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Abstract

Most semi-supervised methods in Natural Language Process-
ing capitalize on unannotated resources in a single language;
however, information can be gained from using parallel re-
sources in more than one language, since translations of the
same utterance in different languages can help to disam-
biguate each other. We demonstrate a method that makes
effective use of vast amounts of bilingual text (a.k.a. bi-
text) to improve monolingual systems. We propose a factored
probabilistic sequence model that encourages both cross-
language and intra-document consistency. A simple Gibbs
sampling algorithm is introduced for performing approximate
inference. Experiments on English-Chinese Named Entity
Recognition (NER) using the OntoNotes dataset demonstrate
that our method is significantly more accurate than state-of-
the-art monolingual CRF models in a bilingual test setting.
Our model also improves on previous work by Burkett et
al. (2010), achieving a relative error reduction of 10.8% and
4.5% in Chinese and English, respectively. Furthermore, by
annotating a moderate amount of unlabeled bi-text with our
bilingual model, and using the tagged data for uptraining, we
achieve a 9.2% error reduction in Chinese over the state-of-
the-art Stanford monolingual NER system.

Introduction
Supervised learning algorithms have been met with great
success in many areas of Natural Language Processing
(NLP). It is well-known that the performance of supervised
learners increases when more labeled training examples be-
come available. In most application scenarios, however,
manually labeled data are extremely limited in quantity and
costly to produce. On the other hand, we live in an age of
abundance of unannotated data — as regards NLP, there has
been an explosion in the amount of freely available web and
news texts. One would expect to greatly increase the cover-
age of a system if such large amounts of additional data can
be incorporated in a judicious manner.

A number of semi-supervised techniques have been in-
troduced to tackle this problem, such as bootstrapping
(Yarowsky 1995; Collins and Singer 1999; Riloff and
Jones 1999), multi-view learning (Blum and Mitchell 1998;
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Ganchev et al. 2008) and structural learning (Ando and
Zhang 2005). Most previous semi-supervised work is sit-
uated in a monolingual setting where all unannotated data
are available only in a single language.

However, in recent years, a vast amount of translated
parallel texts have been generated in our increasingly con-
nected multilingual world. While such bi-texts have pri-
marily been leveraged to train statistical machine transla-
tion (SMT) systems, contemporary research has increas-
ingly considered the possibilities of utilizing parallel corpora
to improve systems outside of SMT. For example, Yarowsky
and Ngai (2001) projects the part-of-speech labels assigned
by a supervised model in one language (e.g. English) onto
word-aligned parallel text in another language (e.g. Chi-
nese) where less manually annotated data is available. Sim-
ilar ideas were also employed by Das and Petrov (2011) and
Fu, Qin, and Liu (2011).

A severe limitation of methods employing bilingual pro-
jection is that they can only be applied to test scenarios
where parallel sentence pairs are available. It is more de-
sirable to improve monolingual system performance, which
is more broadly applicable. Previous work such as Li et
al. (2012) and Kim, Toutanova, and Yu (2012) successfully
demonstrated that manually-labeled bilingual corpora can be
used to improve monolingual system performance. This ap-
proach, however, encounters the difficulty that manually an-
notated bilingual corpora are even harder to come by than
monolingual ones.

In this work, we consider a semi-supervised learning
scheme using unannotated bi-text. For a given language
pair (e.g., English-Chinese), we expect one language (e.g.
English) to have more annotated training resources than the
other (e.g. Chinese), and thus there exists a strong monolin-
gual model (for English) and a weaker model (for Chinese).
Since bi-text contains translations across the two languages,
an aligned sentence pair would exhibit some semantic and
syntactic similarities. Thus we can constrain the two models
to agree with each other by making joint predictions that are
skewed towards the more informed model. In general, er-
rors made in the lower-resource model will be corrected by
the higher-resource model, but we also anticipate that these
joint predictions will have higher quality for both languages
than the output of a monolingual model alone. We can then
apply this bilingual annotation method to a large amount of



ViceO ForeignB-ORG AffairsI-ORG MinisterO HuaqiuB-PER LiuI-PER heldO talksO withO KamyaoB-PER

