Skip to content

[BUG] RegressionEnsembleModel predict error #2437

@GeorgeXiaojie

Description

@GeorgeXiaojie

Describe the bug
A clear and concise description of what the bug is.

scene1:as below, RegressionEnsembleModel train and predict works

train:

RegressionEnsembleModel(
	forecasting_models = [
		LightGBMModel(
			lags=args.input_length,
			lags_future_covariates=list(range(args.forecast_horizon)),
			# add_encoders={'datetime_attribute': {'future': ['hour', 'minute']}},
			output_chunk_length=args.forecast_horizon,
			random_state=2022,
			force_col_wise=True,
			device='gpu' if args.device != 'cpu' else args.device,
			verbose=1
		),
		XGBModel(
			lags=args.input_length,
			lags_future_covariates=list(range(args.forecast_horizon)),
			# add_encoders={'datetime_attribute': {'future': ['hour', 'minute']}},
			output_chunk_length=args.forecast_horizon,
			random_state=2022
		)],
	regression_train_n_points =args.forecast_horizon
)

model.fit(
    train_series,
    future_covariates=cov_train_series
)

model.save("model.pt"))

predict:

model = RegressionEnsembleModel.load("model.pt"))

model.predict(
	n=args.forecast_horizon,
	series=series,
	future_covariates=future_covariates,
	num_samples=1,
	verbose=False
)

scene2:as bellow, RegressionEnsembleModel train works, but predict doesn't work, and raises an exception: AttributeError: 'NoneType' object has no attribute 'set_predict_parameters'

train:


model = RegressionEnsembleModel(
	forecasting_models = [
		TiDEModel(
			input_chunk_length=args.input_length,
			output_chunk_length=args.forecast_horizon,
			n_epochs=args.epochs,
			loss_fn=torch.nn.MSELoss(),
			model_name=model_name,
			force_reset=True,
			save_checkpoints=False,
			random_state=42,
			pl_trainer_kwargs=pl_trainer_kwargs,
			use_static_covariates=False
		),
		NLinearModel(
			input_chunk_length=args.input_length,
			output_chunk_length=args.forecast_horizon,
			model_name=model_name,
			force_reset=True,
			save_checkpoints=False,
			random_state=42,
			pl_trainer_kwargs=pl_trainer_kwargs,
			use_static_covariates=False
		)],
	regression_train_n_points = args.input_length
)

model.fit(
    train_series,
    future_covariates=cov_train_series
)

model.save("model.pt"))

predict:

model = RegressionEnsembleModel.load("model.pt"))

model.predict(
	n=args.forecast_horizon,
	series=series,
	future_covariates=future_covariates,
	num_samples=1,
	verbose=False
)

I debugged into the code below and found that self.model is indeed None, I'm not sure if it's because of a bug?

self.model.set_predict_parameters(
	n=n,
	num_samples=num_samples,
	roll_size=roll_size,
	batch_size=batch_size,
	n_jobs=n_jobs,
	predict_likelihood_parameters=predict_likelihood_parameters,
	mc_dropout=mc_dropout,
)

To Reproduce
Steps to reproduce the behavior, preferably code snippet.

Expected behavior
A clear and concise description of what you expected to happen.

System (please complete the following information):

  • Python version: [e.g. 3.7]
  • darts version [e.g. 0.30.0]
  • torch[2.0.1]
  • pytorch-lightning[1.9.5]

Additional context
Add any other context about the problem here.

Metadata

Metadata

Assignees

No one assigned

    Labels

    bugSomething isn't working

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions