Skip to main content

Advertisement

Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Advances in Atmospheric Sciences
  3. Article

Global Fire Emissions Linked to Madden-Julian Oscillation

  • Original Paper
  • Open access
  • Published: 20 May 2025
  • Volume 42, pages 1273–1284, (2025)
  • Cite this article
Download PDF

You have full access to this open access article

Advances in Atmospheric Sciences Aims and scope Submit manuscript
Global Fire Emissions Linked to Madden-Julian Oscillation
Download PDF
  • Young-Min Yang1,
  • Doo Young Lee2,
  • Jae-Heung Park3,
  • June-Yi Lee4,5,
  • Kyung-Sook Yun4,5,
  • Soon-Il An6,
  • Tim Li7 &
  • …
  • Bin Wang7 
  • 772 Accesses

  • 56 Altmetric

  • 7 Mentions

  • Explore all metrics

Abstract

Understanding the relationship between fire activity and climate variability is a major concern for the scientific community and is essential for reducing economic losses and life-threatening fire hazards. However, the drivers of fire activity and the influence of climate variability remain uncertain. Here, we show that the Madden-Julian Oscillation (MJO)—a dominant tropical subseasonal variability—influences fire activity by modulating local fire-supporting weather through atmospheric teleconnections. Our results show that midlatitude fire emissions exhibit significant subseasonal variability, with MJO-related weather influencing the fire intensity and contributing to large fire events. MJO-related fire events account for about 10%–20% of total midlatitude fire events, suggesting that if MJO teleconnections strengthen in the future, fire emissions and associated economic losses could worsen.

摘 要

理解火灾活动与气候变率之间的关系是当前科学界关注的前沿课题, 这对于降低经济损失和威胁生命安全的火灾风险具有重要意义。 然而, 火灾活动的驱动因素及其受气候变率影响的机制尚不明确。 在本研究中, 作者发现热带大气季节内振荡 (MJO) 能够通过大气遥相关作用调节有利于火灾的局地天气, 进而显著影响火灾活动。 研究结果表明, 中纬度地区的火灾排放呈现出显著的次季节变率特征, MJO 相关的天气过程不仅能够调制火灾强度, 还会导致大规模火灾事件的发生。 统计分析显示, MJO 相关的火灾事件约占中纬度火灾总数的 10%–20%。 未来随着 MJO 遥相关效应增强, 火灾排放及其带来的经济损失可能进一步加剧。

Article PDF

Download to read the full article text

Similar content being viewed by others

Madden-Julian oscillation influences United States springtime tornado and hail frequency

Article Open access 12 May 2022

Emergence of Madden-Julian oscillation precipitation and wind amplitude changes in a warming climate

Article Open access 23 March 2023

Machine Learning Classification and Segmentation of Forest Fires in Wide Area Motion Imagery

Chapter © 2020

Explore related subjects

Discover the latest articles, books and news in related subjects, suggested using machine learning.
  • Atmospheric Dynamics
  • Atmospheric Science
  • Climate Sciences
  • Climate Change
  • Drought
  • Fire Ecology
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Abatzoglou, J. T., and C. A. Kolden, 2013: Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire, 22, 1003–1020, https://doi.org/10.1071/WF13019.

    Article  Google Scholar 

  • Abatzoglou, J. T., and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the United States of America, 113, 11 770–11 775, https://doi.org/10.1073/pnas.1607171113.

    Article  CAS  Google Scholar 

  • Andreae, M. O., and P. Merlet, 2001: Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955–966, https://doi.org/10.1029/2000GB001382.

    Article  CAS  Google Scholar 

  • Arcodia, M. C., B. P. Kirtman, and L. S. P. Siqueira, 2020: How MJO teleconnections and ENSO interference impacts U.S. precipitation. J. Climate, 33, 4621–4640, https://doi.org/10.1175/JCLI-D-19-0448.1.

    Article  Google Scholar 

  • Bowman, D. M., and Coauthors, 2009: Fire in the Earth system. Science, 324, 481–484, https://doi.org/10.1126/science.1163886.

    Article  CAS  Google Scholar 

  • Chen, Y., D. C. Morton, N. Andela, G. R. Van Der werf, L. Giglio, and J. T. Randerson, 2017: A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 7, 906–911, https://doi.org/10.1038/s41558-017-0014-8.

    Article  CAS  Google Scholar 

  • Cochrane, M. A., 2003: Fire science for rainforests. Nature, 421, 913–919, https://doi.org/10.1038/nature01437.

    Article  CAS  Google Scholar 

  • Fang, K. Y., and Coauthors, 2021: ENSO modulates wildfire activity in China. Nature Communications, 12(1), 1764, https://doi.org/10.1038/s41467-021-21988-6.

    Article  CAS  Google Scholar 

  • Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 2177–2199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.

    Article  Google Scholar 

  • Field, R. D., and Coauthors, 2015: Development of a global fire weather database. Natural Hazards and Earth System Sciences, 15, 1407–1423, https://doi.org/10.5194/nhess-15-1407-2015.