外交部B-ORG 副部长O 刘华秋B-PER 与O 加米奥B-PER 举行O 了O 会谈O

Figure 1: Example of NER labels between two word-aligned bilingual parallel sentences.

unannotated bi-text, and use the resulting annotated data as
additional training data to train a new monolingual model
with better coverage.1

Burkett et al. (2010) proposed a similar framework with
a “multi-view” learning scheme where k-best outputs of
two monolingual taggers are reranked using a complex self-
trained reranking model. In our work, we propose a sim-
ple decoding method based on Gibbs sampling that elimi-
nates the need for training complex reranking models. In
particular, we construct a new factored probabilistic model
by chaining together two Conditional Random Field mono-
lingual models with a bilingual constraint model, which en-
courages soft label agreements. We then apply Gibbs sam-
pling to find the best labels under the new factored model.
We can further improve the quality of bilingual prediction by
incorporating an additional model, expanding upon Finkel,
Grenager, and Manning (2005), that enforces global label
consistency for each language.

Experiments on Named Entity Recognition (NER) show
that our bilingual method yields significant improvements
over the state-of-the-art Stanford NER system. When evalu-
ated over the standard OntoNotes English-Chinese dataset
in a bilingual setting, our models achieve a F1 error re-
duction of 18.6% in Chinese and 9.9% in English. Our
method also improves over Burkett et al. (2010) with a rela-
tive error reduction of 10.8% and 4.5% in Chinese and En-
glish, respectively. Furthermore, we automatically label a
moderate-sized set of 80k sentence pairs using our bilingual
model, and train new monolingual models using an uptrain-
ing scheme. The resulting monolingual models demonstrate
an error reduction of 9.2% over the Stanford NER systems
for Chinese.2

Monolingual NER with CRF
Named Entity Recognition is an important task in NLP. It
serves as a first step in turning unstructured text into struc-
tured data, and has broad applications in news aggregation,
question answering, and bioNLP. Given an input sentence,
an NER tagger identifies words that are part of a named en-
tity, and assigns the entity type and relative position infor-
mation. For example, in the commonly used BIO tagging
scheme, a tag such as B-PERSON indicates the word is the
beginning of a person name entity; and a I-LOCATION tag

1This training regimen is also referred to as “uptraining”
(Petrov et al. 2010).

2All of our code is made available at nlp.stanford.edu/

software/CRF-NER.shtml.

marks the word to be inside a location entity. All words
marked with tag O are not part of any entity. Figure 1 illus-
trates a tagged sentence pair in English and Chinese.

Current state-of-the-art supervised NER systems employ
an undirected graphical model called Conditional Random
Field (CRF) (Lafferty, McCallum, and Pereira 2001). Given
an input sentence x, a linear-chain structured CRF defines
the following conditional probability for tag sequence y:

Pmono(y|x) =
1

Z(x)

∏
i

exp(
∑
j

λjfj(yi, yi−1|x)) (1)

where fj is the jth feature function, λj is the feature weight,
and Z(x) is the partition function.

Bilingual NER Constraints
A pair of aligned sentences in two languages contain com-
plementary cues to aid the analysis of each other. For exam-
ple, in Figure 1, it is not immediately obvious whether the
phrase “Foreign Affairs” on the English side refers to an or-
ganization (Ministry of Foreign Affairs), or general foreign
affairs. But the aligned word on the Chinese side is a lot less
ambiguous, and can be easily identified as an organization
entity.

Another example is that in the Chinese training data we
have never seen the translation of the name “Kamyao”. As a
result, the tagger cannot make use of lexical features, and so
has to rely on less informative contextual features to predict
if it is a geo-political entity (GPE) or a person. But we have
seen the aligned word on the English side being tagged as
person, and thus can infer that the Chinese aligned entity
should also be a person.

It is straight-forward to see that accurate word alignment
is essential in such an analysis. Fortunately, there are auto-
matic word alignment systems used in MT research that pro-
duce robust and accurate alignment results, and our method
will use the output of one (Liang, Taskar, and Klein 2006).

Hard Agreement Constraints
Drawing on the above observations, we first propose a sim-
ple bilingual constraint model that enforces hard agree-
ments.

We define the following probability for an output se-
quence pair yc and ye for Chinese and English input sen-
tences xc and xe, respectively:

Pbi(yc,ye) =
∏

A={ac,ae}

I(yac , yae) (2)



. . . theO earliestO establishedO bondedO areaO

. . . 最早O 创办O 的O 保税区B-LOC

Figure 2: Example of annotation standard inconsistency

where A is the set of all aligned word pairs, and I(yac , yae)
is an indicator function that equals 1 if yac = yae , and 0
otherwise.

Soft Agreement Constraints
If we apply hard agreement constraints, any output sequence
pairs that disagree on any tag pair will be assigned zero prob-
ability. Such a hard constraint is not always satisfied in prac-
tice, since annotation standards in different languages can
differ. An example is given in Figure 2, where the phrase
mention of “bonded area” is considered a location in the
Chinese gold-standard, but not in the English gold-standard.

We can soften these constraints by replacing the 1 and
0 values in indicator function I(yac , yae) with a probability
measure. We first tag a set of unannotated bilingual sentence
pairs using two baseline monolingual CRF taggers. Then
we collect counts of aligned entity tag pairs from the auto-
generated tagged data. The value I(yac , yae) is chosen to
be the pairwise mutual information score of the entity pair
(yac , yae). This version of constraints is denoted as auto.

Alignment Uncertainty
When we consider the previous two sets of bilingual con-
straints, we assume the word alignments are given by some
off-the-shelf alignment model which outputs a set of “hard”
alignments. In practice, most statistical word alignment
models assign a probability to each alignment pair, and
“hard” alignments are produced by cutting off alignment
pairs that fall below a threshold value.

To take into account alignment uncertainties, we mod-
ify function I(yac , yae) by exponentiating its value to the
power of the alignment probability to give a new function:
U(yac , yae) = I(yac , yae)P(yac ,yae ) . The intuition behind
this modification is that pairs with a higher alignment proba-
bility will reflect more probability fluctuation when different
label assignments are considered.

For example, consider an extreme case where a particular
pair of aligned words has alignment probability 0. Then the
value of the U function will always be 1 regardless of what
tags are assigned to the two words, thus reducing the impact
of different choices of tags for this pair in the overall tag
sequence assignment.

Gibbs Sampling with Factored Models
In a monolingual setting, exact inference in a standard
linear-chain CRF can be done by applying the Viterbi algo-
rithm to find the most likely output sequence. But when we

consider the joint probability of an output sequence pair in a
bilingual setting, especially when we apply the aforemen-
tioned bilingual constraints, cyclic cliques are introduced
into the Markov random field which make exact inference
algorithms intractable.

Markov Chain Monte Carlo (MCMC) methods offer a
simple and elegant solution for approximate inference by
constructing a Markov chain whose stationary distribution
is the target distribution.

In this work, we adopt a specific MCMC sampling
method called Gibbs sampling (Geman and Geman 1984).
We define a Markov chain over output sequences by observ-
ing a simple transition rule: from a current sequence assign-
ment at time t− 1, we can transition into the next sequence
at time t by changing the label at any position i. And the
distribution over these transitions is defined as:

P (yt|yt−1) = P (yti |yt−1
−i ,x) (3)

where yt−1
−i is the set of all labels except yi at time t− 1.

To apply the bilingual constraints during decoding, we
formulate a new factored model by combining the two
monolingual CRF models (one for each language) with the
bilingual constraint model via a simple product.3 The result-
ing model is of the following form:

P (yc,ye|xc,xe) = Pmono(yc|xc)Pmono(ye|xe)Pbi(yc,ye)
(4)

Obtaining the state transition model P (yti |y
t−1
−i ,x) for the

monolingual CRF models is straight-forward. In the case
of a first order linear-chain CRF, the Markov blanket is the
neighboring two cliques. Given the Markov blanket of state
i, the label at position i is independent of all other states.
Thus we can compute the transition model simply by nor-
malizing the product of the neighboring clique potentials.
Finkel, Grenager, and Manning (2005) gave a more detailed
account of how to compute this quantity.

The transition probability of label yci in the bilingual con-
straint model is defined as

∏
(yci,yek)∈AU(yci, yek), where

yek is a word aligned to yci.
At decoding time, we walk the Markov chain by taking

samples at each step. We start from some random assign-
ment of the label sequence, and at each step we randomly
sample a new value for yi at a randomly chosen position
i. After a fixed number of steps, we output a complete se-
quence as our final solution. In practice, MCMC sampling
could be quite slow and inefficient, especially when the in-
put sentence is long. To speed up the sampling process, we
initialize the state sequence from the best sequences found
by Viterbi decoding using only the monolingual models.

A bigger problem with vanilla Gibbs sampling is that the
random samples we draw do not necessarily give us the most
likely state sequence, as given by Viterbi in the exact infer-
ence case. One way to tackle this problem is to borrow the
simulated annealing technique from optimization research

3This model double-counts the state sequence conditioned on a
given observation, and therefore is likely deficient. However, we
do not find this to be a problem in practice.



(Kirkpatrick, Gelatt, and Vecchi 1983). We redefine the tran-
sition probability in Eqn. 3 as:

P (yt|yt−1) =
P (yti |y

t−1
−i ,x)1/ct∑

j P (ytj |y
t−1
−j ,x)1/ct

(5)

where c = {c0 . . . cT } is the schedule of annealing “tem-
perature,” with 0 ≤ ci ≤ 1. The distribution becomes
sharper as the value of ci move towards 0. In our experi-
ments we adopted a linear cooling schedule, where c0 = 1,
and ct+1 = ct − 1/T . This technique has been shown to be
effective by Finkel, Grenager, and Manning (2005).

Global Consistency Constraints
A distinctive feature of the proposed factored model and
Gibbs sampling inference is the ability to incorporate non-
local constraints that are not easily captured in a traditional
Markov network model. The bilingual constraint model de-
scribed earlier is certainly a benefactor of this unique char-
acteristic.

Still, there are further linguistic constraints that we can
apply to improve the NER system. For example, many pre-
vious papers have made the observation that occurrences of
the same word sequence within a given document are un-
likely to take on different entity types (Bunescu and Mooney
2004; Sutton and McCallum 2004; Finkel, Grenager, and
Manning 2005; inter alia) . Similar to Finkel, Grenager, and
Manning (2005), we devise a global consistency model as
follows:

Pglo(y|x) =
∏
γ∈Γ

φ#(γ,y,x)
γ (6)

Γ is the set of all possible entity type violations, φγ is the
penalty parameter for violation type γ, and #(γ,y,x) is
the count of violations γ in sequence y. For example, if
the word sequence “China Daily” has occurred both as GPE
and organization exactly once, then the penalty φγ for GPE-
to-organization violation will apply once. The parameter
values of φγ are estimated empirically by counting the oc-
currences of entity pairs of the same word sequence in the
training data.

We can now factor in one global consistency model for
each language by taking the product of Eqn. 4 with Eqn. 6.
The same Gibbs sampling procedure applies unchanged to
this new factored model. At test time, instead of tagging one
sentence at a time, we group together sentences that belong
to the same document, and tag one document at a time.

Enhancing Recall
A flaw of the Finkel, Grenager, and Manning (2005) model
described above is that consistency is enforced by applying
penalties to entity type violations. But if a word is not tagged
with an entity type, it will not receive any penalty since no
entity type violations would occur. Therefore, this model
has the tendency of favoring null annotations, which can re-
sult in losses in model recall.

We fix this deficiency in Finkel, Grenager, and Man-
ning (2005) by introducing a new “reward” parameter δ,

Chinese NER Templates
00: 1 (class bias param)
01: wi+k,−1 ≤ k ≤ 1
02: wi+k−1 ◦ wi+k, 0 ≤ k ≤ 1
03: shape(wi+k),−4 ≤ k ≤ 4
04: prefix(wi, k), 1 ≤ k ≤ 4
05: prefix(wi−1, k), 1 ≤ k ≤ 4
06: suffix(wi, k), 1 ≤ k ≤ 4
07: suffix(wi−1, k), 1 ≤ k ≤ 4
08: radical(wi, k), 1 ≤ k ≤ len(wi)
09: distsim(wi+k),−1 ≤ k ≤ 1
Unigram Features
yi◦ 00 – 09
Bigram Features
yi−1 ◦ yi◦ 00 – 09

