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Abstract

We describe Stanford’s entries in the TAC
KBP 2017 Cold Start Knowledge Base
Population and Slot Filling challenges.
Our biggest contribution is an entirely new
Spanish entity detection and relation ex-
traction system for the cross-lingual rela-
tion extraction tracks. This new Spanish
system is a simple system that uses CRF-
based entity recognition supplemented by
gazettes followed by several ruled-based
relation extractors, some using syntactic
structure. We make further improvements
to our systems for other languages, in-
cluding improved named entity recogni-
tion, a new neural relation extractor, and
better support for nested mentions and dis-
cussion forum documents. We also ex-
perimented with data fusion with entity
linking systems from entrants in the TAC
KBP Entity Discovery and Linking chal-
lenge. Under the official 2017 macro-
averaged MAP all hops score measure,
Stanford’s 2017 English, Chinese, Spanish
and cross-lingual submissions achieved
overall scores of 0.202, 0.124, 0.123, and
0.073, respectively. Under the macro-
averaged LDC-MEAN all hops F; mea-
sure used in previous years, the corre-
sponding scores were 0.254, 0.188, 0.186,
and 0.117 respectively.

1 Introduction

For the TAC KBP 2017 challenge, we worked
to provide a system that handles all three lan-
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guages of the multilingual challenge, namely En-
glish, Chinese and Spanish, and consequently also
the cross-lingual track. The Spanish system was
developed entirely from scratch, while both the
English and Chinese system received incremental
improvements guided by error analysis. We also
improved the performance of our entity linking
systems in each language by training better named
entity recognizers and combining with the entities
identified by the RPI (for English and Chinese)
and UIUC (for Spanish) entity detection and link-
ing (EDL) systems, made available as part of the
Tinkerbell collaboration. We describe the details
of our contributions in this paper.

Our English KBP system is built on top of Stan-
ford’s 2016 KBP slot filling system (Zhang et al.,
2016). Our two main system improvements were:
(1) We enhanced our named entity recognition
(NER) system by expanding our training data and
building a new neural model. (2) We built a new
and improved neural relation extraction system.
Our final submission system consists of 5 rule-
based relation extractors, a self-trained supervised
extractor and a supervised neural network extrac-
tor.

Our Chinese KBP system was also built on top
of our 2016 slot filling system (Zhang et al., 2016).
The 2016 challenge data gave us a first opportu-
nity to do a thorough error analysis of our perfor-
mance, leading to several minor system improve-
ments and a few major ones: (1) We improved our
mention detection by expanding our NER training
data and expanding gazettes for fine-grained entity
types. (2) We introduced support for nested entity
mentions. (3) We hill-climbed on the patterns used
during relation extraction. (4) We put in place bet-
ter document handling of the metadata of discus-
sion forum documents In our final submission we
used the improved pattern based system as well as
a distant supervision system.



Finally, we developed a completely new Span-
ish KBP system. This system differs from the En-
glish and Chinese system in the following ways:
(1) A new Spanish NER system trained on an en-
semble of data, and a new fine-grained NER sys-
tem optimized for KBP, and supplemented by the
use of HeidelTime for temporal NER. We also
added support nested entity mentions. (2) A lim-
ited (pronouns only) coreference system. (3) A
new relation extraction system built from pattern-
based extractors. We use both dependency tree and
token sequence patterns, partially translated from
English and then developed manually. (4) The use
of a new state-of-the-art neural part-of-sppech tag-
ger and dependency parser (Dozat et al., 2017) that
were critical to obtain parses of high enough qual-
ity to be reliably used by the pattern based system.
Our final submission consisted of just the patterns
based system.

Additionally, we participated in the cross-
lingual track by combining the output of the above
three systems. Below, we first introduce the over-
all pipeline and infrastructure of our KBP systems
in Section 2. We then describe improvements to
our entity detection and linking system in Sec-
tion 3. Next, we provide detailed descriptions of
our multi-lingual systems: English in Section 4,
Chinese in Section 5, and Spanish in Section 6.
We present the official evaluation scores of our
submissions in Section 7.

2 System Architecture

The architecture of Stanford’s 2017 KBP system
is largely the same as Stanford’s 2016 and 2015
systems, and is described in detail in Angeli et al.
(2015).

In earlier years, our slot filling systems used
pipelines starting with an information retrieval
(IR) component, which takes the query entities
and returns relevant textual mentions and corre-
sponding sentences from the corpus. Then these
returned mentions and sentences were passed into
downstream relation extractors for further pro-
cessing. While this architecture has the advan-
tages of being lightweight and saving a lot of com-
putation in the preprocessing phase, it suffers from
some critical drawbacks: (1) A fair amount of re-
call is lost at the beginning of the pipeline, due to
the limitations of the IR system. (2) Probing the
corpus becomes difficult, as the majority of the
corpus remains unprocessed. (3) In order to re-

Tokenization, POS

4>‘ CoreNLP Annotators ‘ tagging, parsing, etc.

!

‘ Entity Detection & Linking ‘

}

‘ Relation Extractors ‘

NER, Coref, Entity
Linker (UIUC, Wikidict)

Statistical, patterns, rule-
based, neural networks

)
‘ Post-processors }—> g

Figure 1: The Stanford KBP system pipeline. The
input to the pipeline is a collection of documents,
and the output of the pipeline are relation triples
stored in database.

trieve multiple candidate mentions in a document,
the IR system must be run for multiple iterations.

In this context, we have started to build our KBP
system around a relational database, taking inspi-
ration from Angeli et al. (2014). During develop-
ment, we store all processed documents from the
corpus and intermediate data in the database. As
most in-database operations are highly optimized
and done in-memory, this architecture offers us a
lot of benefits. (1) Since the preprocessing compo-
nent is completely independent from the query en-
tities, we can now annotate all text from the corpus
and make use of all potential candidate mentions.
(2) Evaluation now becomes optimized database
queries instead of full relation extraction cycles,
which enables us to do fast iteration on our algo-
rithms. (3) SQL is a powerful data manipulation
language that allows us to calculate data statistics
and perform system diagnosis quickly.

At the core of this database-centered architec-
ture are two relational tables: sentence, which
contains textual information about sentences and
supporting annotations (e.g., part-of-speech tag-
ging sequences, dependency parsing, etc.), and
mention, which contains textual information
about entity mentions and supporting information
of them (e.g., NER tags, provenances, canonical
links, etc.). We now describe how the system
makes use of this architecture to pipeline different
components to produce final output.

2.1 System Pipeline

Our full system pipeline is pictured in Figure 1.
The input to this pipeline is the original full-text
TAC KBP corpus. This corpus is directly fed into
an annotation component, where a series of Stan-
ford CoreNLP (Manning et al., 2014) annotators,
including tokenizer, part-of-speech (POS) tagger



and parsers, are run to generate structured anno-
tations of the text. The output of this component
is used to populate the sentence table as described
above.

Subsequently, we run our named entity recog-
nition (NER) and coreference resolution annota-
tors to generate NER tags for each sentence and
coreference graphs for each document. Then to-
kens with NER tags of interest are organized to-
gether to form entity mentions. For each extracted
entity mention, we run an entity linker over it to
generate a canonical entity link used to universally
describe this entity. We then use the output of this
entity detection and linking component to popu-
late the mention table, where each mention entry
is also connected to its corresponding sentence in
the sentence table.

As we now have all the annotated information
about mentions and their corresponding sentences,
we then do simple database join operations on the
mention table to form our pool of candidate men-
tion pairs. Note that a candidate mention pair
(m1,mg) is generated with the conditions that
both m; and my are present in the mention table
and that they must co-occur in the same sentence
in the original corpus. Afterwards, each candidate
mention pair is passed into our relation extractors.
The output of the relation extractors are a group
of scored triples (m1,r,ms) : p where r is either
one of the forward relations as defined in the KBP
slot descriptions, or a no_relation predicate,
and p is a score that measures how confident the
extractor is about this prediction.

Output triples from the relation extractors are
then fed into a series of postprocessors. These
postprocessors mainly serve three purposes: (1)
Inverse relations are generated from all forward
relation predictions. (2) Results from different ex-
tractors are merged according to our model en-
sembling policies. (3) We implement some con-
straints in the postprocessors to filter out predic-
tions that are obviously wrong according to real-
world knowledge, and predictions that contradict
with others. A more detailed description of this
component is presented in Angeli et al. (2013).
While the relation extractors are core to the en-
tire system, this postprocessor component is also
crucial, as it removes some of the salient errors
inevitably generated by the upstream extractors to
make sure our system has reasonable precision.

2.2 Supporting Infrastructure

We support the pipeline described above with
distributed databases, specifically Greenplum DB,
set up on two 20-core machines. Doing rapid
iterations over the entire pipeline requires inten-
sive large-scale database queries, which greatly
benefit from having large memories and fast disk
10 speed. Therefore, we set up our machines with
786GB RAM augmented by a 1.2TB PCI-E solid
state drive that has a read speed of approximately
2.6GB per second. During development we find
this infrastructure setup to be crucial to our quick
system testing, problem diagnosis and parameter
tuning.

Each language independently uses the same
schema and architecture presented above, while
the specific implementations of annotators, rela-
tion extractors and postprocessors are different
across languages.

3 Entity detection and linking

In the second stage of our pipeline, we recognize
potential entity and slotfill mentions. For each lan-
guage, there are two systems identify these men-
tions: a statistical model that predicts entity men-
tions (i.e. persons, organizations and GPEs) and a
rule-based system that identifies fine-grained slot-
filling candidates (e.g. titles, religions, etc.). One
of the largest sources of error in our system was
low recall in our entity detection and linking sys-
tems that led to a cascading error in relation pre-
dictions. In this section, we address this problem
through improvements to our NER systems across
languages and a data fusion pipeline to integrate
entity predictions from systems that participated
in the TAC Entity Detection and Linking track.

3.1 Improving NER with Targeted Dataset
Expansion

We observed that the documents our NER sys-
tems were trained on was very different from the
documents found in the KBP corpora, particularly
when it came to discussion forum text. Conse-
quently, we augmented the training data for our
systems using the DEFT Light/Rich ERE and pre-
vious TAC KBP EDL data. Table 1 summarizes
the new data used to train our systems and the sig-
nificant improvements in NER performance that
resulted.



Language

New datasets added

Original F1

New F1

English

Chinese

Spanish

DEFT ERE Chinese and English Parallel Annotation Data
2014, DEFT ERE English Discussion Forum annotation 2014,
TAC KBP EDL Comprehensive Training Data (2014 and
2015), DEFT Rich ERE English Training Annotation Data
(2015 and 2016)

ACE 2004 Multilingual Training Corpus, DEFT ERE Chinese
and English Parallel Annotation Data (2014 and 2015), DEFT
ERE Chinese discussion forum annotation Data 2014, DEFT
Rich ERE Chinese Training Annotation Data 2015, TAC KBP
EDL Comprehensive Training Data 2015

CoNLL 2003 shared task, ACE 2007 Multilingual Training
Corpus, DEFT Rich ERE Spanish Annotation 2015, DEFT
Spanish Light ERE Training Data 2015, TAC KBP EDL Com-
prehensive Training Data 2015

75.51

66.62

54.99

79.99

75.90

73.18

Table 1: A comparison of NER performance on the TAC KBP EDL evaluation data (2015-2016): we
found that augmenting our training data with data from the TAC EDL and DEFT ERE datasets was
essential in improving entity recognition performance in all three languages.

3.2 Entity Detection and Linking Data Language EDL systems Prec. Rec. Fy
Fusion English Stanford only 55.72  9.61 16.39

+ RPI EDL 49.81 1132 1845

We observed that the top entrants in the TAC-KBP Chinese Stanford only 27.91 22.64 25.00
Entity Detection and Linking track were produc- + RPI EDL 1650 2725 20.56
ing much better quality linking than our systems Spanish Stanford only 28.26 249  4.58
and we wanted to take advantage of their develop- +UIUCEDL 19.78 345 587

ments, as our primary objective in the TAC KBP
task is developing better slot filling systems. How-
ever, the entities predicted by external systems in
the EDL track primarily focus on named entities
and often do not cover the pronominal mentions
and fine-grained slot-value candidates that are es-
sential for good slot filling and are produced by
our internal system. To properly resolve pronom-
inal mentions, first consider that we can use the
coreference chain to identify a cluster of enti-
ties with a unique canonical mention. For every
canonical mention identified by our internal sys-
tem that also appears in the external system’s out-
put, we use the link predicted by the external sys-
tem for every dependent mention in the corefer-
ence chain. There may also be canonical men-
tions predicted by our internal system that were
not predicted by the external system; for these, we
use a exact-string-match based heuristic to merge
the internal entity cluster with one of the external
clusters based on the linked entities name. If this
fails, we simply create a new entity id based on the
canonical mention’s gloss. Slot-value candidates
do not need to be linked and hence we directly use
our internal systems’ predictions.

Table 2: Slotfilling performance observed after in-
tegrating EDL predictions from external systems.
We find that our recall is significantly improved.
The decreases in precision are most likely due to
the incompleteness of the evaluation data.

We used the RPI entity linking system (Pan
et al., 2017) for English and Chinese, and the
UIUC entity linking system (Tsai and Roth, 2016)
for Spanish. Table 2 summarizes the improve-
ments obtained through this EDL fusion method.
We observed that both significantly improve slot-
filling recall, but also significantly decrease preci-
sion. A manual inspection in the development set
identified that most of the predicted relations are in
fact correct and the low precision scores are prob-
ably because the evaluation data is highly incom-
plete, as was observed in (Chaganty et al., 2017).

4 English KBP System

Our English KBP system refines our 2016 system
in several aspects. We summarize the implemen-
tation of this system and highlight some of the key



improvements that we made.

4.1 Data

We used the TAC KBP 2015 and 2016 slot filling
evaluation queries and assessment files to validate
and test our English system.

4.2 Neural NER Model

In addition to the improvements in entity recogni-
tion we proposed in Section 3, we also trained a
new neural entity linking model for English. The
model uses the bi-directional LSTM-CNN model
with CRF decoding proposed in Ma and Hovy
(2016). This model led to a 2% increase in F1
scores on the test set described in Section 3, from
79.99% to 82.67%.

4.3 Relation Extractors

In total, we use 7 relation extractors that can be
broadly divided into three categories.

Rule-based We have 5 rule-based extractors in
total. The first set includes a Semgrex pattern sys-
tem (Chambers et al., 2007) and a TokensRegex
(Chang and Manning, 2014) pattern system. Sem-
grex patterns operate on the dependency graph
of a sentence and trigger a relation prediction
once a specific pre-defined dependency pattern is
matched between two entities. In contrast, Token-
sRegex patterns search linearly for specific tem-
plates in the word, lemma, POS and NER se-
quence of a sentence. We reuse all patterns in our
2016 KBP system. The output of the two pattern
extractors is expected to be fairly precise.

Next we have three relation-specific rule-based
extractors: altnames, websites and gpe-mentions.
altnames is an extractor that infers alternate names
of organizations and people from coreference
chains of a document, and websites compares
the edit distance between an organization name
and an URL to give high-precision predictions
of the org:website relation. They are de-
scribed in more detail in Angeli et al. (2015).
The gpe-mentions extractor identifies nested GPE
mentions found in organization entities (e.g.,
“University of California, Berkeley”) to predict
org:<location>_of_headquarters rela-
tions. Further details can be found in Zhang et al.
(2016).

Self-trained Supervised We reuse the same
self-trained supervised extractor as in (Angeli
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Figure 2: The position-aware neural sequence

model for relation extraction. The model is shown
with an example sentence “Mike and Lisa got
married.”

et al., 2015). In summary, at the core of this sys-
tem is a traditional logistic regression-based clas-
sifier (LR) with manually-crafted features and a
Long Short Term Memory network (LSTM) clas-
sifier. We first run the union of our patterns extrac-
tors and an Open IE system on the entire corpus.
Since these systems are both of high precision, we
collect their positive output predictions to form a
training dataset. We add this “bootstrapped” train-
ing set along with a set of “presumed negative”
examples into a pre-collected supervised training
set, and use this entire dataset to train the two core
classifiers above (LR and LSTM). We then take
this output as the new training dataset, and repeat
this process for another iteration. In this way, we
train our statistical models with output from our
own classifiers. We also apply other tricks to avoid
class skew and overfitting as described in Angeli
et al. (2015).

Neural Network-based This year, we devel-
oped a new neural network based extractor
that uses an LSTM with position-aware atten-
tion (Zhang et al., 2017) as pictured in Figure 2.
The model takes the original sentence as input,
and generates embedding vectors for each word



through a lookup layer which are th fed into an
LSTM layer module. We replace the the subject
and object entities with special <subject> and
<object> tokens and include features for each
token that describe the token offset from the sub-
ject and object respectively. When predicting a re-
lation, the output layer attends to a combination of
the LSTM outputs and the position features.

Our neural network model is trained on a fully
supervised dataset that is constructed from previ-
ous years’ KBP Slotfilling assessment files and is
labelled by online crowd sourcing. We plan to
make this dataset publicly available soon.

5 Chinese KBP System

This was the second year that we had Chinese slot
filling and the first in which we had evaluation data
for the cold start task. One of the most significant
improvements this year was a better entity recog-
nition system, as detailed in Section 3. For our
slot filling system, we improved on our 2016 sys-
tem (Zhang et al., 2016) with a few error-analysis
guided improvements that we describe next.

5.1 Data

During development we used the TAC KBP 2016
Chinese Cold Start Slot Filling task evaluation
queries and assessment results to evaluate our sys-
tem. This dataset contains 371 Chinese query en-
tities, which we used entirely for development.

5.2 Fine-grained entity recongition

In addition to the improvement on named
entity recognition and linking described in
Section 3, we also improved on our pattern-
based entity and slot-value candidate recog-
nizers. These recognizers use 7TokensRegex
patterns (Chang and Manning, 2014) to iden-
tify common Chinese entities for the following

types: PERSON, ORGANIZATION, COUNTRY,
CITY, STATE_OR_PROVINCE, TITLE,
NATIONALITY, IDEOLOGY, RELIGION,

CRIMINAL_CHARGE and CAUSE_OF_DEATH.
We further refined our patterns this year based on
an error analysis on last year’s evaluation data.

5.3 Relation Extractors

The lack of a clean supervised dataset continues to
limit our use of statistical models during the devel-
opment of Chinese relation extractors. Thus, we

primarily rely on high-precision pattern-based ex-
tractors, though we have also implemented a high-
recall distantly supervised extractor. All of these
extractors were present in our 2016 system; this
year we mainly focussed on tuning the patterns to
improve performance on the 2016 evaluation set.
We present detailed information of each extractor
here:

Patterns The development of Chinese Token-
sRegex and Semgrex patterns is largely the same
as in the English system. We manually add pat-
terns to the extractors that boost the dev set scores,
while monitoring the test set scores to avoid over-
fitting. The final extractors contain 266 Token-
sRegex patterns and 805 Semgrex patterns respec-
tively.

Distantly Supervised Extractor We build our
distantly supervised extractor based around the
Mintz system as described in Mintz et al. (2009).
In a distantly supervised extractor, training in-
stances are generated by applying a knowledge
base to a corpus and labelling each sentence that
contains co-occurrence of relation pairs in the
knowledge base as a positive instance for the cor-
responding relation type. In our system, we ac-
quire a knowledge base by using a combination
of Freebase relation tuples and relation tuples ex-
tracted from previous KBP assessment results. We
apply deterministic heuristic rules to convert the
Freebase relation types to the KBP slot types. Ap-
plying this knowledge base to the Chinese KBP
corpus gives us about 530K positive examples for
34 out of the 41 slot types. To balance training
data across relation types, we apply a hard thresh-
old of 5K to limit the number of training examples
used for each relation type. This finally gives us
around 80K training examples in total. Note that
unlike the standard setup, we do not use any neg-
ative training examples in our distantly supervised
extractor, as we empirically find that gradually
adding negative training examples will slightly in-
crease precision but decreases recall substantially.

Other Rule-based Extractors Additionally,
we implement an altnames extractor and an
org:subsidiaries/org:place_of_headquarters

extractor. The Chinese altnames extractor
performs inference over the coreference graph
to extract per:alternate_names and
org:altername_names relations. Our
org-subsidiaries extractor is based on a key obser-



vation that Chinese organization names are often
structured in a clearly nested way. For example,
in the case of the entity “F B F %X ¥ & b5
2, «f B4E Z W 2 is a parent organization
of the former and is nested inside the entity.
Therefore, the extractor starts with a training
phase where it accumulates a gazetteer of possible
organizations by going through all extracted
organization entities in the corpus. Then during
the extraction phase, it examines the surface string
of each extracted organization entity, and if a
previously seen entity appears as a substring and
this substring satisfies a set of lexical constraints
(e.g., the suffix falls inside a lexicon), the extractor
generates an org:subsidiaries relation for
the entity pair of this substring and its full string.
Similarly, the org:place_of-headquarters extractor
looks for location of headquarter from name of
organization by matching the substring with a
gazetteer containing common GPE entities. We
optimize these three rule-based extractors to boost
recall while preserving the precision.

6 Spanish KBP System

This year, we also developed a new Spanish KBP
system from scratch. The system shares the same
architectural design as the English and Chinese
systems, but has it’s own relation extraction sys-
tems. We’ll discuss the data used during develop-
ment, our entity recognition components and the
relation extractors below.

6.1 Data

During development we used the TAC KBP 2016
Spanish Cold Start Slot Filling task evaluation
queries and assessment results to evaluate our sys-
tem. This dataset contains 402 query entities,
which we used entirely for development.

6.2 Fine-grained entity recongition

As mentioned earlier, the entity recognition sys-
tem in Section 3 is limited to the 3 entity types, i.e.
people, organizations and GPEs. We augmented
this system with a TokensRegex-based system
that uses gazettes to identify common Spanish

entities for the following types: COUNTRY,
CITY, STATE_OR_PROVINCE, TITLE,
NATIONALITY, IDEOLOGY, RELIGION,

CRIMINAL_CHARGE and CAUSE_OF_DEATH.
Much of the gazette was translated from the
English version of the same. We also also used

HeidelTime (Strotgen and Gertz, 2013) to identify
time expressions in Spanish.

6.3 Rule-based coreference

We also used a simple string-matching based sys-
tem to link named entities within documents, the
results of which were then combined with exter-
nal EDL predictions. We did not handle coref-
erence with pronouns because Spanish often uses
dropped pronouns.

6.4 Relation Extractors

For Spanish there is a complete lack of super-
vised data. As a result, we developed a pattern
based system using about 2400 TokensRegex and
460 Semgrex rules. We initially tried to translate
our English patterns into Spanish, but ultimately
found that most of the patterns had to be com-
pletely rewritten from scratch. To get the Sem-
grex patterns to work reliably, we found it essential
to use a high-quality dependency parser: we used
the state-of-the-art neural parser from Dozat et al.
(2017).

7 Results

In this section, we report our evaluation results
on the official 2017 evaluation set, using both
the new macro-averaged LDC-MEAN average-
precision (AP) and slot-filling (SF) scores. The
systems we submitted to the cold start KB con-
struction track are described in Table 3, and their
results are summarized in Table 5 and Table 6. In
addition, we also submitted several systems to the
cold start slotfilling track, which are described in
Table 4 and their results are summarized in Table 7
and Table 6. Overall, our systems did extremely
well, ranking among the top systems for each lan-
guage.

On the KB track, the diagnostic runs submit-
ted for each language used our expected best slot
filling system with different entity detection and
linking components, while for the SF track the di-
agnostic runs used our expected best EDL system
with different slotfilling configurations. We were
surprised to find that combining EDL systems had
mixed results, where it significantly improved slot
filling performance in Chinese, but hurt perfor-
mance in English. Furthermore, the augmented
training data for our NER system did not result
in significant differences in performance for ei-
ther English or Spanish. On the other hand, our



System NER model Entity linker Slotfilling system
English
1 Neural model w/ augmented data S + RPI Pattern-based svstems
2 Neural model w/ augmented data S + UIUC ySIIS,
feature-based logistic
3 Neural model w/ augmented data Stanford classifier and
4 Linear CRF w/ augmented data Stanford osition-aware LSTM
5 Linear CRF w/o augmented data Stanford P
Chinese
1 Feature-based model w/ augmented data S + RPI
2 Linear CRF w/ augmented data S + UIUC Pattern-based svstems
3 Linear CRF w/o augmented data Stanford y
Spanish
1 Linear CRF w/ augmented data S + UIUC Pattern-based svstems
2 Linear CRF w/o augmented data S + UIUC y
Cross-lingual
1 Combination of system 1 from each language
Table 3: A summary of the submissions to the KBP 2017 cold start KB construction tracks.
English
S NER model Entity linker Patterns  Logistic R. LSTM  Multiple just.
1 v v v v
2 Neural model w/ RPI v v v
3 augmented data v v
4 v v v
Chinese
S NER model Entity linker Patterns Subsidiaries Distant sup. Multiple just.
1 v v v
2 Linear CRF w/ RPI v v v v
3 augmented data v v
4 v v
Spanish
S NER model Entity linker Patterns Multiple just.
1 Linear CRF w/ UIUC v v
augmented data v

Table 4: A summary of the submissions to the KBP 2017 cold start slotfilling tracks.

slotfilling systems performed as expected: in En-  we found that using a single justification led to
glish, our high recall system (1) did significantly  slightly better performance on the average preci-
better than the our balanced recall system (2) and  sion metric (we do not consider precision, recall
high precision systems (3). In Chinese, the dif- and F1 scores because they only consider a single
ferent systems we proposed did not lead to signif-  justification).

