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ACCELERATION OF STOCHASTIC APPROXIMATION BY AVERAGING*

B. T. POLYAK? AND A. B. JUDITSKY$

Abstract. A new recursive algorithm of stochastic approximation type with the averaging of trajectories
is investigated. Convergence with probability one is proved for a variety of classical optimization and
identification problems. It is also demonstrated for these problems that the proposed algorithm achieves
the highest possible rate of convergence.
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1. Introduction. The methods of stochastic approximation originate in the works
[29], [12] and are currently well studied [5], [21], [14], [16], [40]. These methods are
widely applied in problems of adaptation, identification, estimation, and stochastic
optimization [36], [37], [1], [8]-[10], [18]. The optimal versions (algorithms having
the highest rate of convergence) of these methods have been developed as well [34],
[38], [6], [27], [28]. However, the application of these optimal methods requires a
large amount of a priori information. For example, the matrix V2re(x*) must be known
in the problem of stochastic optimization (here x* is the minimum point of re(x)).

The new way of developing optimal algorithms that does not require such informa-
tion is based on the idea of averaging the trajectories. It was proposed independently
by Polyak [24] and Ruppert [32]. In the latter work, the linear algorithm for the
one-dimensional case was considered, and asymptotic normality of the procedure was
proved. Polyak [24] studies multidimensional problems and nonlinear algorithms. He
has demonstrated the mean square convergence for these methods. In this paper we
consider the same framework as in [24], but we demonstrate the asymptotic normality
of the estimates. The use of essentially new techniques in the proofs allows us to
substantially weaken the conditions ofthe theorems. Moreover, we prove the statements
on almost sure convergence.

The idea of using averaging to accelerate stochastic approximation algorithms
appeared in the 1960s (see [36] and the references therein). Afterward, the result was
that the hopes associated with this method could not be realized; see, for instance,
[23], where it was proved that usual averaging methods are not optimal for linear
problems. Nevertheless, the processes with averaging were proposed and studied in
the vast variety of papers [11], [14], [20], [13], [33], [4]. The essential advancement
[24], [32] was reached on the basis of the paradoxical idea: a slow algorithm having
less than optimal convergence rate must be averaged.

The paper is organized as follows. In 2 the linear case is discussed (i.e., linear
equation and linear algorithm). The formulation of the result and proofs are the most
clear for that problem. Then in 3 the general problem of stochastic approximation
is studied. The general result obtained is then applied to the unconstrained stochastic
optimization problem and to the problem of estimation of linear regression parameters.

2. Linear problem. We want to find x*, which solves the following equation:
(1) Ax=b.
Here bR, xGR N, and ARNxs. The sequence (Yt)t>=l is observed, where Yt--
Ax_- b + so,. Here Ax,_- b is a prediction residual and set is a random disturbance.
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To obtain the sequence of estimates (t)tl of the solution x* of (1), the following
recursive algorithm will be used:

Xt Xt- YtYt Yt Axt- b + t,

lt-1(2)
2, 7 i=0

E Xi-

Xo is an arbitrary (nonrandom) point in R v.
Let us suppose that the following assumptions hold.
Assumption 2.1. The matrix -A is Hurwitz, i.e., Re ai(A) > 0. (Here ai(A) are the

eigenvalues of the matrix A.)
Assumption 2.2. Coefficients 3’t > 0 satisfy either

(3) y, y, 0 < 3’ < 2 min Re Ai(A)

or

(4) 3’, 0,
3’,- 3’,+I

O(3’t

Commentary. Condition (4) for 3’,-+0 is the requirement on 3’, to decrease
sufficiently slow. For example, the sequences 3’t--yt with 0< a < 1 satisfy this
restriction, but the sequence 3’t 3’t-1 does not.

We assume a probability space with an increasing family of Borel fields (, ,,, P). Suppose that s:, is a random variable, adopted to ,.
Assumption 2.3. s:, is martingale-difference process, i.e., E (:, It-1) 0;

sup E(Is,12l,_,) < oo a.s.

(Here I’l is a Euclidean norm in Rv.)
Assumption 2.4. The following limit exists:

lim lim E(I,I2I(I,I > C)I,-,) 0.
C-oo

(Here I(A) is the characteristic function of a set A.)
Assumption 2.5. The following hold"

(a) lim E (:,:tT t_l) p--

(b) lim Esc,:,r S > 0.

The notation S > 0 means that a matrix S is symmetrical and positive definite.
THEOREM 1. (a) Let Assumptions 2.1-2.4, 2.5(a) be satisfied. Then

(z,- x*) v(0, v);

i.e., the distribution of normalized error v/-i(,-x*) is asymptotically normal with zero
mean and the covariance matrix

(5) V=A-1S(A-1) r.
(b) If Assumptions 2.1-2.3, 2.5(b) are satisfied, then

lim Et(Y., x*)(,, x*) r V.
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(c) Let Assumptions 2.1-2.3 be satisfied and let (t),_->l be mutually independent
and identically distributed. Then

-’t X* -> 0 a.s.

The proofs of the theorems in this paper are in the Appendix.
Part (b) of the theorem was developed in [24], for the case of independent

disturbances. Note that Assumption 2.2 on y, is significant. If the sequence y, yt -1

is chosen for algorithm (2) (as is often done for methods using averaging), then the
rate of convergence decreases [23].

It was shown in [26] that in the case of independent noises,

E(t-x*)(,-x*)r >_ t-l V+ o(t-1)

for all linear recursive estimates )t. This asymptotic rate of convergence is achieved
by the algorithm

(6) x, =X,_l-t-A-lyt.

Method (2) provides the same rate of convergence as the optimal linear algorithm.
The advantage of this method is that it does not require any knowledge about A and
does not use matrix-valued %. Several versions of algorithm (6) use an estimate of
matrix A-, instead of the true value [22], [31]. The significant advantage of these
procedures is that they require only the nonsingularity of A (compare to the rather
restrictive Assumption 2.1).

3. Nonlinear problem. For nonlinear problems, consider the classical problem of
stochastic approximation [21]. Let R(x):R N-->R u be some unknown function.
Observations y, of the function are available at any point x,_ RN and contain the
following random disturbances ,

y,=R(x,_,)+,.

The problem is finding the solution x* of the equation R(x) 0 by using the observa-
tions y, under the assumption that a unique solution exists.

To solve the problem, we Use the following modification of algorithm (2):

Xt Xt-- "/tYt Yt R xt_ 1) -11- t,

(7) t-1

2 Xi, Xo RN"

The first equation in (7) defines the standard stochastic approximation process.
Let the following assumptions be fulfilled.
Assumption 3.1. There exists a function V(x):R r --> R such that for some A > 0,

a>0, e>0, L>0, and all x, yR, the conditions V(x)>-alxl 2, IVV(x)-VV(y)l<=
LIx-yl, V(x*)=0, VV(x-x*)rR(x)>O for xx* hold true. Moreover, VV(x-
x*)rR(x)>=AV(x) for all [x-x*l<-e.

Assumption 3.2. There exists a matrix G Ruu and K < c, e > 0, 0< A _--< 1 such
that

(8) IR(x) a(x x*)l KIIx x*l I+A,

for all tx x*[ _-< e and Re Ai(G) > 0, 1, N.
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Assumption 3.3. (s,),=>1 is a martingale-difference process, defined on a probability
space (fl, , ,, P), i.e., E(sSl,_l) =0 almost surely, and for some K2

E(I,II,_I)/IR(x,_)[<- K(l/lx,_,l a.s.

for all >-1. The following decomposition takes place:

(9)

where

E(,(O) I,_,) 0 a.s.,

E(:,(O)sef(O)[,_,) P-- S as t---oo; S>0,

sup E(l,(O)]I(lsS(O)] > C)I Ct_l) L 0

and, for all large enough,

E(lff,(x,_,)l= ,_,) -<

with 6 (x) --> 0 as x --> 0.

(10)

as C - c;

a.So

Assumption 3.4. It holds that (]/t--]/t+l)/]/,--O(]/t) ’/t >0 for all t;

Y (1 + A )/ Tet -1/2 <
t=l

Commentary. Assumption 3.4, when compared to Assumption 3.2 of Theorem 1,
not only restricts the rate of decrease of the coefficients y, from above, but it forces
the coefficients to decrease not very slowly. Thus, if X 1 in (8), then the sequence
3/, Yt satisfies this condition only for 1/2 < ot < 1.

