Skip to main content

RP3D: A Roadside Perception Framework for 3D Object Detection via Multi-view Sensor Fusion

  • Conference paper
  • First Online:
Computer Vision – ECCV 2024 Workshops (ECCV 2024)

Abstract

Roadside perception is playing an increasingly important role in intelligent transportation systems (ITS), which can provide global object detection information for traffic dispatching and expand the sensing range of individual vehicles. However, existing approaches mainly focus on single-view or single-sensor perception, resulting in low perception accuracy and limited field of view in complex traffic scenarios. To solve such issues, this paper proposes a novel roadside perception framework for 3D object detection (RP3D) via multi-view cameras and LiDARs fusion. Firstly, a feature attention-guided lightweight 3D object detector is constructed for real-time object detection with multiple roadside LiDARs. Then, a 2D detector based on the efficient model NanoDet is adopted for multi-view image recognition. Moreover, a modified Hungarian algorithm is introduced to flexibly fuse multi-view and multi-sensor heterogeneous perception information from 2D and 3D detectors and improve detection accuracy. Furthermore, our proposal is deployed on a real-world V2X test field with four cameras and two LiDARs mounted on two roadside platforms. Experiments on DAIR-V2X-I and SCUT-V2R datasets demonstrate that the proposed method performs well in object detection accuracy and real-time performance in roadside perception scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from €37.37 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Chapter
EUR 29.95
Price includes VAT (Austria)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Austria)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 164.99
Price includes VAT (Austria)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnold, E., Dianati, M., de Temple, R., Fallah, S.: Cooperative perception for 3D object detection in driving scenarios using infrastructure sensors. IEEE Trans. Intell. Transp. Syst. 23(3), 1852–1864 (2022). https://doi.org/10.1109/TITS.2020.3028424

    Article  Google Scholar 

  2. Bai, Z., et al.: Pillar attention encoder for adaptive cooperative perception. IEEE Internet Things J. (2024). https://doi.org/10.1109/JIOT.2024.3390552

    Article  Google Scholar 

  3. Carrillo, J., Waslander, S.: UrbanNet: leveraging urban maps for long range 3D object detection. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 3799–3806. IEEE (2021). https://doi.org/10.1109/ITSC48978.2021.9564840

  4. Chen, M., Wu, Y., Gao, B., Zheng, K.: Vehicle target oriented bidirectional matching handover method for multi camera on roadside. Autom. Eng. 43(10), 1435–1441 (2019). https://doi.org/10.19562/j.chinasae.qcgc.2021.10.003

  5. Chen, Y., Liu, J., Zhang, X., Qi, X., Jia, J.: VoxelNeXt: fully sparse VoxelNet for 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21674–21683 (2023). https://doi.org/10.1109/CVPR52729.2023.02076

  6. Contributors, M.: MMDetection3D: OpenMMLab next-generation platform for general 3D object detection (2020). https://github.com/open-mmlab/mmdetection3d

  7. Deng, J., Shi, S., Li, P., Zhou, W., Zhang, Y., Li, H.: Voxel R-CNN: towards high performance voxel-based 3D object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 1201–1209 (2021). https://doi.org/10.1609/aaai.v35i2.16207

  8. Fleck, T., Ochs, S., Zofka, M.R., Zollner, J.M.: Robust tracking of reference trajectories for autonomous driving in intelligent roadside infrastructure. In: 2020 IEEE Intelligent Vehicles Symposium (IV), pp. 1337–1342 (2020). https://doi.org/10.1109/IV47402.2020.9304620

  9. Hao, R., et al.: RCooper: a real-world large-scale dataset for roadside cooperative perception. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 22347–22357 (2024). https://doi.org/10.48550/arXiv.2403.10145

  10. Kuhn, H.W.: The Hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955). https://doi.org/10.1002/nav.3800020109

    Article  MathSciNet  Google Scholar 

  11. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: PointPillars: fast encoders for object detection from point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12697–12705 (2019). https://doi.org/10.1109/CVPR.2019.01298

  12. Li, X., Yin, J., Li, W., Xu, C., Yang, R., Shen, J.: DI-V2X: learning domain-invariant representation for vehicle-infrastructure collaborative 3d object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 3208–3215 (2024). https://doi.org/10.1609/aaai.v38i4.28105

  13. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. IEEE Trans. Pattern Anal. Mach. Intell. 42(02), 318–327 (2020). https://doi.org/10.1109/TPAMI.2018.2858826

    Article  Google Scholar 

  14. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  15. Masi, S., Xu, P., Bonnifait, P., Ieng, S.: Augmented perception with cooperative roadside vision systems for autonomous driving in complex scenarios. In: 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pp. 1140–1146 (2021). https://doi.org/10.1109/ITSC48978.2021.9564833

  16. RangiLyu: Nanodet-plus: Super fast and high accuracy lightweight anchor-free object detection model. https://github.com/RangiLyu/nanodet/. Accessed 9 Sept 2022

  17. Shi, G., Li, R., Ma, C.: PillarNet: Real-time and high-performance pillar-based 3D object detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds.) ECCV 2022. LNCS, vol 13670, pp. 35–52. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-20080-9_3

  18. Shi, S., et al.: PV-RCNN: point-voxel feature set abstraction for 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10529–10538 (2020). https://doi.org/10.1109/CVPR42600.2020.01054