Table 1: Basic features of Chinese NER. ◦means string con-
catenation and yi is the named entity label of the ith word
wi. shape(wi) is the shape of wi, such as date and number.
prefix/suffix(wi, k) denotes the k-characters prefix/suffix of
wi. radical(wi, k) denotes the radical of the kth Chinese
character of wi.4 len(wi) is the number of Chinese charac-
ters in wi. distsim(wi, k) denotes the distributional similar-
ity features based on large word clusters.

which has value > 0. δ is activated each time we see a
matching pair of entities for the same word occurrence. The
new Pglo is modified as:

Pglo(y|x) = δ#(δ,y,x)
∏
γ∈Γ

φ#(γ,y,x)
γ (7)

where #(δ,y,x) is the activation count of δ in sequence y.
This model is in fact a naive Bayes model, where the pa-

rameters δ and φ are empirically estimated (a value of 2 is
used for δ in our experiments, based on tuning on a devel-
opment set). A similar global consistency model was shown
to be effective in Rush et al. (2012), where parameters were
also tuned on a development set.

Experimental Setup
To compare the proposed bilingual constraint decoding algo-
rithm against traditional monolingual methods, we evaluate
on a large, manually annotated parallel corpus that contains
named entity annotation in both Chinese and English. The
corpus we use is the latest version (v4.0) of the OntoNotes
corpus (Hovy et al. 2006), which includes 401 pairs of Chi-
nese and English documents (chtb 0001-0325, ectb 1001-
1078). We use odd-numbered documents as the develop-
ment set and even-numbered documents as the blind test set.

These document pairs are aligned at document level, but
not at sentence or word level. To obtain sentence alignment,
we use the Champollion Tool Kit (CTK).5 After discarding
sentences with no aligned counterpart, a total of 8,249 sen-
tence pairs were retained. We induce word alignment us-
ing the BerkeleyAligner toolkit (Liang, Taskar, and Klein

4
www.unicode.org/charts/unihan.html

5
champollion.sourceforge.net



2006).6 The aligner outputs the posterior probability for
each aligned word pair. To increase efficiency, we prune
away all alignments that have probability less than 0.1.

We adopt the state-of-the-art monolingual Stanford NER
tagger as a strong baseline for both English and Chinese.
For English, we use the default tagger setting from Finkel,
Grenager, and Manning (2005). For Chinese, we use an
improved set of features over the default tagger, which are
listed in Table 1. Both models make use of distributional
similarity features taken from word clusters trained on large
amounts of non-overlapping data. We train the two CRF
models on all portions of the OntoNotes corpus that are an-
notated with named entity tags, except the parallel-aligned
portion which we reserve for development and test purposes.
In total, there are about 660 documents (∼16k sentences)
and 1,400 documents (∼39k sentences) for Chinese and En-
glish, respectively.

Out of the 18 named entity types that are annotated in
OntoNotes, which include person, location, date, money,
and so on, we select the four most commonly seen named
entity types for evaluation. They are person, location, orga-
nization and GPE. All entities of these four types are con-
verted to the standard BIO format, and background tokens
and all other entities types are marked with tag O.

In all of the Gibbs sampling experiments, a fixed num-
ber of 2000 sampling steps are taken, and a linear cooling
schedule is used in the deterministic annealing procedure.

In order to compare our method with past work, we ob-
tained code from Burkett et al. (2010) and reproduced their
experiment setting for the OntoNotes data. An extra set of
5,000 unannotated parallel sentence pairs are used for train-
ing the reranker, and the reranker model selection was per-
formed on the development dataset.

We report standard NER measures (entity precision (P),
recall (R) and F1 score) on the test set. Statistical signifi-
cance tests are done using the paired bootstrap resampling
method (Efron and Tibshirani 1993), where we repeatedly
draw random samples with replacement from the output of
the two systems, and compare the test statistics (e.g. ab-
solute difference in F1 score) of the new samples with the
observed test statistics. We used 1000 sampling iterations in
our experiments.

Bilingual NER Results
The main results on Chinese and English test sets are shown
in Table 2. The first row (CRF) shows the baseline monolin-
gual model performance. As we can see, the performance on
Chinese is much lower than on English. This is partially at-
tributed to the fact that the Chinese NER tagger was trained
on less than half as much data, but it is also because NER
in Chinese is a harder problem (e.g., there are no capitaliza-
tion features in Chinese, which is a very strong indicator of
named entities in English).

By enforcing hard agreement constraints, we can see from
row hard that there is an increase of about 1.4% in abso-
lute F1 score on the Chinese side, but at the expense of a

6
code.google.com/p/berkeleyaligner

Chinese English
P R F1 P R F1

CRF 76.89 61.64 68.42 81.98 74.59 78.11
Burkett 77.52 65.84 71.20 82.28 76.64 79.36
hard 76.19 64.47 69.84 82.13 72.85 77.21
manual 80.02 65.85 72.24 82.87 74.56 78.50
auto 78.53 66.90 72.25 82.11 75.40 78.62
auto+aP 79.17 68.46 73.43 82.05 75.56 78.67

Table 2: Results on bilingual parallel test set. F1 scores that
are statistically significantly better than the CRF baseline is
highlighted in bold.

0.9% drop on the English side. The tradeoff mainly occurs
in recall.

When we loosen the bilingual constraint to allow soft-
agreement by simply assigning a hand-picked value (0.02)
to aligned entities of different types (row manual), we ob-
serve a significant increase in accuracy in both Chinese and
English. This suggests that the soft alignment successfully
accounted for the cases where annotation standards differ
in the two languages. In particular, the Chinese results are
3.8% better than the monolingual baseline, a 12% relative
error reduction.

When we replace the arbitrary hand-picked soft-
agreement probabilities with empirical counts from the auto-
tagged dataset (row auto), we see a small increase in recall
on both sides, but a drop in precision for Chinese. How-
ever, accounting for alignment uncertainty (row auto+aP)
increases both precision and recall for Chinese, resulting in
another 1.2% increase in absolute F1 score over the auto
model.

Comparing against Burkett et al. (2010) (second row from
the top), we can see that both our method and Burkett et
al. (2010) significantly outperform the monolingual CRF
baseline. This suggests that methods that explore bilingual
language cues do have great utility in the NER task. Our
best model (auto+aP) gives a significant gain over Bur-
kett et al. (2010) on Chinese (by 2.2%), but trails behind on
English by 0.7%. However, we will show in the next sec-
tion some further improvements to our method by modeling
global label consistency, which allows us to outperform Bur-
kett et al. (2010) on both languages.

Results on Global Consistency
Table 3 shows results on the test set after factoring in a
global consistency model. Adding global consistency to the
monolingual baseline (mono) increases performance on En-
glish (consistent with results from previous work (Finkel,
Grenager, and Manning 2005)), but hurts Chinese results,
especially in recall.

A possible explanation is that CRF models for English
are more certain about which words are entities (by having
strong indicative features such as word capitalization), and
thus a penalty does not persuade the model to label a word as
a non-entity. However, in the Chinese case, the CRF model
is weaker, and thus less certain about words being an en-
tity or not. It is also much more likely that the same word



Chinese English
P R F1 P R F1

mono 76.89 61.64 68.42 81.98 74.59 78.11
+global 77.30 58.96 66.90 83.89 74.88 79.13
+global’ 75.23 68.12 71.50 82.31 77.63 79.90

auto 78.53 66.90 72.25 82.11 75.40 78.62
+global 79.02 64.57 71.07 84.02 75.73 79.66
+global’ 76.17 71.04 73.52 82.87 78.84 80.81

auto+aP 79.17 68.46 73.43 82.05 75.56 78.67
+global 79.31 65.93 72.01 84.01 75.81 79.70
+global’ 76.43 72.32 74.32 82.30 78.35 80.28

Table 3: Results of enforcing global consistency. global
is the global consistency without “reward” parameter, and
global’ is the one with “reward” parameter. “mono” is the
monolingual CRF baseline. Best number in each column is
highlighted in bold.

