core/net/ip_addr.rs
1use super::display_buffer::DisplayBuffer;
2use crate::cmp::Ordering;
3use crate::fmt::{self, Write};
4use crate::hash::{Hash, Hasher};
5use crate::mem::transmute;
6use crate::ops::{BitAnd, BitAndAssign, BitOr, BitOrAssign, Not};
7
8/// An IP address, either IPv4 or IPv6.
9///
10/// This enum can contain either an [`Ipv4Addr`] or an [`Ipv6Addr`], see their
11/// respective documentation for more details.
12///
13/// # Examples
14///
15/// ```
16/// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
17///
18/// let localhost_v4 = IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1));
19/// let localhost_v6 = IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
20///
21/// assert_eq!("127.0.0.1".parse(), Ok(localhost_v4));
22/// assert_eq!("::1".parse(), Ok(localhost_v6));
23///
24/// assert_eq!(localhost_v4.is_ipv6(), false);
25/// assert_eq!(localhost_v4.is_ipv4(), true);
26/// ```
27#[rustc_diagnostic_item = "IpAddr"]
28#[stable(feature = "ip_addr", since = "1.7.0")]
29#[derive(Copy, Clone, Eq, PartialEq, Hash, PartialOrd, Ord)]
30pub enum IpAddr {
31 /// An IPv4 address.
32 #[stable(feature = "ip_addr", since = "1.7.0")]
33 V4(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv4Addr),
34 /// An IPv6 address.
35 #[stable(feature = "ip_addr", since = "1.7.0")]
36 V6(#[stable(feature = "ip_addr", since = "1.7.0")] Ipv6Addr),
37}
38
39/// An IPv4 address.
40///
41/// IPv4 addresses are defined as 32-bit integers in [IETF RFC 791].
42/// They are usually represented as four octets.
43///
44/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
45///
46/// [IETF RFC 791]: https://tools.ietf.org/html/rfc791
47///
48/// # Textual representation
49///
50/// `Ipv4Addr` provides a [`FromStr`] implementation. The four octets are in decimal
51/// notation, divided by `.` (this is called "dot-decimal notation").
52/// Notably, octal numbers (which are indicated with a leading `0`) and hexadecimal numbers (which
53/// are indicated with a leading `0x`) are not allowed per [IETF RFC 6943].
54///
55/// [IETF RFC 6943]: https://tools.ietf.org/html/rfc6943#section-3.1.1
56/// [`FromStr`]: crate::str::FromStr
57///
58/// # Examples
59///
60/// ```
61/// use std::net::Ipv4Addr;
62///
63/// let localhost = Ipv4Addr::new(127, 0, 0, 1);
64/// assert_eq!("127.0.0.1".parse(), Ok(localhost));
65/// assert_eq!(localhost.is_loopback(), true);
66/// assert!("012.004.002.000".parse::<Ipv4Addr>().is_err()); // all octets are in octal
67/// assert!("0000000.0.0.0".parse::<Ipv4Addr>().is_err()); // first octet is a zero in octal
68/// assert!("0xcb.0x0.0x71.0x00".parse::<Ipv4Addr>().is_err()); // all octets are in hex
69/// ```
70#[rustc_diagnostic_item = "Ipv4Addr"]
71#[derive(Copy, Clone, PartialEq, Eq)]
72#[stable(feature = "rust1", since = "1.0.0")]
73pub struct Ipv4Addr {
74 octets: [u8; 4],
75}
76
77#[stable(feature = "rust1", since = "1.0.0")]
78impl Hash for Ipv4Addr {
79 fn hash<H: Hasher>(&self, state: &mut H) {
80 // Hashers are often more efficient at hashing a fixed-width integer
81 // than a bytestring, so convert before hashing. We don't use to_bits()
82 // here as that may involve a byteswap which is unnecessary.
83 u32::from_ne_bytes(self.octets).hash(state);
84 }
85}
86
87/// An IPv6 address.
88///
89/// IPv6 addresses are defined as 128-bit integers in [IETF RFC 4291].
90/// They are usually represented as eight 16-bit segments.
91///
92/// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
93///
94/// # Embedding IPv4 Addresses
95///
96/// See [`IpAddr`] for a type encompassing both IPv4 and IPv6 addresses.
97///
98/// To assist in the transition from IPv4 to IPv6 two types of IPv6 addresses that embed an IPv4 address were defined:
99/// IPv4-compatible and IPv4-mapped addresses. Of these IPv4-compatible addresses have been officially deprecated.
100///
101/// Both types of addresses are not assigned any special meaning by this implementation,
102/// other than what the relevant standards prescribe. This means that an address like `::ffff:127.0.0.1`,
103/// while representing an IPv4 loopback address, is not itself an IPv6 loopback address; only `::1` is.
104/// To handle these so called "IPv4-in-IPv6" addresses, they have to first be converted to their canonical IPv4 address.
105///
106/// ### IPv4-Compatible IPv6 Addresses
107///
108/// IPv4-compatible IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.1], and have been officially deprecated.
109/// The RFC describes the format of an "IPv4-Compatible IPv6 address" as follows:
110///
111/// ```text
112/// | 80 bits | 16 | 32 bits |
113/// +--------------------------------------+--------------------------+
114/// |0000..............................0000|0000| IPv4 address |
115/// +--------------------------------------+----+---------------------+
116/// ```
117/// So `::a.b.c.d` would be an IPv4-compatible IPv6 address representing the IPv4 address `a.b.c.d`.
118///
119/// To convert from an IPv4 address to an IPv4-compatible IPv6 address, use [`Ipv4Addr::to_ipv6_compatible`].
120/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-compatible IPv6 address to the canonical IPv4 address.
121///
122/// [IETF RFC 4291 Section 2.5.5.1]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.1
123///
124/// ### IPv4-Mapped IPv6 Addresses
125///
126/// IPv4-mapped IPv6 addresses are defined in [IETF RFC 4291 Section 2.5.5.2].
127/// The RFC describes the format of an "IPv4-Mapped IPv6 address" as follows:
128///
129/// ```text
130/// | 80 bits | 16 | 32 bits |
131/// +--------------------------------------+--------------------------+
132/// |0000..............................0000|FFFF| IPv4 address |
133/// +--------------------------------------+----+---------------------+
134/// ```
135/// So `::ffff:a.b.c.d` would be an IPv4-mapped IPv6 address representing the IPv4 address `a.b.c.d`.
136///
137/// To convert from an IPv4 address to an IPv4-mapped IPv6 address, use [`Ipv4Addr::to_ipv6_mapped`].
138/// Use [`Ipv6Addr::to_ipv4`] to convert an IPv4-mapped IPv6 address to the canonical IPv4 address.
139/// Note that this will also convert the IPv6 loopback address `::1` to `0.0.0.1`. Use
140/// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
141///
142/// [IETF RFC 4291 Section 2.5.5.2]: https://datatracker.ietf.org/doc/html/rfc4291#section-2.5.5.2
143///
144/// # Textual representation
145///
146/// `Ipv6Addr` provides a [`FromStr`] implementation. There are many ways to represent
147/// an IPv6 address in text, but in general, each segments is written in hexadecimal
148/// notation, and segments are separated by `:`. For more information, see
149/// [IETF RFC 5952].
150///
151/// [`FromStr`]: crate::str::FromStr
152/// [IETF RFC 5952]: https://tools.ietf.org/html/rfc5952
153///
154/// # Examples
155///
156/// ```
157/// use std::net::Ipv6Addr;
158///
159/// let localhost = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
160/// assert_eq!("::1".parse(), Ok(localhost));
161/// assert_eq!(localhost.is_loopback(), true);
162/// ```
163#[rustc_diagnostic_item = "Ipv6Addr"]
164#[derive(Copy, Clone, PartialEq, Eq)]
165#[stable(feature = "rust1", since = "1.0.0")]
166pub struct Ipv6Addr {
167 octets: [u8; 16],
168}
169
170#[stable(feature = "rust1", since = "1.0.0")]
171impl Hash for Ipv6Addr {
172 fn hash<H: Hasher>(&self, state: &mut H) {
173 // Hashers are often more efficient at hashing a fixed-width integer
174 // than a bytestring, so convert before hashing. We don't use to_bits()
175 // here as that may involve unnecessary byteswaps.
176 u128::from_ne_bytes(self.octets).hash(state);
177 }
178}
179
180/// Scope of an [IPv6 multicast address] as defined in [IETF RFC 7346 section 2].
181///
182/// # Stability Guarantees
183///
184/// Not all possible values for a multicast scope have been assigned.
185/// Future RFCs may introduce new scopes, which will be added as variants to this enum;
186/// because of this the enum is marked as `#[non_exhaustive]`.
187///
188/// # Examples
189/// ```
190/// #![feature(ip)]
191///
192/// use std::net::Ipv6Addr;
193/// use std::net::Ipv6MulticastScope::*;
194///
195/// // An IPv6 multicast address with global scope (`ff0e::`).
196/// let address = Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0);
197///
198/// // Will print "Global scope".
199/// match address.multicast_scope() {
200/// Some(InterfaceLocal) => println!("Interface-Local scope"),
201/// Some(LinkLocal) => println!("Link-Local scope"),
202/// Some(RealmLocal) => println!("Realm-Local scope"),
203/// Some(AdminLocal) => println!("Admin-Local scope"),
204/// Some(SiteLocal) => println!("Site-Local scope"),
205/// Some(OrganizationLocal) => println!("Organization-Local scope"),
206/// Some(Global) => println!("Global scope"),
207/// Some(_) => println!("Unknown scope"),
208/// None => println!("Not a multicast address!")
209/// }
210///
211/// ```
212///
213/// [IPv6 multicast address]: Ipv6Addr
214/// [IETF RFC 7346 section 2]: https://tools.ietf.org/html/rfc7346#section-2
215#[derive(Copy, PartialEq, Eq, Clone, Hash, Debug)]
216#[unstable(feature = "ip", issue = "27709")]
217#[non_exhaustive]
218pub enum Ipv6MulticastScope {
219 /// Interface-Local scope.
220 InterfaceLocal,
221 /// Link-Local scope.
222 LinkLocal,
223 /// Realm-Local scope.
224 RealmLocal,
225 /// Admin-Local scope.
226 AdminLocal,
227 /// Site-Local scope.
228 SiteLocal,
229 /// Organization-Local scope.
230 OrganizationLocal,
231 /// Global scope.
232 Global,
233}
234
235impl IpAddr {
236 /// Returns [`true`] for the special 'unspecified' address.
237 ///
238 /// See the documentation for [`Ipv4Addr::is_unspecified()`] and
239 /// [`Ipv6Addr::is_unspecified()`] for more details.
240 ///
241 /// # Examples
242 ///
243 /// ```
244 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
245 ///
246 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(0, 0, 0, 0)).is_unspecified(), true);
247 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0)).is_unspecified(), true);
248 /// ```
249 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
250 #[stable(feature = "ip_shared", since = "1.12.0")]
251 #[must_use]
252 #[inline]
253 pub const fn is_unspecified(&self) -> bool {
254 match self {
255 IpAddr::V4(ip) => ip.is_unspecified(),
256 IpAddr::V6(ip) => ip.is_unspecified(),
257 }
258 }
259
260 /// Returns [`true`] if this is a loopback address.
261 ///
262 /// See the documentation for [`Ipv4Addr::is_loopback()`] and
263 /// [`Ipv6Addr::is_loopback()`] for more details.
264 ///
265 /// # Examples
266 ///
267 /// ```
268 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
269 ///
270 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).is_loopback(), true);
271 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1)).is_loopback(), true);
272 /// ```
273 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
274 #[stable(feature = "ip_shared", since = "1.12.0")]
275 #[must_use]
276 #[inline]
277 pub const fn is_loopback(&self) -> bool {
278 match self {
279 IpAddr::V4(ip) => ip.is_loopback(),
280 IpAddr::V6(ip) => ip.is_loopback(),
281 }
282 }
283
284 /// Returns [`true`] if the address appears to be globally routable.
285 ///
286 /// See the documentation for [`Ipv4Addr::is_global()`] and
287 /// [`Ipv6Addr::is_global()`] for more details.
288 ///
289 /// # Examples
290 ///
291 /// ```
292 /// #![feature(ip)]
293 ///
294 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
295 ///
296 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(80, 9, 12, 3)).is_global(), true);
297 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0x1c9, 0, 0, 0xafc8, 0, 0x1)).is_global(), true);
298 /// ```
299 #[unstable(feature = "ip", issue = "27709")]
300 #[must_use]
301 #[inline]
302 pub const fn is_global(&self) -> bool {
303 match self {
304 IpAddr::V4(ip) => ip.is_global(),
305 IpAddr::V6(ip) => ip.is_global(),
306 }
307 }
308
309 /// Returns [`true`] if this is a multicast address.
310 ///
311 /// See the documentation for [`Ipv4Addr::is_multicast()`] and
312 /// [`Ipv6Addr::is_multicast()`] for more details.
313 ///
314 /// # Examples
315 ///
316 /// ```
317 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
318 ///
319 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(224, 254, 0, 0)).is_multicast(), true);
320 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0)).is_multicast(), true);
321 /// ```
322 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
323 #[stable(feature = "ip_shared", since = "1.12.0")]
324 #[must_use]
325 #[inline]
326 pub const fn is_multicast(&self) -> bool {
327 match self {
328 IpAddr::V4(ip) => ip.is_multicast(),
329 IpAddr::V6(ip) => ip.is_multicast(),
330 }
331 }
332
333 /// Returns [`true`] if this address is in a range designated for documentation.
334 ///
335 /// See the documentation for [`Ipv4Addr::is_documentation()`] and
336 /// [`Ipv6Addr::is_documentation()`] for more details.
337 ///
338 /// # Examples
339 ///
340 /// ```
341 /// #![feature(ip)]
342 ///
343 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
344 ///
345 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_documentation(), true);
346 /// assert_eq!(
347 /// IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_documentation(),
348 /// true
349 /// );
350 /// ```
351 #[unstable(feature = "ip", issue = "27709")]
352 #[must_use]
353 #[inline]
354 pub const fn is_documentation(&self) -> bool {
355 match self {
356 IpAddr::V4(ip) => ip.is_documentation(),
357 IpAddr::V6(ip) => ip.is_documentation(),
358 }
359 }
360
361 /// Returns [`true`] if this address is in a range designated for benchmarking.
362 ///
363 /// See the documentation for [`Ipv4Addr::is_benchmarking()`] and
364 /// [`Ipv6Addr::is_benchmarking()`] for more details.
365 ///
366 /// # Examples
367 ///
368 /// ```
369 /// #![feature(ip)]
370 ///
371 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
372 ///
373 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(198, 19, 255, 255)).is_benchmarking(), true);
374 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0)).is_benchmarking(), true);
375 /// ```
376 #[unstable(feature = "ip", issue = "27709")]
377 #[must_use]
378 #[inline]
379 pub const fn is_benchmarking(&self) -> bool {
380 match self {
381 IpAddr::V4(ip) => ip.is_benchmarking(),
382 IpAddr::V6(ip) => ip.is_benchmarking(),
383 }
384 }
385
386 /// Returns [`true`] if this address is an [`IPv4` address], and [`false`]
387 /// otherwise.
388 ///
389 /// [`IPv4` address]: IpAddr::V4
390 ///
391 /// # Examples
392 ///
393 /// ```
394 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
395 ///
396 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv4(), true);
397 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv4(), false);
398 /// ```
399 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
400 #[stable(feature = "ipaddr_checker", since = "1.16.0")]
401 #[must_use]
402 #[inline]
403 pub const fn is_ipv4(&self) -> bool {
404 matches!(self, IpAddr::V4(_))
405 }
406
407 /// Returns [`true`] if this address is an [`IPv6` address], and [`false`]
408 /// otherwise.
409 ///
410 /// [`IPv6` address]: IpAddr::V6
411 ///
412 /// # Examples
413 ///
414 /// ```
415 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
416 ///
417 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(203, 0, 113, 6)).is_ipv6(), false);
418 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0)).is_ipv6(), true);
419 /// ```
420 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
421 #[stable(feature = "ipaddr_checker", since = "1.16.0")]
422 #[must_use]
423 #[inline]
424 pub const fn is_ipv6(&self) -> bool {
425 matches!(self, IpAddr::V6(_))
426 }
427
428 /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped IPv6
429 /// address, otherwise returns `self` as-is.
430 ///
431 /// # Examples
432 ///
433 /// ```
434 /// use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
435 ///
436 /// let localhost_v4 = Ipv4Addr::new(127, 0, 0, 1);
437 ///
438 /// assert_eq!(IpAddr::V4(localhost_v4).to_canonical(), localhost_v4);
439 /// assert_eq!(IpAddr::V6(localhost_v4.to_ipv6_mapped()).to_canonical(), localhost_v4);
440 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(127, 0, 0, 1)).to_canonical().is_loopback(), true);
441 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).is_loopback(), false);
442 /// assert_eq!(IpAddr::V6(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1)).to_canonical().is_loopback(), true);
443 /// ```
444 #[inline]
445 #[must_use = "this returns the result of the operation, \
446 without modifying the original"]
447 #[stable(feature = "ip_to_canonical", since = "1.75.0")]
448 #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
449 pub const fn to_canonical(&self) -> IpAddr {
450 match self {
451 IpAddr::V4(_) => *self,
452 IpAddr::V6(v6) => v6.to_canonical(),
453 }
454 }
455
456 /// Returns the eight-bit integers this address consists of as a slice.
457 ///
458 /// # Examples
459 ///
460 /// ```
461 /// #![feature(ip_as_octets)]
462 ///
463 /// use std::net::{Ipv4Addr, Ipv6Addr, IpAddr};
464 ///
465 /// assert_eq!(IpAddr::V4(Ipv4Addr::LOCALHOST).as_octets(), &[127, 0, 0, 1]);
466 /// assert_eq!(IpAddr::V6(Ipv6Addr::LOCALHOST).as_octets(),
467 /// &[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1])
468 /// ```
469 #[unstable(feature = "ip_as_octets", issue = "137259")]
470 #[inline]
471 pub const fn as_octets(&self) -> &[u8] {
472 match self {
473 IpAddr::V4(ip) => ip.as_octets().as_slice(),
474 IpAddr::V6(ip) => ip.as_octets().as_slice(),
475 }
476 }
477}
478
479impl Ipv4Addr {
480 /// Creates a new IPv4 address from four eight-bit octets.
481 ///
482 /// The result will represent the IP address `a`.`b`.`c`.`d`.
483 ///
484 /// # Examples
485 ///
486 /// ```
487 /// use std::net::Ipv4Addr;
488 ///
489 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
490 /// ```
491 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
492 #[stable(feature = "rust1", since = "1.0.0")]
493 #[must_use]
494 #[inline]
495 pub const fn new(a: u8, b: u8, c: u8, d: u8) -> Ipv4Addr {
496 Ipv4Addr { octets: [a, b, c, d] }
497 }
498
499 /// The size of an IPv4 address in bits.
500 ///
501 /// # Examples
502 ///
503 /// ```
504 /// use std::net::Ipv4Addr;
505 ///
506 /// assert_eq!(Ipv4Addr::BITS, 32);
507 /// ```
508 #[stable(feature = "ip_bits", since = "1.80.0")]
509 pub const BITS: u32 = 32;
510
511 /// Converts an IPv4 address into a `u32` representation using native byte order.
512 ///
513 /// Although IPv4 addresses are big-endian, the `u32` value will use the target platform's
514 /// native byte order. That is, the `u32` value is an integer representation of the IPv4
515 /// address and not an integer interpretation of the IPv4 address's big-endian bitstring. This
516 /// means that the `u32` value masked with `0xffffff00` will set the last octet in the address
517 /// to 0, regardless of the target platform's endianness.
518 ///
519 /// # Examples
520 ///
521 /// ```
522 /// use std::net::Ipv4Addr;
523 ///
524 /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
525 /// assert_eq!(0x12345678, addr.to_bits());
526 /// ```
527 ///
528 /// ```
529 /// use std::net::Ipv4Addr;
530 ///
531 /// let addr = Ipv4Addr::new(0x12, 0x34, 0x56, 0x78);
532 /// let addr_bits = addr.to_bits() & 0xffffff00;
533 /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x00), Ipv4Addr::from_bits(addr_bits));
534 ///
535 /// ```
536 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
537 #[stable(feature = "ip_bits", since = "1.80.0")]
538 #[must_use]
539 #[inline]
540 pub const fn to_bits(self) -> u32 {
541 u32::from_be_bytes(self.octets)
542 }
543
544 /// Converts a native byte order `u32` into an IPv4 address.
545 ///
546 /// See [`Ipv4Addr::to_bits`] for an explanation on endianness.
547 ///
548 /// # Examples
549 ///
550 /// ```
551 /// use std::net::Ipv4Addr;
552 ///
553 /// let addr = Ipv4Addr::from_bits(0x12345678);
554 /// assert_eq!(Ipv4Addr::new(0x12, 0x34, 0x56, 0x78), addr);
555 /// ```
556 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
557 #[stable(feature = "ip_bits", since = "1.80.0")]
558 #[must_use]
559 #[inline]
560 pub const fn from_bits(bits: u32) -> Ipv4Addr {
561 Ipv4Addr { octets: bits.to_be_bytes() }
562 }
563
564 /// An IPv4 address with the address pointing to localhost: `127.0.0.1`
565 ///
566 /// # Examples
567 ///
568 /// ```
569 /// use std::net::Ipv4Addr;
570 ///
571 /// let addr = Ipv4Addr::LOCALHOST;
572 /// assert_eq!(addr, Ipv4Addr::new(127, 0, 0, 1));
573 /// ```
574 #[stable(feature = "ip_constructors", since = "1.30.0")]
575 pub const LOCALHOST: Self = Ipv4Addr::new(127, 0, 0, 1);
576
577 /// An IPv4 address representing an unspecified address: `0.0.0.0`
578 ///
579 /// This corresponds to the constant `INADDR_ANY` in other languages.
580 ///
581 /// # Examples
582 ///
583 /// ```
584 /// use std::net::Ipv4Addr;
585 ///
586 /// let addr = Ipv4Addr::UNSPECIFIED;
587 /// assert_eq!(addr, Ipv4Addr::new(0, 0, 0, 0));
588 /// ```
589 #[doc(alias = "INADDR_ANY")]
590 #[stable(feature = "ip_constructors", since = "1.30.0")]
591 pub const UNSPECIFIED: Self = Ipv4Addr::new(0, 0, 0, 0);
592
593 /// An IPv4 address representing the broadcast address: `255.255.255.255`.
594 ///
595 /// # Examples
596 ///
597 /// ```
598 /// use std::net::Ipv4Addr;
599 ///
600 /// let addr = Ipv4Addr::BROADCAST;
601 /// assert_eq!(addr, Ipv4Addr::new(255, 255, 255, 255));
602 /// ```
603 #[stable(feature = "ip_constructors", since = "1.30.0")]
604 pub const BROADCAST: Self = Ipv4Addr::new(255, 255, 255, 255);
605
606 /// Returns the four eight-bit integers that make up this address.
607 ///
608 /// # Examples
609 ///
610 /// ```
611 /// use std::net::Ipv4Addr;
612 ///
613 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
614 /// assert_eq!(addr.octets(), [127, 0, 0, 1]);
615 /// ```
616 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
617 #[stable(feature = "rust1", since = "1.0.0")]
618 #[must_use]
619 #[inline]
620 pub const fn octets(&self) -> [u8; 4] {
621 self.octets
622 }
623
624 /// Creates an `Ipv4Addr` from a four element byte array.
625 ///
626 /// # Examples
627 ///
628 /// ```
629 /// #![feature(ip_from)]
630 /// use std::net::Ipv4Addr;
631 ///
632 /// let addr = Ipv4Addr::from_octets([13u8, 12u8, 11u8, 10u8]);
633 /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
634 /// ```
635 #[unstable(feature = "ip_from", issue = "131360")]
636 #[must_use]
637 #[inline]
638 pub const fn from_octets(octets: [u8; 4]) -> Ipv4Addr {
639 Ipv4Addr { octets }
640 }
641
642 /// Returns the four eight-bit integers that make up this address
643 /// as a slice.
644 ///
645 /// # Examples
646 ///
647 /// ```
648 /// #![feature(ip_as_octets)]
649 ///
650 /// use std::net::Ipv4Addr;
651 ///
652 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
653 /// assert_eq!(addr.as_octets(), &[127, 0, 0, 1]);
654 /// ```
655 #[unstable(feature = "ip_as_octets", issue = "137259")]
656 #[inline]
657 pub const fn as_octets(&self) -> &[u8; 4] {
658 &self.octets
659 }
660
661 /// Returns [`true`] for the special 'unspecified' address (`0.0.0.0`).
662 ///
663 /// This property is defined in _UNIX Network Programming, Second Edition_,
664 /// W. Richard Stevens, p. 891; see also [ip7].
665 ///
666 /// [ip7]: https://man7.org/linux/man-pages/man7/ip.7.html
667 ///
668 /// # Examples
669 ///
670 /// ```
671 /// use std::net::Ipv4Addr;
672 ///
673 /// assert_eq!(Ipv4Addr::new(0, 0, 0, 0).is_unspecified(), true);
674 /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_unspecified(), false);
675 /// ```
676 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
677 #[stable(feature = "ip_shared", since = "1.12.0")]
678 #[must_use]
679 #[inline]
680 pub const fn is_unspecified(&self) -> bool {
681 u32::from_be_bytes(self.octets) == 0
682 }
683
684 /// Returns [`true`] if this is a loopback address (`127.0.0.0/8`).
685 ///
686 /// This property is defined by [IETF RFC 1122].
687 ///
688 /// [IETF RFC 1122]: https://tools.ietf.org/html/rfc1122
689 ///
690 /// # Examples
691 ///
692 /// ```
693 /// use std::net::Ipv4Addr;
694 ///
695 /// assert_eq!(Ipv4Addr::new(127, 0, 0, 1).is_loopback(), true);
696 /// assert_eq!(Ipv4Addr::new(45, 22, 13, 197).is_loopback(), false);
697 /// ```
698 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
699 #[stable(since = "1.7.0", feature = "ip_17")]
700 #[must_use]
701 #[inline]
702 pub const fn is_loopback(&self) -> bool {
703 self.octets()[0] == 127
704 }
705
706 /// Returns [`true`] if this is a private address.
707 ///
708 /// The private address ranges are defined in [IETF RFC 1918] and include:
709 ///
710 /// - `10.0.0.0/8`
711 /// - `172.16.0.0/12`
712 /// - `192.168.0.0/16`
713 ///
714 /// [IETF RFC 1918]: https://tools.ietf.org/html/rfc1918
715 ///
716 /// # Examples
717 ///
718 /// ```
719 /// use std::net::Ipv4Addr;
720 ///
721 /// assert_eq!(Ipv4Addr::new(10, 0, 0, 1).is_private(), true);
722 /// assert_eq!(Ipv4Addr::new(10, 10, 10, 10).is_private(), true);
723 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 10).is_private(), true);
724 /// assert_eq!(Ipv4Addr::new(172, 29, 45, 14).is_private(), true);
725 /// assert_eq!(Ipv4Addr::new(172, 32, 0, 2).is_private(), false);
726 /// assert_eq!(Ipv4Addr::new(192, 168, 0, 2).is_private(), true);
727 /// assert_eq!(Ipv4Addr::new(192, 169, 0, 2).is_private(), false);
728 /// ```
729 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
730 #[stable(since = "1.7.0", feature = "ip_17")]
731 #[must_use]
732 #[inline]
733 pub const fn is_private(&self) -> bool {
734 match self.octets() {
735 [10, ..] => true,
736 [172, b, ..] if b >= 16 && b <= 31 => true,
737 [192, 168, ..] => true,
738 _ => false,
739 }
740 }
741
742 /// Returns [`true`] if the address is link-local (`169.254.0.0/16`).
743 ///
744 /// This property is defined by [IETF RFC 3927].
745 ///
746 /// [IETF RFC 3927]: https://tools.ietf.org/html/rfc3927
747 ///
748 /// # Examples
749 ///
750 /// ```
751 /// use std::net::Ipv4Addr;
752 ///
753 /// assert_eq!(Ipv4Addr::new(169, 254, 0, 0).is_link_local(), true);
754 /// assert_eq!(Ipv4Addr::new(169, 254, 10, 65).is_link_local(), true);
755 /// assert_eq!(Ipv4Addr::new(16, 89, 10, 65).is_link_local(), false);
756 /// ```
757 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
758 #[stable(since = "1.7.0", feature = "ip_17")]
759 #[must_use]
760 #[inline]
761 pub const fn is_link_local(&self) -> bool {
762 matches!(self.octets(), [169, 254, ..])
763 }
764
765 /// Returns [`true`] if the address appears to be globally reachable
766 /// as specified by the [IANA IPv4 Special-Purpose Address Registry].
767 ///
768 /// Whether or not an address is practically reachable will depend on your
769 /// network configuration. Most IPv4 addresses are globally reachable, unless
770 /// they are specifically defined as *not* globally reachable.
771 ///
772 /// Non-exhaustive list of notable addresses that are not globally reachable:
773 ///
774 /// - The [unspecified address] ([`is_unspecified`](Ipv4Addr::is_unspecified))
775 /// - Addresses reserved for private use ([`is_private`](Ipv4Addr::is_private))
776 /// - Addresses in the shared address space ([`is_shared`](Ipv4Addr::is_shared))
777 /// - Loopback addresses ([`is_loopback`](Ipv4Addr::is_loopback))
778 /// - Link-local addresses ([`is_link_local`](Ipv4Addr::is_link_local))
779 /// - Addresses reserved for documentation ([`is_documentation`](Ipv4Addr::is_documentation))
780 /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv4Addr::is_benchmarking))
781 /// - Reserved addresses ([`is_reserved`](Ipv4Addr::is_reserved))
782 /// - The [broadcast address] ([`is_broadcast`](Ipv4Addr::is_broadcast))
783 ///
784 /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv4 Special-Purpose Address Registry].
785 ///
786 /// [IANA IPv4 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
787 /// [unspecified address]: Ipv4Addr::UNSPECIFIED
788 /// [broadcast address]: Ipv4Addr::BROADCAST
789 ///
790 /// # Examples
791 ///
792 /// ```
793 /// #![feature(ip)]
794 ///
795 /// use std::net::Ipv4Addr;
796 ///
797 /// // Most IPv4 addresses are globally reachable:
798 /// assert_eq!(Ipv4Addr::new(80, 9, 12, 3).is_global(), true);
799 ///
800 /// // However some addresses have been assigned a special meaning
801 /// // that makes them not globally reachable. Some examples are:
802 ///
803 /// // The unspecified address (`0.0.0.0`)
804 /// assert_eq!(Ipv4Addr::UNSPECIFIED.is_global(), false);
805 ///
806 /// // Addresses reserved for private use (`10.0.0.0/8`, `172.16.0.0/12`, 192.168.0.0/16)
807 /// assert_eq!(Ipv4Addr::new(10, 254, 0, 0).is_global(), false);
808 /// assert_eq!(Ipv4Addr::new(192, 168, 10, 65).is_global(), false);
809 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_global(), false);
810 ///
811 /// // Addresses in the shared address space (`100.64.0.0/10`)
812 /// assert_eq!(Ipv4Addr::new(100, 100, 0, 0).is_global(), false);
813 ///
814 /// // The loopback addresses (`127.0.0.0/8`)
815 /// assert_eq!(Ipv4Addr::LOCALHOST.is_global(), false);
816 ///
817 /// // Link-local addresses (`169.254.0.0/16`)
818 /// assert_eq!(Ipv4Addr::new(169, 254, 45, 1).is_global(), false);
819 ///
820 /// // Addresses reserved for documentation (`192.0.2.0/24`, `198.51.100.0/24`, `203.0.113.0/24`)
821 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_global(), false);
822 /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_global(), false);
823 /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_global(), false);
824 ///
825 /// // Addresses reserved for benchmarking (`198.18.0.0/15`)
826 /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_global(), false);
827 ///
828 /// // Reserved addresses (`240.0.0.0/4`)
829 /// assert_eq!(Ipv4Addr::new(250, 10, 20, 30).is_global(), false);
830 ///
831 /// // The broadcast address (`255.255.255.255`)
832 /// assert_eq!(Ipv4Addr::BROADCAST.is_global(), false);
833 ///
834 /// // For a complete overview see the IANA IPv4 Special-Purpose Address Registry.
835 /// ```
836 #[unstable(feature = "ip", issue = "27709")]
837 #[must_use]
838 #[inline]
839 pub const fn is_global(&self) -> bool {
840 !(self.octets()[0] == 0 // "This network"
841 || self.is_private()
842 || self.is_shared()
843 || self.is_loopback()
844 || self.is_link_local()
845 // addresses reserved for future protocols (`192.0.0.0/24`)
846 // .9 and .10 are documented as globally reachable so they're excluded
847 || (
848 self.octets()[0] == 192 && self.octets()[1] == 0 && self.octets()[2] == 0
849 && self.octets()[3] != 9 && self.octets()[3] != 10
850 )
851 || self.is_documentation()
852 || self.is_benchmarking()
853 || self.is_reserved()
854 || self.is_broadcast())
855 }
856
857 /// Returns [`true`] if this address is part of the Shared Address Space defined in
858 /// [IETF RFC 6598] (`100.64.0.0/10`).
859 ///
860 /// [IETF RFC 6598]: https://tools.ietf.org/html/rfc6598
861 ///
862 /// # Examples
863 ///
864 /// ```
865 /// #![feature(ip)]
866 /// use std::net::Ipv4Addr;
867 ///
868 /// assert_eq!(Ipv4Addr::new(100, 64, 0, 0).is_shared(), true);
869 /// assert_eq!(Ipv4Addr::new(100, 127, 255, 255).is_shared(), true);
870 /// assert_eq!(Ipv4Addr::new(100, 128, 0, 0).is_shared(), false);
871 /// ```
872 #[unstable(feature = "ip", issue = "27709")]
873 #[must_use]
874 #[inline]
875 pub const fn is_shared(&self) -> bool {
876 self.octets()[0] == 100 && (self.octets()[1] & 0b1100_0000 == 0b0100_0000)
877 }
878
879 /// Returns [`true`] if this address part of the `198.18.0.0/15` range, which is reserved for
880 /// network devices benchmarking.
881 ///
882 /// This range is defined in [IETF RFC 2544] as `192.18.0.0` through
883 /// `198.19.255.255` but [errata 423] corrects it to `198.18.0.0/15`.
884 ///
885 /// [IETF RFC 2544]: https://tools.ietf.org/html/rfc2544
886 /// [errata 423]: https://www.rfc-editor.org/errata/eid423
887 ///
888 /// # Examples
889 ///
890 /// ```
891 /// #![feature(ip)]
892 /// use std::net::Ipv4Addr;
893 ///
894 /// assert_eq!(Ipv4Addr::new(198, 17, 255, 255).is_benchmarking(), false);
895 /// assert_eq!(Ipv4Addr::new(198, 18, 0, 0).is_benchmarking(), true);
896 /// assert_eq!(Ipv4Addr::new(198, 19, 255, 255).is_benchmarking(), true);
897 /// assert_eq!(Ipv4Addr::new(198, 20, 0, 0).is_benchmarking(), false);
898 /// ```
899 #[unstable(feature = "ip", issue = "27709")]
900 #[must_use]
901 #[inline]
902 pub const fn is_benchmarking(&self) -> bool {
903 self.octets()[0] == 198 && (self.octets()[1] & 0xfe) == 18
904 }
905
906 /// Returns [`true`] if this address is reserved by IANA for future use.
907 ///
908 /// [IETF RFC 1112] defines the block of reserved addresses as `240.0.0.0/4`.
909 /// This range normally includes the broadcast address `255.255.255.255`, but
910 /// this implementation explicitly excludes it, since it is obviously not
911 /// reserved for future use.
912 ///
913 /// [IETF RFC 1112]: https://tools.ietf.org/html/rfc1112
914 ///
915 /// # Warning
916 ///
917 /// As IANA assigns new addresses, this method will be
918 /// updated. This may result in non-reserved addresses being
919 /// treated as reserved in code that relies on an outdated version
920 /// of this method.
921 ///
922 /// # Examples
923 ///
924 /// ```
925 /// #![feature(ip)]
926 /// use std::net::Ipv4Addr;
927 ///
928 /// assert_eq!(Ipv4Addr::new(240, 0, 0, 0).is_reserved(), true);
929 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 254).is_reserved(), true);
930 ///
931 /// assert_eq!(Ipv4Addr::new(239, 255, 255, 255).is_reserved(), false);
932 /// // The broadcast address is not considered as reserved for future use by this implementation
933 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_reserved(), false);
934 /// ```
935 #[unstable(feature = "ip", issue = "27709")]
936 #[must_use]
937 #[inline]
938 pub const fn is_reserved(&self) -> bool {
939 self.octets()[0] & 240 == 240 && !self.is_broadcast()
940 }
941
942 /// Returns [`true`] if this is a multicast address (`224.0.0.0/4`).
