alloc/vec/
mod.rs

1//! A contiguous growable array type with heap-allocated contents, written
2//! `Vec<T>`.
3//!
4//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
5//! *O*(1) pop (from the end).
6//!
7//! Vectors ensure they never allocate more than `isize::MAX` bytes.
8//!
9//! # Examples
10//!
11//! You can explicitly create a [`Vec`] with [`Vec::new`]:
12//!
13//! ```
14//! let v: Vec<i32> = Vec::new();
15//! ```
16//!
17//! ...or by using the [`vec!`] macro:
18//!
19//! ```
20//! let v: Vec<i32> = vec![];
21//!
22//! let v = vec![1, 2, 3, 4, 5];
23//!
24//! let v = vec![0; 10]; // ten zeroes
25//! ```
26//!
27//! You can [`push`] values onto the end of a vector (which will grow the vector
28//! as needed):
29//!
30//! ```
31//! let mut v = vec![1, 2];
32//!
33//! v.push(3);
34//! ```
35//!
36//! Popping values works in much the same way:
37//!
38//! ```
39//! let mut v = vec![1, 2];
40//!
41//! let two = v.pop();
42//! ```
43//!
44//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
45//!
46//! ```
47//! let mut v = vec![1, 2, 3];
48//! let three = v[2];
49//! v[1] = v[1] + 5;
50//! ```
51//!
52//! # Memory layout
53//!
54//! When the type is non-zero-sized and the capacity is nonzero, [`Vec`] uses the [`Global`]
55//! allocator for its allocation. It is valid to convert both ways between such a [`Vec`] and a raw
56//! pointer allocated with the [`Global`] allocator, provided that the [`Layout`] used with the
57//! allocator is correct for a sequence of `capacity` elements of the type, and the first `len`
58//! values pointed to by the raw pointer are valid. More precisely, a `ptr: *mut T` that has been
59//! allocated with the [`Global`] allocator with [`Layout::array::<T>(capacity)`][Layout::array] may
60//! be converted into a vec using
61//! [`Vec::<T>::from_raw_parts(ptr, len, capacity)`](Vec::from_raw_parts). Conversely, the memory
62//! backing a `value: *mut T` obtained from [`Vec::<T>::as_mut_ptr`] may be deallocated using the
63//! [`Global`] allocator with the same layout.
64//!
65//! For zero-sized types (ZSTs), or when the capacity is zero, the `Vec` pointer must be non-null
66//! and sufficiently aligned. The recommended way to build a `Vec` of ZSTs if [`vec!`] cannot be
67//! used is to use [`ptr::NonNull::dangling`].
68//!
69//! [`push`]: Vec::push
70//! [`ptr::NonNull::dangling`]: NonNull::dangling
71//! [`Layout`]: crate::alloc::Layout
72//! [Layout::array]: crate::alloc::Layout::array
73
74#![stable(feature = "rust1", since = "1.0.0")]
75
76#[cfg(not(no_global_oom_handling))]
77use core::cmp;
78use core::cmp::Ordering;
79use core::hash::{Hash, Hasher};
80#[cfg(not(no_global_oom_handling))]
81use core::iter;
82use core::marker::PhantomData;
83use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties};
84use core::ops::{self, Index, IndexMut, Range, RangeBounds};
85use core::ptr::{self, NonNull};
86use core::slice::{self, SliceIndex};
87use core::{fmt, intrinsics, ub_checks};
88
89#[stable(feature = "extract_if", since = "1.87.0")]
90pub use self::extract_if::ExtractIf;
91use crate::alloc::{Allocator, Global};
92use crate::borrow::{Cow, ToOwned};
93use crate::boxed::Box;
94use crate::collections::TryReserveError;
95use crate::raw_vec::RawVec;
96
97mod extract_if;
98
99#[cfg(not(no_global_oom_handling))]
100#[stable(feature = "vec_splice", since = "1.21.0")]
101pub use self::splice::Splice;
102
103#[cfg(not(no_global_oom_handling))]
104mod splice;
105
106#[stable(feature = "drain", since = "1.6.0")]
107pub use self::drain::Drain;
108
109mod drain;
110
111#[cfg(not(no_global_oom_handling))]
112mod cow;
113
114#[cfg(not(no_global_oom_handling))]
115pub(crate) use self::in_place_collect::AsVecIntoIter;
116#[stable(feature = "rust1", since = "1.0.0")]
117pub use self::into_iter::IntoIter;
118
119mod into_iter;
120
121#[cfg(not(no_global_oom_handling))]
122use self::is_zero::IsZero;
123
124#[cfg(not(no_global_oom_handling))]
125mod is_zero;
126
127#[cfg(not(no_global_oom_handling))]
128mod in_place_collect;
129
130mod partial_eq;
131
132#[unstable(feature = "vec_peek_mut", issue = "122742")]
133pub use self::peek_mut::PeekMut;
134
135mod peek_mut;
136
137#[cfg(not(no_global_oom_handling))]
138use self::spec_from_elem::SpecFromElem;
139
140#[cfg(not(no_global_oom_handling))]
141mod spec_from_elem;
142
143#[cfg(not(no_global_oom_handling))]
144use self::set_len_on_drop::SetLenOnDrop;
145
146#[cfg(not(no_global_oom_handling))]
147mod set_len_on_drop;
148
149#[cfg(not(no_global_oom_handling))]
150use self::in_place_drop::{InPlaceDrop, InPlaceDstDataSrcBufDrop};
151
152#[cfg(not(no_global_oom_handling))]
153mod in_place_drop;
154
155#[cfg(not(no_global_oom_handling))]
156use self::spec_from_iter_nested::SpecFromIterNested;
157
158#[cfg(not(no_global_oom_handling))]
159mod spec_from_iter_nested;
160
161#[cfg(not(no_global_oom_handling))]
162use self::spec_from_iter::SpecFromIter;
163
164#[cfg(not(no_global_oom_handling))]
165mod spec_from_iter;
166
167#[cfg(not(no_global_oom_handling))]
168use self::spec_extend::SpecExtend;
169
170#[cfg(not(no_global_oom_handling))]
171mod spec_extend;
172
173/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
174///
175/// # Examples
176///
177/// ```
178/// let mut vec = Vec::new();
179/// vec.push(1);
180/// vec.push(2);
181///
182/// assert_eq!(vec.len(), 2);
183/// assert_eq!(vec[0], 1);
184///
185/// assert_eq!(vec.pop(), Some(2));
186/// assert_eq!(vec.len(), 1);
187///
188/// vec[0] = 7;
189/// assert_eq!(vec[0], 7);
190///
191/// vec.extend([1, 2, 3]);
192///
193/// for x in &vec {
194///     println!("{x}");
195/// }
196/// assert_eq!(vec, [7, 1, 2, 3]);
197/// ```
198///
199/// The [`vec!`] macro is provided for convenient initialization:
200///
201/// ```
202/// let mut vec1 = vec![1, 2, 3];
203/// vec1.push(4);
204/// let vec2 = Vec::from([1, 2, 3, 4]);
205/// assert_eq!(vec1, vec2);
206/// ```
207///
208/// It can also initialize each element of a `Vec<T>` with a given value.
209/// This may be more efficient than performing allocation and initialization
210/// in separate steps, especially when initializing a vector of zeros:
211///
212/// ```
213/// let vec = vec![0; 5];
214/// assert_eq!(vec, [0, 0, 0, 0, 0]);
215///
216/// // The following is equivalent, but potentially slower:
217/// let mut vec = Vec::with_capacity(5);
218/// vec.resize(5, 0);
219/// assert_eq!(vec, [0, 0, 0, 0, 0]);
220/// ```
221///
222/// For more information, see
223/// [Capacity and Reallocation](#capacity-and-reallocation).
224///
225/// Use a `Vec<T>` as an efficient stack:
226///
227/// ```
228/// let mut stack = Vec::new();
229///
230/// stack.push(1);
231/// stack.push(2);
232/// stack.push(3);
233///
234/// while let Some(top) = stack.pop() {
235///     // Prints 3, 2, 1
236///     println!("{top}");
237/// }
238/// ```
239///
240/// # Indexing
241///
242/// The `Vec` type allows access to values by index, because it implements the
243/// [`Index`] trait. An example will be more explicit:
244///
245/// ```
246/// let v = vec![0, 2, 4, 6];
247/// println!("{}", v[1]); // it will display '2'
248/// ```
249///
250/// However be careful: if you try to access an index which isn't in the `Vec`,
251/// your software will panic! You cannot do this:
252///
253/// ```should_panic
254/// let v = vec![0, 2, 4, 6];
255/// println!("{}", v[6]); // it will panic!
256/// ```
257///
258/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
259/// the `Vec`.
260///
261/// # Slicing
262///
263/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
264/// To get a [slice][prim@slice], use [`&`]. Example:
265///
266/// ```
267/// fn read_slice(slice: &[usize]) {
268///     // ...
269/// }
270///
271/// let v = vec![0, 1];
272/// read_slice(&v);
273///
274/// // ... and that's all!
275/// // you can also do it like this:
276/// let u: &[usize] = &v;
277/// // or like this:
278/// let u: &[_] = &v;
279/// ```
280///
281/// In Rust, it's more common to pass slices as arguments rather than vectors
282/// when you just want to provide read access. The same goes for [`String`] and
283/// [`&str`].
284///
285/// # Capacity and reallocation
286///
287/// The capacity of a vector is the amount of space allocated for any future
288/// elements that will be added onto the vector. This is not to be confused with
289/// the *length* of a vector, which specifies the number of actual elements
290/// within the vector. If a vector's length exceeds its capacity, its capacity
291/// will automatically be increased, but its elements will have to be
292/// reallocated.
293///
294/// For example, a vector with capacity 10 and length 0 would be an empty vector
295/// with space for 10 more elements. Pushing 10 or fewer elements onto the
296/// vector will not change its capacity or cause reallocation to occur. However,
297/// if the vector's length is increased to 11, it will have to reallocate, which
298/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
299/// whenever possible to specify how big the vector is expected to get.
300///
301/// # Guarantees
302///
303/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
304/// about its design. This ensures that it's as low-overhead as possible in
305/// the general case, and can be correctly manipulated in primitive ways
306/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
307/// If additional type parameters are added (e.g., to support custom allocators),
308/// overriding their defaults may change the behavior.
309///
310/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
311/// triplet. No more, no less. The order of these fields is completely
312/// unspecified, and you should use the appropriate methods to modify these.
313/// The pointer will never be null, so this type is null-pointer-optimized.
314///
315/// However, the pointer might not actually point to allocated memory. In particular,
316/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
317/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
318/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
319/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
320/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
321/// if <code>[size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
322/// details are very subtle --- if you intend to allocate memory using a `Vec`
323/// and use it for something else (either to pass to unsafe code, or to build your
324/// own memory-backed collection), be sure to deallocate this memory by using
325/// `from_raw_parts` to recover the `Vec` and then dropping it.
326///
327/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
328/// (as defined by the allocator Rust is configured to use by default), and its
329/// pointer points to [`len`] initialized, contiguous elements in order (what
330/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
331/// logically uninitialized, contiguous elements.
332///
333/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
334/// visualized as below. The top part is the `Vec` struct, it contains a
335/// pointer to the head of the allocation in the heap, length and capacity.
336/// The bottom part is the allocation on the heap, a contiguous memory block.
337///
338/// ```text
339///             ptr      len  capacity
340///        +--------+--------+--------+
341///        | 0x0123 |      2 |      4 |
342///        +--------+--------+--------+
343///             |
344///             v
345/// Heap   +--------+--------+--------+--------+
346///        |    'a' |    'b' | uninit | uninit |
347///        +--------+--------+--------+--------+
348/// ```
349///
350/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
351/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
352///   layout (including the order of fields).
353///
354/// `Vec` will never perform a "small optimization" where elements are actually
355/// stored on the stack for two reasons:
356///
357/// * It would make it more difficult for unsafe code to correctly manipulate
358///   a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
359///   only moved, and it would be more difficult to determine if a `Vec` had
360///   actually allocated memory.
361///
362/// * It would penalize the general case, incurring an additional branch
363///   on every access.
364///
365/// `Vec` will never automatically shrink itself, even if completely empty. This
366/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
367/// and then filling it back up to the same [`len`] should incur no calls to
368/// the allocator. If you wish to free up unused memory, use
369/// [`shrink_to_fit`] or [`shrink_to`].
370///
371/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
372/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
373/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
374/// accurate, and can be relied on. It can even be used to manually free the memory
375/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
376/// when not necessary.
377///
378/// `Vec` does not guarantee any particular growth strategy when reallocating
379/// when full, nor when [`reserve`] is called. The current strategy is basic
380/// and it may prove desirable to use a non-constant growth factor. Whatever
381/// strategy is used will of course guarantee *O*(1) amortized [`push`].
382///
383/// It is guaranteed, in order to respect the intentions of the programmer, that
384/// all of `vec![e_1, e_2, ..., e_n]`, `vec![x; n]`, and [`Vec::with_capacity(n)`] produce a `Vec`
385/// that requests an allocation of the exact size needed for precisely `n` elements from the allocator,
386/// and no other size (such as, for example: a size rounded up to the nearest power of 2).
387/// The allocator will return an allocation that is at least as large as requested, but it may be larger.
388///
389/// It is guaranteed that the [`Vec::capacity`] method returns a value that is at least the requested capacity
390/// and not more than the allocated capacity.
391///
392/// The method [`Vec::shrink_to_fit`] will attempt to discard excess capacity an allocator has given to a `Vec`.
393/// If <code>[len] == [capacity]</code>, then a `Vec<T>` can be converted
394/// to and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
395/// `Vec` exploits this fact as much as reasonable when implementing common conversions
396/// such as [`into_boxed_slice`].
397///
398/// `Vec` will not specifically overwrite any data that is removed from it,
399/// but also won't specifically preserve it. Its uninitialized memory is
400/// scratch space that it may use however it wants. It will generally just do
401/// whatever is most efficient or otherwise easy to implement. Do not rely on
402/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
403/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
404/// first, that might not actually happen because the optimizer does not consider
405/// this a side-effect that must be preserved. There is one case which we will
406/// not break, however: using `unsafe` code to write to the excess capacity,
407/// and then increasing the length to match, is always valid.
408///
409/// Currently, `Vec` does not guarantee the order in which elements are dropped.
410/// The order has changed in the past and may change again.
411///
412/// [`get`]: slice::get
413/// [`get_mut`]: slice::get_mut
414/// [`String`]: crate::string::String
415/// [`&str`]: type@str
416/// [`shrink_to_fit`]: Vec::shrink_to_fit
417/// [`shrink_to`]: Vec::shrink_to
418/// [capacity]: Vec::capacity
419/// [`capacity`]: Vec::capacity
420/// [`Vec::capacity`]: Vec::capacity
421/// [size_of::\<T>]: size_of
422/// [len]: Vec::len
423/// [`len`]: Vec::len
424/// [`push`]: Vec::push
425/// [`insert`]: Vec::insert
426/// [`reserve`]: Vec::reserve
427/// [`Vec::with_capacity(n)`]: Vec::with_capacity
428/// [`MaybeUninit`]: core::mem::MaybeUninit
429/// [owned slice]: Box
430/// [`into_boxed_slice`]: Vec::into_boxed_slice
431#[stable(feature = "rust1", since = "1.0.0")]
432#[rustc_diagnostic_item = "Vec"]
433#[rustc_insignificant_dtor]
434pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
435    buf: RawVec<T, A>,
436    len: usize,
437}
438
439////////////////////////////////////////////////////////////////////////////////
440// Inherent methods
441////////////////////////////////////////////////////////////////////////////////
442
443impl<T> Vec<T> {
444    /// Constructs a new, empty `Vec<T>`.
445    ///
446    /// The vector will not allocate until elements are pushed onto it.
447    ///
448    /// # Examples
449    ///
450    /// ```
451    /// # #![allow(unused_mut)]
452    /// let mut vec: Vec<i32> = Vec::new();
453    /// ```
454    #[inline]
455    #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
456    #[rustc_diagnostic_item = "vec_new"]
457    #[stable(feature = "rust1", since = "1.0.0")]
458    #[must_use]
459    pub const fn new() -> Self {
460        Vec { buf: RawVec::new(), len: 0 }
461    }
462
463    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
464    ///
465    /// The vector will be able to hold at least `capacity` elements without
466    /// reallocating. This method is allowed to allocate for more elements than
467    /// `capacity`. If `capacity` is zero, the vector will not allocate.
468    ///
469    /// It is important to note that although the returned vector has the
470    /// minimum *capacity* specified, the vector will have a zero *length*. For
471    /// an explanation of the difference between length and capacity, see
472    /// *[Capacity and reallocation]*.
473    ///
474    /// If it is important to know the exact allocated capacity of a `Vec`,
475    /// always use the [`capacity`] method after construction.
476    ///
477    /// For `Vec<T>` where `T` is a zero-sized type, there will be no allocation
478    /// and the capacity will always be `usize::MAX`.
479    ///
480    /// [Capacity and reallocation]: #capacity-and-reallocation
481    /// [`capacity`]: Vec::capacity
482    ///
483    /// # Panics
484    ///
485    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
486    ///
487    /// # Examples
488    ///
489    /// ```
490    /// let mut vec = Vec::with_capacity(10);
491    ///
492    /// // The vector contains no items, even though it has capacity for more
493    /// assert_eq!(vec.len(), 0);
494    /// assert!(vec.capacity() >= 10);
495    ///
496    /// // These are all done without reallocating...
497    /// for i in 0..10 {
498    ///     vec.push(i);
499    /// }
500    /// assert_eq!(vec.len(), 10);
501    /// assert!(vec.capacity() >= 10);
502    ///
503    /// // ...but this may make the vector reallocate
504    /// vec.push(11);
505    /// assert_eq!(vec.len(), 11);
506    /// assert!(vec.capacity() >= 11);
507    ///
508    /// // A vector of a zero-sized type will always over-allocate, since no
509    /// // allocation is necessary
510    /// let vec_units = Vec::<()>::with_capacity(10);
511    /// assert_eq!(vec_units.capacity(), usize::MAX);
512    /// ```
513    #[cfg(not(no_global_oom_handling))]
514    #[inline]
515    #[stable(feature = "rust1", since = "1.0.0")]
516    #[must_use]
517    #[rustc_diagnostic_item = "vec_with_capacity"]
518    #[track_caller]
519    pub fn with_capacity(capacity: usize) -> Self {
520        Self::with_capacity_in(capacity, Global)
521    }
522
523    /// Constructs a new, empty `Vec<T>` with at least the specified capacity.
524    ///
525    /// The vector will be able to hold at least `capacity` elements without
526    /// reallocating. This method is allowed to allocate for more elements than
527    /// `capacity`. If `capacity` is zero, the vector will not allocate.
528    ///
529    /// # Errors
530    ///
531    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
532    /// or if the allocator reports allocation failure.
533    #[inline]
534    #[unstable(feature = "try_with_capacity", issue = "91913")]
535    pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
536        Self::try_with_capacity_in(capacity, Global)
537    }
538
539    /// Creates a `Vec<T>` directly from a pointer, a length, and a capacity.
540    ///
541    /// # Safety
542    ///
543    /// This is highly unsafe, due to the number of invariants that aren't
544    /// checked:
545    ///
546    /// * If `T` is not a zero-sized type and the capacity is nonzero, `ptr` must have
547    ///   been allocated using the global allocator, such as via the [`alloc::alloc`]
548    ///   function. If `T` is a zero-sized type or the capacity is zero, `ptr` need
549    ///   only be non-null and aligned.
550    /// * `T` needs to have the same alignment as what `ptr` was allocated with,
551    ///   if the pointer is required to be allocated.
552    ///   (`T` having a less strict alignment is not sufficient, the alignment really
553    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
554    ///   allocated and deallocated with the same layout.)
