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Abstract

A desirable quality of a coreference resolution
system is the ability to handle transitivity con-
straints, such that even if it places high like-
lihood on a particular mention being corefer-
ent with each of two other mentions, it will
also consider the likelihood of those two men-
tions being coreferent when making a final as-
signment. This is exactly the kind of con-
straint that integer linear programming (ILP)
is ideal for, but, surprisingly, previous work
applying ILP to coreference resolution has not
encoded this type of constraint. We train a
coreference classifier over pairs of mentions,
and show how to encode this type of constraint
on top of the probabilities output from our
pairwise classifier to extract the most probable
legal entity assignments. We present results
on two commonly used datasets which show
that enforcement of transitive closure consis-
tently improves performance, including im-
provements of up to 3.6% using thé scorer,
and up to 16.5% using cluster f-measure.

Introduction

strategy, by improving the features (Ng and Cardie,
2002b), the type of classifier (Denis and Baldridge,
2007), and changing mention links to be to the most
likely antecedent rather than the most recent posi-
tively labeled antecedent (Ng and Cardie, 2002b).
This line of work has largely ignored the implicit
transitivity of the decisions made, and can result in
unintuitive chains such as tHamith chain just de-
scribed, where each pairwise decision is sensible,
but the final result is not.

Ng and Cardie (2002a) and Ng (2004) highlight
the problem of determining whether or not common
noun phrases are anaphoric. They use two clas-
sifiers, an anaphoricity classifier, which decides if
a mention should have an antecedent and a pair-
wise classifier similar those just discussed, which
are combined in a cascaded manner. More recently,
Denis and Baldridge (2007) utilized an integer lin-
ear programming (ILP) solver to better combine the
decisions made by these two complementary clas-
sifiers, by finding the globally optimal solution ac-
cording to both classifiers. However, when encoding
constraints into their ILP solver, they did not enforce
transitivity.

The goal of the present work is simply to show

Much recent work on coreference resolution, Wh'dﬂhat transitivity constraints are a useful source of

is the task of deciding which noun phrasesen-
tions, in a document refer to the same real worl(1
entity, builds on Soon et al. (2001). They built

nformation, which can and should be incorporated
nto an ILP-based coreference system. For this goal,

Ave put aside the anaphoricity classifier and focus

decision tree classifier to label pairs of mentions a5n the pairwise classifier and transitivity constraints.

(t:)o_rledferent ngnc’t' U3|rr]19_ their (r:]lassmer,hthey V\tlo UIqu build a pairwise logistic classifier, trained on all
uild Up coreterence chains, where each mention pairs of mentions, and then at test time we use an

was Ir']nkeg upl W'tf}_ th? rtr;olstdrecent pfrewous_ fmen-LP solver equipped with transitivity constraints to
tion t "’?“ € classiner labeled as core _eren_t, T SUCHNG the most likely legal assignment to the variables
a mention existed. Transitive closure in this mOde\lNhiCh represent the pairwise decisidnsOur re-
wasfdone Imﬁg::l)é Ifjc;:. r‘?m'th v‘\J/as I;?flﬁd sults show a significant improvement compared to
tcr?re‘;arsntsv‘\:_l:h '(t“ an Sntlrg wit ;’:me 'tf’ the naive use of the pairwise classifier.

en.Jonn Smith and.jane Smit vyere also COTeIe™ Gther work on global models of coreference (as
ent regardless of the classifier's evaluation of that

pair. Much work that followed improved upon this A legal assignment is one which respects transitive closure.



opposed to pairwise models) has included: Luo et ahpproach made sense for Soon et al. (2001) because
(2004) who used a Bell tree whose leaves represetasting proceeded in a similar manner: for each men-
possible partitionings of the mentions into entitiegion, work backwards until you find a previous men-
and then trained a model for searching the tree; Mdion which the classifier thinks is coreferent, add
Callum and Wellner (2004) who defined several cona link, and terminate the search. Th®REFILP
ditional random field-based models; Ng (2005) whanodel of Denis and Baldridge (2007) took a dif-
took a reranking approach; and Culotta et al. (2006grent approach at test time: for each mention they

who use a probabilistic first-order logic model. would work backwards and add a link fafl pre-
) vious mentions which the classifier deemed coref-
2 Coreference Resolution erent. This is equivalent to finding the most likely

For this task we are given a document which is ar@SSignment to eachy; ;, in Equation 2. As noted,
notated with a set of mentions, and the goal is t§1€S€ assignments may not be a legal clustering be-
cluster the mentions which refer to the same entitF@USe there is no guarantee of transitivity. The tran-

When describing our model, we build upon the nosSitive closure happens in an ad-hoc manner after
tation used by Denis and Baldridge (2007). this assignment is found: any two mentions linked
through other mentions are determined to be coref-

2.1 Pairwise Classification erent. Our ®ON-STYLE baseline used the same
Our baseline systems are based on a logistic clasgi2iNing and testing regimen as Soon et al. (2001).
fier over pairs of mentions. The probability of a pair®Ur D&B-STYLE baseline used the same test time
of mentions takes the standard logistic form: method as Denis and Baldridge (2007), however at
training time we created data for all mention pairs.
P(x; 5y Imi,my; 0) = (1 + e_f(mi’mj)'e) 1 (1) 2.2 Integer Linear Programming to Enforce
Transitivity
wherem; andm; correspond to mentionsand j
respectively;f(m;, m;) is a feature function over a
pair of mentionsy are the feature weights we wish
to learn; andr<i,j> is a boolean variable which takes
valuel if m; andm; are coreferent, andif they are
not. The log likelihood of a document is the sum o
the log likelihoods of all pairs of mentions:

Because of the ad-hoc manner in which transitiv-
ity is enforced in our baseline systems, we do not
necessarily find the most probable legal clustering.
This is exactly the kind of task at which integer
#inear programming excels. We need to first for-
mulate the objective function which we wish the
ILP solver to maximize at test tinfe.Let p; ;, =
L(x|m; ) = Z log P(z; jy|mi, mj; 0) _log P(z; 5lmi, m;;0), which is the log probabil-
ity that m; andm; are coreferent according to the

(2) pairwise logistic classifier discussed in the previous

wherem is the set of mentions in the document, angection, and lep; , = log(1 — Pij), be the log

x is the set of variables representing each pairwigerobability that they are not coreferent. Our objec-
coreference decision; ;. Note that this model is tive function is then the log probability of a particu-
degenerate, because it assigns probability mass & (possibly illegal) variable assignmeht:
nonsensical clusterlngs. Specifically, it will allow . Z iy T +Pagy - (1—2i5) ()
Tiij) = Tk = 1L While z; ) = 0. 1110y €10

Prior work (Soon et al., 2001; Denis and . . . )
Baldridge, 2007) has generated training data foWe add binary constraints on each of the variables:
) € {0,1}. We also add constraints, over each

pairwise classifiers in the following manner. For"]“;i“’{z9 of mentions. to enforce transitivity:
each mention, work backwards through the preceé-p ’ y:

ing mentions in the document until you come to a (1 — x4 ;) + (1 —zp) = (1 —24r) (4
true cc?referent_mentlon . Create negatlv_e_ examplss 2Note that there are no changes from the D&BYLE base-
for all intermediate mentions, and a positive examne system at training time.

ple for the mention and its correct antecedent. This 3A previous version of this paper had a typo in this equation.

m;,m;Em?



This constraint ensures that whenevef ;; = mentions; the Rand index (Rand, 1971), which is

Tk = 1 it must also be the case tha ;) = 1. pairwise accuracy of the clustering; and variation
_ of information (Meila, 2003), which utilizes the en-
3 Experiments tropy of the clusterings and their mutual information

We usedlp_solve* to solve our ILP optimization (and for which lower values are better).

problems. We ran experimer_n_s on two datasets. V\‘lg2 Results
used the MUC-6 formal training and test data, as
well as theNwIRE andBNEWS portions of the ACE  Our results are summarized in Table 1. We show
(Phase 2) corpus. This corpus had a third portioreerformance for both baseline classifiers, as well as
NPAPER but we found that several documents wher@Ur ILP-based classifier, which finds the most prob-
too long forlp_solve to find a solutior? able legal assignment to the variables representing
We added named entity (NE) tags to the data u§oreference decisions over pairs of mentions. For
ing the tagger of Finkel et al. (2005). The ACE dat£0mparison, we also give the results of teREF
is already annotated with NE tags, so when they contP System of Denis and Baldridge (2007), which
flicted they overrode the tags output by the taggetvas also based on a naive pairwise classifier. They
We also added part of speech (POS) tags to the datged an ILP solver to find an assignment for the vari-
using the tagger of Toutanova et al. (2003), and use¥Ples, but as they note at the end of Section 5.1, itis
the tags to decide if mentions were plural or sin€duivalent to taking all links for which the classifier
gular. The ACE data is labeled with mention typg€turns a probability> 0.5, and so the ILP solver is
(pronominal, nominal, and name), but the MUC- Not really necessary. We also include themNT-
6 data is not, so the POS and NE tags were uséeP numbers, however that system makes use of an
to infer this information. Our feature set was sim-2dditional anaphoricity classifier.
ple, and included many features from (Soon et al., For all three corpora, the ILP model beat both
2001), including the pronoun, string match, definitdaselines for the cluster f-score, Rand index, and
and demonstrative NP, number and gender agre¥ariation of information metrics. Using the met-
ment, proper name and appositive features. We hdi§. the ILP system and the D&BTYLE baseline
additional features for NE tags, head matching an@erformed about the same on the MUC-6 corpus,

head substring matching. though for both ACE corpora, the ILP system was
the clear winner. When using the MUC scorer, the
3.1 Evaluation Metrics ILP system always did worse than the D&B-YLE

The MUC scorer (Vilain et al., 1995) is a popu|arbaseline. However, this is precisely because the
coreference evaluation metric. but we found it to b&ransitivity constraints tend to yield smaller clusters
fatally flawed. As observed by Luo et al. (2004),(which increase prc_acis?on while degrea_sing_recall).
if all mentions in each document are placed into Ke€member that going in the opposite direction and

single entity, the results on the MUC-6 formal tes§IMPly puttingall mentions in one cluster produces

set are100% recall, 78.9% precision, andss.2% & MUC score which is higher than any in the table,
F1 score — significantly higher than any publishe®Ven though this clustering is clearly not useful in

system. Theb® scorer (Amit and Baldwin, 1998) applications. Hence, we are skeptical of this mea-
was proposed to overcome several shortcomings 8¥re’s utility and provide it primarily for compari-

the MUC scorer. However, coreference resolutio$On With previous work. The improvements from
is a clustering task, and many cluster scorers aif’® ILP system are most clearly shown on the ACE

ready exist. In addition to the MUC arid scorers, NWIRE corpus, where thég f-score improved.6%,
we also evaluate using cluster f-measure (GhosANd the cluster f-score improved.5%.

2003), which is the standard f-measure computed .

over trueffalse coreference decisions for pairs of Conclusion

“Fromht t p: / /| psol ve. sour cef or ge. net / We showed how to use integer linear program-
SInteger linear programming is, after all, NP-hard. ming to encode transitivity constraints in a corefer-



MUC SCORER b3 SCORER CLUSTER
MODEL P R F1 P R F1 P R F1 RAND VOI
MUC-6
D& B-STYLE BASELINE 84.8 59.4 69.9 79.7 544 64.6 43.8 444 441 89.9 1.78
SOON-STYLE BASELINE || 91.5 515 65.9 944 46.7 625 88.2 319 46.9 935 1.65

ILP 89.7 55.1 683 909 49.7 64.3 74.1 37.1 49,5 93.2 1.65
ACE — NWIRE

D&B COREFILP 74.8 60.1 66.8 - - - -

D&B JOINT-ILP 75.8 60.8 67.5 - - - -

D& B-STYLE BASELINE 733 676 704 70.1 714 708 31.1 54.0 39.4 917 1.42
SOON-STYLE BASELINE || 85.3 37.8 524 94.1 569 709 67.7 19.8 30.6f 955 1.38

ILP 78.7 585 67.1 86.8 65.2 745 76.1 442 559 965 1.09
ACE — BNEWS

D&B COREFILP 75.5 62.2 68.2 - - - -

D&B JOINT-ILP 78.0 62.1 69.2

D& B-STYLE BASELINE 779 51.1 617 80.3 64.2 714 355 33.8 34.6/ 0.89 1.32
SOON-STYLE BASELINE || 90.0 43.2 58.3 956 584 725 83.3 215 34.1 0.93 1.09
ILP 87.8 46.8 61.1 935 599 73.1 775 26.1 39.1 0.93 1.06

Table 1: Results on all three datasets with all five scoringioge For VOI a lower number is better.

ence classifier which models pairwise decisions ovet. Luo, A. Ittycheriah, H. Jing, N. Kambhatla, and
mentions. We also demonstrated that enforcing such S. Roukos. 2004. A mention-synchronous corefer-
constraints at test time can significantly improve per- ence resolution algorithm based on the Bell tree. In

formance, using a variety of evaluation metrics. ACL. »
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