rustc_middle/ty/
adt.rs

1use std::cell::RefCell;
2use std::hash::{Hash, Hasher};
3use std::ops::Range;
4use std::str;
5
6use rustc_abi::{FIRST_VARIANT, ReprOptions, VariantIdx};
7use rustc_data_structures::fingerprint::Fingerprint;
8use rustc_data_structures::fx::FxHashMap;
9use rustc_data_structures::intern::Interned;
10use rustc_data_structures::stable_hasher::{HashStable, HashingControls, StableHasher};
11use rustc_errors::ErrorGuaranteed;
12use rustc_hir::attrs::AttributeKind;
13use rustc_hir::def::{CtorKind, DefKind, Res};
14use rustc_hir::def_id::DefId;
15use rustc_hir::{self as hir, LangItem, find_attr};
16use rustc_index::{IndexSlice, IndexVec};
17use rustc_macros::{HashStable, TyDecodable, TyEncodable};
18use rustc_query_system::ich::StableHashingContext;
19use rustc_session::DataTypeKind;
20use rustc_type_ir::solve::AdtDestructorKind;
21use tracing::{debug, info, trace};
22
23use super::{
24    AsyncDestructor, Destructor, FieldDef, GenericPredicates, Ty, TyCtxt, VariantDef, VariantDiscr,
25};
26use crate::mir::interpret::ErrorHandled;
27use crate::ty;
28use crate::ty::util::{Discr, IntTypeExt};
29
30#[derive(Clone, Copy, PartialEq, Eq, Hash, HashStable, TyEncodable, TyDecodable)]
31pub struct AdtFlags(u16);
32bitflags::bitflags! {
33    impl AdtFlags: u16 {
34        const NO_ADT_FLAGS        = 0;
35        /// Indicates whether the ADT is an enum.
36        const IS_ENUM             = 1 << 0;
37        /// Indicates whether the ADT is a union.
38        const IS_UNION            = 1 << 1;
39        /// Indicates whether the ADT is a struct.
40        const IS_STRUCT           = 1 << 2;
41        /// Indicates whether the ADT is a struct and has a constructor.
42        const HAS_CTOR            = 1 << 3;
43        /// Indicates whether the type is `PhantomData`.
44        const IS_PHANTOM_DATA     = 1 << 4;
45        /// Indicates whether the type has a `#[fundamental]` attribute.
46        const IS_FUNDAMENTAL      = 1 << 5;
47        /// Indicates whether the type is `Box`.
48        const IS_BOX              = 1 << 6;
49        /// Indicates whether the type is `ManuallyDrop`.
50        const IS_MANUALLY_DROP    = 1 << 7;
51        /// Indicates whether the variant list of this ADT is `#[non_exhaustive]`.
52        /// (i.e., this flag is never set unless this ADT is an enum).
53        const IS_VARIANT_LIST_NON_EXHAUSTIVE = 1 << 8;
54        /// Indicates whether the type is `UnsafeCell`.
55        const IS_UNSAFE_CELL              = 1 << 9;
56        /// Indicates whether the type is `UnsafePinned`.
57        const IS_UNSAFE_PINNED              = 1 << 10;
58    }
59}
60rustc_data_structures::external_bitflags_debug! { AdtFlags }
61
62/// The definition of a user-defined type, e.g., a `struct`, `enum`, or `union`.
63///
64/// These are all interned (by `mk_adt_def`) into the global arena.
65///
66/// The initialism *ADT* stands for an [*algebraic data type (ADT)*][adt].
67/// This is slightly wrong because `union`s are not ADTs.
68/// Moreover, Rust only allows recursive data types through indirection.
69///
70/// [adt]: https://en.wikipedia.org/wiki/Algebraic_data_type
71///
72/// # Recursive types
73///
74/// It may seem impossible to represent recursive types using [`Ty`],
75/// since [`TyKind::Adt`] includes [`AdtDef`], which includes its fields,
76/// creating a cycle. However, `AdtDef` does not actually include the *types*
77/// of its fields; it includes just their [`DefId`]s.
78///
79/// [`TyKind::Adt`]: ty::TyKind::Adt
80///
81/// For example, the following type:
82///
83/// ```
84/// struct S { x: Box<S> }
85/// ```
86///
87/// is essentially represented with [`Ty`] as the following pseudocode:
88///
89/// ```ignore (illustrative)
90/// struct S { x }
91/// ```
92///
93/// where `x` here represents the `DefId` of `S.x`. Then, the `DefId`
94/// can be used with [`TyCtxt::type_of()`] to get the type of the field.
95#[derive(TyEncodable, TyDecodable)]
96pub struct AdtDefData {
97    /// The `DefId` of the struct, enum or union item.
98    pub did: DefId,
99    /// Variants of the ADT. If this is a struct or union, then there will be a single variant.
100    variants: IndexVec<VariantIdx, VariantDef>,
101    /// Flags of the ADT (e.g., is this a struct? is this non-exhaustive?).
102    flags: AdtFlags,
103    /// Repr options provided by the user.
104    repr: ReprOptions,
105}
106
107impl PartialEq for AdtDefData {
108    #[inline]
109    fn eq(&self, other: &Self) -> bool {
110        // There should be only one `AdtDefData` for each `def_id`, therefore
111        // it is fine to implement `PartialEq` only based on `def_id`.
112        //
113        // Below, we exhaustively destructure `self` and `other` so that if the
114        // definition of `AdtDefData` changes, a compile-error will be produced,
115        // reminding us to revisit this assumption.
116
117        let Self { did: self_def_id, variants: _, flags: _, repr: _ } = self;
118        let Self { did: other_def_id, variants: _, flags: _, repr: _ } = other;
119
120        let res = self_def_id == other_def_id;
121
122        // Double check that implicit assumption detailed above.
123        if cfg!(debug_assertions) && res {
124            let deep = self.flags == other.flags
125                && self.repr == other.repr
126                && self.variants == other.variants;
127            assert!(deep, "AdtDefData for the same def-id has differing data");
128        }
129
130        res
131    }
132}
133
134impl Eq for AdtDefData {}
135
136/// There should be only one AdtDef for each `did`, therefore
137/// it is fine to implement `Hash` only based on `did`.
138impl Hash for AdtDefData {
139    #[inline]
140    fn hash<H: Hasher>(&self, s: &mut H) {
141        self.did.hash(s)
142    }
143}
144
145impl<'a> HashStable<StableHashingContext<'a>> for AdtDefData {
146    fn hash_stable(&self, hcx: &mut StableHashingContext<'a>, hasher: &mut StableHasher) {
147        thread_local! {
148            static CACHE: RefCell<FxHashMap<(usize, HashingControls), Fingerprint>> = Default::default();
149        }
150
151        let hash: Fingerprint = CACHE.with(|cache| {
152            let addr = self as *const AdtDefData as usize;
153            let hashing_controls = hcx.hashing_controls();
154            *cache.borrow_mut().entry((addr, hashing_controls)).or_insert_with(|| {
155                let ty::AdtDefData { did, ref variants, ref flags, ref repr } = *self;
156
157                let mut hasher = StableHasher::new();
158                did.hash_stable(hcx, &mut hasher);
159                variants.hash_stable(hcx, &mut hasher);
160                flags.hash_stable(hcx, &mut hasher);
161                repr.hash_stable(hcx, &mut hasher);
162
163                hasher.finish()
164            })
165        });
166
167        hash.hash_stable(hcx, hasher);
168    }
169}
170
171#[derive(Copy, Clone, PartialEq, Eq, Hash, HashStable)]
172#[rustc_pass_by_value]
173pub struct AdtDef<'tcx>(pub Interned<'tcx, AdtDefData>);
174
175impl<'tcx> AdtDef<'tcx> {
176    #[inline]
177    pub fn did(self) -> DefId {
178        self.0.0.did
179    }
180
181    #[inline]
182    pub fn variants(self) -> &'tcx IndexSlice<VariantIdx, VariantDef> {
183        &self.0.0.variants
184    }
185
186    #[inline]
187    pub fn variant(self, idx: VariantIdx) -> &'tcx VariantDef {
188        &self.0.0.variants[idx]
189    }
190
191    #[inline]
192    pub fn flags(self) -> AdtFlags {
193        self.0.0.flags
194    }
195
196    #[inline]
197    pub fn repr(self) -> ReprOptions {
198        self.0.0.repr
199    }
200}
201
202impl<'tcx> rustc_type_ir::inherent::AdtDef<TyCtxt<'tcx>> for AdtDef<'tcx> {
203    fn def_id(self) -> DefId {
204        self.did()
205    }
206
207    fn is_struct(self) -> bool {
208        self.is_struct()
209    }
210
211    fn struct_tail_ty(self, interner: TyCtxt<'tcx>) -> Option<ty::EarlyBinder<'tcx, Ty<'tcx>>> {
212        Some(interner.type_of(self.non_enum_variant().tail_opt()?.did))
213    }
214
215    fn is_phantom_data(self) -> bool {
216        self.is_phantom_data()
217    }
218
219    fn is_manually_drop(self) -> bool {
220        self.is_manually_drop()
221    }
222
223    fn all_field_tys(
224        self,
225        tcx: TyCtxt<'tcx>,
226    ) -> ty::EarlyBinder<'tcx, impl IntoIterator<Item = Ty<'tcx>>> {
227        ty::EarlyBinder::bind(
228            self.all_fields().map(move |field| tcx.type_of(field.did).skip_binder()),
229        )
230    }
231
232    fn sizedness_constraint(
233        self,
234        tcx: TyCtxt<'tcx>,
235        sizedness: ty::SizedTraitKind,
236    ) -> Option<ty::EarlyBinder<'tcx, Ty<'tcx>>> {
237        self.sizedness_constraint(tcx, sizedness)
238    }
239
240    fn is_fundamental(self) -> bool {
241        self.is_fundamental()
242    }
243
244    fn destructor(self, tcx: TyCtxt<'tcx>) -> Option<AdtDestructorKind> {
245        Some(match tcx.constness(self.destructor(tcx)?.did) {
246            hir::Constness::Const => AdtDestructorKind::Const,
247            hir::Constness::NotConst => AdtDestructorKind::NotConst,
248        })
249    }
250}
251
252#[derive(Copy, Clone, Debug, Eq, PartialEq, HashStable, TyEncodable, TyDecodable)]
253pub enum AdtKind {
254    Struct,
255    Union,
256    Enum,
257}
258
259impl From<AdtKind> for DataTypeKind {
260    fn from(val: AdtKind) -> Self {
261        match val {
262            AdtKind::Struct => DataTypeKind::Struct,
263            AdtKind::Union => DataTypeKind::Union,
264            AdtKind::Enum => DataTypeKind::Enum,
265        }
266    }
267}
268
269impl AdtDefData {
270    /// Creates a new `AdtDefData`.
271    pub(super) fn new(
272        tcx: TyCtxt<'_>,
273        did: DefId,
274        kind: AdtKind,
275        variants: IndexVec<VariantIdx, VariantDef>,
276        repr: ReprOptions,
277    ) -> Self {
278        debug!("AdtDef::new({:?}, {:?}, {:?}, {:?})", did, kind, variants, repr);
279        let mut flags = AdtFlags::NO_ADT_FLAGS;
280
281        if kind == AdtKind::Enum
282            && find_attr!(tcx.get_all_attrs(did), AttributeKind::NonExhaustive(..))
283        {
284            debug!("found non-exhaustive variant list for {:?}", did);
285            flags = flags | AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE;
286        }
287
288        flags |= match kind {
289            AdtKind::Enum => AdtFlags::IS_ENUM,
290            AdtKind::Union => AdtFlags::IS_UNION,
291            AdtKind::Struct => AdtFlags::IS_STRUCT,
292        };
293
294        if kind == AdtKind::Struct && variants[FIRST_VARIANT].ctor.is_some() {
295            flags |= AdtFlags::HAS_CTOR;
296        }
297
298        if find_attr!(tcx.get_all_attrs(did), AttributeKind::Fundamental) {
299            flags |= AdtFlags::IS_FUNDAMENTAL;
300        }
301        if tcx.is_lang_item(did, LangItem::PhantomData) {
302            flags |= AdtFlags::IS_PHANTOM_DATA;
303        }
304        if tcx.is_lang_item(did, LangItem::OwnedBox) {
305            flags |= AdtFlags::IS_BOX;
306        }
307        if tcx.is_lang_item(did, LangItem::ManuallyDrop) {
308            flags |= AdtFlags::IS_MANUALLY_DROP;
309        }
310        if tcx.is_lang_item(did, LangItem::UnsafeCell) {
311            flags |= AdtFlags::IS_UNSAFE_CELL;
312        }
313        if tcx.is_lang_item(did, LangItem::UnsafePinned) {
314            flags |= AdtFlags::IS_UNSAFE_PINNED;
315        }
316
317        AdtDefData { did, variants, flags, repr }
318    }
319}
320
321impl<'tcx> AdtDef<'tcx> {
322    /// Returns `true` if this is a struct.
323    #[inline]
324    pub fn is_struct(self) -> bool {
325        self.flags().contains(AdtFlags::IS_STRUCT)
326    }
327
328    /// Returns `true` if this is a union.
329    #[inline]
330    pub fn is_union(self) -> bool {
331        self.flags().contains(AdtFlags::IS_UNION)
332    }
333
334    /// Returns `true` if this is an enum.
335    #[inline]
336    pub fn is_enum(self) -> bool {
337        self.flags().contains(AdtFlags::IS_ENUM)
338    }
339
340    /// Returns `true` if the variant list of this ADT is `#[non_exhaustive]`.
341    ///
342    /// Note that this function will return `true` even if the ADT has been
343    /// defined in the crate currently being compiled. If that's not what you
344    /// want, see [`Self::variant_list_has_applicable_non_exhaustive`].
345    #[inline]
346    pub fn is_variant_list_non_exhaustive(self) -> bool {
347        self.flags().contains(AdtFlags::IS_VARIANT_LIST_NON_EXHAUSTIVE)
348    }
349
350    /// Returns `true` if the variant list of this ADT is `#[non_exhaustive]`
351    /// and has been defined in another crate.
352    #[inline]
353    pub fn variant_list_has_applicable_non_exhaustive(self) -> bool {
354        self.is_variant_list_non_exhaustive() && !self.did().is_local()
355    }
356
357    /// Returns the kind of the ADT.
358    #[inline]
359    pub fn adt_kind(self) -> AdtKind {
360        if self.is_enum() {
361            AdtKind::Enum
362        } else if self.is_union() {
363            AdtKind::Union
364        } else {
365            AdtKind::Struct
366        }
367    }
368
369    /// Returns a description of this abstract data type.
370    pub fn descr(self) -> &'static str {
371        match self.adt_kind() {
372            AdtKind::Struct => "struct",
373            AdtKind::Union => "union",
374            AdtKind::Enum => "enum",
375        }
376    }
377
378    /// Returns a description of a variant of this abstract data type.
379    #[inline]
380    pub fn variant_descr(self) -> &'static str {
381        match self.adt_kind() {
382            AdtKind::Struct => "struct",
383            AdtKind::Union => "union",
384            AdtKind::Enum => "variant",
385        }
386    }
387
388    /// If this function returns `true`, it implies that `is_struct` must return `true`.
389    #[inline]
390    pub fn has_ctor(self) -> bool {
391        self.flags().contains(AdtFlags::HAS_CTOR)
392    }
393
394    /// Returns `true` if this type is `#[fundamental]` for the purposes
395    /// of coherence checking.
396    #[inline]
397    pub fn is_fundamental(self) -> bool {
398        self.flags().contains(AdtFlags::IS_FUNDAMENTAL)
399    }
400
401    /// Returns `true` if this is `PhantomData<T>`.
402    #[inline]
403    pub fn is_phantom_data(self) -> bool {
404        self.flags().contains(AdtFlags::IS_PHANTOM_DATA)
405    }
406
407    /// Returns `true` if this is `Box<T>`.
408    #[inline]
409    pub fn is_box(self) -> bool {
410        self.flags().contains(AdtFlags::IS_BOX)
411    }
412
413    /// Returns `true` if this is `UnsafeCell<T>`.
414    #[inline]
415    pub fn is_unsafe_cell(self) -> bool {
416        self.flags().contains(AdtFlags::IS_UNSAFE_CELL)
417    }
418
419    /// Returns `true` if this is `UnsafePinned<T>`.
420    #[inline]
421    pub fn is_unsafe_pinned(self) -> bool {
422        self.flags().contains(AdtFlags::IS_UNSAFE_PINNED)
423    }
424
425    /// Returns `true` if this is `ManuallyDrop<T>`.
426    #[inline]
427    pub fn is_manually_drop(self) -> bool {
428        self.flags().contains(AdtFlags::IS_MANUALLY_DROP)
429    }
430
431    /// Returns `true` if this type has a destructor.
432    pub fn has_dtor(self, tcx: TyCtxt<'tcx>) -> bool {
433        self.destructor(tcx).is_some()
434    }
435
436    /// Asserts this is a struct or union and returns its unique variant.
437    pub fn non_enum_variant(self) -> &'tcx VariantDef {
438        assert!(self.is_struct() || self.is_union());
439        self.variant(FIRST_VARIANT)
440    }
441
442    #[inline]
443    pub fn predicates(self, tcx: TyCtxt<'tcx>) -> GenericPredicates<'tcx> {
444        tcx.predicates_of(self.did())
445    }
446
447    /// Returns an iterator over all fields contained
448    /// by this ADT (nested unnamed fields are not expanded).
449    #[inline]
450    pub fn all_fields(self) -> impl Iterator<Item = &'tcx FieldDef> + Clone {
451        self.variants().iter().flat_map(|v| v.fields.iter())
452    }
453
454    /// Whether the ADT lacks fields. Note that this includes uninhabited enums,
455    /// e.g., `enum Void {}` is considered payload free as well.
456    pub fn is_payloadfree(self) -> bool {
457        // Treat the ADT as not payload-free if arbitrary_enum_discriminant is used (#88621).
458        // This would disallow the following kind of enum from being casted into integer.
459        // ```
460        // enum Enum {
461        //    Foo() = 1,
462        //    Bar{} = 2,
463        //    Baz = 3,
464        // }
465        // ```
466        if self.variants().iter().any(|v| {
467            matches!(v.discr, VariantDiscr::Explicit(_)) && v.ctor_kind() != Some(CtorKind::Const)
468        }) {
469            return false;
470        }
471        self.variants().iter().all(|v| v.fields.is_empty())
472    }
473
474    /// Return a `VariantDef` given a variant id.
475    pub fn variant_with_id(self, vid: DefId) -> &'tcx VariantDef {
476        self.variants().iter().find(|v| v.def_id == vid).expect("variant_with_id: unknown variant")
477    }
478
479    /// Return a `VariantDef` given a constructor id.
480    pub fn variant_with_ctor_id(self, cid: DefId) -> &'tcx VariantDef {
481        self.variants()
482            .iter()
483            .find(|v| v.ctor_def_id() == Some(cid))
484            .expect("variant_with_ctor_id: unknown variant")
485    }
486
487    /// Return the index of `VariantDef` given a variant id.
488    #[inline]
489    pub fn variant_index_with_id(self, vid: DefId) -> VariantIdx {
490        self.variants()
491            .iter_enumerated()
492            .find(|(_, v)| v.def_id == vid)
493            .expect("variant_index_with_id: unknown variant")
494            .0
495    }
496
497    /// Return the index of `VariantDef` given a constructor id.
498    pub fn variant_index_with_ctor_id(self, cid: DefId) -> VariantIdx {
499        self.variants()
500            .iter_enumerated()
501            .find(|(_, v)| v.ctor_def_id() == Some(cid))
502            .expect("variant_index_with_ctor_id: unknown variant")
503            .0
504    }
505
506    pub fn variant_of_res(self, res: Res) -> &'tcx VariantDef {
507        match res {
508            Res::Def(DefKind::Variant, vid) => self.variant_with_id(vid),
509            Res::Def(DefKind::Ctor(..), cid) => self.variant_with_ctor_id(cid),
510            Res::Def(DefKind::Struct, _)
511            | Res::Def(DefKind::Union, _)
512            | Res::Def(DefKind::TyAlias, _)
513            | Res::Def(DefKind::AssocTy, _)
514            | Res::SelfTyParam { .. }
515            | Res::SelfTyAlias { .. }
516            | Res::SelfCtor(..) => self.non_enum_variant(),
517            _ => bug!("unexpected res {:?} in variant_of_res", res),
518        }
519    }
520
521    #[inline]
522    pub fn eval_explicit_discr(
523        self,
524        tcx: TyCtxt<'tcx>,
525        expr_did: DefId,
526    ) -> Result<Discr<'tcx>, ErrorGuaranteed> {
527        assert!(self.is_enum());
528
529        let repr_type = self.repr().discr_type();
530        match tcx.const_eval_poly(expr_did) {
531            Ok(val) => {
532                let typing_env = ty::TypingEnv::post_analysis(tcx, expr_did);
533                let ty = repr_type.to_ty(tcx);
534                if let Some(b) = val.try_to_bits_for_ty(tcx, typing_env, ty) {
535                    trace!("discriminants: {} ({:?})", b, repr_type);
536                    Ok(Discr { val: b, ty })
537                } else {
538                    info!("invalid enum discriminant: {:#?}", val);
539                    let guar = tcx.dcx().emit_err(crate::error::ConstEvalNonIntError {
540                        span: tcx.def_span(expr_did),
541                    });
542                    Err(guar)
543                }
544            }
545            Err(err) => {
546                let guar = match err {
547                    ErrorHandled::Reported(info, _) => info.into(),
548                    ErrorHandled::TooGeneric(..) => tcx.dcx().span_delayed_bug(
549                        tcx.def_span(expr_did),
550                        "enum discriminant depends on generics",
551                    ),
552                };
553                Err(guar)
554            }
555        }
556    }
557
558    #[inline]
559    pub fn discriminants(
560        self,
561        tcx: TyCtxt<'tcx>,
562    ) -> impl Iterator<Item = (VariantIdx, Discr<'tcx>)> {
563        assert!(self.is_enum());
564        let repr_type = self.repr().discr_type();
565        let initial = repr_type.initial_discriminant(tcx);
566        let mut prev_discr = None::<Discr<'tcx>>;
567        self.variants().iter_enumerated().map(move |(i, v)| {
568            let mut discr = prev_discr.map_or(initial, |d| d.wrap_incr(tcx));
569            if let VariantDiscr::Explicit(expr_did) = v.discr
570                && let Ok(new_discr) = self.eval_explicit_discr(tcx, expr_did)
571            {
572                discr = new_discr;
573            }
574            prev_discr = Some(discr);
575
576            (i, discr)
577        })
578    }
579
580    #[inline]
581    pub fn variant_range(self) -> Range<VariantIdx> {
582        FIRST_VARIANT..self.variants().next_index()
583    }
584
585    /// Computes the discriminant value used by a specific variant.
586    /// Unlike `discriminants`, this is (amortized) constant-time,
587    /// only doing at most one query for evaluating an explicit
588    /// discriminant (the last one before the requested variant),
589    /// assuming there are no constant-evaluation errors there.
590    #[inline]
591    pub fn discriminant_for_variant(
592        self,
593        tcx: TyCtxt<'tcx>,
594        variant_index: VariantIdx,
595    ) -> Discr<'tcx> {
596        assert!(self.is_enum());
597        let (val, offset) = self.discriminant_def_for_variant(variant_index);
598        let explicit_value = if let Some(expr_did) = val
599            && let Ok(val) = self.eval_explicit_discr(tcx, expr_did)
600        {
601            val
602        } else {
603            self.repr().discr_type().initial_discriminant(tcx)
604        };
605        explicit_value.checked_add(tcx, offset as u128).0
606    }
607
608    /// Yields a `DefId` for the discriminant and an offset to add to it
609    /// Alternatively, if there is no explicit discriminant, returns the
610    /// inferred discriminant directly.
611    pub fn discriminant_def_for_variant(self, variant_index: VariantIdx) -> (Option<DefId>, u32) {
612        assert!(!self.variants().is_empty());
613        let mut explicit_index = variant_index.as_u32();
614        let expr_did;
615        loop {
616            match self.variant(VariantIdx::from_u32(explicit_index)).discr {
617                ty::VariantDiscr::Relative(0) => {
618                    expr_did = None;
619                    break;
620                }
621                ty::VariantDiscr::Relative(distance) => {
622                    explicit_index -= distance;
623                }
624                ty::VariantDiscr::Explicit(did) => {
625                    expr_did = Some(did);
626                    break;
627                }
628            }
629        }
630        (expr_did, variant_index.as_u32() - explicit_index)
631    }
632
633    pub fn destructor(self, tcx: TyCtxt<'tcx>) -> Option<Destructor> {
634        tcx.adt_destructor(self.did())
635    }
636
637    // FIXME: consider combining this method with `AdtDef::destructor` and removing
638    // this version
639    pub fn async_destructor(self, tcx: TyCtxt<'tcx>) -> Option<AsyncDestructor> {
640        tcx.adt_async_destructor(self.did())
641    }
642
643    /// If this ADT is a struct, returns a type such that `Self: {Meta,Pointee,}Sized` if and only
644    /// if that type is `{Meta,Pointee,}Sized`, or `None` if this ADT is always
645    /// `{Meta,Pointee,}Sized`.
646    pub fn sizedness_constraint(
647        self,
648        tcx: TyCtxt<'tcx>,
649        sizedness: ty::SizedTraitKind,
650    ) -> Option<ty::EarlyBinder<'tcx, Ty<'tcx>>> {
651        if self.is_struct() { tcx.adt_sizedness_constraint((self.did(), sizedness)) } else { None }
652    }
653}
654
655#[derive(Clone, Copy, Debug, HashStable)]
656pub enum Representability {
657    Representable,
658    Infinite(ErrorGuaranteed),
659}