icantly different performance. Across languages,

For this track, we used different variants of our



Hop-0 Hop-1 All

S P R F; P R F; P R F;
English

1 239% 36.5% @ 26.1% 19.8% 26.0% @ 20.6% 223% 32.4% @ 23.9%

2 228% 335%  237% 18.6% 23.8% @ 192% 21.2% 297% @ 22.0%

3 261% 381% 285% 20.1% 25.6% 20.6% 23.8% 33.3% @25.4%

4 244% 350% @ 26.0% 164% 199% @ 162% 21.3% 29.1% @ 22.2%

5 254% 353% @ 268% 15.0% 182% @ 15.1% 21.4% 28.7% @ 22.2%
Chinese

1 269% 239% 244% 231% 6.6% 7.6% 19.6% 18.1% | 18.0%

2 176% 142% 151% 13.7% 44%  38% 12.6% 10.7% @ 11.1%

3 239% 209% @ 21.6% 20.7% 4.0% @ 29% 163% 149% | 14.9%
Spanish

1 238% 24.6% 229% 10.8% 10.8% @ 10.6% 19.2% 19.8% & 18.6%

2 238% 24.6%  229% 10.8% 10.8% @ 10.6% 19.2% 19.8% @ 18.6%

Cross-lingual
1 178% 183% 16.0% 7.6% 79% @ 71% 129% 13.3% @ 11.7%

Table 5: Official scores (macro-averaged LDC-MEAN) of submissions (S) to the KBP 2017 cold start

KB construction tracks measured using a single justification.

Average Precision

S Hop-0 Hop-1 All
English

1 323% 11.7% 26.7%

2 308% 17% 24.9%

3 334% 10.7% 27.5%

4 305% 6.7% 26.2%

5 31.1% 6.6% 263%
Chinese

1 231% 33% 18.4%

2 137% 1.6% 10.2%

3 00% 0.0% 0.0%

4 207%  0.7% 16.8%
Spanish

1 235% 48% 163%

2 235% 48% 163%

Cross-lingual
1 171% 35% 11.8%

Table 6: Official scores (macro-averaged LDC-MEAN) of submissions (S) to the KBP 2017 cold start
KB construction (left) and slotfilling (right) tracks measured using up to 3 justifications.

Average Precision

S Hop-0 Hop-1 All
English

1 271% 8.0% 21.6%

2 235% 69% 19.0%

3 200% 57% 16.4%

4 274%  93% 21.9%
Chinese

1 226% 19% 17.4%

2 224% 1.9% 17.3%

3 22.6% 1.9% 17.4%

4 22.6% 1.9% 17.4%
Spanish

1 204% 08% 13.4%

2 209% 08% 13.8%

Cross-lingual
1 15.0% 1.9%  9.8%




Hop-0 Hop-1 All

S P R F; P R F, P R F,
English

1 257% 31.8% 259% 18.0% 20.6% 17.7% 22.7% 27.5% 22.6%

2 240% 264% 23.0% 14.6% 14.8% 14.0% 20.3% 21.9%  19.5%

3 243% 21.8% 21.0% 13.0% 12.4% | 123% 199% 18.1% @ 17.6%

4 27.0% 31.0% 263% 192% 193% 18.1% 24.0% 26.4% 23.1%
Chinese

1 266% 238% 242% 94% 97% @ 92% 205% 18.7% 18.8%

2 262% 237% 239% 93% 9.4% @ 9.0% 20.1% 18.6% @ 18.5%

3 266% 238% 242% 94% 97% @ 92% 20.5% 18.7% @ 18.8%

4 266% 238% 242% 94% 9.7% @ 92% 205% 18.7% @ 18.8%
Spanish

1 207% 21.0% [ 194% 29% 38% | 32% 144% 149% @ 13.7%

2 219% 21.5% 205% 29% 38% @ 32% 152% 152% 14.4%

Cross-lingual
1 181% 165% 153% 60% 6.0% 55% 123% 11.4% 10.6%

Table 7: Official scores (macro-averaged LDC-MEAN) of submissions (S) to the KBP 2017 cold start
slotfilling tracks measured using a single justification.

slotfilling systems in the diagnostic runs.

8 Conclusion

In this paper we have presented the design and im-
plementation of Stanford’s TAC KBP 2017 multi-
lingual slot filling and knowledge base population
systems. We explored different methods to im-
prove our entity recognition component and found
that improvements in our named entity model (us-
ing a neural CRF for English) and combining
with high quality EDL predictions (in Chinese) led
to significant improvements. We were also able
to extend our system to Spanish by utilizing ad-
vances in Spanish parsing and building our own
pattern-based systems.
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