
Databases 101
Nicholas Schmidt, CIPP/US

2Databases 101

There are few technologies more taken for granted than
databases. Since at least the 1960s, databases have been
a fundamental part of most major technology products.
It is almost inconceivable that you would create any sort
of modern, complex program without using a database
somewhere.

That doesn’t mean, however, that everyone knows how they
work, or why. As this first part in a series of white papers on
technology for privacy pros, we’re going to look at the very

basics of the art of database design, with an eye towards
helping the busy privacy professional understand at a
glance what data an organization is storing and how, and
provide some suggestions for ensuring the data is stored
consistently and accurately.

Common database terminology
First, it may be helpful to look at some common database
terms and what they mean:

Databases 101

Name Address Email Phone Number Age
Mike 123 Main St. mike@email.com 123 4567 41
Sharon 7 Oak St. sharon@email.com 234 5678 44
Jenny 1 Tutone St. jenny@email.com 867 5309 37

Database

Table

Another Table

Entry

Field

Metadata
People Last Updated: 7/31/18

Name Address City State/Country Postal Code
IAPP HQ 75 Rochester Ave. Portsmouth NH USA 03801
IAPP Europe Rue de Luxembourg 22 Brussels Belgium 1000

Record

Example SQL Query and Output:
Query: SELECT Address FROM People WHERE Age>40;
Output:
“123 Main St.”
“7 Oak St.”

3Databases 101

Database — A database is, according to the legendary
textbook Fundamentals of Database Systems, any “collection
of related data.” In practice, it is a specific type of computer
file that holds large amounts of data in a specific format
and follows certain conventions. The most common file
extension for a programmatic database is “.db.” Databases
created using Microsoft Access have the default extension
“.accdb” or “.accdbx,” depending upon the version. The
easiest way to picture a database is as a Excel document
with some extra features and rules.

Tables — A database table is a specific grouping of related
data (“employees,” “customers,” etc.), a specific spreadsheet
in a format that any database table can be exported to. If
you are looking to review the contents of a database but
cannot peruse the database itself, you will probably receive
an export of the contents in spreadsheet form, with one
spreadsheet per table.

Fields — A field is a specific category of data within a
table (“employee name,” “employee address,” “customer
credit card number,” etc.), like a column in a spreadsheet.
All entries in a field must have the same format. Broadly,
fields can contain either numbers, nominals (i.e. letters and
symbols), or booleans (true/false).

Records — A record is a specific group of entries for each
field in a table, like a row in a spreadsheet.

Entries — An entry is a specific value for a specific record in
a specific field, essentially a specific cell in the spreadsheet. A
blank entry is recorded as “NULL,” which means that there is
no data recorded for the entry in memory. Whether an entry
is NULL or filled can also convey information by implication.

Metadata — Metadata is data about data. Common metadata
entries include update dates, original creation dates, data size,
table/database/field/file names and (for files) extensions.
Metadata is crucial to record or discover because it can tell
you about when and by whom the data was created or altered.

SQL — Structured Query Language is the standard protocol
for database access; most databases allow SQL input. SQL has
inspired a number of other query languages, such as C#’s LINQ.

The Fundamental linking structure of
a database
Every database table must have a primary key, a field or
combination of fields that uniquely identifies a record. No
two records in the same table can have the same primary
key. Any database implementation that allows the insertion
of records with the
same primary key is
broken and should
never be used
because of the risk of secondary “shadow” records. Usernames
and timestamps are two common primary keys. A third
common primary key is a GUID, or “globally unique identifier,”
which is a base-16 number so long it is guaranteed by probability
to be unique. GUIDs are excellent primary keys because they
are entirely managed by the computer system and unrelated
to the actual information contained in the record. Thus, a
record can be completely copied while still maintaining unique
primary keys. Occasionally, more than one field in a database is
expected to be unique to that record; for example, a database
table could contain both an employee’s ID number and social
security number. In such a case, the unique fields not used in
the primary key are referred to as secondary or candidate keys.

1e9b1095-4e52-478f-97d5-67248f5f3a76
An example GUID created by an online generator

4Databases 101

If a record in one table must link to another record in the
same table or another table, this is accomplished using
a foreign key. A foreign key is a field that contains the
primary keys of other records. For example, if your database
contains a table of employees and a table of universities,
and you want to record where each of your employees went
to university, you can add a foreign key field to the employee
table and populate each entry in that field with the primary
key of that employee’s alma mater in the university table.
The link created between the employee and university tables
is called a relation or link.

Every relation has a cardinality ratio. The most common
cardinality ratios are listed below:

Relation Name Description Example
1:1 (One-to-One) One record may

only link to one
record

Spouse-to-
Spouse

1:N (One-to-Many) One record may
link to many
records

Mother-to-
Children

N:1 (Many-to-One) Many records may
link to one record

Children-to-
Mother

N:M (Many-to-Many) Many records
may link to many
records

Siblings-to-
Siblings

Understanding the contained relations and cardinality ratios
is crucial to understanding the structure of a database.
Where necessary, usually in relationships involving at least
one side that is “many,” pivot tables can link specific records
together.

One common use of relations is weak entity types. A
weak entity type is a table with records identified by their
relationship to a record in another table. In other words, a
foreign key pointing to another table is all or part of the
weak entity type’s primary key. The relation between the
two is the identifying relationship and the identifying table
is called the owner entity type. When an owner entity type
can connect to multiple weak entity types, the weak entity
type will include a partial key that will distinguish specific
weak entity types linked to the same owner. Consider the
following example from an income tax tracking database,
with a 1:N identifying relationship:

Taxpayer Table
(Owner Entity Type)

Dependent Table
(Weak Entity Type)

Taxpayer ID Number
(Primary Key)

Taxpayer (Foreign Key
pointing to Taxpayer ID #;
Primary Key P. 1)

Name Name (Unique Partial Key,
Primary Key P. 2)

Age Age
Address Occupation
Occupation Income
Income
Amount Owed
Last Pay Date

Because dependents aren’t paying their own taxes, they
don’t have a taxpayer ID and are instead identified by their
relation to a taxpayer with an ID. The name field in the
dependent table is a partial key. It distinguishes dependents
from one another, allowing a taxpayer to claim more than
one dependent. For example, “John,” a taxpayer, could claim

5Databases 101

two dependents, “Bob” and “Betty,” who are distinguished
from each other by their names.

Deleting from a database
There are two different ways to delete entries from a database.
The first of which is to replace the data in those entries with
NULL, essentially removing the data from the database. This
is called a hard delete. The alternate option is to use another
field to mark a record or entry as “deleted” while still retaining
the information; or remove the information to a separate
“deleted” table. When the database is read, “deleted” entries
can be excluded from retrieval by a properly written query.
This is called a soft or logical delete.

Both approaches have serious advantages and disadvantages.
A soft delete allows for the fixing of mistakes and keeps
the “deleted” data available for audit or troubleshooting
purposes. It also permits other records related to the removed
one to continue functioning as normal, as the necessary data
is still present in the database. In a hard delete, any records
which relate to a removed record will have to be altered to
remove the relation; with now-incomplete weak entity types
being deleted as well. This is called a cascading delete. Hard
deletes, however, are more compatible with the right to be
forgotten, since no information is retained. Additionally, hard
deletes are less prone to error, since the deleted information
is gone and cannot be accidentally mixed with not-“deleted”
information by a mistake in a query.

File deletion in most operating systems is soft. For example,
when a file is “deleted” in Windows, it is just moved from
its previous folder to a special folder called the recycle bin.
Even though the file doesn’t appear in its original location,

that location is still retained by the operating system in
its database of files and the file can still be retrieved by
the operating system. The file is only hard deleted when
the recycle bin is emptied. When this happens, the space
allocated to the file on the hard disk is made available to
other files and will eventually be overwritten. After this point,
the un-overwritten parts of the file can only be retrieved by
special forensic programs.

Mapping databases
The structure of databases can be depicted using a wide
variety of notations and diagrams. The most commonly
used in industry is UML or “Unified Modeling Language.”
It is a single, unified format used to represent everything
from databases to class structures in programs to hardware
interactions and is managed by the International Organization
for Standardization. When depicting a database, UML does
not usually identify which fields are part of the primary
key. UML database diagrams often simultaneously depict a
class structure (used in programming) that sits on top of
the database and interacts with it. On the next page is one
example.

This diagram shows a database called “UNIVERSITY” with
four major tables and several pivot tables. The first table,
STUDENTS, stores each student’s basic information. The
STUDENTS table is the owner entity type of the STUDENT_
EMPLOYEE table, which contains some extra information
about a student’s job with the university in a 1:N relationship;
a student may have more than one job or no job. There is an
unnamed pivot table connecting the two and the position
field of STUDENT_EMPLOYEE differentiates a student’s
different jobs from each other. Also included in that table

6Databases 101

is the 1:N relationship between supervised and supervisor
students, with another pivot table. The third table, CLASSES,
relates to students on a N:M relationship, as multiple
students can belong to multiple classes or none.

Every class must have at least one student and a user can
retrieve a student’s class schedule from the STUDENTS
table or get a class roster of students from the CLASSES
table. The table is linked to the STUDENTS table by way of
a pivot table called CLASS_SCHEDULE. The STUDENTS
table relates to the last major table, DORMS, on an N:1

relationship. The database has been set up so that a user
can retrieve the list of students in a dorm via the DORMS
table, but can’t find out what dorm a student lives in via the
STUDENTS table. The pivot table between the two tables,
DORM_ASSIGNMENT, also records a student’s dorm room
number. A student may only be assigned to one dorm but a
dorm can have theoretically infinite students.

On the next page are explanations of the three structures
most common to UML depictions of databases and
necessary to fully interpret the above chart:

UNIVERSITY:DORM_ASSIGNMENT
Dorm_Room_Number

UNIVERSITY:STUDENTS
StudentID
Name
 First
 Last
Birthdate
Home_Address
Matriculation_Date
Major
LoadStudent
UpdateStudent
GraduateStudent
…

UNIVERSITY:CLASSES
ClassNumber
Professor
Time
Location
Department
GetClassSchedule
DisplayClassDescription
AssignStudent
…

UNIVERSITY:DORMS
StudentID
Name
Location
Max_Capacity
Rector
CalculatePercentOccupancy
DisplayStudentList
…

Position
*

*

1..1

0..1

0..1

Works_for

Manages

1..*

*

CLASS_SCHEDULE*

UNIVERSITY:STUDENT_EMPLOYEE
Payrate
Hours_Worked
CalculatePayroll
ChainPayrate
…

7Databases 101

Where there isn’t a separate
pivot table in the diagram, the
name of the relation/pivot table
(if there is one) can go here.

A * in a relation means infinity. Where the
relation is 0..*, this is simply abbreviated as a
single *. Thus, any B record could theoretically
be connected to no A records or every A record
in the database.

A record in table A must be connected to a minimum of X
records in table B and a maximum of Y records in Table B.

Table A Table B

An arrow means the relation is unidirectional, A can
be accessed from B but B cannot be accessed from
A. If there is no arrow, the relation is bidirectional.

The dotted line just connects the relation
and its pivot table, it doesn’t denote
a separate relation. The separation is
solely for reasons of legibility.

When a pivot table contains extra
fields that aren’t part of its primary
key, a separate table entry is
created like so (and no relation
name appears above the line).

[Relation/Pivot Table Name]

[Extra Fields]

X..Y [Relation Name] *
A B

The domain name goes here.
Domains can be either:

1. The database name.
2. A codebase or code

subdivision the database
pulls functionality from/etc.

Domain is sometimes omitted.

Fields are listed in the box directly
under the table name. If there are
no fields listed, the box doesn’t
represent a database table.

Complex fields are fields that are
composites of multiple other fields.
Treat each constituent field as if it
were a separate one.

These are functions in a programming
class. Ignore them, they say nothing
about the structure of the underlying
database.

The table name goes here.

[Domain]:[Table]
[Field names]
[Complex Field Name]
 [Constituent Fields]
[Functions/“operations” to
manipulate the fields]

When the weak entity type has a
partial key, it goes here. If there is
no partial key, this box is omitted.

When there is a non-
intuitive cardinality ratio to
the aggregation, it appears
just like it would for any
other relation, otherwise,
it’s usually omitted. In this
example, every record of
the owner entity type must
connect to at least 1 weak
entity type record and may
connect to at most 3.

The weak entity type or
pre-seeded table doesn’t
get a diamond on its side.

This diamond means that the
relation is what UML calls an
aggregation. There are two
primary types of relations that are
represented as aggregations:

1. Identifying relationships for
weak entity types.

2. Tables containing a closed set
of pre-seeded values that are
used in other tables (“raining,”
“sunny,” etc.). These tables are
o� en used to put the database
into 3NF, 4NF, and 5NF. Treat
them like fields of the tables
they link to.

[Owner Entity Type/Table]

[Partial Key]

[Weak Entity Type/Table]

1..3

1..1

8Databases 101

Defeating enemy #1: Inconsistency
The primary enemy of every database is inconsistency, or the
presence of contradictory information within the same database.
Inconsistency is also a primary risk factor for liability under the
EU’s General Data Protection Regulation, Chapter III, which
grants rights, including rectification and erasure, to data subjects.
Human error and incomplete database updates, which can occur
due to many factors, including poor coding or a bad connection,
are the primary generators of database inconsistencies and will
happen to some extent in every database.

The best way to limit the risk of database inconsistencies is
to use databases that utilize the normal forms of database
design to limit redundancy. to illustrate, let’s fix the simple,
already inconsistent, one-table database of American sports
teams at the bottom of the page. Using what you’ve learned
about databases so far, see if you can spot all four potential
sources of inconsistency.

Here are all four:

1.	 The Giants are recorded as having a winning record,
even though they won less than a fifth of their

games. This direct inconsistency between fields in
the same record can occur because the Winning_
Record field duplicates information already available
in the Wins and Losses fields.

2.	Baseball and football are fundamentally different
sports. Baseball teams don’t score touchdowns and
football teams don’t score home runs. However,
the SF Giants, a baseball team, are recorded as
having scored two touchdowns. This is another
inconsistency between fields, this time caused by
the mixture of records using different fields into the
same table.

3.	Someone made a typo: Boston is both incorrectly
placed in Mississippi (MS) and correctly placed in
Massachusetts (MA). If you query the database to
find out what state Boston is in, you will get two
answers and if you search for all Massachusetts
teams, the Patriots won’t appear. This is an example
of inconsistency between records.

Name City State Sport Wins Losses Winning_Record Touchdowns Home Runs
Cardinals St. Louis MO Baseball 22 16 Yes NULL 196
Giants New York NY Football 3 13 Yes 28 NULL
Cardinals Phoenix AZ Football 8 8 No 29 NULL
Red Sox Boston MA Baseball 28 13 Yes NULL 168
Giants San Francisco CA Baseball 21 21 No 2 128
Patriots Boston MS Football 13 3 Yes 49 NULL

Table: TEAMS

9Databases 101

4.	There is no unique field that makes sense as a primary
key. We have teams with the same name, teams from
the same cities, and teams in the same sports. Our only
option to use this database in its current state is to
designate a composite key of multiple fields (like Name
and City), but this may not be sustainable in the long-
term. If we are expecting to add university and high
school teams to our database, it is conceivable that
we will have records identical in every field left of wins
and thus appearing identical to the system. This could
(if our database program is working properly) cause
the exclusion of certain teams or (if it isn’t) create
inconsistent, apparently duplicate records. Don’t feel
bad if you didn’t see this one, primary key issues can be
difficult to spot if you aren’t looking for them.

If we put the database into the First Normal Form (abbreviated:
1NF), we will eliminate three of our four possible inconsistencies.
To put a database into the first normal form, we must:

1.	 Group like records together and different records
separately. In this case, we have two very different

types of records in the same table, baseball teams
and football teams; these two classes each use unique
fields, a prime indicator of difference. We should
divide our TEAMS table into two different tables by
sport and distribute the records and fields accordingly.

2.	Eliminate redundant fields. We have two redundant
fields in this database. Since our tables are now divided
by sport, we don’t need the Sport field anymore. The
information it contains is entirely given by the record’s
presence in a specific table. Additionally, Winning_
Record contains information that can be easily derived
by comparing the Wins and Losses fields against each
other. Both fields should be eliminated.

3.	Give or designate a unique primary key for every
record. As mentioned before, no existing field has
a value which is guaranteed to be unique. Our best
option is to use a GUID, in this case however, we will
use simple numbers for legibility.

Here’s how our database looks after these transformations:
Table: BASEBALL_TEAMS

GUID (PK) Name City State Wins Losses Home Runs
1 Cardinals St. Louis MO 22 16 196
2 Red Sox Boston MA 28 13 168
3 Giants San Francisco CA 21 21 128

Table: FOOTBALL_TEAMS

GUID (PK) Name City State Wins Losses Touchdowns
1 Giants New York NY 3 13 28
2 Cardinals Phoenix AZ 8 8 29
3 Patriots Boston MS 13 3 49

10Databases 101

You will notice that the first two inconsistencies are
eliminated. It is no longer possible to assign touchdowns
to a baseball team or home runs to a football team, or to
designate a team with more losses than wins as having
a winning record. Winning records can be determined
programmatically and doesn’t need to be stored directly in
the database. Similarly, when using GUIDs as a primary key,
we can now add seemingly duplicate records; like a Boston,
MA, children’s baseball team named the Red Sox. Note
that in a professional database, such an addition would be
prohibited or more information would be collected (like level
of play) to preserve meaningful distinctions for the user.

To eliminate our last inconsistency, the location of Boston,
we will need to put the database into the Second Normal
Form (abbreviated: 2NF). To do this, we must identify sets of
values that apply to multiple records and create a separate
table to hold them, linking back to the original records using
a foreign key. In our table, the values in the City and State
fields apply to every other record and can be common to
multiple records (i.e. the same city can have multiple sports
team). Therefore, we should move the City and State fields to
their own table, LOCATION, and link it into the other tables
via a foreign key called LOCATION_GUID. Here is how our
database looks now:

Table: BASEBALL_TEAMS

GUID (PK) Name Location_GUID Wins Losses Home Runs
1 Cardinals 1 22 16 196
2 Red Sox 2 28 13 168
3 Giants 3 21 21 128

Table: FOOTBALL_TEAMS

GUID (PK) Name Location_GUID Wins Losses Touchdowns
1 Giants 4 3 13 28
2 Cardinals 5 8 8 29
3 Patriots 2 13 3 49

Table: LOCATION

GUID (PK) City State
1 St. Louis MO
2 Boston MA
3 San Francisco CA
4 New York NY
5 Phoenix AZ

11Databases 101

The last inconsistency is now eliminated and Boston is only
listed once, in Massachusetts. If there is another location
typo, or Mississippi made it into LOCATION instead of
Massachusetts, the problem can be fixed by updating only
one entry, rather than having to query through the entire
database to fix multiple entries with the same mistake. This
will greatly reduce the risk of inconsistency between rows.

The Third Normal Form (3NF), Fourth Normal Form (4NF),
and Fifth Normal Form (5NF) are more complicated. They
can generally be summarized thusly: When creating a
table that records nominal values that can repeat, create
a separate table to hold the nominal values, or possible
combinations of nominal values, related to that occurrence
and link to that table using a foreign key rather than insert
the nominal values directly in the table. For example, a table
in the second normal form that lists the winners of the Tour
de France by year needs to worry about the Third, Fourth,
and Fifth normal forms if it contains superfluous information
like the winner’s date of birth or country, but a table of Tour
de France competitors would not, since there would only be
one entry per competitor, regardless of how often they won.

Understanding and evaluating a database
When confronted with a new database, it is important to grasp
the structure of the database before understanding any of its
individual contents. Therefore, the best thing to begin with is to
ask for a UML Diagram. A UML diagram can always be created.
If a database is extremely complicated, the UML diagram can
be broken up into several diagrams of specific relations. Next,
you want to look at the structure of the database and see if
it allows for inconsistency. Does it follow the normal forms?
Pay special attention to the primary keys of each table and

consider the population the database is intended to catalog:
Is it conceivable that there will be other potential records that
have the same primary key? After this, review the data itself.
It is possible to write SQL statements that output the data
in different ways, including with data from different tables
mapped to each other. Just because data is stored in a specific
way doesn’t mean it must be reported in that way.

Test your knowledge
You are the data privacy officer for MatchmakerMatchmaker.
com, a dating website for matchmakers, and are regularly
consulted on database changes as part of the company’s
privacy impact assessment process. A UML diagram showing
the current structure of the site’s database is s on the following
page. Applying what you’ve learned, should you approve each
proposed change from a consistency perspective? Why?

1.	 Adding a phone number field to USER, to be used for
two-factor authentication around password recovery.
The recorded phone number will be expected to be
unique for each user.

2.	Adding an age field in years to USER, because it
will make dating profiles load faster by reducing the
amount of calculations required.

3.	Adding an email field to LOG-INS, which records
the user’s email address when they log in (log-ins
to MatchmakerMatchmaker use email address not
username).

4.	Adding a Boolean to the USER table to record when
a user has unsubscribed from email notifications.

12Databases 101

PREMIUM_USER
Payment_status
Expiration_date
Autobill
Bill
Renew
…

USER
Username
Password_hash
Name
 First
 Last
Email
Gender
Looking_for
Date_of_Birth
Description
Photo
LoadProfile
UpdateProfile
DisplayDescription
…

MATCHES
Timestamp
MakeMatch
UnMatch
…

LOG-INS
Timestamp
MakeLoginRecord
FindLoginHistory
…

MESSAGES
Timestamp
Text
Opened
LoadMessage
SendMessage
…

2..2

2..2

*

*
*

1..1

13Databases 101

Answers:

1.	 Yes. Phone number introduces information that
is not contained anywhere else in the database.
Because phone number is expected to be unique, it
will become a candidate key for the USER table.

2.	No. The age field breaks the first normal form
because it is redundant with Date_of_Birth.
The normal forms are good rules of thumb, not
requirements, and should be departed from if a
good case can be made. Although introducing
a redundant field into a table to decrease
loading times when it contains information that
is time-consuming to derive from the other
data (like position in a long, sorted list) is one
such circumstance, it is not advisable in this
case. Because of how dates are stored in most
databases, age can be derived from a date of birth
in milliseconds; most languages would only require
one line of code for the task.

3.	No. This breaks one of the advanced normal forms,
the third to be precise. Because a user may change
their email address, the entry in USER’s email can
become inconsistent with that in LOG-INS’s email.
Because the Username field (part of the primary
key) is already recorded, you have a foreign key
to the USER table, where you can get the same
information. If someone down the road uses the
LOG-INS table to make a mailing list, there’s a risk
that MatchmakerMatchmaker will violate GDPR,

especially if the user’s data has been purged from
your database but the raw log-in data has been
preserved. Additionally, if MatchmakerMatchmaker
isn’t purging email addresses in the LOG-INS table
when a user deletes their account (which would be
computationally expensive), it may violate the right
to be forgotten.

4.	No. This is an inappropriate and legally risky
implementation of soft delete. Remember that
whether an entity is NULL also conveys information.
A true value in the proposed field is inconsistent
with the implication of a populated email field entry
in the same table. This proposal is a very tempting
“easy fix” for GDPR’s unsubscribe requirements
that, if used, creates a huge danger of future
liability. If an employee assembles a mailing list
from the USER table and makes the easy mistake of
forgetting to exclude records where the unsubscribe
boolean is true, MatchmakerMatchmaker will violate
GDPR. Better implementations of unsubscribe
include hard deleting the unsubscribed user from
the database. If a soft delete is necessary it could
be better implemented by moving unsubscribed
users or their email information to a different,
clearly-labeled table (like UNSUBSCRIBED).
An important part of software development is
considering how future users and administrators
could use and maintain a system without the
guidance of the original developers.

