Abstract
Live, attenuated RNA virus vaccines are efficacious but subject to reversion to virulence. Among RNA viruses, replication fidelity is recognized as a key determinant of virulence and escape from antiviral therapy; increased fidelity is attenuating for some viruses. Coronavirus (CoV) replication fidelity is approximately 20-fold greater than that of other RNA viruses and is mediated by a 3′→5′ exonuclease (ExoN) activity that probably functions in RNA proofreading. In this study we demonstrate that engineered inactivation of severe acute respiratory syndrome (SARS)-CoV ExoN activity results in a stable mutator phenotype with profoundly decreased fidelity in vivo and attenuation of pathogenesis in young, aged and immunocompromised mice. The ExoN inactivation genotype and mutator phenotype are stable and do not revert to virulence, even after serial passage or long-term persistent infection in vivo. ExoN inactivation has potential for broad applications in the stable attenuation of CoVs and, perhaps, other RNA viruses.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
274,03 € per year
only 22,84 € per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout






Similar content being viewed by others
Accession codes
Primary accessions
NCBI Reference Sequence
References
Jones, K.E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).
Li, Y. et al. On the origin of smallpox: correlating variola phylogenics with historical smallpox records. Proc. Natl. Acad. Sci. USA 104, 15787–15792 (2007).
Morens, D.M. & Fauci, A.S. The 1918 influenza pandemic: insights for the 21st century. J. Infect. Dis. 195, 1018–1028 (2007).
Sessa, R., Palagiano, C., Scifoni, M.G., di Pietro, M. & Del Piano, M. The major epidemic infections: a gift from the Old World to the New? Panminerva Med. 41, 78–84 (1999).
Cheng, V.C., Lau, S.K., Woo, P.C. & Yuen, K.Y. Severe acute respiratory syndrome coronavirus as an agent of emerging and reemerging infection. Clin. Microbiol. Rev. 20, 660–694 (2007).
Graham, R.L. & Baric, R.S. Recombination, reservoirs, and the modular spike: mechanisms of coronavirus cross-species transmission. J. Virol. 84, 3134–3146 (2010).
Pfefferle, S. et al. Distant relatives of severe acute respiratory syndrome coronavirus and close relatives of human coronavirus 229E in bats, Ghana. Emerg. Infect. Dis. 15, 1377–1384 (2009).
Vijgen, L. et al. Complete genomic sequence of human coronavirus OC43: molecular clock analysis suggests a relatively recent zoonotic coronavirus transmission event. J. Virol. 79, 1595–1604 (2005).
Vignuzzi, M., Wendt, E. & Andino, R. Engineering attenuated virus vaccines by controlling replication fidelity. Nat. Med. 14, 154–161 (2008).
Drake, J.W. & Holland, J.J. Mutation rates among RNA viruses. Proc. Natl. Acad. Sci. USA 96, 13910–13913 (1999).
Holland, J.J., Domingo, E., de la Torre, J.C. & Steinhauer, D.A. Mutation frequencies at defined single codon sites in vesicular stomatitis virus and poliovirus can be increased only slightly by chemical mutagenesis. J. Virol. 64, 3960–3962 (1990).
Vignuzzi, M., Stone, J.K., Arnold, J.J., Cameron, C.E. & Andino, R. Quasispecies diversity determines pathogenesis through cooperative interactions in a viral population. Nature 439, 344–348 (2006).
Coffey, L.L., Beeharry, Y., Borderia, A.V., Blanc, H. & Vignuzzi, M. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc. Natl. Acad. Sci. USA 108, 16038–16043 (2011).
Lauring, A.S. & Andino, R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 6, e1001005 (2010)10.1371/journal.ppat.1001005.
Lauring, A.S., Jones, J.O. & Andino, R. Rationalizing the development of live attenuated virus vaccines. Nat. Biotechnol. 28, 573–579 (2010).
Eckerle, L.D. et al. Infidelity of SARS-CoV nsp14-exonuclease mutant virus replication is revealed by complete genome sequencing. PLoS Pathog. 6, e1000896 (2010).
Snijder, E.J. et al. Unique and conserved features of genome and proteome of SARS-CoV, an early split-off from the coronavirus group 2 lineage. J. Mol. Biol. 331, 991–1004 (2003).
Nga, P.T. et al. Discovery of the first insect nidovirus, a missing evolutionary link in the emergence of the largest RNA virus genomes. PLoS Pathog. 7, e1002215 (2011).
Minskaia, E. et al. Discovery of an RNA virus 3′→5′ exoribonuclease that is critically involved in coronavirus RNA synthesis. Proc. Natl. Acad. Sci. USA 103, 5108–5113 (2006).
Eckerle, L.D., Lu, X., Sperry, S.M., Choi, L. & Denison, M.R. High fidelity of murine hepatitis virus replication is decresed in nsp14 exoribonuclease mutants. J. Virol. 81, 12135–12144 (2007).
Denison, M.R., Graham, R.L., Donaldson, E.F., Eckerle, L.D. & Baric, R.S. Coronaviruses: an RNA proofreading machine regulates replication fidelity and diversity. RNA Biol. 8, 270–279 (2011).
Frieman, M.B. et al. SARS-CoV pathogenesis is regulated by a STAT1 dependent but a type I, II and III interferon receptor independent mechanism. PLoS Pathog. 6, e1000849 (2010).
Roberts, A. et al. A mouse adapted SARS coronavirus causes disease and mortality in BALB/c mice. PLoS Pathog. 3, e5 (2007).
Sheahan, T. et al. Successful vaccination strategies that protect aged mice from lethal challenge from influenza virus and heterologous severe acute respiratory syndrome coronavirus. J. Virol. 85, 217–230 (2011).
Frieman, M. et al. Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease. J. Virol. 86, 884–897 (2012).
Sheahan, T. et al. MyD88 is required for protection from lethal infection with a mouse-adapted SARS-CoV. PLoS Pathog. 4, e1000240 (2008).
Zhao, J., Van Rooijen, N. & Perlman, S. Evasion by stealth: inefficient immune activation underlies poor T cell response and severe disease in SARS-CoV–infected mice. PLoS Pathog. 5, e1000636 (2009).
Bolles, M. et al. A double-inactivated severe acute respiratory syndrome coronavirus vaccine provides incomplete protection in mice and induces increased eosinophilic proinflammatory pulmonary response upon challenge. J. Virol. 85, 12201–12215 (2011).
Deming, D. et al. Vaccine efficacy in senescent mice challenged with recombinant SARS-CoV bearing epideic and zoonotic spike variants. PLoS Med. 3, e525 (2006).
Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody prevent repication of SARS coronavirus in the respiratory tract of mice. J. Virol. 78, 3572–3577 (2004).
Kew, O. et al. Outbreak of poliomyelitis in Hispaniola associated with circulating type 1 vaccine-derived poliovirus. Science 296, 356–359 (2002).
Johnson, A.A. & Johnson, K.A. Exonuclease proofreading by human mitochondrial DNA polymerase. J. Biol. Chem. 276, 38097–38107 (2001).
Johnson, A.A. & Johnson, K.A. Fidelity of nucleotide incorporation by human mitochondrial DNA polymerase. J. Biol. Chem. 276, 38090–38096 (2001).
Donlin, M.J., Patel, S.S. & Johnson, K.A. Kinetic partitioning between the exonuclease and polymerase sites in DNA error correction. Biochemistry 30, 538–546 (1991).
Patel, S.S., Wong, I. & Johnson, K.A. Pre–steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. Biochemistry 30, 511–525 (1991).
Wong, I., Patel, S.S. & Johnson, K.A. An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. Biochemistry 30, 526–537 (1991).
Smits, S.L. et al. Exacerbated innate host response to SARS-CoV in aged non-human primates. PLoS Pathog. 6, e1000756 (2010).
Yount, B., Roberts, R.S., Lindesmith, L. & Baric, R.S. Rewiring the SARS-CoV transcription circuit: engineering a recombination-resistant genome. Proc. Natl. Acad. Sci. USA 103, 12546–12551 (2006).
Yount, B. et al. Reverse genetics with a full length infectious cDNA of the severe acute respiratory syndrome coronavirus. Proc. Natl. Acad. Sci. USA 100, 12995–13000 (2003).
Graham, R.L., Sims, A.C., Brockway, S.M., Baric, R.S. & Denison, M.R. The nsp2 replicase proteins of murine hepatitis virus and severe acute respiratory syndrome coronavirus are dispensable for viral replication. J. Virol. 79, 13399–13411 (2005).
Becker, M.M. et al. Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice. Proc. Natl. Acad. Sci. USA 105, 19944–19949 (2008).
Chey, S., Claus, C. & Liebert, U.G. Validation and application of normalization factors for gene expression studies in rubella virus–infected cell lines with quantitative real-time PCR. J. Cell. Biochem. 110, 118–128 (2010).
Acknowledgements
The authors thank R. Halpin, C. Town (US National Institutes of Health Microbial Genome Sequencing Contract HHSN272200900007C) and X. Lu for their assistance in sequencing in vitro isolates. This work was funded by US National Institutes of Health grants U54-AI057157 (SERCEB; R.S.B. and M.R.D.), AI075297 (R.S.B.) and 5F32AI080148 (R.L.G.).
Author information
Authors and Affiliations
Contributions
R.L.G. designed and performed experiments, analyzed data, and wrote and edited the paper. M.M.B., L.D.E. and M.B. performed experiments, analyzed data and read the paper. M.R.D. and R.S.B. designed experiments, analyzed data, and wrote and edited the paper.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1–3 and Supplementary Tables 1–4 (PDF 450 kb)
Rights and permissions
About this article
Cite this article
Graham, R., Becker, M., Eckerle, L. et al. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nat Med 18, 1820–1826 (2012). https://doi.org/10.1038/nm.2972
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nm.2972
This article is cited by
-
Crucial mutation in the exoribonuclease domain of nsp14 of PEDV leads to high genetic instability during viral replication
Cell & Bioscience (2021)
-
In depth analysis of Cyprus-specific mutations of SARS-CoV-2 strains using computational approaches
BMC Genomic Data (2021)
-
Attenuated dengue viruses are genetically more diverse than their respective wild-type parents
npj Vaccines (2021)
-
Coronaviruses in humans and animals: the role of bats in viral evolution
Environmental Science and Pollution Research (2021)
-
The potential danger of suboptimal antibody responses in COVID-19
Nature Reviews Immunology (2020)