Abstract
Understanding the relationship between fire activity and climate variability is a major concern for the scientific community and is essential for reducing economic losses and life-threatening fire hazards. However, the drivers of fire activity and the influence of climate variability remain uncertain. Here, we show that the Madden-Julian Oscillation (MJO)—a dominant tropical subseasonal variability—influences fire activity by modulating local fire-supporting weather through atmospheric teleconnections. Our results show that midlatitude fire emissions exhibit significant subseasonal variability, with MJO-related weather influencing the fire intensity and contributing to large fire events. MJO-related fire events account for about 10%–20% of total midlatitude fire events, suggesting that if MJO teleconnections strengthen in the future, fire emissions and associated economic losses could worsen.
摘 要
理解火灾活动与气候变率之间的关系是当前科学界关注的前沿课题, 这对于降低经济损失和威胁生命安全的火灾风险具有重要意义。 然而, 火灾活动的驱动因素及其受气候变率影响的机制尚不明确。 在本研究中, 作者发现热带大气季节内振荡 (MJO) 能够通过大气遥相关作用调节有利于火灾的局地天气, 进而显著影响火灾活动。 研究结果表明, 中纬度地区的火灾排放呈现出显著的次季节变率特征, MJO 相关的天气过程不仅能够调制火灾强度, 还会导致大规模火灾事件的发生。 统计分析显示, MJO 相关的火灾事件约占中纬度火灾总数的 10%–20%。 未来随着 MJO 遥相关效应增强, 火灾排放及其带来的经济损失可能进一步加剧。
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Abatzoglou, J. T., and C. A. Kolden, 2013: Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire, 22, 1003–1020, https://doi.org/10.1071/WF13019.
Abatzoglou, J. T., and A. P. Williams, 2016: Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the United States of America, 113, 11 770–11 775, https://doi.org/10.1073/pnas.1607171113.
Andreae, M. O., and P. Merlet, 2001: Emission of trace gases and aerosols from biomass burning. Global Biogeochemical Cycles, 15, 955–966, https://doi.org/10.1029/2000GB001382.
Arcodia, M. C., B. P. Kirtman, and L. S. P. Siqueira, 2020: How MJO teleconnections and ENSO interference impacts U.S. precipitation. J. Climate, 33, 4621–4640, https://doi.org/10.1175/JCLI-D-19-0448.1.
Bowman, D. M., and Coauthors, 2009: Fire in the Earth system. Science, 324, 481–484, https://doi.org/10.1126/science.1163886.
Chen, Y., D. C. Morton, N. Andela, G. R. Van Der werf, L. Giglio, and J. T. Randerson, 2017: A pan-tropical cascade of fire driven by El Niño/Southern Oscillation. Nature Climate Change, 7, 906–911, https://doi.org/10.1038/s41558-017-0014-8.
Cochrane, M. A., 2003: Fire science for rainforests. Nature, 421, 913–919, https://doi.org/10.1038/nature01437.
Fang, K. Y., and Coauthors, 2021: ENSO modulates wildfire activity in China. Nature Communications, 12(1), 1764, https://doi.org/10.1038/s41467-021-21988-6.
Ferranti, L., T. N. Palmer, F. Molteni, and E. Klinker, 1990: Tropical-extratropical interaction associated with the 30–60 day oscillation and its impact on medium and extended range prediction. J. Atmos. Sci., 47, 2177–2199, https://doi.org/10.1175/1520-0469(1990)047<2177:TEIAWT>2.0.CO;2.
Field, R. D., and Coauthors, 2015: Development of a global fire weather database. Natural Hazards and Earth System Sciences, 15, 1407–1423, https://doi.org/10.5194/nhess-15-1407-2015.
Flannigan, M. D., and J. B. Harrington, 1988: A study of the relation of meteorological variables to monthly provincial area burned by wildfire in Canada (1153–80). J. Appl. Meteorol., 27, 441–452, https://doi.org/10.1175/1520-0450(1988)027<0441:ASOTRO>2.0.CO;2.
Flannigan, M. D., K. A. Logan, B. D. Amiro, W. R. Skinner, and B. J. Stocks, 2005: Future area burned in Canada. Climatic Change, 72, 1–16, https://doi.org/10.1007/s10584-005-5135-y.
Grimm, A. M., 2019: Madden–Julian Oscillation impacts on South American summer monsoon season: Precipitation anomalies, extreme events, teleconnections, and role in the MJO cycle. Climate Dyn., 53, 907–932, https://doi.org/10.1007/s00382-019-04622-6.
Hoskins, B. J., and D. J. Karoly, 1981: The steady linear response of a spherical atmosphere to thermal and orographic forcing. J. Atmos. Sci., 38, 1179–1196, https://doi.org/10.1175/1520-0469(1981)038<1179:TSLROA>2.0.CO;2.
Huang, B. Y., and Coauthors, 2017: Extended reconstructed sea surface temperature, version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Climate, 30, 8179–8205, https://doi.org/10.1175/JCLI-D-16-0836.1.
IPCC, 2007: Climate Change 2007: The Physical Science Basis. Cambridge University Press.
Jia, X. L., L. J. Chen, F. M. Ren, and C. Y. Li, 2011: Impacts of the MJO on winter rainfall and circulation in China. Adv. Atmos. Sci., 28, 521–533, https://doi.org/10.1007/s00376-010-9118-z.
Jiang, X. N., and Coauthors, 2020: Fifty years of research on the Madden-Julian oscillation: Recent progress, challenges, and perspectives. J. Geophys. Res.: Atmos., 125, e2019JD030911, https://doi.org/10.1029/2019JD030911.
Jolly, W. M., M. A. Cochrane, P. H. Freeborn, Z. A. Holden, T. J. Brown, G. J. Williamson, and D. M. J. S. Bowman, 2015: Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6, 7537, https://doi.org/10.1038/ncomms8537.
Joseph, S., A. K. Sahai, and B. N. Goswami, 2009: Eastward propagating MJO during boreal summer and Indian monsoon droughts. Climate Dyn., 32, 1139–1153, https://doi.org/10.1007/s00382-008-0412-8.
Kim, H., F. Vitart, and D. E. Waliser, 2018: Prediction of the Madden–Julian oscillation: A review. J. Climate, 31, 9425–9443, https://doi.org/10.1175/JCLI-D-18-0210.1.
Kim, J. S., J. S. Kug, S. J. Jeong, H. Park, and G. Schaepman-Strub, 2020: Extensive fires in southeastern Siberian permafrost linked to preceding Arctic Oscillation. Science Advances, 6, eaax3308, https://doi.org/10.1126/sciadv.aax3308.
Klotzbach, P. J., and E. C. J. Oliver, 2015: Modulation of Atlantic basin tropical cyclone activity by the Madden–Julian oscillation (MJO) from 1905 to 2011. J. Climate, 28, 204–217, https://doi.org/10.1175/JCLI-D-14-00509.1.
Li, F. J., X. Y. Zhang, S. Kondragunta, and I. Csiszar, 2018: Comparison of fire radiative power estimates from VIIRS and MODIS observations. J. Geophys. Res.: Atmos., 123, 4545–4563, https://doi.org/10.1029/2017JD027823.
Lorenz, D. J., and D. L. Hartmann, 2006: The effect of the MJO on the North American monsoon. J. Climate, 19, 333–343, https://doi.org/10.1175/JCLI3684.1.
Maloney, E. D., and D. L. Hartmann, 2000: Modulation of eastern North Pacific hurricanes by the Madden–Julian oscillation. J. Climate, 13, 1451–1460, https://doi.org/10.1175/1520-0442(2000)013<1451:MOENPH>2.0.CO;2.
Mariotti, A., and Coauthors, 2020: Windows of opportunity for skillful forecasts subseasonal to seasonal and beyond. Bull. Amer. Meteor. Soc., 101, E608–E625, https://doi.org/10.1175/BAMS-D-18-0326.1.
Matin, M. A., V. S. Chitale, M. S. R. Murthy, K. Uddin, B. Bajracharya, and S. Pradhan, 2017: Understanding forest fire patterns and risk in Nepal using remote sensing, geographic information system and historical fire data. International Journal of Wildland Fire, 26(4), 276–286, https://doi.org/10.1071/wf16056.
Pohl, B., and P. Camberlin, 2006: Influence of the Madden–Julian oscillation on East African rainfall. I: Intraseasonal variability and regional dependency. Quart. J. Roy. Meteor. Soc., 132, 2521–2539, https://doi.org/10.1256/qj.05.104.
Reid, J. S., and Coauthors, 2012. Multi-scale meteorological conceptual analysis of observed active fire hotspot activity and smoke optical depth in the Maritime Continent. Atmospheric Chemistry and Physics, 12(4), 2117–2147, https://doi.org/10.5194/acp-12-2117-2012.
Roxy, M. K., P. Dasgupta, M. J. McPhaden, T. Suematsu, C. D. Zhang, and D. Kim, 2019: Twofold expansion of the Indo-Pacific warm pool warps the MJO life cycle. Nature, 575, 647–651, https://doi.org/10.1038/s41586-019-1764-4.
Sardeshmukh, P. D., and B. J. Hoskins, 1988: The generation of global rotational flow by steady idealized tropical divergence. J. Atmos. Sci., 45, 1228–1251, https://doi.org/10.1175/1520-0469(1988)045<1228:TGOGRF>2.0.CO;2.
Schroeder, W., P. Oliva, L. Giglio, and I. A. Csiszar, 2014: The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143, 85–96, https://doi.org/10.1016/j.rse.2013.12.008.
Senande-Rivera, M., D. Insua-Costa, and G. Miguez-Macho, 2022: Spatial and temporal expansion of global wildland fire activity in response to climate change. Nature Communications, 13, 1208, https://doi.org/10.1038/s41467-022-28835-2.
Seo, K. H., H. J. Lee, and D. M. W. Frierson, 2016: Unraveling the teleconnection mechanisms that induce wintertime temperature anomalies over the Northern Hemisphere continents in response to the MJO. J. Atmos. Sci., 73, 3557–3571, https://doi.org/10.1175/JAS-D-16-0036.1.
Stan, C., D. M. Straus, J. S. Frederiksen, H. Lin, E. D. Maloney, and C. Schumacher, 2017: Review of tropical-extratropical teleconnections on intraseasonal time scales. Rev. Geophys., 55, 902–937, https://doi.org/10.1002/2016RG000538.
Sturtevant, B. R., R. M. Scheller, B. R. Miranda, D. Shinneman, and A. Syphard, 2009: Simulating dynamic and mixed-severity fire regimes: A process-based fire extension for LANDIS-II. Ecological Modelling, 220 (23), 3380–3393, https://doi.org/10.1016/j.ecolmodel.2009.07.030
Tang, X. Z., T. Machimura, J. F. Li, H. F. Yu, and W. Liu, 2022: Evaluating seasonal wildfire susceptibility and wildfire threats to local ecosystems in the largest forested area of China. Earth’s Future, 10, e2021EF002199, https://doi.org/10.1029/2021EF002199.
Tseng, K. C., E. Maloney, and E. Barnes, 2019: The consistency of MJO teleconnection patterns: An explanation using linear rossby wave theory. J. Climate, 32, 531–548, https://doi.org/10.1175/JCLI-D-18-0211.1.
Wahl, E. R., E. Zorita, V. Trouet, and A. H. Taylor, 2019: Jet stream dynamics, hydroclimate, and fire in California from 1600 CE to present. Proceedings of the National Academy of Sciences of the United States of America, 116, 5393–5398, https://doi.org/10.1073/pnas.1815292116.
Weidman, S., and Z. M. Kuang, 2023: Potential predictability of the Madden-Julian Oscillation in a superparameterized model. Geophys. Res. Lett., 50, e2023GL105705, https://doi.org/10.1029/2023GL105705.
Wheeler, M. C., H. H. Hendon, S. Cleland, H. Meinke, and A. Donald, 2009: Impacts of the Madden–Julian oscillation on Australian rainfall and circulation. J. Climate, 22, 1482–1498, https://doi.org/10.1175/2008JCLI2595.1.
Zhang, C. D., 2013: Madden–Julian Oscillation: Bridging weather and climate. Bull. Amer. Meteor. Soc., 94(12), 1849–1870, https://doi.org/10.1175/BAMS-D-12-00026.1.
Zhou, W. Y., D. Yang, S. P. Xie, and J. Ma, 2020: Amplified Madden–Julian oscillation impacts in the Pacific–North America region. Nature Climate Change, 10, 654–660, https://doi.org/10.1038/s41558-020-0814-0.
Acknowledgements
This work was supported by the National Science Foundation of China (Grant No. 42088101) and by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (Grant Nos. RS-2024-00416848 and NRF-2022R1A2C1013296).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests. The authors declare that they have no known competing interests.
Additional information
Article Highlights
• MJO significantly influences midlatitude fire emissions, accounting for 10%–20% of variability, particularly in the US and East Asia.
• Fir emission show significant sub-seasonal variability in midlatitude.
• Improved MJO forecasting could enhance fire prediction and mitigate social and economic losses.
This paper is a contribution to the special topic on the 2025 Los Angeles Wildfires.
Electronic Supplementary Material to
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Yang, YM., Lee, D.Y., Park, JH. et al. Global Fire Emissions Linked to Madden-Julian Oscillation. Adv. Atmos. Sci. 42, 1273–1284 (2025). https://doi.org/10.1007/s00376-025-4447-0
Received:
Revised:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1007/s00376-025-4447-0