Skip to main content

Partial Volume Segmentation of Brain MRI Scans of Any Resolution and Contrast

  • Conference paper
  • First Online:
Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 (MICCAI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12267))

Abstract

Partial voluming (PV) is arguably the last crucial unsolved problem in Bayesian segmentation of brain MRI with probabilistic atlases. PV occurs when voxels contain multiple tissue classes, giving rise to image intensities that may not be representative of any one of the underlying classes. PV is particularly problematic for segmentation when there is a large resolution gap between the atlas and the test scan, e.g., when segmenting clinical scans with thick slices, or when using a high-resolution atlas. Forward models of PV are realistic and simple, as they amount to blurring and subsampling a high resolution (HR) volume into a lower resolution (LR) scan. Unfortunately, segmentation as Bayesian inference quickly becomes intractable when “inverting” this forward PV model, as it requires marginalizing over all possible anatomical configurations of the HR volume. In this work, we present PV-SynthSeg, a convolutional neural network (CNN) that tackles this problem by directly learning a mapping between (possibly multi-modal) LR scans and underlying HR segmentations. PV-SynthSeg simulates LR images from HR label maps with a generative model of PV, and can be trained to segment scans of any desired target contrast and resolution, even for previously unseen modalities where neither images nor segmentations are available at training. PV-SynthSeg does not require any preprocessing, and runs in seconds. We demonstrate the accuracy and flexibility of our method with extensive experiments on three datasets and 2,680 scans. The code is available at https://github.com/BBillot/SynthSeg.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Sweden)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Sweden)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Sweden)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alzheimer’s Disease Neuroimaging Initiative. http://adni.loni.usc.edu/

  2. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., et al.: TensorFlow: a system for large-scale machine learning. OSDI 16, 265–283 (2016)

    Google Scholar 

  3. Akkus, Z., Galimzianova, A., Hoogi, A., Rubin, D.L., Erickson, B.J.: Deep learning for brain MRI segmentation: state of the art and future directions. J. Digit. Imaging 30(4), 449–459 (2017). https://doi.org/10.1007/s10278-017-9983-4

    Article  Google Scholar 

  4. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-Euclidean framework for statistics on diffeomorphisms. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006. LNCS, vol. 4190, pp. 924–931. Springer, Heidelberg (2006). https://doi.org/10.1007/11866565_113

    Chapter  Google Scholar 

  5. Ashburner, J., Friston, K.: Unified segmentation. NeuroImage 26, 839–851 (2005)

    Article  Google Scholar 

  6. Billot, B., Greve, D., Van Leemput, K., Fischl, B., Iglesias, J., Dalca, A.: A Learning Strategy for Contrast-agnostic MRI Segmentation. arXiv:2003.01995 (2020)

  7. Chaitanya, K., Karani, N., Baumgartner, C.F., Becker, A., Donati, O., Konukoglu, E.: Semi-supervised and task-driven data augmentation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 29–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_3

    Chapter  Google Scholar 

  8. Choi, H., Haynor, D., Kim, Y.: Partial volume tissue classification of multichannel magnetic resonance images - a mixel model. IEEE Trans. Med. Imaging 10(3), 395–407 (1991)

    Article  Google Scholar 

  9. Chollet, F.: Keras

    Google Scholar 

  10. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs). arXiv:1511.07289 [cs] (2016)

  11. Eaton-Rosen, Z., Bragman, F., Ourselin, S., Cardoso, M.J.: Improving data augmentation for medical image segmentation. In: International Conference on Medical Imaging with Deep Learning (2018)

    Google Scholar 

  12. Fischl, B.: FreeSurfer. NeuroImage 62(2), 774–781 (2012)

    Article  Google Scholar 

  13. Fox, N., et al.: Presymptomatic hippocampal atrophy in Alzheimer’s disease. A longitudinal MRI study. Brain J. Neurol. 119, 2001–2007 (1996)

    Article  Google Scholar 

  14. Iglesias, J.E.: A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: application to adaptive segmentation of in vivo MRI. Neuroimage 115, 117–137 (2015)

    Article  Google Scholar 

  15. Iglesias, J.E.: A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. NeuroImage 183, 314–326 (2018)

    Article  Google Scholar 

  16. Jack, C.: Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 52(7), 1397–1403 (1999)

    Article  Google Scholar 

  17. Jog, A., Hoopes, A., Greve, D., Van Leemput, K., Fischl, B.: PSACNN: pulse sequence adaptive fast whole brain segmentation. NeuroImage 199, 553–569 (2019)

    Article  Google Scholar 

  18. Kamnitsas, K.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  19. Karani, N., Chaitanya, K., Baumgartner, C., Konukoglu, E.: A lifelong learning approach to brain MR segmentation across scanners and protocols. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 476–484. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_54

    Chapter  Google Scholar 

  20. Laidlaw, D., Fleischer, K., Barr, A.: Partial-volume Bayesian classification of material mixtures in MR volume data using voxel histograms. IEEE Trans. Med. Imaging 17(1), 74–86 (1998)

    Article  Google Scholar 

  21. Long, M., Zhu, H., Wang, J., Jordan, M.: Deep transfer learning with joint adaptation networks. In: International Conference on Machine Learning, pp. 2208–2217 (2017)

    Google Scholar 

  22. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 4th International Conference on 3D Vision (3DV), pp. 565–571 (2016)

    Google Scholar 

  23. Mueller, S.G., et al.: Systematic comparison of different techniques to measure hippocampal subfield volumes in ADNI2. NeuroImage Clin. 17, 1006–1018 (2018)

    Article  Google Scholar 

  24. Niessen, W., Vincken, K., Weickert, J., Romeny, B., Viergever, M.: Multiscale segmentation of three-dimensional MR brain images. Int. J. Comput. Vis. 31(2), 185–202 (1999)

    Article  Google Scholar 

  25. Nocera, L., Gee, J.: Robust partial-volume tissue classification of cerebral MRI scans, pp. 312–322. International Society for Optics and Photonics (1997)

    Google Scholar 

  26. Noe, A., Gee, J.C.: Partial volume segmentation of cerebral MRI scans with mixture model clustering. In: Insana, M.F., Leahy, R.M. (eds.) IPMI 2001. LNCS, vol. 2082, pp. 423–430. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45729-1_44

    Chapter  Google Scholar 

  27. Patenaude, B., Smith, S., Kennedy, D., Jenkinson, M.: A Bayesian model of shape and appearance for subcortical brain segmentation. NeuroImage 56, 907–22 (2011)

    Article  Google Scholar 

  28. Puonti, O., Iglesias, J.E., Van Leemput, K.: Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling. NeuroImage 143, 235–249 (2016)

    Article  Google Scholar 

  29. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  30. Shattuck, D., Sandor-Leahy, S., Schaper, K., Rottenberg, D., Leahy, R.M.: Magnetic resonance image tissue classification using a partial volume model. NeuroImage 13(5), 856–876 (2001)

    Article  Google Scholar 

  31. Shin, H., Roth, H., Gao, M., Lu, L., et al.: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016)

    Article  Google Scholar 

  32. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18(10), 897–908 (1999)

    Article  Google Scholar 

  33. Van Leemput, K., Maes, F., Vandermeulen, D., Suetens, P.: A unifying framework for partial volume segmentation of brain MR images. IEEE Trans. Med. Imaging 22(1), 105–119 (2003)

    Article  Google Scholar 

  34. Winterburn, J.: A novel in vivo atlas of human hippocampal subfields using high-resolution 3T magnetic resonance imaging. NeuroImage 74, 254–265 (2013)

    Article  Google Scholar 

  35. Yushkevich, P.A.: Nearly automatic segmentation of hippocampal subfields in in vivo focal T2-weighted MRI. Neuroimage 53(4), 1208–1224 (2010)

    Article  Google Scholar 

  36. Zhang, Y., Brady, M., Smith, S.: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imaging 20(1), 45–57 (2001)

    Article  Google Scholar 

  37. Zhao, A., Balakrishnan, G., Durand, F., Guttag, J., Dalca, A.V.: Data augmentation using learned transformations for one-shot medical image segmentation. In: Proceedings of the IEEE CVPR, pp. 8543–8553 (2019)

    Google Scholar 

Download references

Acknowledgement

Work supported by the ERC (Starting Grant 677697), EPSRC (UCL CDT in Medical Imaging, EP/L016478/1), Alzheimer’s Research UK (Interdisciplinary Grant ARUK-IRG2019A-003), NIH (1R01AG064027-01A1, 5R01NS105820-02), the Department of Health’s NIHR-funded Biomedical Research Centre at UCLH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Billot .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2253 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Billot, B., Robinson, E., Dalca, A.V., Iglesias, J.E. (2020). Partial Volume Segmentation of Brain MRI Scans of Any Resolution and Contrast. In: Martel, A.L., et al. Medical Image Computing and Computer Assisted Intervention – MICCAI 2020. MICCAI 2020. Lecture Notes in Computer Science(), vol 12267. Springer, Cham. https://doi.org/10.1007/978-3-030-59728-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-59728-3_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-59727-6

  • Online ISBN: 978-3-030-59728-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics