
Distributed Databases
and Principles of
Disaster Recovery
Nicholas Schmidt, CIPP/US

2Distributed Databases and Principles of Disaster Recovery

When it comes to databases, privacy professionals care
most about design decisions and systems architecture, as
well as how databases are used and maintained, and less
about the individual variables and other minutia involved in
creating them.

In this second part in a series of white papers for technology
pros, we’ll look at some of the major facets of modern
database design and management with a focus on the
large internet-based database systems that define modern
technology, including distributed databases, errors and
backups.

Distributed databases
Traditionally, databases were located on one machine
(system/computer) and either accessed directly through
that machine or remotely by connecting to it via the internet.
When many users needed to access the same database, it
was usually placed on a mainframe, a very large and powerful
computer. This strategy has some advantages, including
ease of maintenance and greater database consistency,
since there is only one system to maintain.

After the turn of the millennium, parallel processing (the
use of multiple computer processors units aka “processor
cores” to run a single program) became more common as
traditional mainframes began to be replaced by smaller,

individually less powerful computers called servers. The
term “server” is short for “web server,” because these
computers are most commonly used for hosting websites.
With the shift away from mainframes, large databases also
shifted from a centralized model to a distributed one, where
the same database was spread across multiple systems in
such a way that it was still possible for a user to access
the full data of the database. Such distributed databases
are everywhere in modern life: Google Drive, Microsoft’s
OneDrive, Dropbox, and other cloud storage systems are,
at brass tacks, distributed databases being offered to the
public for document storage purposes. Most modern web
applications utilize a distributed database for data and user
management. A distributed database is also one of the base
components of all blockchain applications.

Distributed databases offer several advantages over the
mainframe model. The most significant advantage is faster
processing speed when handling large numbers of users.
Imagine you are buying groceries with 29 other shoppers,
and each person needs five minutes to check out. If the
supermarket only has one employee ringing up customers
and you’re last in line, you’ll spend two-and-a-half hours
waiting! If there are two employees, the wait time drops to
an hour and 15 minutes, and with 10 employees, it becomes
15 minutes. Each server in a distributed database is like an
additional supermarket clerk at checkout; by balancing the

Distributed Databases and
Principles of Disaster Recovery

3Distributed Databases and Principles of Disaster Recovery

load between itself and its peers, queries can be taken in
parallel, allowing each user to use the site faster.

The redundancy of distributed databases causes them to be
both more reliable (the probability that the database will be
accessible to a user at any random time) and more available
(the probability that the database will stay accessible over
a period of time) as system failures will be isolated to only
portions of the database, leaving the remainder to continue
functioning as normal. This same redundancy also offers
logistical advantages, including the ability to swap, repair,
update or add machines in a distributed database without
taking down the entire system.

There are two broad methods of creating a distributed
database. The first is duplication, where the contents of the
database are copied from a “master” or parent database and
placed onto another system. The second is fragmentation
or allocation, where the contents in the parent database are
split apart and stored on different systems in a way that still
allows the querying of the full database via communication
across the network of the database’s host systems. These
two techniques can be used together, fragmenting certain
aspects of the parent and duplicating others, creating a
partially replicated distributed database. By contrast, if
the parent database is completely copied, the distributed
database is fully replicated. Completely fragmenting a
database is called non-redundant allocation.

There are advantages and disadvantages to both design
methods. Fragmenting increases query speed and decreases
computational expense because a query can be quickly
routed to the right node(s) in the network and then resolved
by only having to search over a subset of the data. The

same applies to database updates: The database can be
more quickly updated in fragmented sections. By contrast,
duplicated databases are more expensive and time intensive
to query or update, since a query must search through
the entire database to resolve. However, fully replicated
databases are more secure and reliable because fraudulent
updates and data corruption are more likely to be confined
to a single node of the database and be corrected through
comparison with redundant nodes. Additionally, because
nodes are copies of each other, if one node goes down, no
data is lost.

Database errors, faults, recovery
and rollback
System failures are inevitable in any computer system,
including databases, and cannot be completely prevented.
When talking about them, proper vocabulary is important.
The Institute of Electrical and Electronics Engineers defines
the most common terms as follows:

Failure: Program behavior that is noticeably incorrect to the
user.

Fault: A defect in the code or construction of the system
that causes a failure, also known as a bug.

Error: A human mistake or action triggering the fault, such
as in input, coding, etcetera.

Failures in databases most often result in incomplete
database updates, which can then go on to serve as faults
triggering additional failures. For example, if a new record
is being added to a table with six required fields (which

4Distributed Databases and Principles of Disaster Recovery

must not be null for the record to function properly), but
the database encounters a failure halfway through and only
three of the required fields are written, the record will be
unusable. Every time the system attempts to read the fourth
required field, it will only read null and fail. Depending upon
what the missing fields are and how they are used, minor
failures in reading them may lead to large failures, perhaps
cascading throughout the database and making the entire
system unusable.