    Article  Google Scholar 

  • Flannigan, M. D., and J. B. Harrington, 1988: A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1153–80). J. Appl. Meteorol., 27, 441–452, https://doi.org/10.1175/1520-0450(1988)027<0441:ASOTRO>2.0.CO;2.

    Article  Google Scholar 

  • Flannigan, M. D., K. A. Logan, B. D. Amiro, W. R. Skinner, and B. J. Stocks, 2005: Future area burned in Canada. Climatic Change, 72, 1–16, https://doi.org/10.1007/s10584-005-5135-y.

    Article  CAS  Google Scholar 

  • Grimm, A. M., 2019: Madden–Julian Oscillation impacts on South American summer monsoon season: Precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Climate Dyn., 53, 907–932, https://doi.org/10.1007/s00382-019-04622-6.

    Article  Google Scholar 

  • Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.

    Article  Google Scholar 

  • Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.

    Article  Google Scholar 

  • IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press.

    Google Scholar 

  • Jia, X. L., L. J. Chen, F. M. Ren, and C. Y. Li, 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521–533, https://doi.org/10.1007/s00376-010-9118-z.

    Article  Google Scholar 

  • Jiang, X. N., and Coauthors, 2020: Fifty years of research on the Madden-Julian oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res.: Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.

    Article  Google Scholar 

  • Jolly, W. M., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson, and D. M. J. S. Bowman, 2015: Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6, 7537, https://doi.org/10.1038/ncomms8537.

    Article  CAS  Google Scholar 

  • Joseph, S., A. K. Sahai, and B. N. Goswami, 2009: Eastward propagating MJO during boreal summer and Indian monsoon droughts. Climate Dyn., 32, 1139–1153, https://doi.org/10.1007/s00382-008-0412-8.

    Article  Google Scholar 

  • Kim, H., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 9425–9443, https://doi.org/10.1175/JCLI-D-18-0210.1.

    Article  Google Scholar 

  • Kim, J. S., J. S. Kug, S. J. Jeong, H. Park, and G. Schaepman-Strub, 2020: Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Science Advances, 6, eaax3308, https://doi.org/10.1126/sciadv.aax3308.

    Article  Google Scholar 

  • Klotzbach, P. J., and E. C. J. Oliver, 2015: Modulation of Atlantic basin tropical cyclone activity by the Madden–Julian oscillation (MJO) from 1905 to 2011. J. Climate, 28, 204–217, https://doi.org/10.1175/JCLI-D-14-00509.1.

    Article  Google Scholar 

  • Li, F. J., X. Y. Zhang, S. Kondragunta, and I. Csiszar, 2018: Comparison of fire radiative power estimates from VIIRS and MODIS observations. J. Geophys. Res.: Atmos., 123, 4545–4563, https://doi.org/10.1029/2017JD027823.

    Article  Google Scholar 

  • Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333–343, https://doi.org/10.1175/JCLI3684.1.

    Article  Google Scholar 

  • Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 1451–1460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.

    Article  Google Scholar 

  • Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608–E625, https://doi.org/10.1175/BAMS-D-18-0326.1.

    Article  Google Scholar 

  • Matin, M. A., V. S. Chitale, M. S. R. Murthy, K. Uddin, B. Bajracharya, and S. Pradhan, 2017: Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data. International Journal of Wildland Fire, 26(4), 276–286, https://doi.org/10.1071/wf16056.

    Article  Google Scholar 

  • Pohl, B., and P. Camberlin, 2006: Influence of the Madden–Julian oscillation on East African rainfall. I: Intraseasonal variability and regional dependency. Quart. J. Roy. Meteor. Soc., 132, 2521–2539, https://doi.org/10.1256/qj.05.104.

    Article  Google Scholar 

  • Reid, J. S., and Coauthors, 2012. Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent. Atmospheric Chemistry and Physics, 12(4), 2117–2147, https://doi.org/10.5194/acp-12-2117-2012.

    Article  CAS  Google Scholar 

  • Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. D. Zhang, and D. Kim, 2019: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 575, 647–651, https://doi.org/10.1038/s41586-019-1764-4.

    Article  CAS  Google Scholar 

  • Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.

    Article  Google Scholar 

  • Schroeder, W., P. Oliva, L. Giglio, and I. A. Csiszar, 2014: The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143, 85–96, https://doi.org/10.1016/j.rse.2013.12.008.

    Article  Google Scholar 

  • Senande-Rivera, M., D. Insua-Costa, and G. Miguez-Macho, 2022: Spatial and temporal expansion of global wildland fire activity in response to climate change. Nature Communications, 13, 1208, https://doi.org/10.1038/s41467-022-28835-2.

    Article  CAS  Google Scholar 

  • Seo, K. H., H. J. Lee, and D. M. W. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 3557–3571, https://doi.org/10.1175/JAS-D-16-0036.1.

    Article  Google Scholar 

  • Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902–937, https://doi.org/10.1002/2016RG000538.

    Article  Google Scholar 

  • Sturtevant, B. R., R. M. Scheller, B. R. Miranda, D. Shinneman, and A. Syphard, 2009: Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II. Ecological Modelling, 220 (23), 3380–3393, https://doi.org/10.1016/j.ecolmodel.2009.07.030

    Article  Google Scholar 

  • Tang, X. Z., T. Machimura, J. F. Li, H. F. Yu, and W. Liu, 2022: Evaluating seasonal wildfire susceptibility and wildfire threats to local ecosystems in the largest forested area of China. Earth’s Future, 10, e2021EF002199, https://doi.org/10.1029/2021EF002199.

    Article  Google Scholar 

  • Tseng, K. C., E. Maloney, and E. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear rossby wave theory. J. Climate, 32, 531–548, https://doi.org/10.1175/JCLI-D-18-0211.1.

    Article  Google Scholar 

  • Wahl, E. R., E. Zorita, V. Trouet, and A. H. Taylor, 2019: Jet stream dynamics, hydroclimate, and fire in California from 1600 CE to present. Proceedings of the National Academy of Sciences of the United States of America, 116, 5393–5398, https://doi.org/10.1073/pnas.1815292116.

    Article  CAS  Google Scholar 

  • Weidman, S., and Z. M. Kuang, 2023: Potential predictability of the Madden-Julian Oscillation in a superparameterized model. Geophys. Res. Lett., 50, e2023GL105705, https://doi.org/10.1029/2023GL105705.

    Article  Google Scholar 

  • Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 1482–1498, https://doi.org/10.1175/2008JCLI2595.1.

    Article  Google Scholar 

  • Zhang, C. D., 2013: Madden–Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94(12), 1849–1870, https://doi.org/10.1175/BAMS-D-12-00026.1.

    Article  Google Scholar 

  • Zhou, W. Y., D. Yang, S. P. Xie, and J. Ma, 2020: Amplified Madden–Julian oscillation impacts in the Pacific–North America region. Nature Climate Change, 10, 654–660, https://doi.org/10.1038/s41558-020-0814-0.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 42088101) and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Nos. RS-2024-00416848 and NRF-2022R1A2C1013296).

Author information

Authors and Affiliations

  1. Department of Environment & Energy/School of Civil, Environmental Resources and Energy Engineering/Soil Environment Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeonbuk State, South Korea

    Young-Min Yang

  2. Department Marine Sciences and Convergent Technology, Hanyang University, Seoul, South Korea

    Doo Young Lee

  3. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

    Jae-Heung Park

  4. Research Center for Climate Sciences, Pusan National University, Busan, South Korea

    June-Yi Lee & Kyung-Sook Yun

  5. Center for Climate Physics, Institute for Basic Science, Busan, South Korea

    June-Yi Lee & Kyung-Sook Yun

  6. Department of Atmospheric Sciences and Irreversible Climate Change Research Center, Yonsei University, Seoul, South Korea

    Soon-Il An

  7. Department of Atmospheric Sciences and International Pacific Research Center, University of Hawaii, Honolulu, HI, USA

    Tim Li & Bin Wang

Authors
  1. Young-Min Yang
    View author publications

    Search author on:PubMed Google Scholar

  2. Doo Young Lee
    View author publications

    Search author on:PubMed Google Scholar

  3. Jae-Heung Park
    View author publications

    Search author on:PubMed Google Scholar

  4. June-Yi Lee
    View author publications

    Search author on:PubMed Google Scholar

  5. Kyung-Sook Yun
    View author publications

    Search author on:PubMed Google Scholar

  6. Soon-Il An
    View author publications

    Search author on:PubMed Google Scholar

  7. Tim Li
    View author publications

    Search author on:PubMed Google Scholar

  8. Bin Wang
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Young-Min Yang.

Ethics declarations

Competing interests. The authors declare that they have no known competing interests.

Additional information

Article Highlights

• MJO significantly influences midlatitude fire emissions, accounting for 10%–20% of variability, particularly in the US and East Asia.

• Fir emission show significant sub-seasonal variability in midlatitude.

• Improved MJO forecasting could enhance fire prediction and mitigate social and economic losses.

This paper is a contribution to the special topic on the 2025 Los Angeles Wildfires.

Electronic Supplementary Material to

Global Fire Emissions Linked to Madden-Julian Oscillation

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YM., Lee, D.Y., Park, JH. et al. Global Fire Emissions Linked to Madden-Julian Oscillation. Adv. Atmos. Sci. 42, 1273–1284 (2025). https://doi.org/10.1007/s00376-025-4447-0

Download citation

  • Received: 07 November 2024

  • Revised: 02 March 2025

  • Accepted: 26 March 2025

  • Published: 20 May 2025

  • Issue date: July 2025

  • DOI: https://doi.org/10.1007/s00376-025-4447-0

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key words

  • Madden Julian Oscillation
  • fire emission
  • atmospheric teleconnection
  • fire weather index

关键词

  • 热带大气季节内振荡
  • 火灾排放
  • 大气遥相关
  • 火灾天气指数
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Associated Content

Part of a collection:

The 2025 Los Angeles Wildfires

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature