ABI extension that allows using 3
762 // registers for the x86_64 sysv call conv rather than the
763 // officially specified 2 registers.
764 //
765 // FIXME: Technically we should look at the amount of available
766 // return registers rather than guessing that there are 2
767 // registers for return values. In practice only a couple of
768 // architectures have less than 2 return registers. None of
769 // which supported by Cranelift.
770 //
771 // NOTE: This adjustment is only necessary for the Rust ABI as
772 // for other ABI's the calling convention implementations in
773 // rustc_target already ensure any return value which doesn't
774 // fit in the available amount of return registers is passed in
775 // the right way for the current target.
776 //
777 // The adjustment is not necessary nor desired for types with a vector
778 // representation; those are handled below.
779 arg.make_indirect();
780 continue;
781 }
782
783 match arg.layout.backend_repr {
784 BackendRepr::Memory { .. } => {
785 // Compute `Aggregate` ABI.
786
787 let is_indirect_not_on_stack =
788 matches!(arg.mode, PassMode::Indirect { on_stack: false, .. });
789 assert!(is_indirect_not_on_stack);
790
791 let size = arg.layout.size;
792 if arg.layout.is_sized()
793 && size <= Primitive::Pointer(AddressSpace::ZERO).size(cx)
794 {
795 // We want to pass small aggregates as immediates, but using
796 // an LLVM aggregate type for this leads to bad optimizations,
797 // so we pick an appropriately sized integer type instead.
798 arg.cast_to(Reg { kind: RegKind::Integer, size });
799 }
800 }
801
802 BackendRepr::SimdVector { .. } => {
803 // This is a fun case! The gist of what this is doing is
804 // that we want callers and callees to always agree on the
805 // ABI of how they pass SIMD arguments. If we were to *not*
806 // make these arguments indirect then they'd be immediates
807 // in LLVM, which means that they'd used whatever the
808 // appropriate ABI is for the callee and the caller. That
809 // means, for example, if the caller doesn't have AVX
810 // enabled but the callee does, then passing an AVX argument
811 // across this boundary would cause corrupt data to show up.
812 //
813 // This problem is fixed by unconditionally passing SIMD
814 // arguments through memory between callers and callees
815 // which should get them all to agree on ABI regardless of
816 // target feature sets. Some more information about this
817 // issue can be found in #44367.
818 //
819 // We *could* do better in some cases, e.g. on x86_64 targets where SSE2 is
820 // required. However, it turns out that that makes LLVM worse at optimizing this
821 // code, so we pass things indirectly even there. See #139029 for more on that.
822 if spec.simd_types_indirect {
823 arg.make_indirect();
824 }
825 }
826
827 _ => {}
828 }
829 }
830 }
831}
832
833// Some types are used a lot. Make sure they don't unintentionally get bigger.
834#[cfg(target_pointer_width = "64")]
835mod size_asserts {
836 use rustc_data_structures::static_assert_size;
837
838 use super::*;
839 // tidy-alphabetical-start
840 static_assert_size!(ArgAbi<'_, usize>, 56);
841 static_assert_size!(FnAbi<'_, usize>, 80);
842 // tidy-alphabetical-end
843}