943 ///
944 /// Multicast addresses have a most significant octet between `224` and `239`,
945 /// and is defined by [IETF RFC 5771].
946 ///
947 /// [IETF RFC 5771]: https://tools.ietf.org/html/rfc5771
948 ///
949 /// # Examples
950 ///
951 /// ```
952 /// use std::net::Ipv4Addr;
953 ///
954 /// assert_eq!(Ipv4Addr::new(224, 254, 0, 0).is_multicast(), true);
955 /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_multicast(), true);
956 /// assert_eq!(Ipv4Addr::new(172, 16, 10, 65).is_multicast(), false);
957 /// ```
958 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
959 #[stable(since = "1.7.0", feature = "ip_17")]
960 #[must_use]
961 #[inline]
962 pub const fn is_multicast(&self) -> bool {
963 self.octets()[0] >= 224 && self.octets()[0] <= 239
964 }
965
966 /// Returns [`true`] if this is a broadcast address (`255.255.255.255`).
967 ///
968 /// A broadcast address has all octets set to `255` as defined in [IETF RFC 919].
969 ///
970 /// [IETF RFC 919]: https://tools.ietf.org/html/rfc919
971 ///
972 /// # Examples
973 ///
974 /// ```
975 /// use std::net::Ipv4Addr;
976 ///
977 /// assert_eq!(Ipv4Addr::new(255, 255, 255, 255).is_broadcast(), true);
978 /// assert_eq!(Ipv4Addr::new(236, 168, 10, 65).is_broadcast(), false);
979 /// ```
980 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
981 #[stable(since = "1.7.0", feature = "ip_17")]
982 #[must_use]
983 #[inline]
984 pub const fn is_broadcast(&self) -> bool {
985 u32::from_be_bytes(self.octets()) == u32::from_be_bytes(Self::BROADCAST.octets())
986 }
987
988 /// Returns [`true`] if this address is in a range designated for documentation.
989 ///
990 /// This is defined in [IETF RFC 5737]:
991 ///
992 /// - `192.0.2.0/24` (TEST-NET-1)
993 /// - `198.51.100.0/24` (TEST-NET-2)
994 /// - `203.0.113.0/24` (TEST-NET-3)
995 ///
996 /// [IETF RFC 5737]: https://tools.ietf.org/html/rfc5737
997 ///
998 /// # Examples
999 ///
1000 /// ```
1001 /// use std::net::Ipv4Addr;
1002 ///
1003 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).is_documentation(), true);
1004 /// assert_eq!(Ipv4Addr::new(198, 51, 100, 65).is_documentation(), true);
1005 /// assert_eq!(Ipv4Addr::new(203, 0, 113, 6).is_documentation(), true);
1006 /// assert_eq!(Ipv4Addr::new(193, 34, 17, 19).is_documentation(), false);
1007 /// ```
1008 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1009 #[stable(since = "1.7.0", feature = "ip_17")]
1010 #[must_use]
1011 #[inline]
1012 pub const fn is_documentation(&self) -> bool {
1013 matches!(self.octets(), [192, 0, 2, _] | [198, 51, 100, _] | [203, 0, 113, _])
1014 }
1015
1016 /// Converts this address to an [IPv4-compatible] [`IPv6` address].
1017 ///
1018 /// `a.b.c.d` becomes `::a.b.c.d`
1019 ///
1020 /// Note that IPv4-compatible addresses have been officially deprecated.
1021 /// If you don't explicitly need an IPv4-compatible address for legacy reasons, consider using `to_ipv6_mapped` instead.
1022 ///
1023 /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1024 /// [`IPv6` address]: Ipv6Addr
1025 ///
1026 /// # Examples
1027 ///
1028 /// ```
1029 /// use std::net::{Ipv4Addr, Ipv6Addr};
1030 ///
1031 /// assert_eq!(
1032 /// Ipv4Addr::new(192, 0, 2, 255).to_ipv6_compatible(),
1033 /// Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0xc000, 0x2ff)
1034 /// );
1035 /// ```
1036 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1037 #[stable(feature = "rust1", since = "1.0.0")]
1038 #[must_use = "this returns the result of the operation, \
1039 without modifying the original"]
1040 #[inline]
1041 pub const fn to_ipv6_compatible(&self) -> Ipv6Addr {
1042 let [a, b, c, d] = self.octets();
1043 Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, a, b, c, d] }
1044 }
1045
1046 /// Converts this address to an [IPv4-mapped] [`IPv6` address].
1047 ///
1048 /// `a.b.c.d` becomes `::ffff:a.b.c.d`
1049 ///
1050 /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1051 /// [`IPv6` address]: Ipv6Addr
1052 ///
1053 /// # Examples
1054 ///
1055 /// ```
1056 /// use std::net::{Ipv4Addr, Ipv6Addr};
1057 ///
1058 /// assert_eq!(Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped(),
1059 /// Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff));
1060 /// ```
1061 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1062 #[stable(feature = "rust1", since = "1.0.0")]
1063 #[must_use = "this returns the result of the operation, \
1064 without modifying the original"]
1065 #[inline]
1066 pub const fn to_ipv6_mapped(&self) -> Ipv6Addr {
1067 let [a, b, c, d] = self.octets();
1068 Ipv6Addr { octets: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xFF, 0xFF, a, b, c, d] }
1069 }
1070}
1071
1072#[stable(feature = "ip_addr", since = "1.7.0")]
1073impl fmt::Display for IpAddr {
1074 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1075 match self {
1076 IpAddr::V4(ip) => ip.fmt(fmt),
1077 IpAddr::V6(ip) => ip.fmt(fmt),
1078 }
1079 }
1080}
1081
1082#[stable(feature = "ip_addr", since = "1.7.0")]
1083impl fmt::Debug for IpAddr {
1084 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1085 fmt::Display::fmt(self, fmt)
1086 }
1087}
1088
1089#[stable(feature = "ip_from_ip", since = "1.16.0")]
1090#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1091impl const From<Ipv4Addr> for IpAddr {
1092 /// Copies this address to a new `IpAddr::V4`.
1093 ///
1094 /// # Examples
1095 ///
1096 /// ```
1097 /// use std::net::{IpAddr, Ipv4Addr};
1098 ///
1099 /// let addr = Ipv4Addr::new(127, 0, 0, 1);
1100 ///
1101 /// assert_eq!(
1102 /// IpAddr::V4(addr),
1103 /// IpAddr::from(addr)
1104 /// )
1105 /// ```
1106 #[inline]
1107 fn from(ipv4: Ipv4Addr) -> IpAddr {
1108 IpAddr::V4(ipv4)
1109 }
1110}
1111
1112#[stable(feature = "ip_from_ip", since = "1.16.0")]
1113#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1114impl const From<Ipv6Addr> for IpAddr {
1115 /// Copies this address to a new `IpAddr::V6`.
1116 ///
1117 /// # Examples
1118 ///
1119 /// ```
1120 /// use std::net::{IpAddr, Ipv6Addr};
1121 ///
1122 /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1123 ///
1124 /// assert_eq!(
1125 /// IpAddr::V6(addr),
1126 /// IpAddr::from(addr)
1127 /// );
1128 /// ```
1129 #[inline]
1130 fn from(ipv6: Ipv6Addr) -> IpAddr {
1131 IpAddr::V6(ipv6)
1132 }
1133}
1134
1135#[stable(feature = "rust1", since = "1.0.0")]
1136impl fmt::Display for Ipv4Addr {
1137 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1138 let octets = self.octets();
1139
1140 // If there are no alignment requirements, write the IP address directly to `f`.
1141 // Otherwise, write it to a local buffer and then use `f.pad`.
1142 if fmt.precision().is_none() && fmt.width().is_none() {
1143 write!(fmt, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3])
1144 } else {
1145 const LONGEST_IPV4_ADDR: &str = "255.255.255.255";
1146
1147 let mut buf = DisplayBuffer::<{ LONGEST_IPV4_ADDR.len() }>::new();
1148 // Buffer is long enough for the longest possible IPv4 address, so this should never fail.
1149 write!(buf, "{}.{}.{}.{}", octets[0], octets[1], octets[2], octets[3]).unwrap();
1150
1151 fmt.pad(buf.as_str())
1152 }
1153 }
1154}
1155
1156#[stable(feature = "rust1", since = "1.0.0")]
1157impl fmt::Debug for Ipv4Addr {
1158 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
1159 fmt::Display::fmt(self, fmt)
1160 }
1161}
1162
1163#[stable(feature = "ip_cmp", since = "1.16.0")]
1164impl PartialEq<Ipv4Addr> for IpAddr {
1165 #[inline]
1166 fn eq(&self, other: &Ipv4Addr) -> bool {
1167 match self {
1168 IpAddr::V4(v4) => v4 == other,
1169 IpAddr::V6(_) => false,
1170 }
1171 }
1172}
1173
1174#[stable(feature = "ip_cmp", since = "1.16.0")]
1175impl PartialEq<IpAddr> for Ipv4Addr {
1176 #[inline]
1177 fn eq(&self, other: &IpAddr) -> bool {
1178 match other {
1179 IpAddr::V4(v4) => self == v4,
1180 IpAddr::V6(_) => false,
1181 }
1182 }
1183}
1184
1185#[stable(feature = "rust1", since = "1.0.0")]
1186impl PartialOrd for Ipv4Addr {
1187 #[inline]
1188 fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1189 Some(self.cmp(other))
1190 }
1191}
1192
1193#[stable(feature = "ip_cmp", since = "1.16.0")]
1194impl PartialOrd<Ipv4Addr> for IpAddr {
1195 #[inline]
1196 fn partial_cmp(&self, other: &Ipv4Addr) -> Option<Ordering> {
1197 match self {
1198 IpAddr::V4(v4) => v4.partial_cmp(other),
1199 IpAddr::V6(_) => Some(Ordering::Greater),
1200 }
1201 }
1202}
1203
1204#[stable(feature = "ip_cmp", since = "1.16.0")]
1205impl PartialOrd<IpAddr> for Ipv4Addr {
1206 #[inline]
1207 fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
1208 match other {
1209 IpAddr::V4(v4) => self.partial_cmp(v4),
1210 IpAddr::V6(_) => Some(Ordering::Less),
1211 }
1212 }
1213}
1214
1215#[stable(feature = "rust1", since = "1.0.0")]
1216impl Ord for Ipv4Addr {
1217 #[inline]
1218 fn cmp(&self, other: &Ipv4Addr) -> Ordering {
1219 self.octets.cmp(&other.octets)
1220 }
1221}
1222
1223#[stable(feature = "ip_u32", since = "1.1.0")]
1224#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1225impl const From<Ipv4Addr> for u32 {
1226 /// Uses [`Ipv4Addr::to_bits`] to convert an IPv4 address to a host byte order `u32`.
1227 #[inline]
1228 fn from(ip: Ipv4Addr) -> u32 {
1229 ip.to_bits()
1230 }
1231}
1232
1233#[stable(feature = "ip_u32", since = "1.1.0")]
1234#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1235impl const From<u32> for Ipv4Addr {
1236 /// Uses [`Ipv4Addr::from_bits`] to convert a host byte order `u32` into an IPv4 address.
1237 #[inline]
1238 fn from(ip: u32) -> Ipv4Addr {
1239 Ipv4Addr::from_bits(ip)
1240 }
1241}
1242
1243#[stable(feature = "from_slice_v4", since = "1.9.0")]
1244#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1245impl const From<[u8; 4]> for Ipv4Addr {
1246 /// Creates an `Ipv4Addr` from a four element byte array.
1247 ///
1248 /// # Examples
1249 ///
1250 /// ```
1251 /// use std::net::Ipv4Addr;
1252 ///
1253 /// let addr = Ipv4Addr::from([13u8, 12u8, 11u8, 10u8]);
1254 /// assert_eq!(Ipv4Addr::new(13, 12, 11, 10), addr);
1255 /// ```
1256 #[inline]
1257 fn from(octets: [u8; 4]) -> Ipv4Addr {
1258 Ipv4Addr { octets }
1259 }
1260}
1261
1262#[stable(feature = "ip_from_slice", since = "1.17.0")]
1263#[rustc_const_unstable(feature = "const_try", issue = "74935")]
1264impl const From<[u8; 4]> for IpAddr {
1265 /// Creates an `IpAddr::V4` from a four element byte array.