(string) will be both an entity and a common word in Chi-
nese than English. In some cases, the model will be better
off marking a word as a non-entity, than risking taking a
penalty for labeling it inconsistently. By applying the “re-
ward” function, we see a drastic increase in recall on both
Chinese and English, with a relatively small sacrifice in pre-
cision on Chinese. The overall F1 score increases by about
3.1% and 0.8% in Chinese and English, respectively.

Similar results can be found when we apply global con-
sistency to the bilingual model (auto). Again we see a
recall-precision tradeoff between models with or without a
“reward” function. But overall, we observe a significant in-
crease in performance when global consistency with a re-
ward function is factored in.

Modeling alignment uncertainty continues to improve the
Chinese results when the global consistency model is added,
but shows a small performance decrease on the English side.
But the gain on the Chinese side is more significant than the
loss on English side.

The best overall F1 scores are achieved when bilingual
constraints, global consistency with reward, and alignment
uncertainty are conjoined. The combined model outper-
forms the CRF monolingual baseline, with an error reduc-
tion of 18.6% for Chinese and 9.9% for English. This model
also significantly improves over the method of Burkett et
al. (2010) with an error reduction of 10.8% for Chinese and
4.5% for English.

Beyond the difference in model performance, our method
is much easier to understand and implement than Burkett et
al. (2010). Their method involves simulating a multi-view
learning environment using “weakened” monolingual mod-
els to train a reranking model, and transplanting the param-
eters of the “weakened” models to “strong” models at test
time in a practical but ad-hoc manner.

Semi-supervised NER Results
In the previous section we demonstrated the utility of our
proposed method in a bilingual setting, where parallel sen-
tence pairs are tagged together and directly evaluated. In re-
ality, this is not the common use case. Most down-stream
NLP applications operate in a monolingual environment.

Method # train sent P R F1

CRF baseline ∼16k 76.89 61.64 68.42
Self-training +80k 75.15 59.06 66.14
Semi with Burkett +80k 76.30 63.46 69.29
Semi with auto+aP +80k 77.40 66.10 71.31

+40k 76.97 65.60 70.83
+10k 77.48 64.95 70.66

Table 4: Semi-supervised results on Chinese test set. F1

scores that are statistically significantly better than the CRF
baseline is highlighted in bold.

Therefore, in order to benefit general monolingual NLP sys-
tems, we propose a semi-supervised learning setting where
we use the bilingual tagger to annotate a large amount of
unannotated bilingual text, then we take the tagged sen-
tences on the Chinese side to retrain a monolingual Chinese
tagger.

To evaluate the effectiveness of this approach, we used the
Chinese-English part of the Foreign Broadcast Information
Service corpus (FBIS, LDC2003E14), and tagged it with the
auto+aP model. Unlike the OntoNotes dataset, this corpus
does not contain document boundaries. In order to apply
the document-level label consistency model, we divide the
test set into blocks of ten sentences, and use the blocks as
pseudo-documents.

Results from self-training, as well as results from uptrain-
ing using model outputs from Burkett et al. (2010) are shown
in Table 4. We can see that by using 80,000 additional sen-
tences, our method gives a significant boost (∼2.9%, an er-
ror reduction of∼9.2%) over the CRF baseline. Our method
also improves over Burkett et al. (2010) by a significant mar-
gin.

The gains are more pronounced in recall than precision,
which suggests that the semi-supervised approach using
bilingual data is very effective in increasing the coverage
of the monolingual tagger. On the other hand, monolingual
self-training hurts performance in both precision and recall.

We also report results on the effect of using increasing
amounts of unannotated bilingual data. When only 10k sen-
tences are added to the Chinese side, we already see a 5.2%
error reduction over the CRF baseline.

Conclusions

We introduced a factored model with a Gibbs sampling in-
ference algorithm, that can be used to produce more accurate
tagging results for a parallel corpus. Our model makes use
of cross-language bilingual constraints and intra-document
consistency constraints. We further demonstrated that unla-
beled parallel corpora tagged with our bilingual model can
then be used to improve monolingual tagging results, using
an uptraining scheme. The model presented here is not re-
stricted to the NER task only, but can be adopted to improve
other natural language applications as well, such as syntactic
parsing and semantic analysis.
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