555    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes), if
556    ///   nonzero, needs to be the same size as the pointer was allocated with.
557    ///   (Because similar to alignment, [`dealloc`] must be called with the same
558    ///   layout `size`.)
559    /// * `length` needs to be less than or equal to `capacity`.
560    /// * The first `length` values must be properly initialized values of type `T`.
561    /// * `capacity` needs to be the capacity that the pointer was allocated with,
562    ///   if the pointer is required to be allocated.
563    /// * The allocated size in bytes must be no larger than `isize::MAX`.
564    ///   See the safety documentation of [`pointer::offset`].
565    ///
566    /// These requirements are always upheld by any `ptr` that has been allocated
567    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
568    /// upheld.
569    ///
570    /// Violating these may cause problems like corrupting the allocator's
571    /// internal data structures. For example it is normally **not** safe
572    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
573    /// `size_t`, doing so is only safe if the array was initially allocated by
574    /// a `Vec` or `String`.
575    /// It's also not safe to build one from a `Vec<u16>` and its length, because
576    /// the allocator cares about the alignment, and these two types have different
577    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
578    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
579    /// these issues, it is often preferable to do casting/transmuting using
580    /// [`slice::from_raw_parts`] instead.
581    ///
582    /// The ownership of `ptr` is effectively transferred to the
583    /// `Vec<T>` which may then deallocate, reallocate or change the
584    /// contents of memory pointed to by the pointer at will. Ensure
585    /// that nothing else uses the pointer after calling this
586    /// function.
587    ///
588    /// [`String`]: crate::string::String
589    /// [`alloc::alloc`]: crate::alloc::alloc
590    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
591    ///
592    /// # Examples
593    ///
594    // FIXME Update this when vec_into_raw_parts is stabilized
595    /// ```
596    /// use std::ptr;
597    /// use std::mem;
598    ///
599    /// let v = vec![1, 2, 3];
600    ///
601    /// // Prevent running `v`'s destructor so we are in complete control
602    /// // of the allocation.
603    /// let mut v = mem::ManuallyDrop::new(v);
604    ///
605    /// // Pull out the various important pieces of information about `v`
606    /// let p = v.as_mut_ptr();
607    /// let len = v.len();
608    /// let cap = v.capacity();
609    ///
610    /// unsafe {
611    ///     // Overwrite memory with 4, 5, 6
612    ///     for i in 0..len {
613    ///         ptr::write(p.add(i), 4 + i);
614    ///     }
615    ///
616    ///     // Put everything back together into a Vec
617    ///     let rebuilt = Vec::from_raw_parts(p, len, cap);
618    ///     assert_eq!(rebuilt, [4, 5, 6]);
619    /// }
620    /// ```
621    ///
622    /// Using memory that was allocated elsewhere:
623    ///
624    /// ```rust
625    /// use std::alloc::{alloc, Layout};
626    ///
627    /// fn main() {
628    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
629    ///
630    ///     let vec = unsafe {
631    ///         let mem = alloc(layout).cast::<u32>();
632    ///         if mem.is_null() {
633    ///             return;
634    ///         }
635    ///
636    ///         mem.write(1_000_000);
637    ///
638    ///         Vec::from_raw_parts(mem, 1, 16)
639    ///     };
640    ///
641    ///     assert_eq!(vec, &[1_000_000]);
642    ///     assert_eq!(vec.capacity(), 16);
643    /// }
644    /// ```
645    #[inline]
646    #[stable(feature = "rust1", since = "1.0.0")]
647    pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
648        unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
649    }
650
651    #[doc(alias = "from_non_null_parts")]
652    /// Creates a `Vec<T>` directly from a `NonNull` pointer, a length, and a capacity.
653    ///
654    /// # Safety
655    ///
656    /// This is highly unsafe, due to the number of invariants that aren't
657    /// checked:
658    ///
659    /// * `ptr` must have been allocated using the global allocator, such as via
660    ///   the [`alloc::alloc`] function.
661    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
662    ///   (`T` having a less strict alignment is not sufficient, the alignment really
663    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
664    ///   allocated and deallocated with the same layout.)
665    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
666    ///   to be the same size as the pointer was allocated with. (Because similar to
667    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
668    /// * `length` needs to be less than or equal to `capacity`.
669    /// * The first `length` values must be properly initialized values of type `T`.
670    /// * `capacity` needs to be the capacity that the pointer was allocated with.
671    /// * The allocated size in bytes must be no larger than `isize::MAX`.
672    ///   See the safety documentation of [`pointer::offset`].
673    ///
674    /// These requirements are always upheld by any `ptr` that has been allocated
675    /// via `Vec<T>`. Other allocation sources are allowed if the invariants are
676    /// upheld.
677    ///
678    /// Violating these may cause problems like corrupting the allocator's
679    /// internal data structures. For example it is normally **not** safe
680    /// to build a `Vec<u8>` from a pointer to a C `char` array with length
681    /// `size_t`, doing so is only safe if the array was initially allocated by
682    /// a `Vec` or `String`.
683    /// It's also not safe to build one from a `Vec<u16>` and its length, because
684    /// the allocator cares about the alignment, and these two types have different
685    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
686    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
687    /// these issues, it is often preferable to do casting/transmuting using
688    /// [`NonNull::slice_from_raw_parts`] instead.
689    ///
690    /// The ownership of `ptr` is effectively transferred to the
691    /// `Vec<T>` which may then deallocate, reallocate or change the
692    /// contents of memory pointed to by the pointer at will. Ensure
693    /// that nothing else uses the pointer after calling this
694    /// function.
695    ///
696    /// [`String`]: crate::string::String
697    /// [`alloc::alloc`]: crate::alloc::alloc
698    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
699    ///
700    /// # Examples
701    ///
702    // FIXME Update this when vec_into_raw_parts is stabilized
703    /// ```
704    /// #![feature(box_vec_non_null)]
705    ///
706    /// use std::ptr::NonNull;
707    /// use std::mem;
708    ///
709    /// let v = vec![1, 2, 3];
710    ///
711    /// // Prevent running `v`'s destructor so we are in complete control
712    /// // of the allocation.
713    /// let mut v = mem::ManuallyDrop::new(v);
714    ///
715    /// // Pull out the various important pieces of information about `v`
716    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
717    /// let len = v.len();
718    /// let cap = v.capacity();
719    ///
720    /// unsafe {
721    ///     // Overwrite memory with 4, 5, 6
722    ///     for i in 0..len {
723    ///         p.add(i).write(4 + i);
724    ///     }
725    ///
726    ///     // Put everything back together into a Vec
727    ///     let rebuilt = Vec::from_parts(p, len, cap);
728    ///     assert_eq!(rebuilt, [4, 5, 6]);
729    /// }
730    /// ```
731    ///
732    /// Using memory that was allocated elsewhere:
733    ///
734    /// ```rust
735    /// #![feature(box_vec_non_null)]
736    ///
737    /// use std::alloc::{alloc, Layout};
738    /// use std::ptr::NonNull;
739    ///
740    /// fn main() {
741    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
742    ///
743    ///     let vec = unsafe {
744    ///         let Some(mem) = NonNull::new(alloc(layout).cast::<u32>()) else {
745    ///             return;
746    ///         };
747    ///
748    ///         mem.write(1_000_000);
749    ///
750    ///         Vec::from_parts(mem, 1, 16)
751    ///     };
752    ///
753    ///     assert_eq!(vec, &[1_000_000]);
754    ///     assert_eq!(vec.capacity(), 16);
755    /// }
756    /// ```
757    #[inline]
758    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
759    pub unsafe fn from_parts(ptr: NonNull<T>, length: usize, capacity: usize) -> Self {
760        unsafe { Self::from_parts_in(ptr, length, capacity, Global) }
761    }
762
763    /// Returns a mutable reference to the last item in the vector, or
764    /// `None` if it is empty.
765    ///
766    /// # Examples
767    ///
768    /// Basic usage:
769    ///
770    /// ```
771    /// #![feature(vec_peek_mut)]
772    /// let mut vec = Vec::new();
773    /// assert!(vec.peek_mut().is_none());
774    ///
775    /// vec.push(1);
776    /// vec.push(5);
777    /// vec.push(2);
778    /// assert_eq!(vec.last(), Some(&2));
779    /// if let Some(mut val) = vec.peek_mut() {
780    ///     *val = 0;
781    /// }
782    /// assert_eq!(vec.last(), Some(&0));
783    /// ```
784    #[inline]
785    #[unstable(feature = "vec_peek_mut", issue = "122742")]
786    pub fn peek_mut(&mut self) -> Option<PeekMut<'_, T>> {
787        PeekMut::new(self)
788    }
789
790    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity)`.
791    ///
792    /// Returns the raw pointer to the underlying data, the length of
793    /// the vector (in elements), and the allocated capacity of the
794    /// data (in elements). These are the same arguments in the same
795    /// order as the arguments to [`from_raw_parts`].
796    ///
797    /// After calling this function, the caller is responsible for the
798    /// memory previously managed by the `Vec`. Most often, one does
799    /// this by converting the raw pointer, length, and capacity back
800    /// into a `Vec` with the [`from_raw_parts`] function; more generally,
801    /// if `T` is non-zero-sized and the capacity is nonzero, one may use
802    /// any method that calls [`dealloc`] with a layout of
803    /// `Layout::array::<T>(capacity)`; if `T` is zero-sized or the
804    /// capacity is zero, nothing needs to be done.
805    ///
806    /// [`from_raw_parts`]: Vec::from_raw_parts
807    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
808    ///
809    /// # Examples
810    ///
811    /// ```
812    /// #![feature(vec_into_raw_parts)]
813    /// let v: Vec<i32> = vec![-1, 0, 1];
814    ///
815    /// let (ptr, len, cap) = v.into_raw_parts();
816    ///
817    /// let rebuilt = unsafe {
818    ///     // We can now make changes to the components, such as
819    ///     // transmuting the raw pointer to a compatible type.
820    ///     let ptr = ptr as *mut u32;
821    ///
822    ///     Vec::from_raw_parts(ptr, len, cap)
823    /// };
824    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
825    /// ```
826    #[must_use = "losing the pointer will leak memory"]
827    #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
828    pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
829        let mut me = ManuallyDrop::new(self);
830        (me.as_mut_ptr(), me.len(), me.capacity())
831    }
832
833    #[doc(alias = "into_non_null_parts")]
834    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity)`.
835    ///
836    /// Returns the `NonNull` pointer to the underlying data, the length of
837    /// the vector (in elements), and the allocated capacity of the
838    /// data (in elements). These are the same arguments in the same
839    /// order as the arguments to [`from_parts`].
840    ///
841    /// After calling this function, the caller is responsible for the
842    /// memory previously managed by the `Vec`. The only way to do
843    /// this is to convert the `NonNull` pointer, length, and capacity back
844    /// into a `Vec` with the [`from_parts`] function, allowing
845    /// the destructor to perform the cleanup.
846    ///
847    /// [`from_parts`]: Vec::from_parts
848    ///
849    /// # Examples
850    ///
851    /// ```
852    /// #![feature(vec_into_raw_parts, box_vec_non_null)]
853    ///
854    /// let v: Vec<i32> = vec![-1, 0, 1];
855    ///
856    /// let (ptr, len, cap) = v.into_parts();
857    ///
858    /// let rebuilt = unsafe {
859    ///     // We can now make changes to the components, such as
860    ///     // transmuting the raw pointer to a compatible type.
861    ///     let ptr = ptr.cast::<u32>();
862    ///
863    ///     Vec::from_parts(ptr, len, cap)
864    /// };
865    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
866    /// ```
867    #[must_use = "losing the pointer will leak memory"]
868    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
869    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
870    pub fn into_parts(self) -> (NonNull<T>, usize, usize) {
871        let (ptr, len, capacity) = self.into_raw_parts();
872        // SAFETY: A `Vec` always has a non-null pointer.
873        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity)
874    }
875}
876
877impl<T, A: Allocator> Vec<T, A> {
878    /// Constructs a new, empty `Vec<T, A>`.
879    ///
880    /// The vector will not allocate until elements are pushed onto it.
881    ///
882    /// # Examples
883    ///
884    /// ```
885    /// #![feature(allocator_api)]
886    ///
887    /// use std::alloc::System;
888    ///
889    /// # #[allow(unused_mut)]
890    /// let mut vec: Vec<i32, _> = Vec::new_in(System);
891    /// ```
892    #[inline]
893    #[unstable(feature = "allocator_api", issue = "32838")]
894    pub const fn new_in(alloc: A) -> Self {
895        Vec { buf: RawVec::new_in(alloc), len: 0 }
896    }
897
898    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
899    /// with the provided allocator.
900    ///
901    /// The vector will be able to hold at least `capacity` elements without
902    /// reallocating. This method is allowed to allocate for more elements than
903    /// `capacity`. If `capacity` is zero, the vector will not allocate.
904    ///
905    /// It is important to note that although the returned vector has the
906    /// minimum *capacity* specified, the vector will have a zero *length*. For
907    /// an explanation of the difference between length and capacity, see
908    /// *[Capacity and reallocation]*.
909    ///
910    /// If it is important to know the exact allocated capacity of a `Vec`,
911    /// always use the [`capacity`] method after construction.
912    ///
913    /// For `Vec<T, A>` where `T` is a zero-sized type, there will be no allocation
914    /// and the capacity will always be `usize::MAX`.
915    ///
916    /// [Capacity and reallocation]: #capacity-and-reallocation
917    /// [`capacity`]: Vec::capacity
918    ///
919    /// # Panics
920    ///
921    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
922    ///
923    /// # Examples
924    ///
925    /// ```
926    /// #![feature(allocator_api)]
927    ///
928    /// use std::alloc::System;
929    ///
930    /// let mut vec = Vec::with_capacity_in(10, System);
931    ///
932    /// // The vector contains no items, even though it has capacity for more
933    /// assert_eq!(vec.len(), 0);
934    /// assert!(vec.capacity() >= 10);
935    ///
936    /// // These are all done without reallocating...
937    /// for i in 0..10 {
938    ///     vec.push(i);
939    /// }
940    /// assert_eq!(vec.len(), 10);
941    /// assert!(vec.capacity() >= 10);
942    ///
943    /// // ...but this may make the vector reallocate
944    /// vec.push(11);
945    /// assert_eq!(vec.len(), 11);
946    /// assert!(vec.capacity() >= 11);
947    ///
948    /// // A vector of a zero-sized type will always over-allocate, since no
949    /// // allocation is necessary
950    /// let vec_units = Vec::<(), System>::with_capacity_in(10, System);
951    /// assert_eq!(vec_units.capacity(), usize::MAX);
952    /// ```
953    #[cfg(not(no_global_oom_handling))]
954    #[inline]
955    #[unstable(feature = "allocator_api", issue = "32838")]
956    #[track_caller]
957    pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
958        Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
959    }
960
961    /// Constructs a new, empty `Vec<T, A>` with at least the specified capacity
962    /// with the provided allocator.
963    ///
964    /// The vector will be able to hold at least `capacity` elements without
965    /// reallocating. This method is allowed to allocate for more elements than
966    /// `capacity`. If `capacity` is zero, the vector will not allocate.
967    ///
968    /// # Errors
969    ///
970    /// Returns an error if the capacity exceeds `isize::MAX` _bytes_,
971    /// or if the allocator reports allocation failure.
972    #[inline]
973    #[unstable(feature = "allocator_api", issue = "32838")]
974    // #[unstable(feature = "try_with_capacity", issue = "91913")]
975    pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
976        Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
977    }
978
979    /// Creates a `Vec<T, A>` directly from a pointer, a length, a capacity,
980    /// and an allocator.
981    ///
982    /// # Safety
983    ///
984    /// This is highly unsafe, due to the number of invariants that aren't
985    /// checked:
986    ///
987    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
988    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
989    ///   (`T` having a less strict alignment is not sufficient, the alignment really
990    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
991    ///   allocated and deallocated with the same layout.)
992    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
993    ///   to be the same size as the pointer was allocated with. (Because similar to
994    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
995    /// * `length` needs to be less than or equal to `capacity`.
996    /// * The first `length` values must be properly initialized values of type `T`.
997    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
998    /// * The allocated size in bytes must be no larger than `isize::MAX`.
999    ///   See the safety documentation of [`pointer::offset`].
1000    ///
1001    /// These requirements are always upheld by any `ptr` that has been allocated
1002    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1003    /// upheld.
1004    ///
1005    /// Violating these may cause problems like corrupting the allocator's
1006    /// internal data structures. For example it is **not** safe
1007    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1008    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1009    /// the allocator cares about the alignment, and these two types have different
1010    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1011    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1012    ///
1013    /// The ownership of `ptr` is effectively transferred to the
1014    /// `Vec<T>` which may then deallocate, reallocate or change the
1015    /// contents of memory pointed to by the pointer at will. Ensure
1016    /// that nothing else uses the pointer after calling this
1017    /// function.
1018    ///
1019    /// [`String`]: crate::string::String
1020    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1021    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1022    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1023    ///
1024    /// # Examples
1025    ///
1026    // FIXME Update this when vec_into_raw_parts is stabilized
1027    /// ```
1028    /// #![feature(allocator_api)]
1029    ///
1030    /// use std::alloc::System;
1031    ///
1032    /// use std::ptr;
1033    /// use std::mem;
1034    ///
1035    /// let mut v = Vec::with_capacity_in(3, System);
1036    /// v.push(1);
1037    /// v.push(2);
1038    /// v.push(3);
1039    ///
1040    /// // Prevent running `v`'s destructor so we are in complete control
1041    /// // of the allocation.
1042    /// let mut v = mem::ManuallyDrop::new(v);
1043    ///
1044    /// // Pull out the various important pieces of information about `v`
1045    /// let p = v.as_mut_ptr();
1046    /// let len = v.len();
1047    /// let cap = v.capacity();
1048    /// let alloc = v.allocator();
1049    ///
1050    /// unsafe {
1051    ///     // Overwrite memory with 4, 5, 6
1052    ///     for i in 0..len {
1053    ///         ptr::write(p.add(i), 4 + i);
1054    ///     }
1055    ///
1056    ///     // Put everything back together into a Vec
1057    ///     let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
1058    ///     assert_eq!(rebuilt, [4, 5, 6]);
1059    /// }
1060    /// ```
1061    ///
1062    /// Using memory that was allocated elsewhere:
1063    ///
1064    /// ```rust
1065    /// #![feature(allocator_api)]
1066    ///
1067    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1068    ///
1069    /// fn main() {
1070    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1071    ///
1072    ///     let vec = unsafe {
1073    ///         let mem = match Global.allocate(layout) {
1074    ///             Ok(mem) => mem.cast::<u32>().as_ptr(),
1075    ///             Err(AllocError) => return,
1076    ///         };
1077    ///
1078    ///         mem.write(1_000_000);
1079    ///
1080    ///         Vec::from_raw_parts_in(mem, 1, 16, Global)
1081    ///     };
1082    ///
1083    ///     assert_eq!(vec, &[1_000_000]);
1084    ///     assert_eq!(vec.capacity(), 16);
1085    /// }
1086    /// ```
1087    #[inline]
1088    #[unstable(feature = "allocator_api", issue = "32838")]
1089    pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
1090        ub_checks::assert_unsafe_precondition!(
1091            check_library_ub,
1092            "Vec::from_raw_parts_in requires that length <= capacity",
1093            (length: usize = length, capacity: usize = capacity) => length <= capacity
1094        );
1095        unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
1096    }
1097
1098    #[doc(alias = "from_non_null_parts_in")]
1099    /// Creates a `Vec<T, A>` directly from a `NonNull` pointer, a length, a capacity,
1100    /// and an allocator.
1101    ///
1102    /// # Safety
1103    ///
1104    /// This is highly unsafe, due to the number of invariants that aren't
1105    /// checked:
1106    ///
1107    /// * `ptr` must be [*currently allocated*] via the given allocator `alloc`.