THEOREM 2. If Assumptions 3.1-3.4 are satisfied, then 2, x* almost surely, and

x/-[(X, x*) & N(O, V).

Here

(11) V=G-1S(G-1) T.
A proposition similar to Theorem 2 has been stated in [32] for the one-dimensional

case. It is well known (see, for example, [6], [21]) that the stochastic approximation
algorithm obtains the maximum rate of convergence if it has the form

Xt Xt_l t-1 R’(x*)-ly,.

For that method, x/(x,- x*) D__ N(0, V); here V is the same as in (11). The algorithm,
however, could not be realized in that form (the matrix R’(x*) is unknown). There
are some implementable versions of the optimal algorithm [38], [22], [7], [2], [31],
but all of them utilize an estimate of the matrix R’(x*) and usually require additional
observations. Algorithm (7) achieves the same optimal rate of convergence and has
smaller computational complexity. We must repeat here the comment that already
appears at the end of 2: several procedures that use the estimate of the matrix R’(x*)
[22], [31] do not require the assumption that Re A(R’(x*)) > 0.

4. Stochastic optimization. Consider the problem of searching for the minimum
x* of the smooth function/(x), x RN. The values of the gradient y, V/(X,_l)+ ,
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containing random noise :, are available at an arbitrary point xt-1 of R v. To solve
this problem, we use the following algorithm of the form (7):

x, x,_- ,(y,), y, V/(x,_) +

(12) 1
2, - xi, Xo R.

i=0

Let the following assumptions be fulfilled.
Assumption 4.1. Let /(x) be a twice continuously differentiable function and

H 72/(X) LI for all x and some l> 0 and L> 0; here I is the identity matrix.
Assumption 4.2. (,),e is the sequence of mutually independent and identically

distributed random variables E 0.
Assumption 4.3. It holds that ]p(x)l N Kl(1 +]x]).
Assumption 4.4. The function (x)= E(x+) is defined and has a derivative

at zero, (0) 0 and xr(x) > 0 for all x 0. Moreover, there exist e, K2 > 0, 0 % A 1,
such that

’(O)x- (x) Klxl l+

for Ixl < e.

Assumption 4.5. The matrix function X(x)= E(x +)(x+ 1) is defined and
is continuous at zero.

Assumption 4.6. The matrix -G=-’(0)7/(x*) is Hurwitz, i.e., Re Ai(G)> 0,
i=l,N.

Assumption 4.7. It holds that (y,- y,+)/y, o(yt), y, > 0 for all t;

T+a/et-/<.
t=l

The following theorem is a simple corollary of Theorem 2.
THZOZM 3. Let Assumptions 4.1-4.6 be fulfilled. en t x* almost surely and

(, x*) N(O, V), where V G-x(O)(G-)
The above conditions concerning the function, noises, and score function are

close to those of [27]. We can find results on the mean square convergence of algorithm
(12) under more restrictive conditions (than those of Theorem 3) in [24].

Suppose that disturbance possesses a continuously differentiable density p and
that there exists a finite Fisher information matrix

J(p) (vp,ve, ay.

Let us choose the function according to the density p

(13) (x) -J-(p)7 In pc(x).

In this case, we obtain

v= v/(x*)-lJ()-lv/(x*)- 1.

Let us compare the proposed algorithm to the asymptotically optimal form of the
stochastic optimization algorithm [27]

(14) x,=xt_l-t-lB(y,),

where

B 72/(x*)-1 and (y)=-J-(pe)7 lnp(y).
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The value of the matrix 72/(X:) is employed in algorithm (14). There exist some
implementable versions of the algorithm [39], where an estimate of the matrix is used
instead of the true value. Meanwhile, algorithms (12), (13) achieve the same rate of
convergence as the optimal unimplementable algorithm (14). Therefore the algorithm
with averaging is optimal in this situation in the same sense as in the other problems
discussed. Note that this property of optimality corresponds not only to the class of
stochastic approximation recursive algorithms, but to a wider class of methods of
searching for a minimum point [19].

5. Estimation of regression parameters. Assume that the random variables xt R N,
y, R are observed in successive instants 1, 2,. ., where

(15) yt=xtO+,.
Here 0 RN is an unknown parameter and , is a random noise. We use the following
two-step algorithm to produce the sequence of estimates (O,)t>__ of the parameter 0"

Ot Ot-1 + 3/tqg(Yt- oTt-lXt)Xt,
1(16)

Ot -i=o 0, 0o RN

Suppose the following assumptions hold true.
Assumption 5.1. Let (,),__>1 be a sequence of mutually independent and identically

distributed random variables E 0, E: <.
Assumption 5.2. Let (x,)t>_ be a sequence of mutually independent and identically

distributed random variables EIxl4 <, Exx= B, B> O. Sequences (:)__> and
are mutually independent.

Assumption 5.3. There exists K1 such that Iqg(x)l=< KI(1 +[xl) for all x R.
The functions O(x)= E(x + ), X(x)= E(x+) are defined under Assump-

tions 5.1-5.3. Now we state restrictions on 0, X.
Assumption 5.4. It holds that tp(0) 0, xO(x) 0 for all x 0, 0(x) has a derivative

at zero, and 4,’(0)> 0. Moreover, there exist K < and 0< A =< 1 such that

IO(x)- O’(0)xl =< g2lxl l+x.

Assumption 5.5. The function X(x) is continuous at zero.
Assumption 5.6. It holds that (%-%+1)/y, o(y,), %>0 for all t;

y+/2t-/ <.
t=l

THZORZM 4. Assume that Assumptions 5.1-5.6 hold. Then, for algorithm (16), the
following properties hold true" O-t 0 almost surely and (O-t- 0)/ N(O, V), where

v= B- x(O)
6’(o)

The problem of the mean square convergence of method (16) is discussed in [24].
Note that conditions of Theorem 4 are similar to the conditions of standard results
for this problem [27]. If : possesses a continuously differentiable density function pC,
then the optimal algorithm proposed in the latter paper has the following form:

Ot Ot_, + Ftqg(yt-- oTt_lXt)Xt,
(17)

F B- -1 q(x) -J(p)-Ip’(x)/p(x).
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For method (17),

(o,-o)47 U(O, V), V=J(p)-B-’.

Since the matrix B is unknown, algorithm (17) is unimplementable. Nevertheless, it
is possible to use, instead of B, its estimate

(8) ,= - xx2
k=l

In particular, for linear algorithms (i.e., for Gaussian noises) methods (17), (18)
coincide with the recursive MLS algorithm. It follows from Theorem 4 that if we choose

q(x) -J(p)-lp’(x)/p(x)

for algorithm (16), then the rate of convergence is equal to V=J(p)-B-. So the
asymptotical rates of convergence of (16) and (17) coincide.

Appenix. Proofs of the theorems consist of the sequence of propositions followed
by their proofs. Everywhere in the following, we use the notation b, x,- x* for an
error of the first equation of the algorithm, and , g,-x* for an estimation error.
Nonrandom constants that are unimpoant will be denoted by the symbols K and a.

All relations between random variables are supposed to be true almost surely (unless
declared otherwise).

The two matrix lemmas below will be useful in later developments.
NxNLet (X),, (Xj),j be the sequences of matrices, X, X R determined by

the following recursive relations"

t+lX X %AXe, X L
t--1(A) _,

X 7j Z X.
i=j

--tand A-1- Xj.
LEMMA 1. Let the following hold"
(i) Assumption 2.2 of Theorem 1 holds;
(ii) Re h(A) > 0, i= 1, S.
Then there is constant K < o such that for all j and >-_j

(A2)

(A3) lim -1 tl
t j=O

; 0.

Proof of Lemrna 1.
Part 1. Proposition of the lemma is true with y,-= y.
Proof We obtain from (A1) that

X I yA ’-j X I,
--tXj= T(I+(I-TA)+. .+(I-yA) -J)= A-I-(I-TA) -J+IA-1.

The eigenvalues of the matrix I-yA are Ai(I-yA)= 1-yAi(A) and IA(1-yA)I < 1.
So

lim (I yA 0;
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hence (A2) holds, and

1 t--1 t- 1 t+l

7jE0"= 7 j=OE (I-TA)t-j+lA-=-t k=2E (I-TA)kA- -->0

Part 2. It holds that tyt-->

Proof. Let us define cet 1/t%. Then

cet+l (t + 1)- - 1 1(y-’ + o(1))= at .--7-7+ o(1)+ t+l t+l

t+ t+l’

as

(U,+,<-_U, 1---y,+cyt <=(1-A’yt)Ut<-e-’’/’U,.