1266 ///
1267 /// # Examples
1268 ///
1269 /// ```
1270 /// use std::net::{IpAddr, Ipv4Addr};
1271 ///
1272 /// let addr = IpAddr::from([13u8, 12u8, 11u8, 10u8]);
1273 /// assert_eq!(IpAddr::V4(Ipv4Addr::new(13, 12, 11, 10)), addr);
1274 /// ```
1275 #[inline]
1276 fn from(octets: [u8; 4]) -> IpAddr {
1277 IpAddr::V4(Ipv4Addr::from(octets))
1278 }
1279}
1280
1281impl Ipv6Addr {
1282 /// Creates a new IPv6 address from eight 16-bit segments.
1283 ///
1284 /// The result will represent the IP address `a:b:c:d:e:f:g:h`.
1285 ///
1286 /// # Examples
1287 ///
1288 /// ```
1289 /// use std::net::Ipv6Addr;
1290 ///
1291 /// let addr = Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff);
1292 /// ```
1293 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
1294 #[stable(feature = "rust1", since = "1.0.0")]
1295 #[must_use]
1296 #[inline]
1297 pub const fn new(a: u16, b: u16, c: u16, d: u16, e: u16, f: u16, g: u16, h: u16) -> Ipv6Addr {
1298 let addr16 = [
1299 a.to_be(),
1300 b.to_be(),
1301 c.to_be(),
1302 d.to_be(),
1303 e.to_be(),
1304 f.to_be(),
1305 g.to_be(),
1306 h.to_be(),
1307 ];
1308 Ipv6Addr {
1309 // All elements in `addr16` are big endian.
1310 // SAFETY: `[u16; 8]` is always safe to transmute to `[u8; 16]`.
1311 octets: unsafe { transmute::<_, [u8; 16]>(addr16) },
1312 }
1313 }
1314
1315 /// The size of an IPv6 address in bits.
1316 ///
1317 /// # Examples
1318 ///
1319 /// ```
1320 /// use std::net::Ipv6Addr;
1321 ///
1322 /// assert_eq!(Ipv6Addr::BITS, 128);
1323 /// ```
1324 #[stable(feature = "ip_bits", since = "1.80.0")]
1325 pub const BITS: u32 = 128;
1326
1327 /// Converts an IPv6 address into a `u128` representation using native byte order.
1328 ///
1329 /// Although IPv6 addresses are big-endian, the `u128` value will use the target platform's
1330 /// native byte order. That is, the `u128` value is an integer representation of the IPv6
1331 /// address and not an integer interpretation of the IPv6 address's big-endian bitstring. This
1332 /// means that the `u128` value masked with `0xffffffffffffffffffffffffffff0000_u128` will set
1333 /// the last segment in the address to 0, regardless of the target platform's endianness.
1334 ///
1335 /// # Examples
1336 ///
1337 /// ```
1338 /// use std::net::Ipv6Addr;
1339 ///
1340 /// let addr = Ipv6Addr::new(
1341 /// 0x1020, 0x3040, 0x5060, 0x7080,
1342 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1343 /// );
1344 /// assert_eq!(0x102030405060708090A0B0C0D0E0F00D_u128, addr.to_bits());
1345 /// ```
1346 ///
1347 /// ```
1348 /// use std::net::Ipv6Addr;
1349 ///
1350 /// let addr = Ipv6Addr::new(
1351 /// 0x1020, 0x3040, 0x5060, 0x7080,
1352 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1353 /// );
1354 /// let addr_bits = addr.to_bits() & 0xffffffffffffffffffffffffffff0000_u128;
1355 /// assert_eq!(
1356 /// Ipv6Addr::new(
1357 /// 0x1020, 0x3040, 0x5060, 0x7080,
1358 /// 0x90A0, 0xB0C0, 0xD0E0, 0x0000,
1359 /// ),
1360 /// Ipv6Addr::from_bits(addr_bits));
1361 ///
1362 /// ```
1363 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
1364 #[stable(feature = "ip_bits", since = "1.80.0")]
1365 #[must_use]
1366 #[inline]
1367 pub const fn to_bits(self) -> u128 {
1368 u128::from_be_bytes(self.octets)
1369 }
1370
1371 /// Converts a native byte order `u128` into an IPv6 address.
1372 ///
1373 /// See [`Ipv6Addr::to_bits`] for an explanation on endianness.
1374 ///
1375 /// # Examples
1376 ///
1377 /// ```
1378 /// use std::net::Ipv6Addr;
1379 ///
1380 /// let addr = Ipv6Addr::from_bits(0x102030405060708090A0B0C0D0E0F00D_u128);
1381 /// assert_eq!(
1382 /// Ipv6Addr::new(
1383 /// 0x1020, 0x3040, 0x5060, 0x7080,
1384 /// 0x90A0, 0xB0C0, 0xD0E0, 0xF00D,
1385 /// ),
1386 /// addr);
1387 /// ```
1388 #[rustc_const_stable(feature = "ip_bits", since = "1.80.0")]
1389 #[stable(feature = "ip_bits", since = "1.80.0")]
1390 #[must_use]
1391 #[inline]
1392 pub const fn from_bits(bits: u128) -> Ipv6Addr {
1393 Ipv6Addr { octets: bits.to_be_bytes() }
1394 }
1395
1396 /// An IPv6 address representing localhost: `::1`.
1397 ///
1398 /// This corresponds to constant `IN6ADDR_LOOPBACK_INIT` or `in6addr_loopback` in other
1399 /// languages.
1400 ///
1401 /// # Examples
1402 ///
1403 /// ```
1404 /// use std::net::Ipv6Addr;
1405 ///
1406 /// let addr = Ipv6Addr::LOCALHOST;
1407 /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1));
1408 /// ```
1409 #[doc(alias = "IN6ADDR_LOOPBACK_INIT")]
1410 #[doc(alias = "in6addr_loopback")]
1411 #[stable(feature = "ip_constructors", since = "1.30.0")]
1412 pub const LOCALHOST: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1);
1413
1414 /// An IPv6 address representing the unspecified address: `::`.
1415 ///
1416 /// This corresponds to constant `IN6ADDR_ANY_INIT` or `in6addr_any` in other languages.
1417 ///
1418 /// # Examples
1419 ///
1420 /// ```
1421 /// use std::net::Ipv6Addr;
1422 ///
1423 /// let addr = Ipv6Addr::UNSPECIFIED;
1424 /// assert_eq!(addr, Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0));
1425 /// ```
1426 #[doc(alias = "IN6ADDR_ANY_INIT")]
1427 #[doc(alias = "in6addr_any")]
1428 #[stable(feature = "ip_constructors", since = "1.30.0")]
1429 pub const UNSPECIFIED: Self = Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0);
1430
1431 /// Returns the eight 16-bit segments that make up this address.
1432 ///
1433 /// # Examples
1434 ///
1435 /// ```
1436 /// use std::net::Ipv6Addr;
1437 ///
1438 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).segments(),
1439 /// [0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff]);
1440 /// ```
1441 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1442 #[stable(feature = "rust1", since = "1.0.0")]
1443 #[must_use]
1444 #[inline]
1445 pub const fn segments(&self) -> [u16; 8] {
1446 // All elements in `self.octets` must be big endian.
1447 // SAFETY: `[u8; 16]` is always safe to transmute to `[u16; 8]`.
1448 let [a, b, c, d, e, f, g, h] = unsafe { transmute::<_, [u16; 8]>(self.octets) };
1449 // We want native endian u16
1450 [
1451 u16::from_be(a),
1452 u16::from_be(b),
1453 u16::from_be(c),
1454 u16::from_be(d),
1455 u16::from_be(e),
1456 u16::from_be(f),
1457 u16::from_be(g),
1458 u16::from_be(h),
1459 ]
1460 }
1461
1462 /// Creates an `Ipv6Addr` from an eight element 16-bit array.
1463 ///
1464 /// # Examples
1465 ///
1466 /// ```
1467 /// #![feature(ip_from)]
1468 /// use std::net::Ipv6Addr;
1469 ///
1470 /// let addr = Ipv6Addr::from_segments([
1471 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
1472 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
1473 /// ]);
1474 /// assert_eq!(
1475 /// Ipv6Addr::new(
1476 /// 0x20d, 0x20c, 0x20b, 0x20a,
1477 /// 0x209, 0x208, 0x207, 0x206,
1478 /// ),
1479 /// addr
1480 /// );
1481 /// ```
1482 #[unstable(feature = "ip_from", issue = "131360")]
1483 #[must_use]
1484 #[inline]
1485 pub const fn from_segments(segments: [u16; 8]) -> Ipv6Addr {
1486 let [a, b, c, d, e, f, g, h] = segments;
1487 Ipv6Addr::new(a, b, c, d, e, f, g, h)
1488 }
1489
1490 /// Returns [`true`] for the special 'unspecified' address (`::`).
1491 ///
1492 /// This property is defined in [IETF RFC 4291].
1493 ///
1494 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1495 ///
1496 /// # Examples
1497 ///
1498 /// ```
1499 /// use std::net::Ipv6Addr;
1500 ///
1501 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unspecified(), false);
1502 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0).is_unspecified(), true);
1503 /// ```
1504 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1505 #[stable(since = "1.7.0", feature = "ip_17")]
1506 #[must_use]
1507 #[inline]
1508 pub const fn is_unspecified(&self) -> bool {
1509 u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::UNSPECIFIED.octets())
1510 }
1511
1512 /// Returns [`true`] if this is the [loopback address] (`::1`),
1513 /// as defined in [IETF RFC 4291 section 2.5.3].
1514 ///
1515 /// Contrary to IPv4, in IPv6 there is only one loopback address.
1516 ///
1517 /// [loopback address]: Ipv6Addr::LOCALHOST
1518 /// [IETF RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1519 ///
1520 /// # Examples
1521 ///
1522 /// ```
1523 /// use std::net::Ipv6Addr;
1524 ///
1525 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_loopback(), false);
1526 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 0x1).is_loopback(), true);
1527 /// ```
1528 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1529 #[stable(since = "1.7.0", feature = "ip_17")]
1530 #[must_use]
1531 #[inline]
1532 pub const fn is_loopback(&self) -> bool {
1533 u128::from_be_bytes(self.octets()) == u128::from_be_bytes(Ipv6Addr::LOCALHOST.octets())
1534 }
1535
1536 /// Returns [`true`] if the address appears to be globally reachable
1537 /// as specified by the [IANA IPv6 Special-Purpose Address Registry].
1538 ///
1539 /// Whether or not an address is practically reachable will depend on your
1540 /// network configuration. Most IPv6 addresses are globally reachable, unless
1541 /// they are specifically defined as *not* globally reachable.
1542 ///
1543 /// Non-exhaustive list of notable addresses that are not globally reachable:
1544 /// - The [unspecified address] ([`is_unspecified`](Ipv6Addr::is_unspecified))
1545 /// - The [loopback address] ([`is_loopback`](Ipv6Addr::is_loopback))
1546 /// - IPv4-mapped addresses
1547 /// - Addresses reserved for benchmarking ([`is_benchmarking`](Ipv6Addr::is_benchmarking))
1548 /// - Addresses reserved for documentation ([`is_documentation`](Ipv6Addr::is_documentation))
1549 /// - Unique local addresses ([`is_unique_local`](Ipv6Addr::is_unique_local))
1550 /// - Unicast addresses with link-local scope ([`is_unicast_link_local`](Ipv6Addr::is_unicast_link_local))
1551 ///
1552 /// For the complete overview of which addresses are globally reachable, see the table at the [IANA IPv6 Special-Purpose Address Registry].
1553 ///
1554 /// Note that an address having global scope is not the same as being globally reachable,
1555 /// and there is no direct relation between the two concepts: There exist addresses with global scope
1556 /// that are not globally reachable (for example unique local addresses),
1557 /// and addresses that are globally reachable without having global scope
1558 /// (multicast addresses with non-global scope).
1559 ///
1560 /// [IANA IPv6 Special-Purpose Address Registry]: https://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
1561 /// [unspecified address]: Ipv6Addr::UNSPECIFIED
1562 /// [loopback address]: Ipv6Addr::LOCALHOST
1563 ///
1564 /// # Examples
1565 ///
1566 /// ```
1567 /// #![feature(ip)]
1568 ///
1569 /// use std::net::Ipv6Addr;
1570 ///
1571 /// // Most IPv6 addresses are globally reachable:
1572 /// assert_eq!(Ipv6Addr::new(0x26, 0, 0x1c9, 0, 0, 0xafc8, 0x10, 0x1).is_global(), true);
1573 ///
1574 /// // However some addresses have been assigned a special meaning
1575 /// // that makes them not globally reachable. Some examples are:
1576 ///
1577 /// // The unspecified address (`::`)
1578 /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_global(), false);
1579 ///
1580 /// // The loopback address (`::1`)
1581 /// assert_eq!(Ipv6Addr::LOCALHOST.is_global(), false);
1582 ///
1583 /// // IPv4-mapped addresses (`::ffff:0:0/96`)
1584 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_global(), false);
1585 ///
1586 /// // Addresses reserved for benchmarking (`2001:2::/48`)
1587 /// assert_eq!(Ipv6Addr::new(0x2001, 2, 0, 0, 0, 0, 0, 1,).is_global(), false);
1588 ///
1589 /// // Addresses reserved for documentation (`2001:db8::/32` and `3fff::/20`)
1590 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 1).is_global(), false);
1591 /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_global(), false);
1592 ///
1593 /// // Unique local addresses (`fc00::/7`)
1594 /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1595 ///
1596 /// // Unicast addresses with link-local scope (`fe80::/10`)
1597 /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 1).is_global(), false);
1598 ///
1599 /// // For a complete overview see the IANA IPv6 Special-Purpose Address Registry.
1600 /// ```
1601 #[unstable(feature = "ip", issue = "27709")]
1602 #[must_use]
1603 #[inline]
1604 pub const fn is_global(&self) -> bool {
1605 !(self.is_unspecified()
1606 || self.is_loopback()
1607 // IPv4-mapped Address (`::ffff:0:0/96`)
1608 || matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1609 // IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
1610 || matches!(self.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
1611 // Discard-Only Address Block (`100::/64`)
1612 || matches!(self.segments(), [0x100, 0, 0, 0, _, _, _, _])
1613 // IETF Protocol Assignments (`2001::/23`)
1614 || (matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
1615 && !(
1616 // Port Control Protocol Anycast (`2001:1::1`)
1617 u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
1618 // Traversal Using Relays around NAT Anycast (`2001:1::2`)
1619 || u128::from_be_bytes(self.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
1620 // AMT (`2001:3::/32`)
1621 || matches!(self.segments(), [0x2001, 3, _, _, _, _, _, _])
1622 // AS112-v6 (`2001:4:112::/48`)
1623 || matches!(self.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
1624 // ORCHIDv2 (`2001:20::/28`)
1625 // Drone Remote ID Protocol Entity Tags (DETs) Prefix (`2001:30::/28`)`
1626 || matches!(self.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x3F)
1627 ))
1628 // 6to4 (`2002::/16`) – it's not explicitly documented as globally reachable,
1629 // IANA says N/A.
1630 || matches!(self.segments(), [0x2002, _, _, _, _, _, _, _])
1631 || self.is_documentation()
1632 // Segment Routing (SRv6) SIDs (`5f00::/16`)
1633 || matches!(self.segments(), [0x5f00, ..])
1634 || self.is_unique_local()
1635 || self.is_unicast_link_local())
1636 }
1637
1638 /// Returns [`true`] if this is a unique local address (`fc00::/7`).
1639 ///
1640 /// This property is defined in [IETF RFC 4193].
1641 ///
1642 /// [IETF RFC 4193]: https://tools.ietf.org/html/rfc4193
1643 ///
1644 /// # Examples
1645 ///
1646 /// ```
1647 /// use std::net::Ipv6Addr;
1648 ///
1649 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unique_local(), false);
1650 /// assert_eq!(Ipv6Addr::new(0xfc02, 0, 0, 0, 0, 0, 0, 0).is_unique_local(), true);
1651 /// ```
1652 #[must_use]
1653 #[inline]
1654 #[stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1655 #[rustc_const_stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1656 pub const fn is_unique_local(&self) -> bool {
1657 (self.segments()[0] & 0xfe00) == 0xfc00
1658 }
1659
1660 /// Returns [`true`] if this is a unicast address, as defined by [IETF RFC 4291].
1661 /// Any address that is not a [multicast address] (`ff00::/8`) is unicast.
1662 ///
1663 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1664 /// [multicast address]: Ipv6Addr::is_multicast
1665 ///
1666 /// # Examples
1667 ///
1668 /// ```
1669 /// #![feature(ip)]
1670 ///
1671 /// use std::net::Ipv6Addr;
1672 ///
1673 /// // The unspecified and loopback addresses are unicast.
1674 /// assert_eq!(Ipv6Addr::UNSPECIFIED.is_unicast(), true);
1675 /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast(), true);
1676 ///
1677 /// // Any address that is not a multicast address (`ff00::/8`) is unicast.
1678 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast(), true);
1679 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_unicast(), false);
1680 /// ```
1681 #[unstable(feature = "ip", issue = "27709")]
1682 #[must_use]
1683 #[inline]
1684 pub const fn is_unicast(&self) -> bool {
1685 !self.is_multicast()
1686 }
1687
1688 /// Returns `true` if the address is a unicast address with link-local scope,
1689 /// as defined in [RFC 4291].
1690 ///
1691 /// A unicast address has link-local scope if it has the prefix `fe80::/10`, as per [RFC 4291 section 2.4].
1692 /// Note that this encompasses more addresses than those defined in [RFC 4291 section 2.5.6],
1693 /// which describes "Link-Local IPv6 Unicast Addresses" as having the following stricter format:
1694 ///
1695 /// ```text
1696 /// | 10 bits | 54 bits | 64 bits |
1697 /// +----------+-------------------------+----------------------------+
1698 /// |1111111010| 0 | interface ID |
1699 /// +----------+-------------------------+----------------------------+
1700 /// ```
1701 /// So while currently the only addresses with link-local scope an application will encounter are all in `fe80::/64`,
1702 /// this might change in the future with the publication of new standards. More addresses in `fe80::/10` could be allocated,
1703 /// and those addresses will have link-local scope.
1704 ///
1705 /// Also note that while [RFC 4291 section 2.5.3] mentions about the [loopback address] (`::1`) that "it is treated as having Link-Local scope",
1706 /// this does not mean that the loopback address actually has link-local scope and this method will return `false` on it.
1707 ///
1708 /// [RFC 4291]: https://tools.ietf.org/html/rfc4291
1709 /// [RFC 4291 section 2.4]: https://tools.ietf.org/html/rfc4291#section-2.4
1710 /// [RFC 4291 section 2.5.3]: https://tools.ietf.org/html/rfc4291#section-2.5.3
1711 /// [RFC 4291 section 2.5.6]: https://tools.ietf.org/html/rfc4291#section-2.5.6
1712 /// [loopback address]: Ipv6Addr::LOCALHOST
1713 ///
1714 /// # Examples
1715 ///
1716 /// ```
1717 /// use std::net::Ipv6Addr;
1718 ///
1719 /// // The loopback address (`::1`) does not actually have link-local scope.
1720 /// assert_eq!(Ipv6Addr::LOCALHOST.is_unicast_link_local(), false);
1721 ///
1722 /// // Only addresses in `fe80::/10` have link-local scope.
1723 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), false);
1724 /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1725 ///
1726 /// // Addresses outside the stricter `fe80::/64` also have link-local scope.
1727 /// assert_eq!(Ipv6Addr::new(0xfe80, 0, 0, 1, 0, 0, 0, 0).is_unicast_link_local(), true);
1728 /// assert_eq!(Ipv6Addr::new(0xfe81, 0, 0, 0, 0, 0, 0, 0).is_unicast_link_local(), true);
1729 /// ```
1730 #[must_use]
1731 #[inline]
1732 #[stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1733 #[rustc_const_stable(feature = "ipv6_is_unique_local", since = "1.84.0")]
1734 pub const fn is_unicast_link_local(&self) -> bool {
1735 (self.segments()[0] & 0xffc0) == 0xfe80
1736 }
1737
1738 /// Returns [`true`] if this is an address reserved for documentation
1739 /// (`2001:db8::/32` and `3fff::/20`).
1740 ///
1741 /// This property is defined by [IETF RFC 3849] and [IETF RFC 9637].
1742 ///
1743 /// [IETF RFC 3849]: https://tools.ietf.org/html/rfc3849
1744 /// [IETF RFC 9637]: https://tools.ietf.org/html/rfc9637
1745 ///
1746 /// # Examples
1747 ///
1748 /// ```
1749 /// #![feature(ip)]
1750 ///
1751 /// use std::net::Ipv6Addr;
1752 ///
1753 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_documentation(), false);
1754 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1755 /// assert_eq!(Ipv6Addr::new(0x3fff, 0, 0, 0, 0, 0, 0, 0).is_documentation(), true);
1756 /// ```
1757 #[unstable(feature = "ip", issue = "27709")]
1758 #[must_use]
1759 #[inline]
1760 pub const fn is_documentation(&self) -> bool {
1761 matches!(self.segments(), [0x2001, 0xdb8, ..] | [0x3fff, 0..=0x0fff, ..])
1762 }
1763
1764 /// Returns [`true`] if this is an address reserved for benchmarking (`2001:2::/48`).
1765 ///
1766 /// This property is defined in [IETF RFC 5180], where it is mistakenly specified as covering the range `2001:0200::/48`.
1767 /// This is corrected in [IETF RFC Errata 1752] to `2001:0002::/48`.
1768 ///
1769 /// [IETF RFC 5180]: https://tools.ietf.org/html/rfc5180
1770 /// [IETF RFC Errata 1752]: https://www.rfc-editor.org/errata_search.php?eid=1752
1771 ///
1772 /// ```
1773 /// #![feature(ip)]
1774 ///
1775 /// use std::net::Ipv6Addr;
1776 ///
1777 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc613, 0x0).is_benchmarking(), false);
1778 /// assert_eq!(Ipv6Addr::new(0x2001, 0x2, 0, 0, 0, 0, 0, 0).is_benchmarking(), true);
1779 /// ```
1780 #[unstable(feature = "ip", issue = "27709")]
1781 #[must_use]
1782 #[inline]
1783 pub const fn is_benchmarking(&self) -> bool {
1784 (self.segments()[0] == 0x2001) && (self.segments()[1] == 0x2) && (self.segments()[2] == 0)
1785 }
1786
1787 /// Returns [`true`] if the address is a globally routable unicast address.
1788 ///
1789 /// The following return false:
1790 ///
1791 /// - the loopback address
1792 /// - the link-local addresses
1793 /// - unique local addresses
1794 /// - the unspecified address
1795 /// - the address range reserved for documentation
1796 ///
1797 /// This method returns [`true`] for site-local addresses as per [RFC 4291 section 2.5.7]
1798 ///
1799 /// ```no_rust
1800 /// The special behavior of [the site-local unicast] prefix defined in [RFC3513] must no longer
1801 /// be supported in new implementations (i.e., new implementations must treat this prefix as
1802 /// Global Unicast).
1803 /// ```
1804 ///
1805 /// [RFC 4291 section 2.5.7]: https://tools.ietf.org/html/rfc4291#section-2.5.7
1806 ///
1807 /// # Examples
1808 ///
1809 /// ```
1810 /// #![feature(ip)]
1811 ///
1812 /// use std::net::Ipv6Addr;
1813 ///
1814 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_unicast_global(), false);
1815 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_unicast_global(), true);
1816 /// ```
1817 #[unstable(feature = "ip", issue = "27709")]
1818 #[must_use]
1819 #[inline]
1820 pub const fn is_unicast_global(&self) -> bool {
1821 self.is_unicast()
1822 && !self.is_loopback()
1823 && !self.is_unicast_link_local()
1824 && !self.is_unique_local()
1825 && !self.is_unspecified()
1826 && !self.is_documentation()
1827 && !self.is_benchmarking()
1828 }
1829
1830 /// Returns the address's multicast scope if the address is multicast.
1831 ///
1832 /// # Examples
1833 ///
1834 /// ```
1835 /// #![feature(ip)]
1836 ///
1837 /// use std::net::{Ipv6Addr, Ipv6MulticastScope};
1838 ///
1839 /// assert_eq!(
1840 /// Ipv6Addr::new(0xff0e, 0, 0, 0, 0, 0, 0, 0).multicast_scope(),
1841 /// Some(Ipv6MulticastScope::Global)
1842 /// );
1843 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).multicast_scope(), None);
1844 /// ```
1845 #[unstable(feature = "ip", issue = "27709")]
1846 #[must_use]
1847 #[inline]
1848 pub const fn multicast_scope(&self) -> Option<Ipv6MulticastScope> {
1849 if self.is_multicast() {
1850 match self.segments()[0] & 0x000f {
1851 1 => Some(Ipv6MulticastScope::InterfaceLocal),
1852 2 => Some(Ipv6MulticastScope::LinkLocal),
1853 3 => Some(Ipv6MulticastScope::RealmLocal),
1854 4 => Some(Ipv6MulticastScope::AdminLocal),
1855 5 => Some(Ipv6MulticastScope::SiteLocal),
1856 8 => Some(Ipv6MulticastScope::OrganizationLocal),
1857 14 => Some(Ipv6MulticastScope::Global),
1858 _ => None,
1859 }
1860 } else {
1861 None
1862 }
1863 }
1864
1865 /// Returns [`true`] if this is a multicast address (`ff00::/8`).
1866 ///
1867 /// This property is defined by [IETF RFC 4291].
1868 ///
1869 /// [IETF RFC 4291]: https://tools.ietf.org/html/rfc4291
1870 ///
1871 /// # Examples
1872 ///
1873 /// ```
1874 /// use std::net::Ipv6Addr;
1875 ///
1876 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).is_multicast(), true);
1877 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).is_multicast(), false);
1878 /// ```
1879 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1880 #[stable(since = "1.7.0", feature = "ip_17")]
1881 #[must_use]
1882 #[inline]
1883 pub const fn is_multicast(&self) -> bool {
1884 (self.segments()[0] & 0xff00) == 0xff00
1885 }
1886
1887 /// Returns [`true`] if the address is an IPv4-mapped address (`::ffff:0:0/96`).
1888 ///
1889 /// IPv4-mapped addresses can be converted to their canonical IPv4 address with
1890 /// [`to_ipv4_mapped`](Ipv6Addr::to_ipv4_mapped).
1891 ///
1892 /// # Examples
1893 /// ```
1894 /// #![feature(ip)]
1895 ///
1896 /// use std::net::{Ipv4Addr, Ipv6Addr};
1897 ///
1898 /// let ipv4_mapped = Ipv4Addr::new(192, 0, 2, 255).to_ipv6_mapped();
1899 /// assert_eq!(ipv4_mapped.is_ipv4_mapped(), true);
1900 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc000, 0x2ff).is_ipv4_mapped(), true);
1901 ///
1902 /// assert_eq!(Ipv6Addr::new(0x2001, 0xdb8, 0, 0, 0, 0, 0, 0).is_ipv4_mapped(), false);
1903 /// ```
1904 #[unstable(feature = "ip", issue = "27709")]
1905 #[must_use]
1906 #[inline]
1907 pub const fn is_ipv4_mapped(&self) -> bool {
1908 matches!(self.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
1909 }
1910
1911 /// Converts this address to an [`IPv4` address] if it's an [IPv4-mapped] address,
1912 /// as defined in [IETF RFC 4291 section 2.5.5.2], otherwise returns [`None`].
1913 ///
1914 /// `::ffff:a.b.c.d` becomes `a.b.c.d`.
1915 /// All addresses *not* starting with `::ffff` will return `None`.
1916 ///
1917 /// [`IPv4` address]: Ipv4Addr
1918 /// [IPv4-mapped]: Ipv6Addr
1919 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1920 ///
1921 /// # Examples
1922 ///
1923 /// ```
1924 /// use std::net::{Ipv4Addr, Ipv6Addr};
1925 ///
1926 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4_mapped(), None);
1927 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4_mapped(),
1928 /// Some(Ipv4Addr::new(192, 10, 2, 255)));
1929 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4_mapped(), None);
1930 /// ```
1931 #[inline]
1932 #[must_use = "this returns the result of the operation, \
1933 without modifying the original"]
1934 #[stable(feature = "ipv6_to_ipv4_mapped", since = "1.63.0")]
1935 #[rustc_const_stable(feature = "const_ipv6_to_ipv4_mapped", since = "1.75.0")]
1936 pub const fn to_ipv4_mapped(&self) -> Option<Ipv4Addr> {
1937 match self.octets() {
1938 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff, a, b, c, d] => {
1939 Some(Ipv4Addr::new(a, b, c, d))
1940 }
1941 _ => None,
1942 }
1943 }
1944
1945 /// Converts this address to an [`IPv4` address] if it is either
1946 /// an [IPv4-compatible] address as defined in [IETF RFC 4291 section 2.5.5.1],
1947 /// or an [IPv4-mapped] address as defined in [IETF RFC 4291 section 2.5.5.2],
1948 /// otherwise returns [`None`].
1949 ///
1950 /// Note that this will return an [`IPv4` address] for the IPv6 loopback address `::1`. Use
1951 /// [`Ipv6Addr::to_ipv4_mapped`] to avoid this.
1952 ///
1953 /// `::a.b.c.d` and `::ffff:a.b.c.d` become `a.b.c.d`. `::1` becomes `0.0.0.1`.
1954 /// All addresses *not* starting with either all zeroes or `::ffff` will return `None`.
1955 ///
1956 /// [`IPv4` address]: Ipv4Addr
1957 /// [IPv4-compatible]: Ipv6Addr#ipv4-compatible-ipv6-addresses
1958 /// [IPv4-mapped]: Ipv6Addr#ipv4-mapped-ipv6-addresses
1959 /// [IETF RFC 4291 section 2.5.5.1]: https://tools.ietf.org/html/rfc4291#section-2.5.5.1
1960 /// [IETF RFC 4291 section 2.5.5.2]: https://tools.ietf.org/html/rfc4291#section-2.5.5.2
1961 ///
1962 /// # Examples
1963 ///
1964 /// ```
1965 /// use std::net::{Ipv4Addr, Ipv6Addr};
1966 ///
1967 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).to_ipv4(), None);
1968 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0xc00a, 0x2ff).to_ipv4(),
1969 /// Some(Ipv4Addr::new(192, 10, 2, 255)));
1970 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0, 0, 1).to_ipv4(),
1971 /// Some(Ipv4Addr::new(0, 0, 0, 1)));
1972 /// ```
1973 #[rustc_const_stable(feature = "const_ip_50", since = "1.50.0")]
1974 #[stable(feature = "rust1", since = "1.0.0")]
1975 #[must_use = "this returns the result of the operation, \
1976 without modifying the original"]
1977 #[inline]
1978 pub const fn to_ipv4(&self) -> Option<Ipv4Addr> {
1979 if let [0, 0, 0, 0, 0, 0 | 0xffff, ab, cd] = self.segments() {
1980 let [a, b] = ab.to_be_bytes();
1981 let [c, d] = cd.to_be_bytes();
1982 Some(Ipv4Addr::new(a, b, c, d))
1983 } else {
1984 None
1985 }
1986 }
1987
1988 /// Converts this address to an `IpAddr::V4` if it is an IPv4-mapped address,
1989 /// otherwise returns self wrapped in an `IpAddr::V6`.
1990 ///
1991 /// # Examples
1992 ///
1993 /// ```
1994 /// use std::net::Ipv6Addr;
1995 ///
1996 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).is_loopback(), false);
1997 /// assert_eq!(Ipv6Addr::new(0, 0, 0, 0, 0, 0xffff, 0x7f00, 0x1).to_canonical().is_loopback(), true);
1998 /// ```
1999 #[inline]
2000 #[must_use = "this returns the result of the operation, \
2001 without modifying the original"]
2002 #[stable(feature = "ip_to_canonical", since = "1.75.0")]
2003 #[rustc_const_stable(feature = "ip_to_canonical", since = "1.75.0")]
2004 pub const fn to_canonical(&self) -> IpAddr {
2005 if let Some(mapped) = self.to_ipv4_mapped() {
2006 return IpAddr::V4(mapped);
2007 }
2008 IpAddr::V6(*self)
2009 }
2010
2011 /// Returns the sixteen eight-bit integers the IPv6 address consists of.
2012 ///
2013 /// ```
2014 /// use std::net::Ipv6Addr;
2015 ///
2016 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).octets(),
2017 /// [0xff, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]);
2018 /// ```
2019 #[rustc_const_stable(feature = "const_ip_32", since = "1.32.0")]
2020 #[stable(feature = "ipv6_to_octets", since = "1.12.0")]
2021 #[must_use]
2022 #[inline]
2023 pub const fn octets(&self) -> [u8; 16] {
2024 self.octets
2025 }
2026
2027 /// Creates an `Ipv6Addr` from a sixteen element byte array.
2028 ///
2029 /// # Examples
2030 ///
2031 /// ```
2032 /// #![feature(ip_from)]
2033 /// use std::net::Ipv6Addr;
2034 ///
2035 /// let addr = Ipv6Addr::from_octets([
2036 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2037 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2038 /// ]);
2039 /// assert_eq!(
2040 /// Ipv6Addr::new(
2041 /// 0x1918, 0x1716, 0x1514, 0x1312,
2042 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2043 /// ),
2044 /// addr
2045 /// );
2046 /// ```
2047 #[unstable(feature = "ip_from", issue = "131360")]
2048 #[must_use]
2049 #[inline]
2050 pub const fn from_octets(octets: [u8; 16]) -> Ipv6Addr {
2051 Ipv6Addr { octets }
2052 }
2053
2054 /// Returns the sixteen eight-bit integers the IPv6 address consists of
2055 /// as a slice.
2056 ///
2057 /// # Examples
2058 ///
2059 /// ```
2060 /// #![feature(ip_as_octets)]
2061 ///
2062 /// use std::net::Ipv6Addr;
2063 ///
2064 /// assert_eq!(Ipv6Addr::new(0xff00, 0, 0, 0, 0, 0, 0, 0).as_octets(),
2065 /// &[255, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])
2066 /// ```
2067 #[unstable(feature = "ip_as_octets", issue = "137259")]
2068 #[inline]
2069 pub const fn as_octets(&self) -> &[u8; 16] {
2070 &self.octets
2071 }
2072}
2073
2074/// Writes an Ipv6Addr, conforming to the canonical style described by
2075/// [RFC 5952](https://tools.ietf.org/html/rfc5952).
2076#[stable(feature = "rust1", since = "1.0.0")]
2077impl fmt::Display for Ipv6Addr {
2078 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
2079 // If there are no alignment requirements, write the IP address directly to `f`.
2080 // Otherwise, write it to a local buffer and then use `f.pad`.
2081 if f.precision().is_none() && f.width().is_none() {
2082 let segments = self.segments();
2083
2084 if let Some(ipv4) = self.to_ipv4_mapped() {
2085 write!(f, "::ffff:{}", ipv4)
2086 } else {
2087 #[derive(Copy, Clone, Default)]
2088 struct Span {
2089 start: usize,
2090 len: usize,
2091 }
2092
2093 // Find the inner 0 span
2094 let zeroes = {
2095 let mut longest = Span::default();
2096 let mut current = Span::default();
2097
2098 for (i, &segment) in segments.iter().enumerate() {
2099 if segment == 0 {
2100 if current.len == 0 {
2101 current.start = i;
2102 }
2103
2104 current.len += 1;
2105
2106 if current.len > longest.len {
2107 longest = current;
2108 }
2109 } else {
2110 current = Span::default();
2111 }
2112 }
2113
2114 longest
2115 };
2116
2117 /// Writes a colon-separated part of the address.
2118 #[inline]
2119 fn fmt_subslice(f: &mut fmt::Formatter<'_>, chunk: &[u16]) -> fmt::Result {
2120 if let Some((first, tail)) = chunk.split_first() {
2121 write!(f, "{:x}", first)?;
2122 for segment in tail {
2123 f.write_char(':')?;
2124 write!(f, "{:x}", segment)?;
2125 }
2126 }
2127 Ok(())
2128 }
2129
2130 if zeroes.len > 1 {
2131 fmt_subslice(f, &segments[..zeroes.start])?;
2132 f.write_str("::")?;
2133 fmt_subslice(f, &segments[zeroes.start + zeroes.len..])
2134 } else {
2135 fmt_subslice(f, &segments)
2136 }
2137 }
2138 } else {
2139 const LONGEST_IPV6_ADDR: &str = "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff";
2140
2141 let mut buf = DisplayBuffer::<{ LONGEST_IPV6_ADDR.len() }>::new();
2142 // Buffer is long enough for the longest possible IPv6 address, so this should never fail.
2143 write!(buf, "{}", self).unwrap();
2144
2145 f.pad(buf.as_str())
2146 }
2147 }
2148}
2149
2150#[stable(feature = "rust1", since = "1.0.0")]
2151impl fmt::Debug for Ipv6Addr {
2152 fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
2153 fmt::Display::fmt(self, fmt)
2154 }
2155}
2156
2157#[stable(feature = "ip_cmp", since = "1.16.0")]
2158impl PartialEq<IpAddr> for Ipv6Addr {
2159 #[inline]
2160 fn eq(&self, other: &IpAddr) -> bool {
2161 match other {
2162 IpAddr::V4(_) => false,
2163 IpAddr::V6(v6) => self == v6,
2164 }
2165 }
2166}
2167
2168#[stable(feature = "ip_cmp", since = "1.16.0")]
2169impl PartialEq<Ipv6Addr> for IpAddr {
2170 #[inline]
2171 fn eq(&self, other: &Ipv6Addr) -> bool {
2172 match self {
2173 IpAddr::V4(_) => false,
2174 IpAddr::V6(v6) => v6 == other,
2175 }
2176 }
2177}
2178
2179#[stable(feature = "rust1", since = "1.0.0")]
2180impl PartialOrd for Ipv6Addr {
2181 #[inline]
2182 fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2183 Some(self.cmp(other))
2184 }
2185}
2186
2187#[stable(feature = "ip_cmp", since = "1.16.0")]
2188impl PartialOrd<Ipv6Addr> for IpAddr {
2189 #[inline]
2190 fn partial_cmp(&self, other: &Ipv6Addr) -> Option<Ordering> {
2191 match self {
2192 IpAddr::V4(_) => Some(Ordering::Less),
2193 IpAddr::V6(v6) => v6.partial_cmp(other),
2194 }
2195 }
2196}
2197
2198#[stable(feature = "ip_cmp", since = "1.16.0")]
2199impl PartialOrd<IpAddr> for Ipv6Addr {
2200 #[inline]
2201 fn partial_cmp(&self, other: &IpAddr) -> Option<Ordering> {
2202 match other {
2203 IpAddr::V4(_) => Some(Ordering::Greater),
2204 IpAddr::V6(v6) => self.partial_cmp(v6),
2205 }
2206 }
2207}
2208
2209#[stable(feature = "rust1", since = "1.0.0")]
2210impl Ord for Ipv6Addr {
2211 #[inline]
2212 fn cmp(&self, other: &Ipv6Addr) -> Ordering {
2213 self.segments().cmp(&other.segments())
2214 }
2215}
2216
2217#[stable(feature = "i128", since = "1.26.0")]
2218#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2219impl const From<Ipv6Addr> for u128 {
2220 /// Uses [`Ipv6Addr::to_bits`] to convert an IPv6 address to a host byte order `u128`.
2221 #[inline]
2222 fn from(ip: Ipv6Addr) -> u128 {
2223 ip.to_bits()
2224 }
2225}
2226#[stable(feature = "i128", since = "1.26.0")]
2227#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2228impl const From<u128> for Ipv6Addr {
2229 /// Uses [`Ipv6Addr::from_bits`] to convert a host byte order `u128` to an IPv6 address.
2230 #[inline]
2231 fn from(ip: u128) -> Ipv6Addr {
2232 Ipv6Addr::from_bits(ip)
2233 }
2234}
2235
2236#[stable(feature = "ipv6_from_octets", since = "1.9.0")]
2237#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2238impl const From<[u8; 16]> for Ipv6Addr {
2239 /// Creates an `Ipv6Addr` from a sixteen element byte array.
2240 ///
2241 /// # Examples
2242 ///
2243 /// ```
2244 /// use std::net::Ipv6Addr;
2245 ///
2246 /// let addr = Ipv6Addr::from([
2247 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2248 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2249 /// ]);
2250 /// assert_eq!(
2251 /// Ipv6Addr::new(
2252 /// 0x1918, 0x1716, 0x1514, 0x1312,
2253 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2254 /// ),
2255 /// addr
2256 /// );
2257 /// ```
2258 #[inline]
2259 fn from(octets: [u8; 16]) -> Ipv6Addr {
2260 Ipv6Addr { octets }
2261 }
2262}
2263
2264#[stable(feature = "ipv6_from_segments", since = "1.16.0")]
2265#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2266impl const From<[u16; 8]> for Ipv6Addr {
2267 /// Creates an `Ipv6Addr` from an eight element 16-bit array.
2268 ///
2269 /// # Examples
2270 ///
2271 /// ```
2272 /// use std::net::Ipv6Addr;
2273 ///
2274 /// let addr = Ipv6Addr::from([
2275 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
2276 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
2277 /// ]);
2278 /// assert_eq!(
2279 /// Ipv6Addr::new(
2280 /// 0x20d, 0x20c, 0x20b, 0x20a,
2281 /// 0x209, 0x208, 0x207, 0x206,
2282 /// ),
2283 /// addr
2284 /// );
2285 /// ```
2286 #[inline]
2287 fn from(segments: [u16; 8]) -> Ipv6Addr {
2288 let [a, b, c, d, e, f, g, h] = segments;
2289 Ipv6Addr::new(a, b, c, d, e, f, g, h)
2290 }
2291}
2292
2293#[stable(feature = "ip_from_slice", since = "1.17.0")]
2294#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2295impl const From<[u8; 16]> for IpAddr {
2296 /// Creates an `IpAddr::V6` from a sixteen element byte array.
2297 ///
2298 /// # Examples
2299 ///
2300 /// ```
2301 /// use std::net::{IpAddr, Ipv6Addr};
2302 ///
2303 /// let addr = IpAddr::from([
2304 /// 0x19u8, 0x18u8, 0x17u8, 0x16u8, 0x15u8, 0x14u8, 0x13u8, 0x12u8,
2305 /// 0x11u8, 0x10u8, 0x0fu8, 0x0eu8, 0x0du8, 0x0cu8, 0x0bu8, 0x0au8,
2306 /// ]);
2307 /// assert_eq!(
2308 /// IpAddr::V6(Ipv6Addr::new(
2309 /// 0x1918, 0x1716, 0x1514, 0x1312,
2310 /// 0x1110, 0x0f0e, 0x0d0c, 0x0b0a,
2311 /// )),
2312 /// addr
2313 /// );
2314 /// ```
2315 #[inline]
2316 fn from(octets: [u8; 16]) -> IpAddr {
2317 IpAddr::V6(Ipv6Addr::from(octets))
2318 }
2319}
2320
2321#[stable(feature = "ip_from_slice", since = "1.17.0")]
2322#[rustc_const_unstable(feature = "const_try", issue = "74935")]
2323impl const From<[u16; 8]> for IpAddr {
2324 /// Creates an `IpAddr::V6` from an eight element 16-bit array.
2325 ///
2326 /// # Examples
2327 ///
2328 /// ```
2329 /// use std::net::{IpAddr, Ipv6Addr};
2330 ///
2331 /// let addr = IpAddr::from([
2332 /// 0x20du16, 0x20cu16, 0x20bu16, 0x20au16,
2333 /// 0x209u16, 0x208u16, 0x207u16, 0x206u16,
2334 /// ]);
2335 /// assert_eq!(
2336 /// IpAddr::V6(Ipv6Addr::new(
2337 /// 0x20d, 0x20c, 0x20b, 0x20a,
2338 /// 0x209, 0x208, 0x207, 0x206,
2339 /// )),
2340 /// addr
2341 /// );
2342 /// ```
2343 #[inline]
2344 fn from(segments: [u16; 8]) -> IpAddr {
2345 IpAddr::V6(Ipv6Addr::from(segments))
2346 }
2347}
2348
2349#[stable(feature = "ip_bitops", since = "1.75.0")]
2350#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
2351impl const Not for Ipv4Addr {
2352 type Output = Ipv4Addr;
2353
2354 #[inline]
2355 fn not(mut self) -> Ipv4Addr {
2356 let mut idx = 0;
2357 while idx < 4 {
2358 self.octets[idx] = !self.octets[idx];
2359 idx += 1;
2360 }
2361 self
2362 }
2363}
2364
2365#[stable(feature = "ip_bitops", since = "1.75.0")]
2366#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
2367impl const Not for &'_ Ipv4Addr {
2368 type Output = Ipv4Addr;
2369
2370 #[inline]
2371 fn not(self) -> Ipv4Addr {
2372 !*self
2373 }
2374}
2375
2376#[stable(feature = "ip_bitops", since = "1.75.0")]
2377#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
2378impl const Not for Ipv6Addr {
2379 type Output = Ipv6Addr;
2380
2381 #[inline]
2382 fn not(mut self) -> Ipv6Addr {
2383 let mut idx = 0;
2384 while idx < 16 {
2385 self.octets[idx] = !self.octets[idx];
2386 idx += 1;
2387 }
2388 self
2389 }
2390}
2391
2392#[stable(feature = "ip_bitops", since = "1.75.0")]
2393#[rustc_const_unstable(feature = "const_ops", issue = "143802")]
2394impl const Not for &'_ Ipv6Addr {
2395 type Output = Ipv6Addr;
2396
2397 #[inline]
2398 fn not(self) -> Ipv6Addr {
2399 !*self
2400 }
2401}
2402
2403macro_rules! bitop_impls {
2404 ($(
2405 $(#[$attr:meta])*
2406 impl ($BitOp:ident, $BitOpAssign:ident) for $ty:ty = ($bitop:ident, $bitop_assign:ident);
2407 )*) => {
2408 $(
2409 $(#[$attr])*
2410 impl const $BitOpAssign for $ty {
2411 fn $bitop_assign(&mut self, rhs: $ty) {
2412 let mut idx = 0;
2413 while idx < self.octets.len() {
2414 self.octets[idx].$bitop_assign(rhs.octets[idx]);
2415 idx += 1;
2416 }
2417 }
2418 }
2419
2420 $(#[$attr])*
2421 impl const $BitOpAssign<&'_ $ty> for $ty {
2422 fn $bitop_assign(&mut self, rhs: &'_ $ty) {
2423 self.$bitop_assign(*rhs);
2424 }
2425 }
2426
2427 $(#[$attr])*
2428 impl const $BitOp for $ty {
2429 type Output = $ty;
2430
2431 #[inline]
2432 fn $bitop(mut self, rhs: $ty) -> $ty {
2433 self.$bitop_assign(rhs);
2434 self
2435 }
2436 }
2437
2438 $(#[$attr])*
2439 impl const $BitOp<&'_ $ty> for $ty {
2440 type Output = $ty;
2441
2442 #[inline]
2443 fn $bitop(mut self, rhs: &'_ $ty) -> $ty {
2444 self.$bitop_assign(*rhs);
2445 self
2446 }
2447 }
2448
2449 $(#[$attr])*
2450 impl const $BitOp<$ty> for &'_ $ty {
2451 type Output = $ty;
2452
2453 #[inline]
2454 fn $bitop(self, rhs: $ty) -> $ty {
2455 let mut lhs = *self;
2456 lhs.$bitop_assign(rhs);
2457 lhs
2458 }
2459 }
2460
2461 $(#[$attr])*
2462 impl const $BitOp<&'_ $ty> for &'_ $ty {
2463 type Output = $ty;
2464
2465 #[inline]
2466 fn $bitop(self, rhs: &'_ $ty) -> $ty {
2467 let mut lhs = *self;
2468 lhs.$bitop_assign(*rhs);
2469 lhs
2470 }
2471 }
2472 )*
2473 };
2474}
2475
2476bitop_impls! {
2477 #[stable(feature = "ip_bitops", since = "1.75.0")]
2478 #[rustc_const_unstable(feature = "const_ops", issue = "143802")]
2479 impl (BitAnd, BitAndAssign) for Ipv4Addr = (bitand, bitand_assign);
2480 #[stable(feature = "ip_bitops", since = "1.75.0")]
2481 #[rustc_const_unstable(feature = "const_ops", issue = "143802")]
2482 impl (BitOr, BitOrAssign) for Ipv4Addr = (bitor, bitor_assign);
2483
2484 #[stable(feature = "ip_bitops", since = "1.75.0")]
2485 #[rustc_const_unstable(feature = "const_ops", issue = "143802")]
2486 impl (BitAnd, BitAndAssign) for Ipv6Addr = (bitand, bitand_assign);
2487 #[stable(feature = "ip_bitops", since = "1.75.0")]
2488 #[rustc_const_unstable(feature = "const_ops", issue = "143802")]
2489 impl (BitOr, BitOrAssign) for Ipv6Addr = (bitor, bitor_assign);
2490}