  19. Shi, S., et al.: PV-RCNN++: point-voxel feature set abstraction with local vector representation for 3d object detection. Int. J. Comput. Vision 131(2), 531–551 (2023). https://doi.org/10.1007/s11263-022-01710-9

    Article  Google Scholar 

  20. Shi, S., Wang, X., Li, H.: PointRCNN: 3D object proposal generation and detection from point cloud. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 770–779 (2019). https://doi.org/10.1109/CVPR.2019.00086

  21. Shi, S., Wang, Z., Wang, X., Li, H.: Part-A2 net: 3D part-aware and aggregation neural network for object detection from point cloud. arXiv:1907.03670, vol. 3, no. 2 (2019). https://doi.org/10.48550/arXiv.1907.03670

  22. Sun, P., Sun, C., Wang, R., Zhao, X.: Object detection based on roadside LiDAR for cooperative driving automation: a review. Sensors 22(23) (2022). https://doi.org/10.3390/s22239316

  23. Team, O.D.: OpenPCDet: an open-source toolbox for 3D object detection from point clouds (2020). https://github.com/open-mmlab/OpenPCDet

  24. Wen, T., Xiao, Z., Jiang, K., Yang, M., Li, K., Yang, D.: High precision target positioning method for RSU in cooperative perception. In: 2019 IEEE 21st International Workshop on Multimedia Signal Processing (MMSP), pp. 1–6 (2019). https://doi.org/10.1109/MMSP.2019.8901755

  25. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    Chapter  Google Scholar 

  26. Yan, Y., Mao, Y., Li, B.: SECOND: sparsely embedded convolutional detection. Sensors 18(10), 3337 (2018). https://doi.org/10.3390/s18103337

  27. Yang, H., et al.: GD-MAE: generative decoder for MAE pre-training on lidar point clouds. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9403–9414 (2023). https://doi.org/10.48550/arXiv.2212.03010

  28. Yang, L., et al.: BEVHeight: a robust framework for vision-based roadside 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21611–21620 (2023). https://doi.org/10.48550/arXiv.2303.08498

  29. Ye, X., et al.: Rope3D: the roadside perception dataset for autonomous driving and monocular 3D object detection task. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 21341–21350 (2022). https://doi.org/10.1109/CVPR52688.2022.02065

  30. Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3D object detection and tracking. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11784–11793 (2021). https://doi.org/10.1109/CVPR46437.2021.01161

  31. Yu, H., et al.: DAIR-V2X: a large-scale dataset for vehicle-infrastructure cooperative 3D object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 21361–21370 (2022). https://doi.org/10.1109/CVPR52688.2022.02067

  32. Yu, H., et al.: V2X-seq: a large-scale sequential dataset for vehicle-infrastructure cooperative perception and forecasting. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5486–5495 (2023). https://doi.org/10.1109/CVPR52729.2023.00531

  33. Zhang, C., Wei, J., Hu, A.S., Fu, P.: A novel method for calibration and verification of roadside millimetre-wave radar. IET Intel. Transp. Syst. 16(3), 408–419 (2022). https://doi.org/10.1049/itr2.12151

    Article  Google Scholar 

  34. Zhang, C., et al.: A roadside cooperative perception system with multi-camera fusion at an intersection. In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), pp. 642–649 (2023). https://doi.org/10.1109/ITSC57777.2023.10422029

  35. Zheng, S., Xie, C., Huang, R., Yu, S., Ye, M., Li, W.: V2X-based cooperative positioning for connected vehicles in GNSS-denied environments. In: 2023 IEEE 26th International Conference on Intelligent Transportation Systems (ITSC), pp. 4953–4959 (2023). https://doi.org/10.1109/ITSC57777.2023.10422687

  36. Zheng, S., Xie, C., Yu, S., Ye, M., Huang, R., Li, W.: A robust strategy for roadside cooperative perception based on multi-sensor fusion. In: 2022 International Conference on Sensing, Measurement and Data Analytics in the era of Artificial Intelligence (ICSMD), pp. 1–6 (2022). https://doi.org/10.1109/ICSMD57530.2022.10058282

  37. Zimmer, W., et al.: InfraDet3D: multi-modal 3D object detection based on roadside infrastructure camera and lidar sensors. In: 2023 IEEE Intelligent Vehicles Symposium (IV), pp. 1–8 (2023). https://doi.org/10.1109/IV55152.2023.10186723

  38. Zimmer, W., Wardana, G.A., Sritharan, S., Zhou, X., Song, R., Knoll, A.C.: TUMTraf V2X cooperative perception dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, p. 10 (2024). https://doi.org/10.48550/arXiv.2403.01316

Download references

Acknowledgments

This work is supported in part by the Key-Area Research and Development Program of Guangzhou City under Grant 202206030005, and in part by the Key-Area Research and Development Program of Guangdong Province under Grant 2019B090912001. The authors thank Guangzhou Huagong Automobile Inspection Technology Co., Ltd. for providing the test site and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weihua Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, S., Huang, R., Ji, Y., Ye, M., Li, W. (2025). RP3D: A Roadside Perception Framework for 3D Object Detection via Multi-view Sensor Fusion. In: Del Bue, A., Canton, C., Pont-Tuset, J., Tommasi, T. (eds) Computer Vision – ECCV 2024 Workshops. ECCV 2024. Lecture Notes in Computer Science, vol 15630. Springer, Cham. https://doi.org/10.1007/978-3-031-91813-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-91813-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-91812-4

  • Online ISBN: 978-3-031-91813-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Keywords

Publish with us

Policies and ethics