Thus U < Uj exp (-A t--1i=j "/i). However,

g, ll--> ZllxjII and

so we obtain that

(A5)

u Ell xj 2 L;

exp -- i
i=j

Part 4. Equations (A2) and (A3) hold.
Proof. Summing the first equation of (A1) from j to t, we have that

t-1 t-1

X X A y,X I A Z "yiX
=j ----j

Let us consider the sum in the right-hand side of (A5). Summing by parts, we get that

t-1 t-1 t-1
-tE ")/iXj ")/j Z Xj --I- Z i- j)Xj Xj -1-- Sj.

=j =j =j

Let us estimate S. By using the result of Part 3, we obtain that

Ilsjll--< Y (]k+l-- k) Xj o()llxjll
i= k =j i=j k =j

(A6) Am}(mji rnji-1e-X,,j mj e-
<- o( yj) mj o( yj)

=j =j Ti

where o(1)0 as tooo. Since Et=l 1/(t+ 1) =oe, we obtain that ct0. [3

Part 3. There are c > 0 and K < eo such that for all j and ->_j

i=j

Proo From assumption (ii) of the lemma and from the Lyapunov theoren, we
have that there exists the solution V Vr > 0 of the Lyapunov equation ArV+ VA I.

Define L max Ai(V), min A(V), U (X) rVXj., Then

Ut+, (X) T(I- TtA) TV(I- %A)X
(A4) 2U,-%X)(AV+ VA)X+ r,X)AVAX.
Note that (Xj)X>(1/L)(Xj) VXj and (Xj)AVAXc(Xj)WVX, where c=
(]]AI]:L)/I. Then, for suciently large and some A > 0, we get from (A4) that
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where m!=. 2k=j "k" From Part 2, it follows that jyj < Kiyi for sufficiently large. Since

mj=k=j Yk >--/z(ln (i/j)), we can estimate 1/yi as

--__< K-r-<_-- exp
% JYj Yj \ /

for arbitrarily large. Finally, we have from (A6) that

Y; =;
m; e mj m; )=- m dm e

such that, for all _->j,

(A7) lim e; 0.
joo

-, -1 (see (A5)), we have, by the definition of 4; thatRecall that since X + Sj A- A Xj

4j S+ A-X.
From Part 3, however, we have that [[Xj[[-< K; thus we obtain (A2) from (AT).

Since I[Xj[[ _-< K exp (-x(ln (t/j)))- K(j/t) for/x arbitrarily large, we get that

1 t-1

=Jo

for jo large enough. Note that, for some K,
l t

__
1 1 1 t

tj=o o =jo+l j=o tj=jo+l

For arbitrary e > 0, we can choose/z and jo(/Z) such that

l t-1

=Jo+

Jo t-
Then, choosing sufficiently large, we get that 1/t Y’.j=o K -<_ e/2. Hence 1/t Y.=o IIxll -<
e. Moreover, from (A?), we have that

t--1im.! y s[[ 0.
t--oo j=0

Hence, from the inequality above, we obtain (A3).
This completes the proof of Lemma 1. E]

Note that we can get from (2) the following equation for the error A of the
algorithm"

A, A,_ /,(AA,_ + ,), % Xo- x*,
(A8)

AioAt - i=o

The next lemma states a convenient representation for the solution of system (AS).
LEMMA 2. Let the statements of Lemma 1 be fulfilled. Then

1 1 t-1 1 t-

y A-’+ Y w,(A9) 47 , 47ro ,ao+:,
NxNwhere at, w R are such that ,tl --< K, w <- K for some K <, and

t-1

Y w[[- 0 as ->
tj=l
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Proof of Lemma 2. From the first equation of (A8), we have that