It is therefore important that incomplete database updates
be prevented from subsisting in the database after a failure;
this is called recovery. In every case, the database must be
restored to the state it was in before the update; the update
must be rolled back. If other updates have been made based
on the update that caused the failure, it is necessary to roll
them back to maintain consistency. This is called a cascading
rollback, which is computationally expensive and should
be avoided as much as possible. To effectively rollback an
update, two things are necessary:

1.	 A list of changes the update has made to the
database in a format that can be used to either redo
or undo those changes. This list is called a log or
changelog.

2.	A point in time where one can conclude that
the transaction has been, or will be, successfully
complete and doesn’t have to be rolled back. This is
called the commit point.

Additionally, many recovery algorithms create a temporary
location in memory where database updates can be written
before being placed into the actual database. Such temporary

media in computing are referred to as buffers or caches,
depending upon why they are holding the data.

Because a failure could happen at any time, it is important
that recovery algorithms record a change they are going to
make to the database in the log before making it. This is
called write-ahead logging and allows recovery and rollback
of all changes in the update after failure using the log.

Backing up a database and failover
Occasionally, a failure or other event causes catastrophic
damage that renders the entire database unusable. Examples
of such catastrophic failures include destruction of required
host servers and widespread corruption of the database.
In these circumstances, mere rollback is insufficient; the
database must be restored from a complete copy called a
backup. When not stored on hard disk, database backups
are generally stored on backup tapes, which function like the
tape cassettes popular before
the turn of the millennium but
can store data at an order of
magnitude far greater than
the average hard drive. In
recent years, solutions have
increasingly materialized that
digitally replicate data at
another location without need
for physical media, aided by
the development of storage
area network technology, in
which many servers operate
as though they are a single
hard drive.

A modern backup tape system

5Distributed Databases and Principles of Disaster Recovery

It is good practice for every organization to have a regular
backup schedule where the current contents of their
databases are regularly written to tape. Large companies
with dedicated data centers usually create at least one tape
backup every night. It is common to store backup tapes
in a different location than the servers they were created
from to insulate them from destruction in natural disasters.
Businesses that do not run their own backup schedules often
hire a vendor to perform these services for them. When
restoring a system from a backup, the first step is to replace
the ruined version of the database with that contained in
the backup. The second task is to use any surviving logs to
redo the committed updates made after the last backup was
taken. This is called roll forward.

In addition to backup, popular and business-critical web
services maintain a redundant but unused separate system
set up to immediately take over in the event the primary
version of the service goes offline. This is called failover,
undoing it and restoring the primary system is called failback.
Failback is automatic and utilizes a heartbeat, a connection
between the two systems where the main system tells the
backup system it is operating normally at regular intervals,
usually every couple of seconds. If a heartbeat is not received,
the backup system will automatically activate and assume
the duties of the primary system. Manual failover is called
switch over.

Disaster recovery plans
It is important for every organization that regularly intakes
and handles data to have a disaster recovery plan detailing
how it will be handled and data services restored in the
event of a service disruption. Disaster recovery plans are
occasionally called Continuity of Operations Plans, especially

in the U.S. public sector. In developing a plan, there are three
important metrics:

1.	 The recovery point objective is the maximum amount
of time for which data can be lost due to a disaster;
if you want to be able to restore your data up to two
days before any catastrophic system failure, your
RPO is 48 hours. It is important to include the time
it will take to receive the necessary materials and
restore the system to functioning when calculating
RPO: any data submitted to the system during that
time will also be lost. The RPO for a company that
does nightly backups is not 24 hours; it can be closer
to 72 hours.

2.	The recovery time objective is the maximum amount
of time a system can be down due to a disaster.
If your organization has an RTO of 24 hours, a
working system should be up and running within that
timeframe.

3.	The recovery consistency objective is the percentage
of data in the database that should be intact and
useable after it has been restored from a disaster.

All disaster recovery plans contain three broad types of
strategies:

1.	Preventative strategies are employed as part of
normal business operations to reduce the risk
and impact of a disaster. Examples include access
control, failover, server backup procedures, and
good software development and installation
strategies.

6Distributed Databases and Principles of Disaster Recovery

2.	Detective strategies are employed to detect a
disaster and pinpoint its source when possible.
Automated methods include heartbeat, as well as
agent-based and agentless monitoring systems.
Agent-based monitoring systems require the
installation of an agent, or piece of code that
reports or performs tasks on behalf of another
controlling piece of software on another system,
on each of the monitored components, including
individual servers. “Agentless” systems use
methods built into an operating system as their
agents. This means that, while agent-based systems
are generally more specialized and secure, agentless
solutions are easier to administer and (generally)
cheaper.

3.	Corrective strategies are employed to rectify a
disaster. They include operational responses by
different business departments, notifications (when
required), and management practices like post-
incident reviews.

Just like any other emergency plan, it is crucially important
to test the disaster recovery plan from time to time.

Test your knowledge
You are the chief information officer of DumpBin, a cloud
storage company based in New York City, and you’ve tasked
one of your interns with creating a first pass at a disaster
recovery plan. Unfortunately, the plan you got back has
some problems. Use what you’ve learned to identify the
issues and suggest solutions.

DUMPBIN DISASTER RECOVERY PLAN
Recovery goals
To allow DumpBin to completely recover in a timely
manner, this plan sets the following goals:

RPO: 6 hours
RTO: 24 hours
RCO: 75% [Assume this RCO is correct.]

Preventative strategies:
•	 Several methods, including strong access control,

that will be covered in a future white paper.

•	 Backup the full database to tape at 10 p.m. every
night, when site usage is lowest. Send the tapes to
the warehouse in Philadelphia.

•	 Manual failover of the main portal to an adequate
backup, administrated by a worker in the data center.

•	 Non-redundant allocation of the database to limit the
ability of viruses to spread within the system.

•	 Provisions for a yearly review, test, and revision of
this plan.

Detective strategies:
•	 Use of an agentless monitoring system to monitor

several of our specialized internal metrics.

•	 Use of an agent-based monitoring system to monitor
the standard networking metrics of each server in the
main database and identify when a node goes down.

7Distributed Databases and Principles of Disaster Recovery

•	 Use of a heartbeat system to monitor individual
server uptime and downtime.

•	 Detailed system logging to catch errors and faults,
including write-ahead logging to allow for the
analysis of database transactions.

Corrective strategies:
•	 If the failure was a data breach, contact legal and

follow their instructions regarding notifications and
preservation of information.

•	 List and order of people across the business who
need to be notified in the case of various disasters
together with their contact information.

•	 List of relevant DumpBin outside counsels with their
contact information and instructions for when they
need to be contacted.

•	 List of relevant outside vendors and their functions
and contact information.

•	 If necessary to restore the SAN from a backup, bring
the most recent backup tape from Philadelphia by
car (one-and-a-half hours) and upload it into the
database (four hours).

•	 Detailed technical instructions for responding to
different scenarios, including acts of God.

•	 Location of pre-created outage messages to place on
website in different circumstances.

Answers:
The errors are as follows:

1.	 The RTO and RPO are flipped. The RTO refers to
the maximum amount of time the system should
be down due to catastrophic failure while the RPO
refers to the maximum amount of time for which
system data can be lost. We can tell that the two
numbers are flipped because a six-hour RPO is
impossible given DumpBin’s nightly backup schedule
but is barely feasible given the time frame needed for
restoration.

2.	A 24-hour RPO is not feasible because it doesn’t
take the time necessary to restore the back-up
into account, which will matter in the worst case.
To see this, assume there is a catastrophic system
failure at 9:59 p.m. that prevents the nightly backup
from being taken. Because the backup could not
be taken and (assuming the RTO is accurate as is,
see the next point) it will take six hours to restore
the system. Therefore, the RPO should be at least
30 hours, not 24. The intern’s mistake is probably
because he correctly noticed that failover will
allow users to continue using DumpBin without
noticeable disruption and therefore limit any data
loss to that data which has changed in the 24 hours
before the last back-up and that that information
can be transferred into the main system after it
is restored. However, when calculating RPO, we
must think about the worst case and that means
assuming failover will fail.

8Distributed Databases and Principles of Disaster Recovery

3.	A six-hour RTO may not be feasible either. Although
it is true that a backup tape can reach the main data
center in an hour and a half and can be completely
uploaded in four, and it is theoretically possible that
IT can fix whatever problem or reset the system
in the hour and a half it takes the backup tape to
arrive, this is probably not a realistic estimate. We
know from the plan that DumpBin is a SAN, which
likely incorporates many servers. Fully resetting a
system, including manual reinstall of the DumpBin
host software, is probably not feasible in the two
hours the team have to meet the deadline given the
four-hour upload time, especially if we assume that
the failure happened at a time the IT team is mostly
out of the office, like late at night. See the next two
points in the next block for other reasons why this
estimate is inaccurate.

4.	There is no provision in the plan to roll-forward
the restored database from any surviving logs.
Therefore, the restoration from backup will be
incomplete, and DumpBin will throw out some
recoverable data. The RTO also does not consider
the time needed for roll-forward.

5.	There is no provision or conditions for failback
after the disaster has been fixed. Time necessary
to failback will need to be included in RTO and
clear criteria for a “ready” system should also be
included.

6.	Manual failover isn’t called failover but switchover.
However, it should be noted that, for a cloud

offering like DumpBin, perceived reliability and
availability is everything. Therefore, DumpBin
should consider investing in an automatic/true
failover system.

7.	Agentless and agent-based monitoring are
switched here. The agentless monitoring system
cannot create custom metrics because the
embedded agents do very little processing and
are often deployed automatically. The agent-based
monitoring system can be used to monitor standard
networking metrics like ping, but an agentless
monitoring system would be more effective for this
task.

8.	Write-ahead logging is wrongly placed in detective
measures when it should be a preventive measure.
Remember the main advantage of write-ahead
logging is recovery from future failures, which is a
preventive rather than detective task.

9.	A non-redundantly allocated database does not
provide any more security from viruses than a
redundantly allocated one. This is because the
actual software managing the database is the same,
only the data contained in each node is different.
However, replication in a database can help prevent
data corruption and fraudulent updates; therefore,
some replication may be desirable in DumpBin’s
database, although, given its nature as a cloud
storage app, full replication probably isn’t feasible.
This error is tricky. Don’t feel bad if you didn’t
spot it.