1108    /// * `T` needs to have the same alignment as what `ptr` was allocated with.
1109    ///   (`T` having a less strict alignment is not sufficient, the alignment really
1110    ///   needs to be equal to satisfy the [`dealloc`] requirement that memory must be
1111    ///   allocated and deallocated with the same layout.)
1112    /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
1113    ///   to be the same size as the pointer was allocated with. (Because similar to
1114    ///   alignment, [`dealloc`] must be called with the same layout `size`.)
1115    /// * `length` needs to be less than or equal to `capacity`.
1116    /// * The first `length` values must be properly initialized values of type `T`.
1117    /// * `capacity` needs to [*fit*] the layout size that the pointer was allocated with.
1118    /// * The allocated size in bytes must be no larger than `isize::MAX`.
1119    ///   See the safety documentation of [`pointer::offset`].
1120    ///
1121    /// These requirements are always upheld by any `ptr` that has been allocated
1122    /// via `Vec<T, A>`. Other allocation sources are allowed if the invariants are
1123    /// upheld.
1124    ///
1125    /// Violating these may cause problems like corrupting the allocator's
1126    /// internal data structures. For example it is **not** safe
1127    /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
1128    /// It's also not safe to build one from a `Vec<u16>` and its length, because
1129    /// the allocator cares about the alignment, and these two types have different
1130    /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
1131    /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
1132    ///
1133    /// The ownership of `ptr` is effectively transferred to the
1134    /// `Vec<T>` which may then deallocate, reallocate or change the
1135    /// contents of memory pointed to by the pointer at will. Ensure
1136    /// that nothing else uses the pointer after calling this
1137    /// function.
1138    ///
1139    /// [`String`]: crate::string::String
1140    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1141    /// [*currently allocated*]: crate::alloc::Allocator#currently-allocated-memory
1142    /// [*fit*]: crate::alloc::Allocator#memory-fitting
1143    ///
1144    /// # Examples
1145    ///
1146    // FIXME Update this when vec_into_raw_parts is stabilized
1147    /// ```
1148    /// #![feature(allocator_api, box_vec_non_null)]
1149    ///
1150    /// use std::alloc::System;
1151    ///
1152    /// use std::ptr::NonNull;
1153    /// use std::mem;
1154    ///
1155    /// let mut v = Vec::with_capacity_in(3, System);
1156    /// v.push(1);
1157    /// v.push(2);
1158    /// v.push(3);
1159    ///
1160    /// // Prevent running `v`'s destructor so we are in complete control
1161    /// // of the allocation.
1162    /// let mut v = mem::ManuallyDrop::new(v);
1163    ///
1164    /// // Pull out the various important pieces of information about `v`
1165    /// let p = unsafe { NonNull::new_unchecked(v.as_mut_ptr()) };
1166    /// let len = v.len();
1167    /// let cap = v.capacity();
1168    /// let alloc = v.allocator();
1169    ///
1170    /// unsafe {
1171    ///     // Overwrite memory with 4, 5, 6
1172    ///     for i in 0..len {
1173    ///         p.add(i).write(4 + i);
1174    ///     }
1175    ///
1176    ///     // Put everything back together into a Vec
1177    ///     let rebuilt = Vec::from_parts_in(p, len, cap, alloc.clone());
1178    ///     assert_eq!(rebuilt, [4, 5, 6]);
1179    /// }
1180    /// ```
1181    ///
1182    /// Using memory that was allocated elsewhere:
1183    ///
1184    /// ```rust
1185    /// #![feature(allocator_api, box_vec_non_null)]
1186    ///
1187    /// use std::alloc::{AllocError, Allocator, Global, Layout};
1188    ///
1189    /// fn main() {
1190    ///     let layout = Layout::array::<u32>(16).expect("overflow cannot happen");
1191    ///
1192    ///     let vec = unsafe {
1193    ///         let mem = match Global.allocate(layout) {
1194    ///             Ok(mem) => mem.cast::<u32>(),
1195    ///             Err(AllocError) => return,
1196    ///         };
1197    ///
1198    ///         mem.write(1_000_000);
1199    ///
1200    ///         Vec::from_parts_in(mem, 1, 16, Global)
1201    ///     };
1202    ///
1203    ///     assert_eq!(vec, &[1_000_000]);
1204    ///     assert_eq!(vec.capacity(), 16);
1205    /// }
1206    /// ```
1207    #[inline]
1208    #[unstable(feature = "allocator_api", reason = "new API", issue = "32838")]
1209    // #[unstable(feature = "box_vec_non_null", issue = "130364")]
1210    pub unsafe fn from_parts_in(ptr: NonNull<T>, length: usize, capacity: usize, alloc: A) -> Self {
1211        ub_checks::assert_unsafe_precondition!(
1212            check_library_ub,
1213            "Vec::from_parts_in requires that length <= capacity",
1214            (length: usize = length, capacity: usize = capacity) => length <= capacity
1215        );
1216        unsafe { Vec { buf: RawVec::from_nonnull_in(ptr, capacity, alloc), len: length } }
1217    }
1218
1219    /// Decomposes a `Vec<T>` into its raw components: `(pointer, length, capacity, allocator)`.
1220    ///
1221    /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
1222    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1223    /// arguments in the same order as the arguments to [`from_raw_parts_in`].
1224    ///
1225    /// After calling this function, the caller is responsible for the
1226    /// memory previously managed by the `Vec`. The only way to do
1227    /// this is to convert the raw pointer, length, and capacity back
1228    /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
1229    /// the destructor to perform the cleanup.
1230    ///
1231    /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
1232    ///
1233    /// # Examples
1234    ///
1235    /// ```
1236    /// #![feature(allocator_api, vec_into_raw_parts)]
1237    ///
1238    /// use std::alloc::System;
1239    ///
1240    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1241    /// v.push(-1);
1242    /// v.push(0);
1243    /// v.push(1);
1244    ///
1245    /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
1246    ///
1247    /// let rebuilt = unsafe {
1248    ///     // We can now make changes to the components, such as
1249    ///     // transmuting the raw pointer to a compatible type.
1250    ///     let ptr = ptr as *mut u32;
1251    ///
1252    ///     Vec::from_raw_parts_in(ptr, len, cap, alloc)
1253    /// };
1254    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1255    /// ```
1256    #[must_use = "losing the pointer will leak memory"]
1257    #[unstable(feature = "allocator_api", issue = "32838")]
1258    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1259    pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
1260        let mut me = ManuallyDrop::new(self);
1261        let len = me.len();
1262        let capacity = me.capacity();
1263        let ptr = me.as_mut_ptr();
1264        let alloc = unsafe { ptr::read(me.allocator()) };
1265        (ptr, len, capacity, alloc)
1266    }
1267
1268    #[doc(alias = "into_non_null_parts_with_alloc")]
1269    /// Decomposes a `Vec<T>` into its raw components: `(NonNull pointer, length, capacity, allocator)`.
1270    ///
1271    /// Returns the `NonNull` pointer to the underlying data, the length of the vector (in elements),
1272    /// the allocated capacity of the data (in elements), and the allocator. These are the same
1273    /// arguments in the same order as the arguments to [`from_parts_in`].
1274    ///
1275    /// After calling this function, the caller is responsible for the
1276    /// memory previously managed by the `Vec`. The only way to do
1277    /// this is to convert the `NonNull` pointer, length, and capacity back
1278    /// into a `Vec` with the [`from_parts_in`] function, allowing
1279    /// the destructor to perform the cleanup.
1280    ///
1281    /// [`from_parts_in`]: Vec::from_parts_in
1282    ///
1283    /// # Examples
1284    ///
1285    /// ```
1286    /// #![feature(allocator_api, vec_into_raw_parts, box_vec_non_null)]
1287    ///
1288    /// use std::alloc::System;
1289    ///
1290    /// let mut v: Vec<i32, System> = Vec::new_in(System);
1291    /// v.push(-1);
1292    /// v.push(0);
1293    /// v.push(1);
1294    ///
1295    /// let (ptr, len, cap, alloc) = v.into_parts_with_alloc();
1296    ///
1297    /// let rebuilt = unsafe {
1298    ///     // We can now make changes to the components, such as
1299    ///     // transmuting the raw pointer to a compatible type.
1300    ///     let ptr = ptr.cast::<u32>();
1301    ///
1302    ///     Vec::from_parts_in(ptr, len, cap, alloc)
1303    /// };
1304    /// assert_eq!(rebuilt, [4294967295, 0, 1]);
1305    /// ```
1306    #[must_use = "losing the pointer will leak memory"]
1307    #[unstable(feature = "allocator_api", issue = "32838")]
1308    // #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1309    // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
1310    pub fn into_parts_with_alloc(self) -> (NonNull<T>, usize, usize, A) {
1311        let (ptr, len, capacity, alloc) = self.into_raw_parts_with_alloc();
1312        // SAFETY: A `Vec` always has a non-null pointer.
1313        (unsafe { NonNull::new_unchecked(ptr) }, len, capacity, alloc)
1314    }
1315
1316    /// Returns the total number of elements the vector can hold without
1317    /// reallocating.
1318    ///
1319    /// # Examples
1320    ///
1321    /// ```
1322    /// let mut vec: Vec<i32> = Vec::with_capacity(10);
1323    /// vec.push(42);
1324    /// assert!(vec.capacity() >= 10);
1325    /// ```
1326    ///
1327    /// A vector with zero-sized elements will always have a capacity of usize::MAX:
1328    ///
1329    /// ```
1330    /// #[derive(Clone)]
1331    /// struct ZeroSized;
1332    ///
1333    /// fn main() {
1334    ///     assert_eq!(std::mem::size_of::<ZeroSized>(), 0);
1335    ///     let v = vec![ZeroSized; 0];
1336    ///     assert_eq!(v.capacity(), usize::MAX);
1337    /// }
1338    /// ```
1339    #[inline]
1340    #[stable(feature = "rust1", since = "1.0.0")]
1341    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1342    pub const fn capacity(&self) -> usize {
1343        self.buf.capacity()
1344    }
1345
1346    /// Reserves capacity for at least `additional` more elements to be inserted
1347    /// in the given `Vec<T>`. The collection may reserve more space to
1348    /// speculatively avoid frequent reallocations. After calling `reserve`,
1349    /// capacity will be greater than or equal to `self.len() + additional`.
1350    /// Does nothing if capacity is already sufficient.
1351    ///
1352    /// # Panics
1353    ///
1354    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1355    ///
1356    /// # Examples
1357    ///
1358    /// ```
1359    /// let mut vec = vec![1];
1360    /// vec.reserve(10);
1361    /// assert!(vec.capacity() >= 11);
1362    /// ```
1363    #[cfg(not(no_global_oom_handling))]
1364    #[stable(feature = "rust1", since = "1.0.0")]
1365    #[track_caller]
1366    #[rustc_diagnostic_item = "vec_reserve"]
1367    pub fn reserve(&mut self, additional: usize) {
1368        self.buf.reserve(self.len, additional);
1369    }
1370
1371    /// Reserves the minimum capacity for at least `additional` more elements to
1372    /// be inserted in the given `Vec<T>`. Unlike [`reserve`], this will not
1373    /// deliberately over-allocate to speculatively avoid frequent allocations.
1374    /// After calling `reserve_exact`, capacity will be greater than or equal to
1375    /// `self.len() + additional`. Does nothing if the capacity is already
1376    /// sufficient.
1377    ///
1378    /// Note that the allocator may give the collection more space than it
1379    /// requests. Therefore, capacity can not be relied upon to be precisely
1380    /// minimal. Prefer [`reserve`] if future insertions are expected.
1381    ///
1382    /// [`reserve`]: Vec::reserve
1383    ///
1384    /// # Panics
1385    ///
1386    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
1387    ///
1388    /// # Examples
1389    ///
1390    /// ```
1391    /// let mut vec = vec![1];
1392    /// vec.reserve_exact(10);
1393    /// assert!(vec.capacity() >= 11);
1394    /// ```
1395    #[cfg(not(no_global_oom_handling))]
1396    #[stable(feature = "rust1", since = "1.0.0")]
1397    #[track_caller]
1398    pub fn reserve_exact(&mut self, additional: usize) {
1399        self.buf.reserve_exact(self.len, additional);
1400    }
1401
1402    /// Tries to reserve capacity for at least `additional` more elements to be inserted
1403    /// in the given `Vec<T>`. The collection may reserve more space to speculatively avoid
1404    /// frequent reallocations. After calling `try_reserve`, capacity will be
1405    /// greater than or equal to `self.len() + additional` if it returns
1406    /// `Ok(())`. Does nothing if capacity is already sufficient. This method
1407    /// preserves the contents even if an error occurs.
1408    ///
1409    /// # Errors
1410    ///
1411    /// If the capacity overflows, or the allocator reports a failure, then an error
1412    /// is returned.
1413    ///
1414    /// # Examples
1415    ///
1416    /// ```
1417    /// use std::collections::TryReserveError;
1418    ///
1419    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1420    ///     let mut output = Vec::new();
1421    ///
1422    ///     // Pre-reserve the memory, exiting if we can't
1423    ///     output.try_reserve(data.len())?;
1424    ///
1425    ///     // Now we know this can't OOM in the middle of our complex work
1426    ///     output.extend(data.iter().map(|&val| {
1427    ///         val * 2 + 5 // very complicated
1428    ///     }));
1429    ///
1430    ///     Ok(output)
1431    /// }
1432    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1433    /// ```
1434    #[stable(feature = "try_reserve", since = "1.57.0")]
1435    pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
1436        self.buf.try_reserve(self.len, additional)
1437    }
1438
1439    /// Tries to reserve the minimum capacity for at least `additional`
1440    /// elements to be inserted in the given `Vec<T>`. Unlike [`try_reserve`],
1441    /// this will not deliberately over-allocate to speculatively avoid frequent
1442    /// allocations. After calling `try_reserve_exact`, capacity will be greater
1443    /// than or equal to `self.len() + additional` if it returns `Ok(())`.
1444    /// Does nothing if the capacity is already sufficient.
1445    ///
1446    /// Note that the allocator may give the collection more space than it
1447    /// requests. Therefore, capacity can not be relied upon to be precisely
1448    /// minimal. Prefer [`try_reserve`] if future insertions are expected.
1449    ///
1450    /// [`try_reserve`]: Vec::try_reserve
1451    ///
1452    /// # Errors
1453    ///
1454    /// If the capacity overflows, or the allocator reports a failure, then an error
1455    /// is returned.
1456    ///
1457    /// # Examples
1458    ///
1459    /// ```
1460    /// use std::collections::TryReserveError;
1461    ///
1462    /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
1463    ///     let mut output = Vec::new();
1464    ///
1465    ///     // Pre-reserve the memory, exiting if we can't
1466    ///     output.try_reserve_exact(data.len())?;
1467    ///
1468    ///     // Now we know this can't OOM in the middle of our complex work
1469    ///     output.extend(data.iter().map(|&val| {
1470    ///         val * 2 + 5 // very complicated
1471    ///     }));
1472    ///
1473    ///     Ok(output)
1474    /// }
1475    /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1476    /// ```
1477    #[stable(feature = "try_reserve", since = "1.57.0")]
1478    pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1479        self.buf.try_reserve_exact(self.len, additional)
1480    }
1481
1482    /// Shrinks the capacity of the vector as much as possible.
1483    ///
1484    /// The behavior of this method depends on the allocator, which may either shrink the vector
1485    /// in-place or reallocate. The resulting vector might still have some excess capacity, just as
1486    /// is the case for [`with_capacity`]. See [`Allocator::shrink`] for more details.
1487    ///
1488    /// [`with_capacity`]: Vec::with_capacity
1489    ///
1490    /// # Examples
1491    ///
1492    /// ```
1493    /// let mut vec = Vec::with_capacity(10);
1494    /// vec.extend([1, 2, 3]);
1495    /// assert!(vec.capacity() >= 10);
1496    /// vec.shrink_to_fit();
1497    /// assert!(vec.capacity() >= 3);
1498    /// ```
1499    #[cfg(not(no_global_oom_handling))]
1500    #[stable(feature = "rust1", since = "1.0.0")]
1501    #[track_caller]
1502    #[inline]
1503    pub fn shrink_to_fit(&mut self) {
1504        // The capacity is never less than the length, and there's nothing to do when
1505        // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1506        // by only calling it with a greater capacity.
1507        if self.capacity() > self.len {
1508            self.buf.shrink_to_fit(self.len);
1509        }
1510    }
1511
1512    /// Shrinks the capacity of the vector with a lower bound.
1513    ///
1514    /// The capacity will remain at least as large as both the length
1515    /// and the supplied value.
1516    ///
1517    /// If the current capacity is less than the lower limit, this is a no-op.
1518    ///
1519    /// # Examples
1520    ///
1521    /// ```
1522    /// let mut vec = Vec::with_capacity(10);
1523    /// vec.extend([1, 2, 3]);
1524    /// assert!(vec.capacity() >= 10);
1525    /// vec.shrink_to(4);
1526    /// assert!(vec.capacity() >= 4);
1527    /// vec.shrink_to(0);
1528    /// assert!(vec.capacity() >= 3);
1529    /// ```
1530    #[cfg(not(no_global_oom_handling))]
1531    #[stable(feature = "shrink_to", since = "1.56.0")]
1532    #[track_caller]
1533    pub fn shrink_to(&mut self, min_capacity: usize) {
1534        if self.capacity() > min_capacity {
1535            self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1536        }
1537    }
1538
1539    /// Converts the vector into [`Box<[T]>`][owned slice].
1540    ///
1541    /// Before doing the conversion, this method discards excess capacity like [`shrink_to_fit`].
1542    ///
1543    /// [owned slice]: Box
1544    /// [`shrink_to_fit`]: Vec::shrink_to_fit
1545    ///
1546    /// # Examples
1547    ///
1548    /// ```
1549    /// let v = vec![1, 2, 3];
1550    ///
1551    /// let slice = v.into_boxed_slice();
1552    /// ```
1553    ///
1554    /// Any excess capacity is removed:
1555    ///
1556    /// ```
1557    /// let mut vec = Vec::with_capacity(10);
1558    /// vec.extend([1, 2, 3]);
1559    ///
1560    /// assert!(vec.capacity() >= 10);
1561    /// let slice = vec.into_boxed_slice();
1562    /// assert_eq!(slice.into_vec().capacity(), 3);
1563    /// ```
1564    #[cfg(not(no_global_oom_handling))]
1565    #[stable(feature = "rust1", since = "1.0.0")]
1566    #[track_caller]
1567    pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1568        unsafe {
1569            self.shrink_to_fit();
1570            let me = ManuallyDrop::new(self);
1571            let buf = ptr::read(&me.buf);
1572            let len = me.len();
1573            buf.into_box(len).assume_init()
1574        }
1575    }
1576
1577    /// Shortens the vector, keeping the first `len` elements and dropping
1578    /// the rest.
1579    ///
1580    /// If `len` is greater or equal to the vector's current length, this has
1581    /// no effect.
1582    ///
1583    /// The [`drain`] method can emulate `truncate`, but causes the excess
1584    /// elements to be returned instead of dropped.
1585    ///
1586    /// Note that this method has no effect on the allocated capacity
1587    /// of the vector.
1588    ///
1589    /// # Examples
1590    ///
1591    /// Truncating a five element vector to two elements:
1592    ///
1593    /// ```
1594    /// let mut vec = vec![1, 2, 3, 4, 5];
1595    /// vec.truncate(2);
1596    /// assert_eq!(vec, [1, 2]);
1597    /// ```
1598    ///
1599    /// No truncation occurs when `len` is greater than the vector's current
1600    /// length:
1601    ///
1602    /// ```
1603    /// let mut vec = vec![1, 2, 3];
1604    /// vec.truncate(8);
1605    /// assert_eq!(vec, [1, 2, 3]);
1606    /// ```
1607    ///
1608    /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1609    /// method.
1610    ///
1611    /// ```
1612    /// let mut vec = vec![1, 2, 3];
1613    /// vec.truncate(0);
1614    /// assert_eq!(vec, []);
1615    /// ```
1616    ///
1617    /// [`clear`]: Vec::clear
1618    /// [`drain`]: Vec::drain
1619    #[stable(feature = "rust1", since = "1.0.0")]
1620    pub fn truncate(&mut self, len: usize) {
1621        // This is safe because:
1622        //
1623        // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1624        //   case avoids creating an invalid slice, and
1625        // * the `len` of the vector is shrunk before calling `drop_in_place`,
1626        //   such that no value will be dropped twice in case `drop_in_place`
1627        //   were to panic once (if it panics twice, the program aborts).
1628        unsafe {
1629            // Note: It's intentional that this is `>` and not `>=`.
1630            //       Changing it to `>=` has negative performance
1631            //       implications in some cases. See #78884 for more.
1632            if len > self.len {
1633                return;
1634            }
1635            let remaining_len = self.len - len;
1636            let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1637            self.len = len;
1638            ptr::drop_in_place(s);
1639        }
1640    }
1641
1642    /// Extracts a slice containing the entire vector.
1643    ///
1644    /// Equivalent to `&s[..]`.
1645    ///
1646    /// # Examples
1647    ///
1648    /// ```
1649    /// use std::io::{self, Write};
1650    /// let buffer = vec![1, 2, 3, 5, 8];
1651    /// io::sink().write(buffer.as_slice()).unwrap();
1652    /// ```
1653    #[inline]
1654    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1655    #[rustc_diagnostic_item = "vec_as_slice"]
1656    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1657    pub const fn as_slice(&self) -> &[T] {
1658        // SAFETY: `slice::from_raw_parts` requires pointee is a contiguous, aligned buffer of size
1659        // `len` containing properly-initialized `T`s. Data must not be mutated for the returned
1660        // lifetime. Further, `len * size_of::<T>` <= `isize::MAX`, and allocation does not
1661        // "wrap" through overflowing memory addresses.
1662        //
1663        // * Vec API guarantees that self.buf:
1664        //      * contains only properly-initialized items within 0..len
1665        //      * is aligned, contiguous, and valid for `len` reads
1666        //      * obeys size and address-wrapping constraints
1667        //
1668        // * We only construct `&mut` references to `self.buf` through `&mut self` methods; borrow-
1669        //   check ensures that it is not possible to mutably alias `self.buf` within the
1670        //   returned lifetime.
1671        unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
1672    }
1673
1674    /// Extracts a mutable slice of the entire vector.
1675    ///
1676    /// Equivalent to `&mut s[..]`.
1677    ///
1678    /// # Examples
1679    ///
1680    /// ```
1681    /// use std::io::{self, Read};
1682    /// let mut buffer = vec![0; 3];
1683    /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1684    /// ```
1685    #[inline]
1686    #[stable(feature = "vec_as_slice", since = "1.7.0")]
1687    #[rustc_diagnostic_item = "vec_as_mut_slice"]
1688    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1689    pub const fn as_mut_slice(&mut self) -> &mut [T] {
1690        // SAFETY: `slice::from_raw_parts_mut` requires pointee is a contiguous, aligned buffer of
1691        // size `len` containing properly-initialized `T`s. Data must not be accessed through any
1692        // other pointer for the returned lifetime. Further, `len * size_of::<T>` <=
1693        // `ISIZE::MAX` and allocation does not "wrap" through overflowing memory addresses.
1694        //
1695        // * Vec API guarantees that self.buf:
1696        //      * contains only properly-initialized items within 0..len
1697        //      * is aligned, contiguous, and valid for `len` reads
1698        //      * obeys size and address-wrapping constraints
1699        //
1700        // * We only construct references to `self.buf` through `&self` and `&mut self` methods;
1701        //   borrow-check ensures that it is not possible to construct a reference to `self.buf`
1702        //   within the returned lifetime.
1703        unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
1704    }
1705
1706    /// Returns a raw pointer to the vector's buffer, or a dangling raw pointer
1707    /// valid for zero sized reads if the vector didn't allocate.
1708    ///
1709    /// The caller must ensure that the vector outlives the pointer this
1710    /// function returns, or else it will end up dangling.
1711    /// Modifying the vector may cause its buffer to be reallocated,
1712    /// which would also make any pointers to it invalid.
1713    ///
1714    /// The caller must also ensure that the memory the pointer (non-transitively) points to
1715    /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1716    /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1717    ///
1718    /// This method guarantees that for the purpose of the aliasing model, this method
1719    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1720    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1721    /// and [`as_non_null`].
1722    /// Note that calling other methods that materialize mutable references to the slice,
1723    /// or mutable references to specific elements you are planning on accessing through this pointer,
1724    /// as well as writing to those elements, may still invalidate this pointer.
1725    /// See the second example below for how this guarantee can be used.
1726    ///
1727    ///
1728    /// # Examples
1729    ///
1730    /// ```
1731    /// let x = vec![1, 2, 4];
1732    /// let x_ptr = x.as_ptr();
1733    ///
1734    /// unsafe {
1735    ///     for i in 0..x.len() {
1736    ///         assert_eq!(*x_ptr.add(i), 1 << i);
1737    ///     }
1738    /// }
1739    /// ```
1740    ///
1741    /// Due to the aliasing guarantee, the following code is legal:
1742    ///
1743    /// ```rust
1744    /// unsafe {
1745    ///     let mut v = vec![0, 1, 2];
1746    ///     let ptr1 = v.as_ptr();
1747    ///     let _ = ptr1.read();
1748    ///     let ptr2 = v.as_mut_ptr().offset(2);
1749    ///     ptr2.write(2);
1750    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`
1751    ///     // because it mutated a different element:
1752    ///     let _ = ptr1.read();
1753    /// }
1754    /// ```
1755    ///
1756    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1757    /// [`as_ptr`]: Vec::as_ptr
1758    /// [`as_non_null`]: Vec::as_non_null
1759    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1760    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1761    #[rustc_never_returns_null_ptr]
1762    #[rustc_as_ptr]
1763    #[inline]
1764    pub const fn as_ptr(&self) -> *const T {
1765        // We shadow the slice method of the same name to avoid going through
1766        // `deref`, which creates an intermediate reference.
1767        self.buf.ptr()
1768    }
1769
1770    /// Returns a raw mutable pointer to the vector's buffer, or a dangling
1771    /// raw pointer valid for zero sized reads if the vector didn't allocate.
1772    ///
1773    /// The caller must ensure that the vector outlives the pointer this
1774    /// function returns, or else it will end up dangling.
1775    /// Modifying the vector may cause its buffer to be reallocated,
1776    /// which would also make any pointers to it invalid.
1777    ///
1778    /// This method guarantees that for the purpose of the aliasing model, this method
1779    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1780    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1781    /// and [`as_non_null`].
1782    /// Note that calling other methods that materialize references to the slice,
1783    /// or references to specific elements you are planning on accessing through this pointer,
1784    /// may still invalidate this pointer.
1785    /// See the second example below for how this guarantee can be used.
1786    ///
1787    /// The method also guarantees that, as long as `T` is not zero-sized and the capacity is
1788    /// nonzero, the pointer may be passed into [`dealloc`] with a layout of
1789    /// `Layout::array::<T>(capacity)` in order to deallocate the backing memory. If this is done,
1790    /// be careful not to run the destructor of the `Vec`, as dropping it will result in
1791    /// double-frees. Wrapping the `Vec` in a [`ManuallyDrop`] is the typical way to achieve this.
1792    ///
1793    /// # Examples
1794    ///
1795    /// ```
1796    /// // Allocate vector big enough for 4 elements.
1797    /// let size = 4;
1798    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1799    /// let x_ptr = x.as_mut_ptr();
1800    ///
1801    /// // Initialize elements via raw pointer writes, then set length.
1802    /// unsafe {
1803    ///     for i in 0..size {
1804    ///         *x_ptr.add(i) = i as i32;
1805    ///     }
1806    ///     x.set_len(size);
1807    /// }
1808    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1809    /// ```
1810    ///
1811    /// Due to the aliasing guarantee, the following code is legal:
1812    ///
1813    /// ```rust
1814    /// unsafe {
1815    ///     let mut v = vec![0];
1816    ///     let ptr1 = v.as_mut_ptr();
1817    ///     ptr1.write(1);
1818    ///     let ptr2 = v.as_mut_ptr();
1819    ///     ptr2.write(2);
1820    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1821    ///     ptr1.write(3);
1822    /// }
1823    /// ```
1824    ///
1825    /// Deallocating a vector using [`Box`] (which uses [`dealloc`] internally):
1826    ///
1827    /// ```
1828    /// use std::mem::{ManuallyDrop, MaybeUninit};
1829    ///
1830    /// let mut v = ManuallyDrop::new(vec![0, 1, 2]);
1831    /// let ptr = v.as_mut_ptr();
1832    /// let capacity = v.capacity();
1833    /// let slice_ptr: *mut [MaybeUninit<i32>] =
1834    ///     std::ptr::slice_from_raw_parts_mut(ptr.cast(), capacity);
1835    /// drop(unsafe { Box::from_raw(slice_ptr) });
1836    /// ```
1837    ///
1838    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1839    /// [`as_ptr`]: Vec::as_ptr
1840    /// [`as_non_null`]: Vec::as_non_null
1841    /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
1842    /// [`ManuallyDrop`]: core::mem::ManuallyDrop
1843    #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1844    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
1845    #[rustc_never_returns_null_ptr]
1846    #[rustc_as_ptr]
1847    #[inline]
1848    pub const fn as_mut_ptr(&mut self) -> *mut T {
1849        // We shadow the slice method of the same name to avoid going through
1850        // `deref_mut`, which creates an intermediate reference.
1851        self.buf.ptr()
1852    }
1853
1854    /// Returns a `NonNull` pointer to the vector's buffer, or a dangling
1855    /// `NonNull` pointer valid for zero sized reads if the vector didn't allocate.
1856    ///
1857    /// The caller must ensure that the vector outlives the pointer this
1858    /// function returns, or else it will end up dangling.
1859    /// Modifying the vector may cause its buffer to be reallocated,
1860    /// which would also make any pointers to it invalid.
1861    ///
1862    /// This method guarantees that for the purpose of the aliasing model, this method
1863    /// does not materialize a reference to the underlying slice, and thus the returned pointer
1864    /// will remain valid when mixed with other calls to [`as_ptr`], [`as_mut_ptr`],
1865    /// and [`as_non_null`].
1866    /// Note that calling other methods that materialize references to the slice,
1867    /// or references to specific elements you are planning on accessing through this pointer,
1868    /// may still invalidate this pointer.
1869    /// See the second example below for how this guarantee can be used.
1870    ///
1871    /// # Examples
1872    ///
1873    /// ```
1874    /// #![feature(box_vec_non_null)]
1875    ///
1876    /// // Allocate vector big enough for 4 elements.
1877    /// let size = 4;
1878    /// let mut x: Vec<i32> = Vec::with_capacity(size);
1879    /// let x_ptr = x.as_non_null();
1880    ///
1881    /// // Initialize elements via raw pointer writes, then set length.
1882    /// unsafe {
1883    ///     for i in 0..size {
1884    ///         x_ptr.add(i).write(i as i32);
1885    ///     }
1886    ///     x.set_len(size);
1887    /// }
1888    /// assert_eq!(&*x, &[0, 1, 2, 3]);
1889    /// ```
1890    ///
1891    /// Due to the aliasing guarantee, the following code is legal:
1892    ///
1893    /// ```rust
1894    /// #![feature(box_vec_non_null)]
1895    ///
1896    /// unsafe {
1897    ///     let mut v = vec![0];
1898    ///     let ptr1 = v.as_non_null();
1899    ///     ptr1.write(1);
1900    ///     let ptr2 = v.as_non_null();
1901    ///     ptr2.write(2);
1902    ///     // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
1903    ///     ptr1.write(3);
1904    /// }
1905    /// ```
1906    ///
1907    /// [`as_mut_ptr`]: Vec::as_mut_ptr
1908    /// [`as_ptr`]: Vec::as_ptr
1909    /// [`as_non_null`]: Vec::as_non_null
1910    #[unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1911    #[rustc_const_unstable(feature = "box_vec_non_null", reason = "new API", issue = "130364")]
1912    #[inline]
1913    pub const fn as_non_null(&mut self) -> NonNull<T> {
1914        self.buf.non_null()
1915    }
1916
1917    /// Returns a reference to the underlying allocator.
1918    #[unstable(feature = "allocator_api", issue = "32838")]
1919    #[inline]
1920    pub fn allocator(&self) -> &A {
1921        self.buf.allocator()
1922    }
1923
1924    /// Forces the length of the vector to `new_len`.
1925    ///
1926    /// This is a low-level operation that maintains none of the normal
1927    /// invariants of the type. Normally changing the length of a vector
1928    /// is done using one of the safe operations instead, such as
1929    /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1930    ///
1931    /// [`truncate`]: Vec::truncate
1932    /// [`resize`]: Vec::resize
1933    /// [`extend`]: Extend::extend
1934    /// [`clear`]: Vec::clear
1935    ///
1936    /// # Safety
1937    ///
1938    /// - `new_len` must be less than or equal to [`capacity()`].
1939    /// - The elements at `old_len..new_len` must be initialized.
1940    ///
1941    /// [`capacity()`]: Vec::capacity
1942    ///
1943    /// # Examples
1944    ///
1945    /// See [`spare_capacity_mut()`] for an example with safe
1946    /// initialization of capacity elements and use of this method.
1947    ///
1948    /// `set_len()` can be useful for situations in which the vector
1949    /// is serving as a buffer for other code, particularly over FFI:
1950    ///
1951    /// ```no_run
1952    /// # #![allow(dead_code)]
1953    /// # // This is just a minimal skeleton for the doc example;
1954    /// # // don't use this as a starting point for a real library.
1955    /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1956    /// # const Z_OK: i32 = 0;
1957    /// # unsafe extern "C" {
1958    /// #     fn deflateGetDictionary(
1959    /// #         strm: *mut std::ffi::c_void,
1960    /// #         dictionary: *mut u8,
1961    /// #         dictLength: *mut usize,
1962    /// #     ) -> i32;
1963    /// # }
1964    /// # impl StreamWrapper {
1965    /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1966    ///     // Per the FFI method's docs, "32768 bytes is always enough".
1967    ///     let mut dict = Vec::with_capacity(32_768);
1968    ///     let mut dict_length = 0;
1969    ///     // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1970    ///     // 1. `dict_length` elements were initialized.
1971    ///     // 2. `dict_length` <= the capacity (32_768)
1972    ///     // which makes `set_len` safe to call.
1973    ///     unsafe {
1974    ///         // Make the FFI call...
1975    ///         let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1976    ///         if r == Z_OK {
1977    ///             // ...and update the length to what was initialized.
1978    ///             dict.set_len(dict_length);
1979    ///             Some(dict)
1980    ///         } else {
1981    ///             None
1982    ///         }
1983    ///     }
1984    /// }
1985    /// # }
1986    /// ```
1987    ///
1988    /// While the following example is sound, there is a memory leak since
1989    /// the inner vectors were not freed prior to the `set_len` call:
1990    ///
1991    /// ```
1992    /// let mut vec = vec![vec![1, 0, 0],
1993    ///                    vec![0, 1, 0],
1994    ///                    vec![0, 0, 1]];
1995    /// // SAFETY:
1996    /// // 1. `old_len..0` is empty so no elements need to be initialized.
1997    /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1998    /// unsafe {
1999    ///     vec.set_len(0);
2000    /// #   // FIXME(https://github.com/rust-lang/miri/issues/3670):
2001    /// #   // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
2002    /// #   vec.set_len(3);
2003    /// }
2004    /// ```
2005    ///
2006    /// Normally, here, one would use [`clear`] instead to correctly drop
2007    /// the contents and thus not leak memory.
2008    ///
2009    /// [`spare_capacity_mut()`]: Vec::spare_capacity_mut
2010    #[inline]
2011    #[stable(feature = "rust1", since = "1.0.0")]
2012    pub unsafe fn set_len(&mut self, new_len: usize) {
2013        ub_checks::assert_unsafe_precondition!(
2014            check_library_ub,
2015            "Vec::set_len requires that new_len <= capacity()",
2016            (new_len: usize = new_len, capacity: usize = self.capacity()) => new_len <= capacity
2017        );
2018
2019        self.len = new_len;
2020    }
2021
2022    /// Removes an element from the vector and returns it.
2023    ///
2024    /// The removed element is replaced by the last element of the vector.
2025    ///
2026    /// This does not preserve ordering of the remaining elements, but is *O*(1).
2027    /// If you need to preserve the element order, use [`remove`] instead.
2028    ///
2029    /// [`remove`]: Vec::remove
2030    ///
2031    /// # Panics
2032    ///
2033    /// Panics if `index` is out of bounds.
2034    ///
2035    /// # Examples
2036    ///
2037    /// ```
2038    /// let mut v = vec!["foo", "bar", "baz", "qux"];
2039    ///
2040    /// assert_eq!(v.swap_remove(1), "bar");
2041    /// assert_eq!(v, ["foo", "qux", "baz"]);
2042    ///
2043    /// assert_eq!(v.swap_remove(0), "foo");
2044    /// assert_eq!(v, ["baz", "qux"]);
2045    /// ```
2046    #[inline]
2047    #[stable(feature = "rust1", since = "1.0.0")]
2048    pub fn swap_remove(&mut self, index: usize) -> T {
2049        #[cold]
2050        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2051        #[track_caller]
2052        #[optimize(size)]
2053        fn assert_failed(index: usize, len: usize) -> ! {
2054            panic!("swap_remove index (is {index}) should be < len (is {len})");
2055        }
2056
2057        let len = self.len();
2058        if index >= len {
2059            assert_failed(index, len);
2060        }
2061        unsafe {
2062            // We replace self[index] with the last element. Note that if the
2063            // bounds check above succeeds there must be a last element (which
2064            // can be self[index] itself).
2065            let value = ptr::read(self.as_ptr().add(index));
2066            let base_ptr = self.as_mut_ptr();
2067            ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
2068            self.set_len(len - 1);
2069            value
2070        }
2071    }
2072
2073    /// Inserts an element at position `index` within the vector, shifting all
2074    /// elements after it to the right.
2075    ///
2076    /// # Panics
2077    ///
2078    /// Panics if `index > len`.
2079    ///
2080    /// # Examples
2081    ///
2082    /// ```
2083    /// let mut vec = vec!['a', 'b', 'c'];
2084    /// vec.insert(1, 'd');
2085    /// assert_eq!(vec, ['a', 'd', 'b', 'c']);
2086    /// vec.insert(4, 'e');
2087    /// assert_eq!(vec, ['a', 'd', 'b', 'c', 'e']);
2088    /// ```
2089    ///
2090    /// # Time complexity
2091    ///
2092    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2093    /// shifted to the right. In the worst case, all elements are shifted when
2094    /// the insertion index is 0.
2095    #[cfg(not(no_global_oom_handling))]
2096    #[stable(feature = "rust1", since = "1.0.0")]
2097    #[track_caller]
2098    pub fn insert(&mut self, index: usize, element: T) {
2099        let _ = self.insert_mut(index, element);
2100    }
2101
2102    /// Inserts an element at position `index` within the vector, shifting all
2103    /// elements after it to the right, and returning a reference to the new
2104    /// element.
2105    ///
2106    /// # Panics
2107    ///
2108    /// Panics if `index > len`.
2109    ///
2110    /// # Examples
2111    ///
2112    /// ```
2113    /// #![feature(push_mut)]
2114    /// let mut vec = vec![1, 3, 5, 9];
2115    /// let x = vec.insert_mut(3, 6);
2116    /// *x += 1;
2117    /// assert_eq!(vec, [1, 3, 5, 7, 9]);
2118    /// ```
2119    ///
2120    /// # Time complexity
2121    ///
2122    /// Takes *O*([`Vec::len`]) time. All items after the insertion index must be
2123    /// shifted to the right. In the worst case, all elements are shifted when
2124    /// the insertion index is 0.
2125    #[cfg(not(no_global_oom_handling))]
2126    #[inline]
2127    #[unstable(feature = "push_mut", issue = "135974")]
2128    #[track_caller]
2129    #[must_use = "if you don't need a reference to the value, use `Vec::insert` instead"]
2130    pub fn insert_mut(&mut self, index: usize, element: T) -> &mut T {
2131        #[cold]
2132        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2133        #[track_caller]
2134        #[optimize(size)]
2135        fn assert_failed(index: usize, len: usize) -> ! {
2136            panic!("insertion index (is {index}) should be <= len (is {len})");
2137        }
2138
2139        let len = self.len();
2140        if index > len {
2141            assert_failed(index, len);
2142        }
2143
2144        // space for the new element
2145        if len == self.buf.capacity() {
2146            self.buf.grow_one();
2147        }
2148
2149        unsafe {
2150            // infallible
2151            // The spot to put the new value
2152            let p = self.as_mut_ptr().add(index);
2153            {
2154                if index < len {
2155                    // Shift everything over to make space. (Duplicating the
2156                    // `index`th element into two consecutive places.)
2157                    ptr::copy(p, p.add(1), len - index);
2158                }
2159                // Write it in, overwriting the first copy of the `index`th
2160                // element.
2161                ptr::write(p, element);
2162            }
2163            self.set_len(len + 1);
2164            &mut *p
2165        }
2166    }
2167
2168    /// Removes and returns the element at position `index` within the vector,
2169    /// shifting all elements after it to the left.
2170    ///
2171    /// Note: Because this shifts over the remaining elements, it has a
2172    /// worst-case performance of *O*(*n*). If you don't need the order of elements
2173    /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
2174    /// elements from the beginning of the `Vec`, consider using
2175    /// [`VecDeque::pop_front`] instead.
2176    ///
2177    /// [`swap_remove`]: Vec::swap_remove
2178    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2179    ///
2180    /// # Panics
2181    ///
2182    /// Panics if `index` is out of bounds.
2183    ///
2184    /// # Examples
2185    ///
2186    /// ```
2187    /// let mut v = vec!['a', 'b', 'c'];
2188    /// assert_eq!(v.remove(1), 'b');
2189    /// assert_eq!(v, ['a', 'c']);
2190    /// ```
2191    #[stable(feature = "rust1", since = "1.0.0")]
2192    #[track_caller]
2193    #[rustc_confusables("delete", "take")]
2194    pub fn remove(&mut self, index: usize) -> T {
2195        #[cold]
2196        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2197        #[track_caller]
2198        #[optimize(size)]
2199        fn assert_failed(index: usize, len: usize) -> ! {
2200            panic!("removal index (is {index}) should be < len (is {len})");
2201        }
2202
2203        let len = self.len();
2204        if index >= len {
2205            assert_failed(index, len);
2206        }
2207        unsafe {
2208            // infallible
2209            let ret;
2210            {
2211                // the place we are taking from.
2212                let ptr = self.as_mut_ptr().add(index);
2213                // copy it out, unsafely having a copy of the value on
2214                // the stack and in the vector at the same time.
2215                ret = ptr::read(ptr);
2216
2217                // Shift everything down to fill in that spot.
2218                ptr::copy(ptr.add(1), ptr, len - index - 1);
2219            }
2220            self.set_len(len - 1);
2221            ret
2222        }
2223    }
2224
2225    /// Retains only the elements specified by the predicate.
2226    ///
2227    /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
2228    /// This method operates in place, visiting each element exactly once in the
2229    /// original order, and preserves the order of the retained elements.
2230    ///
2231    /// # Examples
2232    ///
2233    /// ```
2234    /// let mut vec = vec![1, 2, 3, 4];
2235    /// vec.retain(|&x| x % 2 == 0);
2236    /// assert_eq!(vec, [2, 4]);
2237    /// ```
2238    ///
2239    /// Because the elements are visited exactly once in the original order,
2240    /// external state may be used to decide which elements to keep.
2241    ///
2242    /// ```
2243    /// let mut vec = vec![1, 2, 3, 4, 5];
2244    /// let keep = [false, true, true, false, true];
2245    /// let mut iter = keep.iter();
2246    /// vec.retain(|_| *iter.next().unwrap());
2247    /// assert_eq!(vec, [2, 3, 5]);
2248    /// ```
2249    #[stable(feature = "rust1", since = "1.0.0")]
2250    pub fn retain<F>(&mut self, mut f: F)
2251    where
2252        F: FnMut(&T) -> bool,
2253    {
2254        self.retain_mut(|elem| f(elem));
2255    }
2256
2257    /// Retains only the elements specified by the predicate, passing a mutable reference to it.
2258    ///
2259    /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
2260    /// This method operates in place, visiting each element exactly once in the
2261    /// original order, and preserves the order of the retained elements.
2262    ///
2263    /// # Examples
2264    ///
2265    /// ```
2266    /// let mut vec = vec![1, 2, 3, 4];
2267    /// vec.retain_mut(|x| if *x <= 3 {
2268    ///     *x += 1;
2269    ///     true
2270    /// } else {
2271    ///     false
2272    /// });
2273    /// assert_eq!(vec, [2, 3, 4]);
2274    /// ```
2275    #[stable(feature = "vec_retain_mut", since = "1.61.0")]
2276    pub fn retain_mut<F>(&mut self, mut f: F)
2277    where
2278        F: FnMut(&mut T) -> bool,
2279    {
2280        let original_len = self.len();
2281
2282        if original_len == 0 {
2283            // Empty case: explicit return allows better optimization, vs letting compiler infer it
2284            return;
2285        }
2286
2287        // Avoid double drop if the drop guard is not executed,
2288        // since we may make some holes during the process.
2289        unsafe { self.set_len(0) };
2290
2291        // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
2292        //      |<-              processed len   ->| ^- next to check
2293        //                  |<-  deleted cnt     ->|
2294        //      |<-              original_len                          ->|
2295        // Kept: Elements which predicate returns true on.
2296        // Hole: Moved or dropped element slot.
2297        // Unchecked: Unchecked valid elements.
2298        //
2299        // This drop guard will be invoked when predicate or `drop` of element panicked.
2300        // It shifts unchecked elements to cover holes and `set_len` to the correct length.
2301        // In cases when predicate and `drop` never panick, it will be optimized out.
2302        struct BackshiftOnDrop<'a, T, A: Allocator> {
2303            v: &'a mut Vec<T, A>,
2304            processed_len: usize,
2305            deleted_cnt: usize,
2306            original_len: usize,
2307        }
2308
2309        impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
2310            fn drop(&mut self) {
2311                if self.deleted_cnt > 0 {
2312                    // SAFETY: Trailing unchecked items must be valid since we never touch them.
2313                    unsafe {
2314                        ptr::copy(
2315                            self.v.as_ptr().add(self.processed_len),
2316                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
2317                            self.original_len - self.processed_len,
2318                        );
2319                    }
2320                }
2321                // SAFETY: After filling holes, all items are in contiguous memory.
2322                unsafe {
2323                    self.v.set_len(self.original_len - self.deleted_cnt);
2324                }
2325            }
2326        }
2327
2328        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
2329
2330        fn process_loop<F, T, A: Allocator, const DELETED: bool>(
2331            original_len: usize,
2332            f: &mut F,
2333            g: &mut BackshiftOnDrop<'_, T, A>,
2334        ) where
2335            F: FnMut(&mut T) -> bool,
2336        {
2337            while g.processed_len != original_len {
2338                // SAFETY: Unchecked element must be valid.
2339                let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
2340                if !f(cur) {
2341                    // Advance early to avoid double drop if `drop_in_place` panicked.
2342                    g.processed_len += 1;
2343                    g.deleted_cnt += 1;
2344                    // SAFETY: We never touch this element again after dropped.
2345                    unsafe { ptr::drop_in_place(cur) };
2346                    // We already advanced the counter.
2347                    if DELETED {
2348                        continue;
2349                    } else {
2350                        break;
2351                    }
2352                }
2353                if DELETED {
2354                    // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
2355                    // We use copy for move, and never touch this element again.
2356                    unsafe {
2357                        let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
2358                        ptr::copy_nonoverlapping(cur, hole_slot, 1);
2359                    }
2360                }
2361                g.processed_len += 1;
2362            }
2363        }
2364
2365        // Stage 1: Nothing was deleted.
2366        process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
2367
2368        // Stage 2: Some elements were deleted.
2369        process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
2370
2371        // All item are processed. This can be optimized to `set_len` by LLVM.
2372        drop(g);
2373    }
2374
2375    /// Removes all but the first of consecutive elements in the vector that resolve to the same
2376    /// key.
2377    ///
2378    /// If the vector is sorted, this removes all duplicates.
2379    ///
2380    /// # Examples
2381    ///
2382    /// ```
2383    /// let mut vec = vec![10, 20, 21, 30, 20];
2384    ///
2385    /// vec.dedup_by_key(|i| *i / 10);
2386    ///
2387    /// assert_eq!(vec, [10, 20, 30, 20]);
2388    /// ```
2389    #[stable(feature = "dedup_by", since = "1.16.0")]
2390    #[inline]
2391    pub fn dedup_by_key<F, K>(&mut self, mut key: F)
2392    where
2393        F: FnMut(&mut T) -> K,
2394        K: PartialEq,
2395    {
2396        self.dedup_by(|a, b| key(a) == key(b))
2397    }
2398
2399    /// Removes all but the first of consecutive elements in the vector satisfying a given equality
2400    /// relation.
2401    ///
2402    /// The `same_bucket` function is passed references to two elements from the vector and
2403    /// must determine if the elements compare equal. The elements are passed in opposite order
2404    /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
2405    ///
2406    /// If the vector is sorted, this removes all duplicates.
2407    ///
2408    /// # Examples
2409    ///
2410    /// ```
2411    /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
2412    ///
2413    /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
2414    ///
2415    /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
2416    /// ```
2417    #[stable(feature = "dedup_by", since = "1.16.0")]
2418    pub fn dedup_by<F>(&mut self, mut same_bucket: F)
2419    where
2420        F: FnMut(&mut T, &mut T) -> bool,
2421    {
2422        let len = self.len();
2423        if len <= 1 {
2424            return;
2425        }
2426
2427        // Check if we ever want to remove anything.
2428        // This allows to use copy_non_overlapping in next cycle.
2429        // And avoids any memory writes if we don't need to remove anything.
2430        let mut first_duplicate_idx: usize = 1;
2431        let start = self.as_mut_ptr();
2432        while first_duplicate_idx != len {
2433            let found_duplicate = unsafe {
2434                // SAFETY: first_duplicate always in range [1..len)
2435                // Note that we start iteration from 1 so we never overflow.
2436                let prev = start.add(first_duplicate_idx.wrapping_sub(1));
2437                let current = start.add(first_duplicate_idx);
2438                // We explicitly say in docs that references are reversed.
2439                same_bucket(&mut *current, &mut *prev)
2440            };
2441            if found_duplicate {
2442                break;
2443            }
2444            first_duplicate_idx += 1;
2445        }
2446        // Don't need to remove anything.
2447        // We cannot get bigger than len.
2448        if first_duplicate_idx == len {
2449            return;
2450        }
2451
2452        /* INVARIANT: vec.len() > read > write > write-1 >= 0 */
2453        struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
2454            /* Offset of the element we want to check if it is duplicate */
2455            read: usize,
2456
2457            /* Offset of the place where we want to place the non-duplicate
2458             * when we find it. */
2459            write: usize,
2460
2461            /* The Vec that would need correction if `same_bucket` panicked */
2462            vec: &'a mut Vec<T, A>,
2463        }
2464
2465        impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
2466            fn drop(&mut self) {
2467                /* This code gets executed when `same_bucket` panics */
2468
2469                /* SAFETY: invariant guarantees that `read - write`
2470                 * and `len - read` never overflow and that the copy is always
2471                 * in-bounds. */
2472                unsafe {
2473                    let ptr = self.vec.as_mut_ptr();
2474                    let len = self.vec.len();
2475
2476                    /* How many items were left when `same_bucket` panicked.
2477                     * Basically vec[read..].len() */
2478                    let items_left = len.wrapping_sub(self.read);
2479
2480                    /* Pointer to first item in vec[write..write+items_left] slice */
2481                    let dropped_ptr = ptr.add(self.write);
2482                    /* Pointer to first item in vec[read..] slice */
2483                    let valid_ptr = ptr.add(self.read);
2484
2485                    /* Copy `vec[read..]` to `vec[write..write+items_left]`.
2486                     * The slices can overlap, so `copy_nonoverlapping` cannot be used */
2487                    ptr::copy(valid_ptr, dropped_ptr, items_left);
2488
2489                    /* How many items have been already dropped
2490                     * Basically vec[read..write].len() */
2491                    let dropped = self.read.wrapping_sub(self.write);
2492
2493                    self.vec.set_len(len - dropped);
2494                }
2495            }
2496        }
2497
2498        /* Drop items while going through Vec, it should be more efficient than
2499         * doing slice partition_dedup + truncate */
2500
2501        // Construct gap first and then drop item to avoid memory corruption if `T::drop` panics.
2502        let mut gap =
2503            FillGapOnDrop { read: first_duplicate_idx + 1, write: first_duplicate_idx, vec: self };
2504        unsafe {
2505            // SAFETY: we checked that first_duplicate_idx in bounds before.
2506            // If drop panics, `gap` would remove this item without drop.
2507            ptr::drop_in_place(start.add(first_duplicate_idx));
2508        }
2509
2510        /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
2511         * are always in-bounds and read_ptr never aliases prev_ptr */
2512        unsafe {
2513            while gap.read < len {
2514                let read_ptr = start.add(gap.read);
2515                let prev_ptr = start.add(gap.write.wrapping_sub(1));
2516
2517                // We explicitly say in docs that references are reversed.
2518                let found_duplicate = same_bucket(&mut *read_ptr, &mut *prev_ptr);
2519                if found_duplicate {
2520                    // Increase `gap.read` now since the drop may panic.
2521                    gap.read += 1;
2522                    /* We have found duplicate, drop it in-place */
2523                    ptr::drop_in_place(read_ptr);
2524                } else {
2525                    let write_ptr = start.add(gap.write);
2526
2527                    /* read_ptr cannot be equal to write_ptr because at this point
2528                     * we guaranteed to skip at least one element (before loop starts).
2529                     */
2530                    ptr::copy_nonoverlapping(read_ptr, write_ptr, 1);
2531
2532                    /* We have filled that place, so go further */
2533                    gap.write += 1;
2534                    gap.read += 1;
2535                }
2536            }
2537
2538            /* Technically we could let `gap` clean up with its Drop, but
2539             * when `same_bucket` is guaranteed to not panic, this bloats a little
2540             * the codegen, so we just do it manually */
2541            gap.vec.set_len(gap.write);
2542            mem::forget(gap);
2543        }
2544    }
2545
2546    /// Appends an element to the back of a collection.
2547    ///
2548    /// # Panics
2549    ///
2550    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2551    ///
2552    /// # Examples
2553    ///
2554    /// ```
2555    /// let mut vec = vec![1, 2];
2556    /// vec.push(3);
2557    /// assert_eq!(vec, [1, 2, 3]);
2558    /// ```
2559    ///
2560    /// # Time complexity
2561    ///
2562    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2563    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2564    /// vector's elements to a larger allocation. This expensive operation is
2565    /// offset by the *capacity* *O*(1) insertions it allows.
2566    #[cfg(not(no_global_oom_handling))]
2567    #[inline]
2568    #[stable(feature = "rust1", since = "1.0.0")]
2569    #[rustc_confusables("push_back", "put", "append")]
2570    #[track_caller]
2571    pub fn push(&mut self, value: T) {
2572        let _ = self.push_mut(value);
2573    }
2574
2575    /// Appends an element if there is sufficient spare capacity, otherwise an error is returned
2576    /// with the element.
2577    ///
2578    /// Unlike [`push`] this method will not reallocate when there's insufficient capacity.
2579    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2580    ///
2581    /// [`push`]: Vec::push
2582    /// [`reserve`]: Vec::reserve
2583    /// [`try_reserve`]: Vec::try_reserve
2584    ///
2585    /// # Examples
2586    ///
2587    /// A manual, panic-free alternative to [`FromIterator`]:
2588    ///
2589    /// ```
2590    /// #![feature(vec_push_within_capacity)]
2591    ///
2592    /// use std::collections::TryReserveError;
2593    /// fn from_iter_fallible<T>(iter: impl Iterator<Item=T>) -> Result<Vec<T>, TryReserveError> {
2594    ///     let mut vec = Vec::new();
2595    ///     for value in iter {
2596    ///         if let Err(value) = vec.push_within_capacity(value) {
2597    ///             vec.try_reserve(1)?;
2598    ///             // this cannot fail, the previous line either returned or added at least 1 free slot
2599    ///             let _ = vec.push_within_capacity(value);
2600    ///         }
2601    ///     }
2602    ///     Ok(vec)
2603    /// }
2604    /// assert_eq!(from_iter_fallible(0..100), Ok(Vec::from_iter(0..100)));
2605    /// ```
2606    ///
2607    /// # Time complexity
2608    ///
2609    /// Takes *O*(1) time.
2610    #[inline]
2611    #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2612    pub fn push_within_capacity(&mut self, value: T) -> Result<(), T> {
2613        self.push_mut_within_capacity(value).map(|_| ())
2614    }
2615
2616    /// Appends an element to the back of a collection, returning a reference to it.
2617    ///
2618    /// # Panics
2619    ///
2620    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2621    ///
2622    /// # Examples
2623    ///
2624    /// ```
2625    /// #![feature(push_mut)]
2626    ///
2627    ///
2628    /// let mut vec = vec![1, 2];
2629    /// let last = vec.push_mut(3);
2630    /// assert_eq!(*last, 3);
2631    /// assert_eq!(vec, [1, 2, 3]);
2632    ///
2633    /// let last = vec.push_mut(3);
2634    /// *last += 1;
2635    /// assert_eq!(vec, [1, 2, 3, 4]);
2636    /// ```
2637    ///
2638    /// # Time complexity
2639    ///
2640    /// Takes amortized *O*(1) time. If the vector's length would exceed its
2641    /// capacity after the push, *O*(*capacity*) time is taken to copy the
2642    /// vector's elements to a larger allocation. This expensive operation is
2643    /// offset by the *capacity* *O*(1) insertions it allows.
2644    #[cfg(not(no_global_oom_handling))]
2645    #[inline]
2646    #[unstable(feature = "push_mut", issue = "135974")]
2647    #[track_caller]
2648    #[must_use = "if you don't need a reference to the value, use `Vec::push` instead"]
2649    pub fn push_mut(&mut self, value: T) -> &mut T {
2650        // Inform codegen that the length does not change across grow_one().
2651        let len = self.len;
2652        // This will panic or abort if we would allocate > isize::MAX bytes
2653        // or if the length increment would overflow for zero-sized types.
2654        if len == self.buf.capacity() {
2655            self.buf.grow_one();
2656        }
2657        unsafe {
2658            let end = self.as_mut_ptr().add(len);
2659            ptr::write(end, value);
2660            self.len = len + 1;
2661            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2662            &mut *end
2663        }
2664    }
2665
2666    /// Appends an element and returns a reference to it if there is sufficient spare capacity,
2667    /// otherwise an error is returned with the element.
2668    ///
2669    /// Unlike [`push_mut`] this method will not reallocate when there's insufficient capacity.
2670    /// The caller should use [`reserve`] or [`try_reserve`] to ensure that there is enough capacity.
2671    ///
2672    /// [`push_mut`]: Vec::push_mut
2673    /// [`reserve`]: Vec::reserve
2674    /// [`try_reserve`]: Vec::try_reserve
2675    ///
2676    /// # Time complexity
2677    ///
2678    /// Takes *O*(1) time.
2679    #[unstable(feature = "push_mut", issue = "135974")]
2680    // #[unstable(feature = "vec_push_within_capacity", issue = "100486")]
2681    #[inline]
2682    #[must_use = "if you don't need a reference to the value, use `Vec::push_within_capacity` instead"]
2683    pub fn push_mut_within_capacity(&mut self, value: T) -> Result<&mut T, T> {
2684        if self.len == self.buf.capacity() {
2685            return Err(value);
2686        }
2687        unsafe {
2688            let end = self.as_mut_ptr().add(self.len);
2689            ptr::write(end, value);
2690            self.len += 1;
2691            // SAFETY: We just wrote a value to the pointer that will live the lifetime of the reference.
2692            Ok(&mut *end)
2693        }
2694    }
2695
2696    /// Removes the last element from a vector and returns it, or [`None`] if it
2697    /// is empty.
2698    ///
2699    /// If you'd like to pop the first element, consider using
2700    /// [`VecDeque::pop_front`] instead.
2701    ///
2702    /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
2703    ///
2704    /// # Examples
2705    ///
2706    /// ```
2707    /// let mut vec = vec![1, 2, 3];
2708    /// assert_eq!(vec.pop(), Some(3));
2709    /// assert_eq!(vec, [1, 2]);
2710    /// ```
2711    ///
2712    /// # Time complexity
2713    ///
2714    /// Takes *O*(1) time.
2715    #[inline]
2716    #[stable(feature = "rust1", since = "1.0.0")]
2717    #[rustc_diagnostic_item = "vec_pop"]
2718    pub fn pop(&mut self) -> Option<T> {
2719        if self.len == 0 {
2720            None
2721        } else {
2722            unsafe {
2723                self.len -= 1;
2724                core::hint::assert_unchecked(self.len < self.capacity());
2725                Some(ptr::read(self.as_ptr().add(self.len())))
2726            }
2727        }
2728    }
2729
2730    /// Removes and returns the last element from a vector if the predicate
2731    /// returns `true`, or [`None`] if the predicate returns false or the vector
2732    /// is empty (the predicate will not be called in that case).
2733    ///
2734    /// # Examples
2735    ///
2736    /// ```
2737    /// let mut vec = vec![1, 2, 3, 4];
2738    /// let pred = |x: &mut i32| *x % 2 == 0;
2739    ///
2740    /// assert_eq!(vec.pop_if(pred), Some(4));
2741    /// assert_eq!(vec, [1, 2, 3]);
2742    /// assert_eq!(vec.pop_if(pred), None);
2743    /// ```
2744    #[stable(feature = "vec_pop_if", since = "1.86.0")]
2745    pub fn pop_if(&mut self, predicate: impl FnOnce(&mut T) -> bool) -> Option<T> {
2746        let last = self.last_mut()?;
2747        if predicate(last) { self.pop() } else { None }
2748    }
2749
2750    /// Moves all the elements of `other` into `self`, leaving `other` empty.
2751    ///
2752    /// # Panics
2753    ///
2754    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2755    ///
2756    /// # Examples
2757    ///
2758    /// ```
2759    /// let mut vec = vec![1, 2, 3];
2760    /// let mut vec2 = vec![4, 5, 6];
2761    /// vec.append(&mut vec2);
2762    /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
2763    /// assert_eq!(vec2, []);
2764    /// ```
2765    #[cfg(not(no_global_oom_handling))]
2766    #[inline]
2767    #[stable(feature = "append", since = "1.4.0")]
2768    #[track_caller]
2769    pub fn append(&mut self, other: &mut Self) {
2770        unsafe {
2771            self.append_elements(other.as_slice() as _);
2772            other.set_len(0);
2773        }
2774    }
2775
2776    /// Appends elements to `self` from other buffer.
2777    #[cfg(not(no_global_oom_handling))]
2778    #[inline]
2779    #[track_caller]
2780    unsafe fn append_elements(&mut self, other: *const [T]) {
2781        let count = other.len();
2782        self.reserve(count);
2783        let len = self.len();
2784        unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
2785        self.len += count;
2786    }
2787
2788    /// Removes the subslice indicated by the given range from the vector,
2789    /// returning a double-ended iterator over the removed subslice.
2790    ///
2791    /// If the iterator is dropped before being fully consumed,
2792    /// it drops the remaining removed elements.
2793    ///
2794    /// The returned iterator keeps a mutable borrow on the vector to optimize
2795    /// its implementation.
2796    ///
2797    /// # Panics
2798    ///
2799    /// Panics if the starting point is greater than the end point or if
2800    /// the end point is greater than the length of the vector.
2801    ///
2802    /// # Leaking
2803    ///
2804    /// If the returned iterator goes out of scope without being dropped (due to
2805    /// [`mem::forget`], for example), the vector may have lost and leaked
2806    /// elements arbitrarily, including elements outside the range.
2807    ///
2808    /// # Examples
2809    ///
2810    /// ```
2811    /// let mut v = vec![1, 2, 3];
2812    /// let u: Vec<_> = v.drain(1..).collect();
2813    /// assert_eq!(v, &[1]);
2814    /// assert_eq!(u, &[2, 3]);
2815    ///
2816    /// // A full range clears the vector, like `clear()` does
2817    /// v.drain(..);
2818    /// assert_eq!(v, &[]);
2819    /// ```
2820    #[stable(feature = "drain", since = "1.6.0")]
2821    pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
2822    where
2823        R: RangeBounds<usize>,
2824    {
2825        // Memory safety
2826        //
2827        // When the Drain is first created, it shortens the length of
2828        // the source vector to make sure no uninitialized or moved-from elements
2829        // are accessible at all if the Drain's destructor never gets to run.
2830        //
2831        // Drain will ptr::read out the values to remove.
2832        // When finished, remaining tail of the vec is copied back to cover
2833        // the hole, and the vector length is restored to the new length.
2834        //
2835        let len = self.len();
2836        let Range { start, end } = slice::range(range, ..len);
2837
2838        unsafe {
2839            // set self.vec length's to start, to be safe in case Drain is leaked
2840            self.set_len(start);
2841            let range_slice = slice::from_raw_parts(self.as_ptr().add(start), end - start);
2842            Drain {
2843                tail_start: end,
2844                tail_len: len - end,
2845                iter: range_slice.iter(),
2846                vec: NonNull::from(self),
2847            }
2848        }
2849    }
2850
2851    /// Clears the vector, removing all values.
2852    ///
2853    /// Note that this method has no effect on the allocated capacity
2854    /// of the vector.
2855    ///
2856    /// # Examples
2857    ///
2858    /// ```
2859    /// let mut v = vec![1, 2, 3];
2860    ///
2861    /// v.clear();
2862    ///
2863    /// assert!(v.is_empty());
2864    /// ```
2865    #[inline]
2866    #[stable(feature = "rust1", since = "1.0.0")]
2867    pub fn clear(&mut self) {
2868        let elems: *mut [T] = self.as_mut_slice();
2869
2870        // SAFETY:
2871        // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2872        // - Setting `self.len` before calling `drop_in_place` means that,
2873        //   if an element's `Drop` impl panics, the vector's `Drop` impl will
2874        //   do nothing (leaking the rest of the elements) instead of dropping
2875        //   some twice.
2876        unsafe {
2877            self.len = 0;
2878            ptr::drop_in_place(elems);
2879        }
2880    }
2881
2882    /// Returns the number of elements in the vector, also referred to
2883    /// as its 'length'.
2884    ///
2885    /// # Examples
2886    ///
2887    /// ```
2888    /// let a = vec![1, 2, 3];
2889    /// assert_eq!(a.len(), 3);
2890    /// ```
2891    #[inline]
2892    #[stable(feature = "rust1", since = "1.0.0")]
2893    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2894    #[rustc_confusables("length", "size")]
2895    pub const fn len(&self) -> usize {
2896        let len = self.len;
2897
2898        // SAFETY: The maximum capacity of `Vec<T>` is `isize::MAX` bytes, so the maximum value can
2899        // be returned is `usize::checked_div(size_of::<T>()).unwrap_or(usize::MAX)`, which
2900        // matches the definition of `T::MAX_SLICE_LEN`.
2901        unsafe { intrinsics::assume(len <= T::MAX_SLICE_LEN) };
2902
2903        len
2904    }
2905
2906    /// Returns `true` if the vector contains no elements.
2907    ///
2908    /// # Examples
2909    ///
2910    /// ```
2911    /// let mut v = Vec::new();
2912    /// assert!(v.is_empty());
2913    ///
2914    /// v.push(1);
2915    /// assert!(!v.is_empty());
2916    /// ```
2917    #[stable(feature = "rust1", since = "1.0.0")]
2918    #[rustc_diagnostic_item = "vec_is_empty"]
2919    #[rustc_const_stable(feature = "const_vec_string_slice", since = "1.87.0")]
2920    pub const fn is_empty(&self) -> bool {
2921        self.len() == 0
2922    }
2923
2924    /// Splits the collection into two at the given index.
2925    ///
2926    /// Returns a newly allocated vector containing the elements in the range
2927    /// `[at, len)`. After the call, the original vector will be left containing
2928    /// the elements `[0, at)` with its previous capacity unchanged.
2929    ///
2930    /// - If you want to take ownership of the entire contents and capacity of
2931    ///   the vector, see [`mem::take`] or [`mem::replace`].
2932    /// - If you don't need the returned vector at all, see [`Vec::truncate`].
2933    /// - If you want to take ownership of an arbitrary subslice, or you don't
2934    ///   necessarily want to store the removed items in a vector, see [`Vec::drain`].
2935    ///
2936    /// # Panics
2937    ///
2938    /// Panics if `at > len`.
2939    ///
2940    /// # Examples
2941    ///
2942    /// ```
2943    /// let mut vec = vec!['a', 'b', 'c'];
2944    /// let vec2 = vec.split_off(1);
2945    /// assert_eq!(vec, ['a']);
2946    /// assert_eq!(vec2, ['b', 'c']);
2947    /// ```
2948    #[cfg(not(no_global_oom_handling))]
2949    #[inline]
2950    #[must_use = "use `.truncate()` if you don't need the other half"]
2951    #[stable(feature = "split_off", since = "1.4.0")]
2952    #[track_caller]
2953    pub fn split_off(&mut self, at: usize) -> Self
2954    where
2955        A: Clone,
2956    {
2957        #[cold]
2958        #[cfg_attr(not(feature = "panic_immediate_abort"), inline(never))]
2959        #[track_caller]
2960        #[optimize(size)]
2961        fn assert_failed(at: usize, len: usize) -> ! {
2962            panic!("`at` split index (is {at}) should be <= len (is {len})");
2963        }
2964
2965        if at > self.len() {
2966            assert_failed(at, self.len());
2967        }
2968
2969        let other_len = self.len - at;
2970        let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2971
2972        // Unsafely `set_len` and copy items to `other`.
2973        unsafe {
2974            self.set_len(at);
2975            other.set_len(other_len);
2976
2977            ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2978        }
2979        other
2980    }
2981
2982    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2983    ///
2984    /// If `new_len` is greater than `len`, the `Vec` is extended by the
2985    /// difference, with each additional slot filled with the result of
2986    /// calling the closure `f`. The return values from `f` will end up
2987    /// in the `Vec` in the order they have been generated.
2988    ///
2989    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2990    ///
2991    /// This method uses a closure to create new values on every push. If
2992    /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2993    /// want to use the [`Default`] trait to generate values, you can
2994    /// pass [`Default::default`] as the second argument.
2995    ///
2996    /// # Panics
2997    ///
2998    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
2999    ///
3000    /// # Examples
3001    ///
3002    /// ```
3003    /// let mut vec = vec![1, 2, 3];
3004    /// vec.resize_with(5, Default::default);
3005    /// assert_eq!(vec, [1, 2, 3, 0, 0]);
3006    ///
3007    /// let mut vec = vec![];
3008    /// let mut p = 1;
3009    /// vec.resize_with(4, || { p *= 2; p });
3010    /// assert_eq!(vec, [2, 4, 8, 16]);
3011    /// ```
3012    #[cfg(not(no_global_oom_handling))]
3013    #[stable(feature = "vec_resize_with", since = "1.33.0")]
3014    #[track_caller]
3015    pub fn resize_with<F>(&mut self, new_len: usize, f: F)
3016    where
3017        F: FnMut() -> T,
3018    {
3019        let len = self.len();
3020        if new_len > len {
3021            self.extend_trusted(iter::repeat_with(f).take(new_len - len));
3022        } else {
3023            self.truncate(new_len);
3024        }
3025    }
3026
3027    /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
3028    /// `&'a mut [T]`.
3029    ///
3030    /// Note that the type `T` must outlive the chosen lifetime `'a`. If the type
3031    /// has only static references, or none at all, then this may be chosen to be
3032    /// `'static`.
3033    ///
3034    /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
3035    /// so the leaked allocation may include unused capacity that is not part
3036    /// of the returned slice.
3037    ///
3038    /// This function is mainly useful for data that lives for the remainder of
3039    /// the program's life. Dropping the returned reference will cause a memory
3040    /// leak.
3041    ///
3042    /// # Examples
3043    ///
3044    /// Simple usage:
3045    ///
3046    /// ```
3047    /// let x = vec![1, 2, 3];
3048    /// let static_ref: &'static mut [usize] = x.leak();
3049    /// static_ref[0] += 1;
3050    /// assert_eq!(static_ref, &[2, 2, 3]);
3051    /// # // FIXME(https://github.com/rust-lang/miri/issues/3670):
3052    /// # // use -Zmiri-disable-leak-check instead of unleaking in tests meant to leak.
3053    /// # drop(unsafe { Box::from_raw(static_ref) });
3054    /// ```
3055    #[stable(feature = "vec_leak", since = "1.47.0")]
3056    #[inline]
3057    pub fn leak<'a>(self) -> &'a mut [T]
3058    where
3059        A: 'a,
3060    {
3061        let mut me = ManuallyDrop::new(self);
3062        unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
3063    }
3064
3065    /// Returns the remaining spare capacity of the vector as a slice of
3066    /// `MaybeUninit<T>`.
3067    ///
3068    /// The returned slice can be used to fill the vector with data (e.g. by
3069    /// reading from a file) before marking the data as initialized using the
3070    /// [`set_len`] method.
3071    ///
3072    /// [`set_len`]: Vec::set_len
3073    ///
3074    /// # Examples
3075    ///
3076    /// ```
3077    /// // Allocate vector big enough for 10 elements.
3078    /// let mut v = Vec::with_capacity(10);
3079    ///
3080    /// // Fill in the first 3 elements.
3081    /// let uninit = v.spare_capacity_mut();
3082    /// uninit[0].write(0);
3083    /// uninit[1].write(1);
3084    /// uninit[2].write(2);
3085    ///
3086    /// // Mark the first 3 elements of the vector as being initialized.
3087    /// unsafe {
3088    ///     v.set_len(3);
3089    /// }
3090    ///
3091    /// assert_eq!(&v, &[0, 1, 2]);
3092    /// ```
3093    #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
3094    #[inline]
3095    pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
3096        // Note:
3097        // This method is not implemented in terms of `split_at_spare_mut`,
3098        // to prevent invalidation of pointers to the buffer.
3099        unsafe {
3100            slice::from_raw_parts_mut(
3101                self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
3102                self.buf.capacity() - self.len,
3103            )
3104        }
3105    }
3106
3107    /// Returns vector content as a slice of `T`, along with the remaining spare
3108    /// capacity of the vector as a slice of `MaybeUninit<T>`.
3109    ///
3110    /// The returned spare capacity slice can be used to fill the vector with data
3111    /// (e.g. by reading from a file) before marking the data as initialized using
3112    /// the [`set_len`] method.
3113    ///
3114    /// [`set_len`]: Vec::set_len
3115    ///
3116    /// Note that this is a low-level API, which should be used with care for
3117    /// optimization purposes. If you need to append data to a `Vec`
3118    /// you can use [`push`], [`extend`], [`extend_from_slice`],
3119    /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
3120    /// [`resize_with`], depending on your exact needs.
3121    ///
3122    /// [`push`]: Vec::push
3123    /// [`extend`]: Vec::extend
3124    /// [`extend_from_slice`]: Vec::extend_from_slice
3125    /// [`extend_from_within`]: Vec::extend_from_within
3126    /// [`insert`]: Vec::insert
3127    /// [`append`]: Vec::append
3128    /// [`resize`]: Vec::resize
3129    /// [`resize_with`]: Vec::resize_with
3130    ///
3131    /// # Examples
3132    ///
3133    /// ```
3134    /// #![feature(vec_split_at_spare)]
3135    ///
3136    /// let mut v = vec![1, 1, 2];
3137    ///
3138    /// // Reserve additional space big enough for 10 elements.
3139    /// v.reserve(10);
3140    ///
3141    /// let (init, uninit) = v.split_at_spare_mut();
3142    /// let sum = init.iter().copied().sum::<u32>();
3143    ///
3144    /// // Fill in the next 4 elements.
3145    /// uninit[0].write(sum);
3146    /// uninit[1].write(sum * 2);
3147    /// uninit[2].write(sum * 3);
3148    /// uninit[3].write(sum * 4);
3149    ///
3150    /// // Mark the 4 elements of the vector as being initialized.
3151    /// unsafe {
3152    ///     let len = v.len();
3153    ///     v.set_len(len + 4);
3154    /// }
3155    ///
3156    /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
3157    /// ```
3158    #[unstable(feature = "vec_split_at_spare", issue = "81944")]
3159    #[inline]
3160    pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
3161        // SAFETY:
3162        // - len is ignored and so never changed
3163        let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
3164        (init, spare)
3165    }
3166
3167    /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
3168    ///
3169    /// This method provides unique access to all vec parts at once in `extend_from_within`.
3170    unsafe fn split_at_spare_mut_with_len(
3171        &mut self,
3172    ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
3173        let ptr = self.as_mut_ptr();
3174        // SAFETY:
3175        // - `ptr` is guaranteed to be valid for `self.len` elements
3176        // - but the allocation extends out to `self.buf.capacity()` elements, possibly
3177        // uninitialized
3178        let spare_ptr = unsafe { ptr.add(self.len) };
3179        let spare_ptr = spare_ptr.cast_uninit();
3180        let spare_len = self.buf.capacity() - self.len;
3181
3182        // SAFETY:
3183        // - `ptr` is guaranteed to be valid for `self.len` elements
3184        // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
3185        unsafe {
3186            let initialized = slice::from_raw_parts_mut(ptr, self.len);
3187            let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
3188
3189            (initialized, spare, &mut self.len)
3190        }
3191    }
3192
3193    /// Groups every `N` elements in the `Vec<T>` into chunks to produce a `Vec<[T; N]>`, dropping
3194    /// elements in the remainder. `N` must be greater than zero.
3195    ///
3196    /// If the capacity is not a multiple of the chunk size, the buffer will shrink down to the
3197    /// nearest multiple with a reallocation or deallocation.
3198    ///
3199    /// This function can be used to reverse [`Vec::into_flattened`].
3200    ///
3201    /// # Examples
3202    ///
3203    /// ```
3204    /// #![feature(vec_into_chunks)]
3205    ///
3206    /// let vec = vec![0, 1, 2, 3, 4, 5, 6, 7];
3207    /// assert_eq!(vec.into_chunks::<3>(), [[0, 1, 2], [3, 4, 5]]);
3208    ///
3209    /// let vec = vec![0, 1, 2, 3];
3210    /// let chunks: Vec<[u8; 10]> = vec.into_chunks();
3211    /// assert!(chunks.is_empty());
3212    ///
3213    /// let flat = vec![0; 8 * 8 * 8];
3214    /// let reshaped: Vec<[[[u8; 8]; 8]; 8]> = flat.into_chunks().into_chunks().into_chunks();
3215    /// assert_eq!(reshaped.len(), 1);
3216    /// ```
3217    #[cfg(not(no_global_oom_handling))]
3218    #[unstable(feature = "vec_into_chunks", issue = "142137")]
3219    pub fn into_chunks<const N: usize>(mut self) -> Vec<[T; N], A> {
3220        const {
3221            assert!(N != 0, "chunk size must be greater than zero");
3222        }
3223
3224        let (len, cap) = (self.len(), self.capacity());
3225
3226        let len_remainder = len % N;
3227        if len_remainder != 0 {
3228            self.truncate(len - len_remainder);
3229        }
3230
3231        let cap_remainder = cap % N;
3232        if !T::IS_ZST && cap_remainder != 0 {
3233            self.buf.shrink_to_fit(cap - cap_remainder);
3234        }
3235
3236        let (ptr, _, _, alloc) = self.into_raw_parts_with_alloc();
3237
3238        // SAFETY:
3239        // - `ptr` and `alloc` were just returned from `self.into_raw_parts_with_alloc()`
3240        // - `[T; N]` has the same alignment as `T`
3241        // - `size_of::<[T; N]>() * cap / N == size_of::<T>() * cap`
3242        // - `len / N <= cap / N` because `len <= cap`
3243        // - the allocated memory consists of `len / N` valid values of type `[T; N]`
3244        // - `cap / N` fits the size of the allocated memory after shrinking
3245        unsafe { Vec::from_raw_parts_in(ptr.cast(), len / N, cap / N, alloc) }
3246    }
3247}
3248
3249impl<T: Clone, A: Allocator> Vec<T, A> {
3250    /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
3251    ///
3252    /// If `new_len` is greater than `len`, the `Vec` is extended by the
3253    /// difference, with each additional slot filled with `value`.
3254    /// If `new_len` is less than `len`, the `Vec` is simply truncated.
3255    ///
3256    /// This method requires `T` to implement [`Clone`],
3257    /// in order to be able to clone the passed value.
3258    /// If you need more flexibility (or want to rely on [`Default`] instead of
3259    /// [`Clone`]), use [`Vec::resize_with`].
3260    /// If you only need to resize to a smaller size, use [`Vec::truncate`].
3261    ///
3262    /// # Panics
3263    ///
3264    /// Panics if the new capacity exceeds `isize::MAX` _bytes_.
3265    ///
3266    /// # Examples
3267    ///
3268    /// ```
3269    /// let mut vec = vec!["hello"];
3270    /// vec.resize(3, "world");
3271    /// assert_eq!(vec, ["hello", "world", "world"]);
3272    ///
3273    /// let mut vec = vec!['a', 'b', 'c', 'd'];
3274    /// vec.resize(2, '_');
3275    /// assert_eq!(vec, ['a', 'b']);
3276    /// ```
3277    #[cfg(not(no_global_oom_handling))]
3278    #[stable(feature = "vec_resize", since = "1.5.0")]
3279    #[track_caller]
3280    pub fn resize(&mut self, new_len: usize, value: T) {
3281        let len = self.len();
3282
3283        if new_len > len {
3284            self.extend_with(new_len - len, value)
3285        } else {
3286            self.truncate(new_len);
3287        }
3288    }
3289
3290    /// Clones and appends all elements in a slice to the `Vec`.
3291    ///
3292    /// Iterates over the slice `other`, clones each element, and then appends
3293    /// it to this `Vec`. The `other` slice is traversed in-order.
3294    ///
3295    /// Note that this function is the same as [`extend`],
3296    /// except that it also works with slice elements that are Clone but not Copy.
3297    /// If Rust gets specialization this function may be deprecated.
3298    ///
3299    /// # Examples
3300    ///
3301    /// ```
3302    /// let mut vec = vec![1];
3303    /// vec.extend_from_slice(&[2, 3, 4]);
3304    /// assert_eq!(vec, [1, 2, 3, 4]);
3305    /// ```
3306    ///
3307    /// [`extend`]: Vec::extend
3308    #[cfg(not(no_global_oom_handling))]
3309    #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
3310    #[track_caller]
3311    pub fn extend_from_slice(&mut self, other: &[T]) {
3312        self.spec_extend(other.iter())
3313    }
3314
3315    /// Given a range `src`, clones a slice of elements in that range and appends it to the end.
3316    ///
3317    /// `src` must be a range that can form a valid subslice of the `Vec`.
3318    ///
3319    /// # Panics
3320    ///
3321    /// Panics if starting index is greater than the end index
3322    /// or if the index is greater than the length of the vector.
3323    ///
3324    /// # Examples
3325    ///
3326    /// ```
3327    /// let mut characters = vec!['a', 'b', 'c', 'd', 'e'];
3328    /// characters.extend_from_within(2..);
3329    /// assert_eq!(characters, ['a', 'b', 'c', 'd', 'e', 'c', 'd', 'e']);
3330    ///
3331    /// let mut numbers = vec![0, 1, 2, 3, 4];
3332    /// numbers.extend_from_within(..2);
3333    /// assert_eq!(numbers, [0, 1, 2, 3, 4, 0, 1]);
3334    ///
3335    /// let mut strings = vec![String::from("hello"), String::from("world"), String::from("!")];
3336    /// strings.extend_from_within(1..=2);
3337    /// assert_eq!(strings, ["hello", "world", "!", "world", "!"]);
3338    /// ```
3339    #[cfg(not(no_global_oom_handling))]
3340    #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
3341    #[track_caller]
3342    pub fn extend_from_within<R>(&mut self, src: R)
3343    where
3344        R: RangeBounds<usize>,
3345    {
3346        let range = slice::range(src, ..self.len());
3347        self.reserve(range.len());
3348
3349        // SAFETY:
3350        // - `slice::range` guarantees that the given range is valid for indexing self
3351        unsafe {
3352            self.spec_extend_from_within(range);
3353        }
3354    }
3355}
3356
3357impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
3358    /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
3359    ///
3360    /// # Panics
3361    ///
3362    /// Panics if the length of the resulting vector would overflow a `usize`.
3363    ///
3364    /// This is only possible when flattening a vector of arrays of zero-sized
3365    /// types, and thus tends to be irrelevant in practice. If
3366    /// `size_of::<T>() > 0`, this will never panic.
3367    ///
3368    /// # Examples
3369    ///
3370    /// ```
3371    /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
3372    /// assert_eq!(vec.pop(), Some([7, 8, 9]));
3373    ///
3374    /// let mut flattened = vec.into_flattened();
3375    /// assert_eq!(flattened.pop(), Some(6));
3376    /// ```
3377    #[stable(feature = "slice_flatten", since = "1.80.0")]
3378    pub fn into_flattened(self) -> Vec<T, A> {
3379        let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
3380        let (new_len, new_cap) = if T::IS_ZST {
3381            (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
3382        } else {
3383            // SAFETY:
3384            // - `cap * N` cannot overflow because the allocation is already in
3385            // the address space.
3386            // - Each `[T; N]` has `N` valid elements, so there are `len * N`
3387            // valid elements in the allocation.
3388            unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
3389        };
3390        // SAFETY:
3391        // - `ptr` was allocated by `self`
3392        // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
3393        // - `new_cap` refers to the same sized allocation as `cap` because
3394        // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
3395        // - `len` <= `cap`, so `len * N` <= `cap * N`.
3396        unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
3397    }
3398}
3399
3400impl<T: Clone, A: Allocator> Vec<T, A> {
3401    #[cfg(not(no_global_oom_handling))]
3402    #[track_caller]
3403    /// Extend the vector by `n` clones of value.
3404    fn extend_with(&mut self, n: usize, value: T) {
3405        self.reserve(n);
3406
3407        unsafe {
3408            let mut ptr = self.as_mut_ptr().add(self.len());
3409            // Use SetLenOnDrop to work around bug where compiler
3410            // might not realize the store through `ptr` through self.set_len()
3411            // don't alias.
3412            let mut local_len = SetLenOnDrop::new(&mut self.len);
3413
3414            // Write all elements except the last one
3415            for _ in 1..n {
3416                ptr::write(ptr, value.clone());
3417                ptr = ptr.add(1);
3418                // Increment the length in every step in case clone() panics
3419                local_len.increment_len(1);
3420            }
3421
3422            if n > 0 {
3423                // We can write the last element directly without cloning needlessly
3424                ptr::write(ptr, value);
3425                local_len.increment_len(1);
3426            }
3427
3428            // len set by scope guard
3429        }
3430    }
3431}
3432
3433impl<T: PartialEq, A: Allocator> Vec<T, A> {
3434    /// Removes consecutive repeated elements in the vector according to the
3435    /// [`PartialEq`] trait implementation.
3436    ///
3437    /// If the vector is sorted, this removes all duplicates.
3438    ///
3439    /// # Examples
3440    ///
3441    /// ```
3442    /// let mut vec = vec![1, 2, 2, 3, 2];
3443    ///
3444    /// vec.dedup();
3445    ///
3446    /// assert_eq!(vec, [1, 2, 3, 2]);
3447    /// ```
3448    #[stable(feature = "rust1", since = "1.0.0")]
3449    #[inline]
3450    pub fn dedup(&mut self) {
3451        self.dedup_by(|a, b| a == b)
3452    }
3453}
3454
3455////////////////////////////////////////////////////////////////////////////////
3456// Internal methods and functions
3457////////////////////////////////////////////////////////////////////////////////
3458
3459#[doc(hidden)]
3460#[cfg(not(no_global_oom_handling))]
3461#[stable(feature = "rust1", since = "1.0.0")]
3462#[rustc_diagnostic_item = "vec_from_elem"]
3463#[track_caller]
3464pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
3465    <T as SpecFromElem>::from_elem(elem, n, Global)
3466}
3467
3468#[doc(hidden)]
3469#[cfg(not(no_global_oom_handling))]
3470#[unstable(feature = "allocator_api", issue = "32838")]
3471#[track_caller]
3472pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
3473    <T as SpecFromElem>::from_elem(elem, n, alloc)
3474}
3475
3476#[cfg(not(no_global_oom_handling))]
3477trait ExtendFromWithinSpec {
3478    /// # Safety
3479    ///
3480    /// - `src` needs to be valid index
3481    /// - `self.capacity() - self.len()` must be `>= src.len()`
3482    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
3483}
3484
3485#[cfg(not(no_global_oom_handling))]
3486impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3487    default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3488        // SAFETY:
3489        // - len is increased only after initializing elements
3490        let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
3491
3492        // SAFETY:
3493        // - caller guarantees that src is a valid index
3494        let to_clone = unsafe { this.get_unchecked(src) };
3495
3496        iter::zip(to_clone, spare)
3497            .map(|(src, dst)| dst.write(src.clone()))
3498            // Note:
3499            // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
3500            // - len is increased after each element to prevent leaks (see issue #82533)
3501            .for_each(|_| *len += 1);
3502    }
3503}
3504
3505#[cfg(not(no_global_oom_handling))]
3506impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
3507    unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
3508        let count = src.len();
3509        {
3510            let (init, spare) = self.split_at_spare_mut();
3511
3512            // SAFETY:
3513            // - caller guarantees that `src` is a valid index
3514            let source = unsafe { init.get_unchecked(src) };
3515
3516            // SAFETY:
3517            // - Both pointers are created from unique slice references (`&mut [_]`)
3518            //   so they are valid and do not overlap.
3519            // - Elements are :Copy so it's OK to copy them, without doing
3520            //   anything with the original values
3521            // - `count` is equal to the len of `source`, so source is valid for
3522            //   `count` reads
3523            // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
3524            //   is valid for `count` writes
3525            unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
3526        }
3527
3528        // SAFETY:
3529        // - The elements were just initialized by `copy_nonoverlapping`
3530        self.len += count;
3531    }
3532}
3533
3534////////////////////////////////////////////////////////////////////////////////
3535// Common trait implementations for Vec
3536////////////////////////////////////////////////////////////////////////////////
3537
3538#[stable(feature = "rust1", since = "1.0.0")]
3539impl<T, A: Allocator> ops::Deref for Vec<T, A> {
3540    type Target = [T];
3541
3542    #[inline]
3543    fn deref(&self) -> &[T] {
3544        self.as_slice()
3545    }
3546}
3547
3548#[stable(feature = "rust1", since = "1.0.0")]
3549impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
3550    #[inline]
3551    fn deref_mut(&mut self) -> &mut [T] {
3552        self.as_mut_slice()
3553    }
3554}
3555
3556#[unstable(feature = "deref_pure_trait", issue = "87121")]
3557unsafe impl<T, A: Allocator> ops::DerefPure for Vec<T, A> {}
3558
3559#[cfg(not(no_global_oom_handling))]
3560#[stable(feature = "rust1", since = "1.0.0")]
3561impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
3562    #[track_caller]
3563    fn clone(&self) -> Self {
3564        let alloc = self.allocator().clone();
3565        <[T]>::to_vec_in(&**self, alloc)
3566    }
3567
3568    /// Overwrites the contents of `self` with a clone of the contents of `source`.
3569    ///
3570    /// This method is preferred over simply assigning `source.clone()` to `self`,
3571    /// as it avoids reallocation if possible. Additionally, if the element type
3572    /// `T` overrides `clone_from()`, this will reuse the resources of `self`'s
3573    /// elements as well.
3574    ///
3575    /// # Examples
3576    ///
3577    /// ```
3578    /// let x = vec![5, 6, 7];
3579    /// let mut y = vec![8, 9, 10];
3580    /// let yp: *const i32 = y.as_ptr();
3581    ///
3582    /// y.clone_from(&x);
3583    ///
3584    /// // The value is the same
3585    /// assert_eq!(x, y);
3586    ///
3587    /// // And no reallocation occurred
3588    /// assert_eq!(yp, y.as_ptr());
3589    /// ```
3590    #[track_caller]
3591    fn clone_from(&mut self, source: &Self) {
3592        crate::slice::SpecCloneIntoVec::clone_into(source.as_slice(), self);
3593    }
3594}
3595
3596/// The hash of a vector is the same as that of the corresponding slice,
3597/// as required by the `core::borrow::Borrow` implementation.
3598///
3599/// ```
3600/// use std::hash::BuildHasher;
3601///
3602/// let b = std::hash::RandomState::new();
3603/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
3604/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
3605/// assert_eq!(b.hash_one(v), b.hash_one(s));
3606/// ```
3607#[stable(feature = "rust1", since = "1.0.0")]
3608impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
3609    #[inline]
3610    fn hash<H: Hasher>(&self, state: &mut H) {
3611        Hash::hash(&**self, state)
3612    }
3613}
3614
3615#[stable(feature = "rust1", since = "1.0.0")]
3616impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
3617    type Output = I::Output;
3618
3619    #[inline]
3620    fn index(&self, index: I) -> &Self::Output {
3621        Index::index(&**self, index)
3622    }
3623}
3624
3625#[stable(feature = "rust1", since = "1.0.0")]
3626impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
3627    #[inline]
3628    fn index_mut(&mut self, index: I) -> &mut Self::Output {
3629        IndexMut::index_mut(&mut **self, index)
3630    }
3631}
3632
3633/// Collects an iterator into a Vec, commonly called via [`Iterator::collect()`]
3634///
3635/// # Allocation behavior
3636///
3637/// In general `Vec` does not guarantee any particular growth or allocation strategy.
3638/// That also applies to this trait impl.
3639///
3640/// **Note:** This section covers implementation details and is therefore exempt from
3641/// stability guarantees.
3642///
3643/// Vec may use any or none of the following strategies,
3644/// depending on the supplied iterator:
3645///
3646/// * preallocate based on [`Iterator::size_hint()`]
3647///   * and panic if the number of items is outside the provided lower/upper bounds
3648/// * use an amortized growth strategy similar to `pushing` one item at a time
3649/// * perform the iteration in-place on the original allocation backing the iterator
3650///
3651/// The last case warrants some attention. It is an optimization that in many cases reduces peak memory
3652/// consumption and improves cache locality. But when big, short-lived allocations are created,
3653/// only a small fraction of their items get collected, no further use is made of the spare capacity
3654/// and the resulting `Vec` is moved into a longer-lived structure, then this can lead to the large
3655/// allocations having their lifetimes unnecessarily extended which can result in increased memory
3656/// footprint.
3657///
3658/// In cases where this is an issue, the excess capacity can be discarded with [`Vec::shrink_to()`],
3659/// [`Vec::shrink_to_fit()`] or by collecting into [`Box<[T]>`][owned slice] instead, which additionally reduces
3660/// the size of the long-lived struct.
3661///
3662/// [owned slice]: Box
3663///
3664/// ```rust
3665/// # use std::sync::Mutex;
3666/// static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());
3667///
3668/// for i in 0..10 {
3669///     let big_temporary: Vec<u16> = (0..1024).collect();
3670///     // discard most items
3671///     let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
3672///     // without this a lot of unused capacity might be moved into the global
3673///     result.shrink_to_fit();
3674///     LONG_LIVED.lock().unwrap().push(result);
3675/// }
3676/// ```
3677#[cfg(not(no_global_oom_handling))]
3678#[stable(feature = "rust1", since = "1.0.0")]
3679impl<T> FromIterator<T> for Vec<T> {
3680    #[inline]
3681    #[track_caller]
3682    fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
3683        <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
3684    }
3685}
3686
3687#[stable(feature = "rust1", since = "1.0.0")]
3688impl<T, A: Allocator> IntoIterator for Vec<T, A> {
3689    type Item = T;
3690    type IntoIter = IntoIter<T, A>;
3691
3692    /// Creates a consuming iterator, that is, one that moves each value out of
3693    /// the vector (from start to end). The vector cannot be used after calling
3694    /// this.
3695    ///
3696    /// # Examples
3697    ///
3698    /// ```
3699    /// let v = vec!["a".to_string(), "b".to_string()];
3700    /// let mut v_iter = v.into_iter();
3701    ///
3702    /// let first_element: Option<String> = v_iter.next();
3703    ///
3704    /// assert_eq!(first_element, Some("a".to_string()));
3705    /// assert_eq!(v_iter.next(), Some("b".to_string()));
3706    /// assert_eq!(v_iter.next(), None);
3707    /// ```
3708    #[inline]
3709    fn into_iter(self) -> Self::IntoIter {
3710        unsafe {
3711            let me = ManuallyDrop::new(self);
3712            let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
3713            let buf = me.buf.non_null();
3714            let begin = buf.as_ptr();
3715            let end = if T::IS_ZST {
3716                begin.wrapping_byte_add(me.len())
3717            } else {
3718                begin.add(me.len()) as *const T
3719            };
3720            let cap = me.buf.capacity();
3721            IntoIter { buf, phantom: PhantomData, cap, alloc, ptr: buf, end }
3722        }
3723    }
3724}
3725
3726#[stable(feature = "rust1", since = "1.0.0")]
3727impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
3728    type Item = &'a T;
3729    type IntoIter = slice::Iter<'a, T>;
3730
3731    fn into_iter(self) -> Self::IntoIter {
3732        self.iter()
3733    }
3734}
3735
3736#[stable(feature = "rust1", since = "1.0.0")]
3737impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
3738    type Item = &'a mut T;
3739    type IntoIter = slice::IterMut<'a, T>;
3740
3741    fn into_iter(self) -> Self::IntoIter {
3742        self.iter_mut()
3743    }
3744}
3745
3746#[cfg(not(no_global_oom_handling))]
3747#[stable(feature = "rust1", since = "1.0.0")]
3748impl<T, A: Allocator> Extend<T> for Vec<T, A> {
3749    #[inline]
3750    #[track_caller]
3751    fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
3752        <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
3753    }
3754
3755    #[inline]
3756    #[track_caller]
3757    fn extend_one(&mut self, item: T) {
3758        self.push(item);
3759    }
3760
3761    #[inline]
3762    #[track_caller]
3763    fn extend_reserve(&mut self, additional: usize) {
3764        self.reserve(additional);
3765    }
3766
3767    #[inline]
3768    unsafe fn extend_one_unchecked(&mut self, item: T) {
3769        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
3770        unsafe {
3771            let len = self.len();
3772            ptr::write(self.as_mut_ptr().add(len), item);
3773            self.set_len(len + 1);
3774        }
3775    }
3776}
3777
3778impl<T, A: Allocator> Vec<T, A> {
3779    // leaf method to which various SpecFrom/SpecExtend implementations delegate when
3780    // they have no further optimizations to apply
3781    #[cfg(not(no_global_oom_handling))]
3782    #[track_caller]
3783    fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
3784        // This is the case for a general iterator.