At--- (I-’yjA)Ao+ ] (I-’yiA)Tjj
j=l j=l i=j+l

(Set 1-Ii_-n+ (I-yiA)= I). Then we get for the error of the algorithm

(I- 7iA) 7fj

ltlj ltl[ t-lk (I-y,A)
j=o i=1

Set
t-1

tx=7 Y I-I (I-TkA),
i=j k=j+l

Co, and wj cj- A- Then

1 1 tl 1 t--1

A,=- cetAo+ A-Ij+ Z wjj.
l’)/0 j=l 7j=l

H (I-ykA).Notethatfrom(A1)weobtainthatX=Hi-_(I-yA)and=3Y= k=
Thus, from Lemma 1, we get that

lim
1 t-1

E wll 0, wll <-- K, , -<- g.
tcx j=0

Proof of Theorem 1.
Part 1. Proposition (a) of the theorem holds.

Proof. We obtain from (Ag) that

(A10) v t 1(1)+ 1(2)+ i(3),
where

1i(1) cetAo,47 3’0

i(2)
l tl A-j

i(3) tl
Note that, since [[a,[[ K, I()0 in mean square. By Lemma 2 for i(3), we get that

t-1 2 K tz K tz21 w < IIwil < IIwii 0 as t,

SO /(3 0. We must demonstrate that the central limit theorem for maingales can

be employed for I( (see, for example, Theorem 5.5.11 in [17]). We have, for a

suciently large constant C, that
t--1

lira 2 N(N-I(IN-I! > C)l-)
tm j=

t-1

K! (1([1>
j=
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According to Assumption 2.4, r(C)P-* 0 as C . Thus the Lindeberg condition is
fulfilled. By Assumption 2.5(a), we get that

t--11
A_IE(jjT.Ij_I)(A_I) T p_ V.

tj=

Thus all the conditions of Theorem 5.5.11 [17] are fulfilled.
Part 2. Proposition (b) of the theorem holds.
Proof We have from (A10) that

tEAtA El(Z)(I(2)) T +
As in the proof of Part 1, we obtain from Lemma 2 that e,- 0 as c. Then

lim tEAtA,r lim
1 t-1

X A-1Ef(A-l) T

t t j=

1 t-1

lim- A-S(A-1)
t j=

Part 3. Proposition (c) of the theorem holds.
Proof To simplify notation, we suppose that t R (the proof for N-dimensional

case is completely analogous). Let us again use decomposition (A10). We immediately
get from Lemma 2 that Il)/ O. Next, by the law of large numbers (see, e.g., [35]),
we get that I2/0. Let us evaluate the last term of (A10). Define the random
sequence (t)tl by the following equation:

t-={t, if[t]t3/4
0, if Il /4.

By the Chebyshev inequality, we get that

P(ll 3/4) El,l 2 -3/ Kt-/2.

Then= P(ll > i3/) < and P{]t[ > 3/4 infinitely often} 0. Since w are uniformly
bounded, it suffices to demonstrate that

lt-1 -1- w=t S,o.
tj=l

Note that Et 0. Thus

IEl E,I(ll 3/4) (E)’/2(p(I,I t/4))/

gt-3/4.

Then we have that
4 t-1

)4wj E (wj +K E (w)2(w)Z/j2
\j=O =0 i,j

<j

t-1
--2+K E (W,)WjWk,

ij
ik

t-1

+ K F wwwwl,
i<j<k<l

t--1

+ K wl( 3--3Wj) i)--- E Ii)

ij i:1
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Note that

For I5) we have that

t-1 t-1

EI1 KE <= Kt3/2 E2 Kt/2.
=0 =0

t-1 t-1

EI)I <-- E K <=2 Y KE3E
t--1 t--1

<= K E j3/4E2i-3/4 <= K E E(] <= Kt2.

By the same arguments, we get that

Therefore we obtain that

t-aES4, <- Kt-4( /2 + 2 + 3/2 + t) <-_ Kt-3/2.

By the Chebyshev inequality, we get that

E P([ t-’ St[ > 8) <= E (tS)-4ESt<=K4 E t-3/2 <0(3.
t:l t:l t:l

Hence
Proof of Theorem 2. Let A, be the error of the first equation of (7). Define the

function/(x)" Ru - Ru by the equation/(x) R(x-x*).
Part 1. It holds that V(A,) -. V(co), where V(o) is bounded.
Proof The increment of the function V, V(A,) on one step of algorithm (7) is

given by

v, _-< v,_,- v,v vL,(a,_,)- v,v
L

+- V,2[(A,_,)+ ,(A,_,)I
2

compare with [25, p. 55]. Taking the expectation, conditioned to ,_, by Assumptions
3.2 and 3.3 for some suitable K, we obtain that

2E(V, I,_,)_-
(A11)

_< V_,(1 + ytK) + ytK %V Tv,_,(a,_,).
From Assumption 3.6 and from Part 2 of Lemma 1, we have that Y,= 7, =oo. It can
be simply recognized from Assumption 3.6 that oo 2

= 7, <; so we obtain by the
Robbins-Siegmund theorem [30], that V- V(w).

Since V >= al&l2 for some a > 0, we have from Part 1 of the proof that P(sup,]A, <
oo) 1. Thus, for every e > 0, there exists some R < oo such that

(A12) P(sup [A,l <- R) >- l e.

Define the stopping time ZR inf { => 1" [At] > R}.
Part 2. It holds that E[At[ZI(a’R
Proof On {ZR > t} we have from (All) that

E( Vd(ZR > t)It_,) <-- E( V,I(zR >
(A13)

2 2--< Vt-l(1 + TtK)-o%gt-1]I(’R
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for some K, a > 0. Taking the expectation, we obtain from (A13) that

FVtl(7"R )t)=< EVt_lI(’g > t-1)(1- "yta h- K’y2t) h- KT2t
Finally, by Lemma 2.1.26 [3], we obtain that

(A14) EVtI(’rR > t) <= Krt.
Note that almost sure convergence of the algorithm follows from Parts 1 and 2.
Let us define the process 1, by the following equations:

A1At --1 T GA --1 "31- "/ A10- AO,
1 tl
i=O

Let us demonstrate, that for the process , all the properties to be proved follow
from Theorem 1.

Part 3. It holds that

SO

lim lim E(I,I-I(I,I > C)l,_l) O.
C t->

Proof. By decomposition (9), we have that

Then I 0 as and C by Assumption 2.3; I1 0, since A, converges to zero.
Therefore all the conditions of proposition (a) of Theorem 1 hold for the

process t"

-land,.Set6,= ,’thenWe demonstrate the proximity of the processes A, t-
for 6, we obtain the equation (compare with (A9))

1 1 t-1

,ao+ 2 (G-l+w)((aj)-Gaj)

z,)+
Part 4. It holds that 6t 0 as .
Proof From Lemma 2 we immediately get that I)0 as t. Next, due to

Assumption 2.2 and Lemma 2, we get that

1

i=0

1

i=0

i=0
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Thus we obtain from (A14) and Assumption 2.4 that

E E(IAi]I+AI("I"R > t))
i=o

Kyll+,X)/2
<-- i=o )-5 <

SO

Since

i; <’
___

sup IAil R fl E IAil’+xI(’R > t)
i=0

1/2 < O0

we have, by (A12), that

P
i/2

<CO >= 1-e.
i=

By the arbitrary choice of e in (A12),

il/2 <
i=0

Hence, by the Kronecker lemma,

/(2) 1 tAt %//’

So the processes z and z, are asymptotically equivalent.
This completes the proof of Theorem 2.

Proof of Theorem 3. Let us check whether the assumptions of Theorem 2 are
fulfilled. For that purpose, we transform the first equation of algorithm (12) in the
following way"

(A15)
X,--- X,_ --]/t0(V/(X,_l))qt_ ’’t(/fi(V/(X,-l))- qP(V/(X,--l) "1-

Xt_ y,R(x,_,) + %,(xt-1- x*);

here

(A16)
t(Xt--1- X$) I/t(V/(Xt--1)) q9 (V/(Xt--1)+ t),

From Assumption 3.4 we have that R 7-(x)V/(x) > 0 for all x 0. Let re(x*) 0 for the
sake of simplicity. It follows from Assumptions 3.1 and 3.4 that there exist a > 0,
a’> 0, e > 0 such that

R r(x)V/(x) => alV/(x)le => a’/(x)

for all Ix- x*l -< e; hence re(x) is a Lyapunov function for (A15), and all corresponding
conditions of Theorem 2 are fulfilled.
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So we obtain by Assumption 3.4 that

I(x) (x x*)l (V/(x)) O’(o)v/(x*)(x
_-< I(V/(x))- ’(0)V/(x)l

+ q/(0)V/(x) O’(o)v/(x*)(x x*)l

<-- K IV,g(x)l ’+ + q/(0)II IV/(x)- v2/(x*)(x

KIx x*] 1+ + Kx x*]2 N Klx x*l l+a.

Hence Assumption 3.2 of Theorem 2 is fulfilled. Next, again using the notation for
the error of the first equation of (12), we note that ((,_) is a maingale-difference
process and that

Elt(At_l)[2 g(1 + IAt_l).
So, as concluded in the proof of the Theorem 2 (see Pas 1 and 2), At 0 and

(a17) E[Atl2I( TR) Kyt.

Then, from (A17) by Assumptions 3.5 and 3.4, we have that

IE(t(At-1)t(At-1) T t-1)

KIX(t_I) --x(O)[ + Klt_] O.

Next, we obtain that

KE (ff,12I(lfft(&,_,)[ > C) ,_,) + KI&,_,I 2.

From the definition (A16) by Assumption 3.3, we get that

I(l,(a,-,)l > c) I(]at-,I > KC) + 1(1,1 > KC);

SO

E(]t(At-,)12I(lt(At=,)l > C)lt-)
<-_o(1)+KE(ltl2I([,]> KC)[t_l)">O as t-oC.

(Here o(1) -* 0 as - c.) This means that Assumption 3.3 ofTheorem 2 holds. Therefore
all conditions of the proposition of Theorem 2 are fulfilled, and the matrix V is defined
by the equation

V= G-’x(O)G-’ (q,’(0)V2/(0))-’X(0)(q,’(0)V,g(0))-’.

Proof of Theorem 4. Let A,= 0,-0" be an error of the first equation in (16).
Denote by , the minimum r-algebra generated by disturbances and inputs until the
time t" , r(s, x,’-’, ,, x,). Let R(A)= E6(brx)x. We obtain the following
equation for

At-- At_l-’ytEj(A Tt_lXt)Xt

(A18) + T,(Eq,(A,x,)x, (4(A Tt-lXt "3 t)Xt)

At_ TtR(At_) 4- Ttst,

where e, R(A,_,) (A,x, + s,)x,.
We check the fulfillment of the assumptions of Theorem 2 in that case. Assumption

5.4 implies that ArR(A)> 0 for all A#0 and R(A) =0 for A=0; so V(A) IA[ z is the
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Lyapunov function for (A18). Hence Assumption 3.1 of Theorem 2 is satisfied. Next,
for some K,

IR(A) 4,’(0)BAI _--< KEIATx, ’+ <= K (A TEx1xT A)(I+X)/2 <-- KIAI ’+,
and, again, Assumption 3.2 of Theorem 2 holds. Since e, is a martingale-difference
process and

E(le,12],_,) <-_ K(lzXt_,l + 1)
for some K, we obtain that (see Parts and 2 of the proof of Theorem 2) IA,I 0 and

By Assumption 5.5, we have that

}E(,tTtlCt_l)-X(0)B} IE(x(ATt-IXt)x,xTt },_,) -x(O)B O.

We must demonstrate that

sup E(le, lI([e,l> C)],_,)O as C-o.

It follows from Assumption 5.3 that

,_x, / ,)x,I >- / I IR(,-)I >

+2I Ix, e>K +I Ig, >
il+ i(+, i3.

So we obtain that

E(l,l=I(l,l >
KE ((t_llxtl4 + I,l=lx, l=)(I’ + I=> +
KI’[,_,I + KIl

+ KE(Ix,IeI)+ KE(I,II3) I + I+ I3 + I4.
Since t 0, I o 0 and Ie 0 as C and . From Assumption 5.1 we get that
I4 o 0. By the Chebyshev inequality, we get that

I3 K (Elx,4)’/eP1/(lx, le >)
(Ex,14)/

NK 0 as

So Assumption 3.3 of Theorem 2 is fulfilled. Therefore all the conditions of Theorem
2 are fulfilled under the assumptions of Theorem 4. Finally, we obtain for the matrix
V that

V= (O’(O)B)-x(O)B(O’(O)B)-.
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