Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease

Abstract

Live, attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus (CoV) replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3′→5′ exonuclease (ExoN) activity that probably functions in RNA proofreading. In this study we demonstrate that engineered inactivation of severe acute respiratory syndrome (SARS)-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged and immunocompromised mice. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. ExoN inactivation has potential for broad applications in the stable attenuation of CoVs and, perhaps, other RNA viruses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The nsp14 ExoN mutator virus in a virulent mouse-adapted SARS-CoV isogenic background.
Figure 2: Weight loss and lung titer in BALB/c mice.
Figure 3: Weight loss and lung titer in young immunocompromised mice.
Figure 4: Mutation accumulation in infected SCID mice at 30 d.p.i.
Figure 5: Virulence of passaged MA-ExoN and MAwt viruses.
Figure 6: MA-ExoN vaccination protects from lethal challenge.

Similar content being viewed by others

Accession codes

Primary accessions

NCBI Reference Sequence

References

  1. Jones, K.E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).

    Article  CAS  Google Scholar 

  2. Li, Y. et al. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc. Natl. Acad. Sci. USA 104, 15787–15792 (2007).

    Article  CAS  Google Scholar 

  3. Morens, D.M. & Fauci, A.S. The 1918 influenza pandemic: insights for the 21st century. J. Infect. Dis. 195, 1018–1028 (2007).

    Article  Google Scholar 

  4. Sessa, R., Palagiano, C., Scifoni, M.G., di Pietro, M. & Del Piano, M. The major epidemic infections: a gift from the Old World to the New? Panminerva Med. 41, 78–84 (1999).

    CAS  PubMed  Google Scholar 

  5. Cheng, V.C., Lau, S.K., Woo, P.C. & Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20, 660–694 (2007).

    Article  CAS  Google Scholar 

  6. Graham, R.L. & Baric, R.S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol. 84, 3134–3146 (2010).

    Article  CAS  Google Scholar 

  7. Pfefferle, S. et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg. Infect. Dis. 15, 1377–1384 (2009).

    Article  Google Scholar 

  8. Vijgen, L. et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 79, 1595–1604 (2005).

    Article  CAS  Google Scholar 

  9. Vignuzzi, M., Wendt, E. & Andino, R. Engineering attenuated virus vaccines by controlling replication fidelity. Nat. Med. 14, 154–161 (2008).

    Article  CAS  Google Scholar 

  10. Drake, J.W. & Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 96, 13910–13913 (1999).

    Article  CAS  Google Scholar 

  11. Holland, J.J., Domingo, E., de la Torre, J.C. & Steinhauer, D.A. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Virol. 64, 3960–3962 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Vignuzzi, M., Stone, J.K., Arnold, J.J., Cameron, C.E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348 (2006).

    Article  CAS  Google Scholar 

  13. Coffey, L.L., Beeharry, Y., Borderia, A.V., Blanc, H. & Vignuzzi, M. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc. Natl. Acad. Sci. USA 108, 16038–16043 (2011).

    Article  CAS  Google Scholar 

  14. Lauring, A.S. & Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 6, e1001005 (2010)10.1371/journal.ppat.1001005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lauring, A.S., Jones, J.O. & Andino, R. Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol. 28, 573–579 (2010).

    Article  CAS  Google Scholar 

  16. Eckerle, L.D. et al. Infidelity of SARS-CoV nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6, e1000896 (2010).

    Article  Google Scholar 

  17. Snijder, E.J. et al. Unique and conserved features of genome and proteome of SARS-CoV, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004 (2003).

    Article  CAS  Google Scholar 

  18. Nga, P.T. et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog. 7, e1002215 (2011).

    Article  CAS  Google Scholar 

  19. Minskaia, E. et al. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA 103, 5108–5113 (2006).

    Article  CAS  Google Scholar 

  20. Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L. & Denison, M.R. High fidelity of murine hepatitis virus replication is decresed in nsp14 exoribonuclease mutants. J. Virol. 81, 12135–12144 (2007).

    Article  CAS  Google Scholar 

  21. Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D. & Baric, R.S. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 8, 270–279 (2011).