3785        //
3786        // This function should be the moral equivalent of:
3787        //
3788        //      for item in iterator {
3789        //          self.push(item);
3790        //      }
3791        while let Some(element) = iterator.next() {
3792            let len = self.len();
3793            if len == self.capacity() {
3794                let (lower, _) = iterator.size_hint();
3795                self.reserve(lower.saturating_add(1));
3796            }
3797            unsafe {
3798                ptr::write(self.as_mut_ptr().add(len), element);
3799                // Since next() executes user code which can panic we have to bump the length
3800                // after each step.
3801                // NB can't overflow since we would have had to alloc the address space
3802                self.set_len(len + 1);
3803            }
3804        }
3805    }
3806
3807    // specific extend for `TrustedLen` iterators, called both by the specializations
3808    // and internal places where resolving specialization makes compilation slower
3809    #[cfg(not(no_global_oom_handling))]
3810    #[track_caller]
3811    fn extend_trusted(&mut self, iterator: impl iter::TrustedLen<Item = T>) {
3812        let (low, high) = iterator.size_hint();
3813        if let Some(additional) = high {
3814            debug_assert_eq!(
3815                low,
3816                additional,
3817                "TrustedLen iterator's size hint is not exact: {:?}",
3818                (low, high)
3819            );
3820            self.reserve(additional);
3821            unsafe {
3822                let ptr = self.as_mut_ptr();
3823                let mut local_len = SetLenOnDrop::new(&mut self.len);
3824                iterator.for_each(move |element| {
3825                    ptr::write(ptr.add(local_len.current_len()), element);
3826                    // Since the loop executes user code which can panic we have to update
3827                    // the length every step to correctly drop what we've written.
3828                    // NB can't overflow since we would have had to alloc the address space
3829                    local_len.increment_len(1);
3830                });
3831            }
3832        } else {
3833            // Per TrustedLen contract a `None` upper bound means that the iterator length
3834            // truly exceeds usize::MAX, which would eventually lead to a capacity overflow anyway.
3835            // Since the other branch already panics eagerly (via `reserve()`) we do the same here.
3836            // This avoids additional codegen for a fallback code path which would eventually
3837            // panic anyway.
3838            panic!("capacity overflow");
3839        }
3840    }
3841
3842    /// Creates a splicing iterator that replaces the specified range in the vector
3843    /// with the given `replace_with` iterator and yields the removed items.
3844    /// `replace_with` does not need to be the same length as `range`.
3845    ///
3846    /// `range` is removed even if the `Splice` iterator is not consumed before it is dropped.
3847    ///
3848    /// It is unspecified how many elements are removed from the vector
3849    /// if the `Splice` value is leaked.
3850    ///
3851    /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
3852    ///
3853    /// This is optimal if:
3854    ///
3855    /// * The tail (elements in the vector after `range`) is empty,
3856    /// * or `replace_with` yields fewer or equal elements than `range`'s length
3857    /// * or the lower bound of its `size_hint()` is exact.
3858    ///
3859    /// Otherwise, a temporary vector is allocated and the tail is moved twice.
3860    ///
3861    /// # Panics
3862    ///
3863    /// Panics if the starting point is greater than the end point or if
3864    /// the end point is greater than the length of the vector.
3865    ///
3866    /// # Examples
3867    ///
3868    /// ```
3869    /// let mut v = vec![1, 2, 3, 4];
3870    /// let new = [7, 8, 9];
3871    /// let u: Vec<_> = v.splice(1..3, new).collect();
3872    /// assert_eq!(v, [1, 7, 8, 9, 4]);
3873    /// assert_eq!(u, [2, 3]);
3874    /// ```
3875    ///
3876    /// Using `splice` to insert new items into a vector efficiently at a specific position
3877    /// indicated by an empty range:
3878    ///
3879    /// ```
3880    /// let mut v = vec![1, 5];
3881    /// let new = [2, 3, 4];
3882    /// v.splice(1..1, new);
3883    /// assert_eq!(v, [1, 2, 3, 4, 5]);
3884    /// ```
3885    #[cfg(not(no_global_oom_handling))]
3886    #[inline]
3887    #[stable(feature = "vec_splice", since = "1.21.0")]
3888    pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3889    where
3890        R: RangeBounds<usize>,
3891        I: IntoIterator<Item = T>,
3892    {
3893        Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3894    }
3895
3896    /// Creates an iterator which uses a closure to determine if an element in the range should be removed.
3897    ///
3898    /// If the closure returns `true`, the element is removed from the vector
3899    /// and yielded. If the closure returns `false`, or panics, the element
3900    /// remains in the vector and will not be yielded.
3901    ///
3902    /// Only elements that fall in the provided range are considered for extraction, but any elements
3903    /// after the range will still have to be moved if any element has been extracted.
3904    ///
3905    /// If the returned `ExtractIf` is not exhausted, e.g. because it is dropped without iterating
3906    /// or the iteration short-circuits, then the remaining elements will be retained.
3907    /// Use [`retain_mut`] with a negated predicate if you do not need the returned iterator.
3908    ///
3909    /// [`retain_mut`]: Vec::retain_mut
3910    ///
3911    /// Using this method is equivalent to the following code:
3912    ///
3913    /// ```
3914    /// # let some_predicate = |x: &mut i32| { *x % 2 == 1 };
3915    /// # let mut vec = vec![0, 1, 2, 3, 4, 5, 6];
3916    /// # let mut vec2 = vec.clone();
3917    /// # let range = 1..5;
3918    /// let mut i = range.start;
3919    /// let end_items = vec.len() - range.end;
3920    /// # let mut extracted = vec![];
3921    ///
3922    /// while i < vec.len() - end_items {
3923    ///     if some_predicate(&mut vec[i]) {
3924    ///         let val = vec.remove(i);
3925    ///         // your code here
3926    /// #         extracted.push(val);
3927    ///     } else {
3928    ///         i += 1;
3929    ///     }
3930    /// }
3931    ///
3932    /// # let extracted2: Vec<_> = vec2.extract_if(range, some_predicate).collect();
3933    /// # assert_eq!(vec, vec2);
3934    /// # assert_eq!(extracted, extracted2);
3935    /// ```
3936    ///
3937    /// But `extract_if` is easier to use. `extract_if` is also more efficient,
3938    /// because it can backshift the elements of the array in bulk.
3939    ///
3940    /// The iterator also lets you mutate the value of each element in the
3941    /// closure, regardless of whether you choose to keep or remove it.
3942    ///
3943    /// # Panics
3944    ///
3945    /// If `range` is out of bounds.
3946    ///
3947    /// # Examples
3948    ///
3949    /// Splitting a vector into even and odd values, reusing the original vector:
3950    ///
3951    /// ```
3952    /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3953    ///
3954    /// let evens = numbers.extract_if(.., |x| *x % 2 == 0).collect::<Vec<_>>();
3955    /// let odds = numbers;
3956    ///
3957    /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3958    /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3959    /// ```
3960    ///
3961    /// Using the range argument to only process a part of the vector:
3962    ///
3963    /// ```
3964    /// let mut items = vec![0, 0, 0, 0, 0, 0, 0, 1, 2, 1, 2, 1, 2];
3965    /// let ones = items.extract_if(7.., |x| *x == 1).collect::<Vec<_>>();
3966    /// assert_eq!(items, vec![0, 0, 0, 0, 0, 0, 0, 2, 2, 2]);
3967    /// assert_eq!(ones.len(), 3);
3968    /// ```
3969    #[stable(feature = "extract_if", since = "1.87.0")]
3970    pub fn extract_if<F, R>(&mut self, range: R, filter: F) -> ExtractIf<'_, T, F, A>
3971    where
3972        F: FnMut(&mut T) -> bool,
3973        R: RangeBounds<usize>,
3974    {
3975        ExtractIf::new(self, filter, range)
3976    }
3977}
3978
3979/// Extend implementation that copies elements out of references before pushing them onto the Vec.
3980///
3981/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3982/// append the entire slice at once.
3983///
3984/// [`copy_from_slice`]: slice::copy_from_slice
3985#[cfg(not(no_global_oom_handling))]
3986#[stable(feature = "extend_ref", since = "1.2.0")]
3987impl<'a, T: Copy + 'a, A: Allocator> Extend<&'a T> for Vec<T, A> {
3988    #[track_caller]
3989    fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3990        self.spec_extend(iter.into_iter())
3991    }
3992
3993    #[inline]
3994    #[track_caller]
3995    fn extend_one(&mut self, &item: &'a T) {
3996        self.push(item);
3997    }
3998
3999    #[inline]
4000    #[track_caller]
4001    fn extend_reserve(&mut self, additional: usize) {
4002        self.reserve(additional);
4003    }
4004
4005    #[inline]
4006    unsafe fn extend_one_unchecked(&mut self, &item: &'a T) {
4007        // SAFETY: Our preconditions ensure the space has been reserved, and `extend_reserve` is implemented correctly.
4008        unsafe {
4009            let len = self.len();
4010            ptr::write(self.as_mut_ptr().add(len), item);
4011            self.set_len(len + 1);
4012        }
4013    }
4014}
4015
4016/// Implements comparison of vectors, [lexicographically](Ord#lexicographical-comparison).
4017#[stable(feature = "rust1", since = "1.0.0")]
4018impl<T, A1, A2> PartialOrd<Vec<T, A2>> for Vec<T, A1>
4019where
4020    T: PartialOrd,
4021    A1: Allocator,
4022    A2: Allocator,
4023{
4024    #[inline]
4025    fn partial_cmp(&self, other: &Vec<T, A2>) -> Option<Ordering> {
4026        PartialOrd::partial_cmp(&**self, &**other)
4027    }
4028}
4029
4030#[stable(feature = "rust1", since = "1.0.0")]
4031impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
4032
4033/// Implements ordering of vectors, [lexicographically](Ord#lexicographical-comparison).
4034#[stable(feature = "rust1", since = "1.0.0")]
4035impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
4036    #[inline]
4037    fn cmp(&self, other: &Self) -> Ordering {
4038        Ord::cmp(&**self, &**other)
4039    }
4040}
4041
4042#[stable(feature = "rust1", since = "1.0.0")]
4043unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
4044    fn drop(&mut self) {
4045        unsafe {
4046            // use drop for [T]
4047            // use a raw slice to refer to the elements of the vector as weakest necessary type;
4048            // could avoid questions of validity in certain cases
4049            ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
4050        }
4051        // RawVec handles deallocation
4052    }
4053}
4054
4055#[stable(feature = "rust1", since = "1.0.0")]
4056#[rustc_const_unstable(feature = "const_default", issue = "143894")]
4057impl<T> const Default for Vec<T> {
4058    /// Creates an empty `Vec<T>`.
4059    ///
4060    /// The vector will not allocate until elements are pushed onto it.
4061    fn default() -> Vec<T> {
4062        Vec::new()
4063    }
4064}
4065
4066#[stable(feature = "rust1", since = "1.0.0")]
4067impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
4068    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
4069        fmt::Debug::fmt(&**self, f)
4070    }
4071}
4072
4073#[stable(feature = "rust1", since = "1.0.0")]
4074impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
4075    fn as_ref(&self) -> &Vec<T, A> {
4076        self
4077    }
4078}
4079
4080#[stable(feature = "vec_as_mut", since = "1.5.0")]
4081impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
4082    fn as_mut(&mut self) -> &mut Vec<T, A> {
4083        self
4084    }
4085}
4086
4087#[stable(feature = "rust1", since = "1.0.0")]
4088impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
4089    fn as_ref(&self) -> &[T] {
4090        self
4091    }
4092}
4093
4094#[stable(feature = "vec_as_mut", since = "1.5.0")]
4095impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
4096    fn as_mut(&mut self) -> &mut [T] {
4097        self
4098    }
4099}
4100
4101#[cfg(not(no_global_oom_handling))]
4102#[stable(feature = "rust1", since = "1.0.0")]
4103impl<T: Clone> From<&[T]> for Vec<T> {
4104    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4105    ///
4106    /// # Examples
4107    ///
4108    /// ```
4109    /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
4110    /// ```
4111    #[track_caller]
4112    fn from(s: &[T]) -> Vec<T> {
4113        s.to_vec()
4114    }
4115}
4116
4117#[cfg(not(no_global_oom_handling))]
4118#[stable(feature = "vec_from_mut", since = "1.19.0")]
4119impl<T: Clone> From<&mut [T]> for Vec<T> {
4120    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4121    ///
4122    /// # Examples
4123    ///
4124    /// ```
4125    /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
4126    /// ```
4127    #[track_caller]
4128    fn from(s: &mut [T]) -> Vec<T> {
4129        s.to_vec()
4130    }
4131}
4132
4133#[cfg(not(no_global_oom_handling))]
4134#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4135impl<T: Clone, const N: usize> From<&[T; N]> for Vec<T> {
4136    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4137    ///
4138    /// # Examples
4139    ///
4140    /// ```
4141    /// assert_eq!(Vec::from(&[1, 2, 3]), vec![1, 2, 3]);
4142    /// ```
4143    #[track_caller]
4144    fn from(s: &[T; N]) -> Vec<T> {
4145        Self::from(s.as_slice())
4146    }
4147}
4148
4149#[cfg(not(no_global_oom_handling))]
4150#[stable(feature = "vec_from_array_ref", since = "1.74.0")]
4151impl<T: Clone, const N: usize> From<&mut [T; N]> for Vec<T> {
4152    /// Allocates a `Vec<T>` and fills it by cloning `s`'s items.
4153    ///
4154    /// # Examples
4155    ///
4156    /// ```
4157    /// assert_eq!(Vec::from(&mut [1, 2, 3]), vec![1, 2, 3]);
4158    /// ```
4159    #[track_caller]
4160    fn from(s: &mut [T; N]) -> Vec<T> {
4161        Self::from(s.as_mut_slice())
4162    }
4163}
4164
4165#[cfg(not(no_global_oom_handling))]
4166#[stable(feature = "vec_from_array", since = "1.44.0")]
4167impl<T, const N: usize> From<[T; N]> for Vec<T> {
4168    /// Allocates a `Vec<T>` and moves `s`'s items into it.
4169    ///
4170    /// # Examples
4171    ///
4172    /// ```
4173    /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
4174    /// ```
4175    #[track_caller]
4176    fn from(s: [T; N]) -> Vec<T> {
4177        <[T]>::into_vec(Box::new(s))
4178    }
4179}
4180
4181#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
4182impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
4183where
4184    [T]: ToOwned<Owned = Vec<T>>,
4185{
4186    /// Converts a clone-on-write slice into a vector.
4187    ///
4188    /// If `s` already owns a `Vec<T>`, it will be returned directly.
4189    /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
4190    /// filled by cloning `s`'s items into it.
4191    ///
4192    /// # Examples
4193    ///
4194    /// ```
4195    /// # use std::borrow::Cow;
4196    /// let o: Cow<'_, [i32]> = Cow::Owned(vec![1, 2, 3]);
4197    /// let b: Cow<'_, [i32]> = Cow::Borrowed(&[1, 2, 3]);
4198    /// assert_eq!(Vec::from(o), Vec::from(b));
4199    /// ```
4200    #[track_caller]
4201    fn from(s: Cow<'a, [T]>) -> Vec<T> {
4202        s.into_owned()
4203    }
4204}
4205
4206// note: test pulls in std, which causes errors here
4207#[stable(feature = "vec_from_box", since = "1.18.0")]
4208impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
4209    /// Converts a boxed slice into a vector by transferring ownership of
4210    /// the existing heap allocation.
4211    ///
4212    /// # Examples
4213    ///
4214    /// ```
4215    /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
4216    /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
4217    /// ```
4218    fn from(s: Box<[T], A>) -> Self {
4219        s.into_vec()
4220    }
4221}
4222
4223// note: test pulls in std, which causes errors here
4224#[cfg(not(no_global_oom_handling))]
4225#[stable(feature = "box_from_vec", since = "1.20.0")]
4226impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
4227    /// Converts a vector into a boxed slice.
4228    ///
4229    /// Before doing the conversion, this method discards excess capacity like [`Vec::shrink_to_fit`].
4230    ///
4231    /// [owned slice]: Box
4232    /// [`Vec::shrink_to_fit`]: Vec::shrink_to_fit
4233    ///
4234    /// # Examples
4235    ///
4236    /// ```
4237    /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
4238    /// ```
4239    ///
4240    /// Any excess capacity is removed:
4241    /// ```
4242    /// let mut vec = Vec::with_capacity(10);
4243    /// vec.extend([1, 2, 3]);
4244    ///
4245    /// assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
4246    /// ```
4247    #[track_caller]
4248    fn from(v: Vec<T, A>) -> Self {
4249        v.into_boxed_slice()
4250    }
4251}
4252
4253#[cfg(not(no_global_oom_handling))]
4254#[stable(feature = "rust1", since = "1.0.0")]
4255impl From<&str> for Vec<u8> {
4256    /// Allocates a `Vec<u8>` and fills it with a UTF-8 string.
4257    ///
4258    /// # Examples
4259    ///
4260    /// ```
4261    /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
4262    /// ```
4263    #[track_caller]
4264    fn from(s: &str) -> Vec<u8> {
4265        From::from(s.as_bytes())
4266    }
4267}
4268
4269#[stable(feature = "array_try_from_vec", since = "1.48.0")]
4270impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
4271    type Error = Vec<T, A>;
4272
4273    /// Gets the entire contents of the `Vec<T>` as an array,
4274    /// if its size exactly matches that of the requested array.
4275    ///
4276    /// # Examples
4277    ///
4278    /// ```
4279    /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
4280    /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
4281    /// ```
4282    ///
4283    /// If the length doesn't match, the input comes back in `Err`:
4284    /// ```
4285    /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
4286    /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
4287    /// ```
4288    ///
4289    /// If you're fine with just getting a prefix of the `Vec<T>`,
4290    /// you can call [`.truncate(N)`](Vec::truncate) first.
4291    /// ```
4292    /// let mut v = String::from("hello world").into_bytes();
4293    /// v.sort();
4294    /// v.truncate(2);
4295    /// let [a, b]: [_; 2] = v.try_into().unwrap();
4296    /// assert_eq!(a, b' ');
4297    /// assert_eq!(b, b'd');
4298    /// ```
4299    fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
4300        if vec.len() != N {
4301            return Err(vec);
4302        }
4303
4304        // SAFETY: `.set_len(0)` is always sound.
4305        unsafe { vec.set_len(0) };
4306
4307        // SAFETY: A `Vec`'s pointer is always aligned properly, and
4308        // the alignment the array needs is the same as the items.
4309        // We checked earlier that we have sufficient items.
4310        // The items will not double-drop as the `set_len`
4311        // tells the `Vec` not to also drop them.
4312        let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
4313        Ok(array)
4314    }
4315}