    Article  CAS  Google Scholar 

  22. Frieman, M.B. et al. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog. 6, e1000849 (2010).

    Article  Google Scholar 

  23. Roberts, A. et al. A mouse adapted SARS coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 3, e5 (2007).

    Article  Google Scholar 

  24. Sheahan, T. et al. Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. J. Virol. 85, 217–230 (2011).

    Article  CAS  Google Scholar 

  25. Frieman, M. et al. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J. Virol. 86, 884–897 (2012).

    Article  CAS  Google Scholar 

  26. Sheahan, T. et al. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog. 4, e1000240 (2008).

    Article  Google Scholar 

  27. Zhao, J., Van Rooijen, N. & Perlman, S. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV–infected mice. PLoS Pathog. 5, e1000636 (2009).

    Article  Google Scholar 

  28. Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011).

    Article  CAS  Google Scholar 

  29. Deming, D. et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epideic and zoonotic spike variants. PLoS Med. 3, e525 (2006).

    Article  Google Scholar 

  30. Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody prevent repication of SARS coronavirus in the respiratory tract of mice. J. Virol. 78, 3572–3577 (2004).

    Article  CAS  Google Scholar 

  31. Kew, O. et al. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science 296, 356–359 (2002).

    Article  CAS  Google Scholar 

  32. Johnson, A.A. & Johnson, K.A. Exonuclease proofreading by human mitochondrial DNA polymerase. J. Biol. Chem. 276, 38097–38107 (2001).

    CAS  PubMed  Google Scholar 

  33. Johnson, A.A. & Johnson, K.A. Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. J. Biol. Chem. 276, 38090–38096 (2001).

    CAS  PubMed  Google Scholar 

  34. Donlin, M.J., Patel, S.S. & Johnson, K.A. Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry 30, 538–546 (1991).

    Article  CAS  Google Scholar 

  35. Patel, S.S., Wong, I. & Johnson, K.A. Pre–steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30, 511–525 (1991).

    Article  CAS  Google Scholar 

  36. Wong, I., Patel, S.S. & Johnson, K.A. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 30, 526–537 (1991).

    Article  CAS  Google Scholar 

  37. Smits, S.L. et al. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog. 6, e1000756 (2010).

    Article  Google Scholar 

  38. Yount, B., Roberts, R.S., Lindesmith, L. & Baric, R.S. Rewiring the SARS-CoV transcription circuit: engineering a recombination-resistant genome. Proc. Natl. Acad. Sci. USA 103, 12546–12551 (2006).

    Article  CAS  Google Scholar 

  39. Yount, B. et al. Reverse genetics with a full length infectious cDNA of the severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 100, 12995–13000 (2003).

    Article  CAS  Google Scholar 

  40. Graham, R.L., Sims, A.C., Brockway, S.M., Baric, R.S. & Denison, M.R. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J. Virol. 79, 13399–13411 (2005).

    Article  CAS  Google Scholar 

  41. Becker, M.M. et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc. Natl. Acad. Sci. USA 105, 19944–19949 (2008).

    Article  CAS  Google Scholar 

  42. Chey, S., Claus, C. & Liebert, U.G. Validation and application of normalization factors for gene expression studies in rubella virus–infected cell lines with quantitative real-time PCR. J. Cell. Biochem. 110, 118–128 (2010).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank R. Halpin, C. Town (US National Institutes of Health Microbial Genome Sequencing Contract HHSN272200900007C) and X. Lu for their assistance in sequencing in vitro isolates. This work was funded by US National Institutes of Health grants U54-AI057157 (SERCEB; R.S.B. and M.R.D.), AI075297 (R.S.B.) and 5F32AI080148 (R.L.G.).

Author information

Authors and Affiliations

Authors

Contributions

R.L.G. designed and performed experiments, analyzed data, and wrote and edited the paper. M.M.B., L.D.E. and M.B. performed experiments, analyzed data and read the paper. M.R.D. and R.S.B. designed experiments, analyzed data, and wrote and edited the paper.

Corresponding author

Correspondence to Ralph S Baric.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Supplementary Tables 1–4 (PDF 450 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Graham, R., Becker, M., Eckerle, L. et al. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18, 1820–1826 (2012). https://doi.org/10.1038/nm.2972

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nm.2972

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing