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Abstract

Many statistical learning problemsin NLP call
for local model search methods. But accu-
racy tends to suffer with current techniques,
which often explore either too narrowly or too
broadly: hill-climbers can get stuck in local
optima, whereas samplers may be inefficient.
We propose to arrange individual local opti-
mizers into organized networks. Our building
blocks are operators of two types: {mns-
form, which suggests new places to search, via
non-random restarts from already-found local
optima; and (ii)join, which merges candidate
solutions to find better optima. Experiments
on grammar induction show that pursuing dif-
ferent transforms (e.g., discarding parts of a
learned model or ignoring portions of train-
ing data) results in improvements. Groups of
locally-optimal solutions can be further per-
turbed jointly, by constructing mixtures. Us-
ing these tools, we designed several modu-
lar dependency grammar induction networks
of increasing complexity. Our complete sys-
tem achieves 48.6% accuracy (directed depen-
dency macro-average over all 19 languages in
the 2006/7 CoNLL data) — more than 5%
higher than the previous state-of-the-art.
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preferable brute force approach is sampling, as in
Markov-chain Monte Carlo (MCMC) and random
restarts (Hu et al., 1994), which hit exact solutions
eventually. Restarts can be giant steps in a parameter
space that undo all previous work. At the other ex-
treme, MCMC may cling to a neighborhood, reject-
ing most proposed moves that would escape a local
attractor. Sampling methods thus take unbounded
time to solve a problem (and can’t certify optimal-
ity) but are useful for finding approximate solutions
to grammar induction (Cohn et al., 2011; Marecek
andZabokrtsky, 2011; Naseem and Barzilay, 2011).
We propose an alternative (deterministic) search
heuristic that combines local optimization via EM
with nonrandom restarts. Its new starting places are
informed by previously found solutions, unlike con-
ventional restarts, but may not resemble their prede-
cessors, unlike typical MCMC moves. We show that
one good way to construct such steps in a parame-
ter space is by forgetting some aspects of a learned
model. Another is by merging promising solutions,
since even simple interpolation (Jelinek and Mercer,
1980) of local optima may be superior to all of the
originals. Informed restarts can make it possible to
explore a combinatorial search space more rapidly
and thoroughly than with traditional methods alone.

1 Introduction

Statistical methods for grammar induction often boi? Abstract Operators

down to solving non-convex optimization problemsy et ¢ be a collection of counts — the sufficient
Early work attempted to locally maximize the likeli- statistics from which a candidate solution to an
hood of a corpus, using EM to estimate probabilitiegptimization problem could be computed, e.g., by
of dependency arcs between word bigrams (Paskiiinoothing and normalizing to yield probabilities.
2001a; 2001b). That parsing model has since begthe counts may be fractional and solutions could
extended to make unsupervised learning more feasgke the form of multinomial distributions. A local
ble (Klein and Manning, 2004; Headden et al., 2009 ptimizer L will convert C into C* = Lp(C) — an
Spitkovsky et al., 2012b). But even the latest techgpdated collection of counts, resulting in a proba-
niques can be quite error-prone and sensitive to inkilistic model that is no less (and hopefully more)
tialization, because of approximate, local search. consistent with a data setthan the originat:

In theory, global optima can be found by enumer- W
ating all parse forests that derive a corpus, though C—> O+

this is usually prohibitively expensive in practice. A



UnlessC* is a global optimum, we should be able Our joining technique could do better than either
to make further improvements. Butifis idempo- Cj or C3, by entertaining also a third possibility,
tent (and ran to convergence) the(.(C)) = L(C). which combines the two candidates. We construct
Given onlyC and Lp, the single-node optimization a mixture model by adding together all counts from
network above would be the minimal search pattera; andC; into C. = C} + C;. Original initializers
worth considering. However, if we had another opti€, Cs will, this way, have equal pull on the merged
mizer L' — or a fresh starting point’ — then more model} regardless of nominal size (becausg C;
complicated networks could become useful. will have converged using a shared training $&t,

We return the best af'f, C5 andC; = L(Cy). This
approach may uncover more (and never returns less)
New starts could be chosen by perturbing an existingkely solutions than choosing amordgy, C; alone:
solution, as in MCMC, or independently of previous )

results, as in random restarts. We focus on interme-c [ . } Ci = L(Ch)
diate changes t¢', without injecting randomness. ! P 1

All of our transforms involve selective forgetting
or filtering. For example, if the probabilistic model Ci+ 03 =Cy

that is being estimated decomposes into independent
constituents (e.g., several multinomials) then a sub€- ~| Lp I or — L(C
set of them can be reset to uniform distributions, by 2 =L(C)

discarding associated counts framin text classifi- \ya \will use a short-hand notation to represent the

cation, this could correspond to eliminating fre_quenf:ombiner network diagrammed above, less clutter:
or rare tokens from bags-of-words. We use circular

shapes to represent such model ablation operators: Ch j: Lp I ©
c—O— @ e

An orthogonal approach might separate out vari3 The Task and M ethodology
ous counts irnC' by their provenance. For instance,

if D consisted of several heterogeneous data sourcé¥ apply transform and join paradigms to grammar
then the counts from some of them could be ignorednduction, an important problem of computational

a classifier might be estimated from just news textinguistics that involves notoriously difficult objec-
We will use squares to represent data-set filtering: tives (Pereira and Schabes, 1992; de Marcken, 1995;

Gimpel and Smith, 2012nter alia). The goal is to
¢—"LJ— ¢ induce grammars capable of parsing unseen text. In-
Finally, if C represents a mixture of possible inter-put, in both training and testing, is a sequence of to-
pretations ovePD — e.g., because it captures the outkens labeled as: (i) a lexical item and its category,
put of a “soft” EM algorithm — contributions from (w, c,,); (ii) @ punctuation mark; or (iii) a sentence
less likely, noisier completions could also be supboundary. Output is unlabeled dependency trees.
pressed (and their weights redistributed to the more
likely ones), as in “hard” EM. Diamonds will repre- >1 Modelsand Data
sent plain (single) steps of Viterbi training: We constrain all parse structures to be projective, via
dependency-and-boundary grammars (Spitkovsky et
al., 2012a; 2012b). DBMs 0-3 are head-outward
2.2 Joins(Binary) generative parsing models (Alshawi, 1996) that dis-
tinguish complete sentences from incomplete frag-
ments in a corpu®: D..m;, COMprises inputs ending
with punctuation;Ds,,s = D — Deomp IS €VErything

2.1 Transforms (Unary)

a7 XVIN bre

C—0o— @

Starting from different initializers, sag; and Cs,

it may be possible fot. to arrive at distinct local
optima, C; # C;. The better of the two solutions,
according to likelihoodZp of D, could then be se- 1t gesired, a scaling factor could be used to liastowards
lected — as is standard practice when sampling. eitherC; or ¢;, for example based on their likelihood ratio.



else. The “complete” subset is further partitionedising only the word category, to represent a token.
into simple sentence®sim, C Deomp, With No inter-  Fully-lexicalized grammars (L-DBM) are left un-
nal punctuation, and others, which may be complexsmoothed, and represent each token as both a word
As an example, consider the beginning of an artiand its category, i.e., the whole péif, ¢,,). To eval-
cle from (simple) Wikipedia: (iLinguistics(ii) Lin- uate a lexicalized parsing model, we will always ob-
guistics (sometimes called philology) is the scienckin a delexicalized-and-smoothed instance first.
that studies languagdiii) Scientists who study lan-
guage are called linguistsSince the title does not 3-3 Optimization and Viterbi Decoding
end with punctuation, it would be relegatedng... \We use “early-switching lateen” EM (Spitkovsky et
But two complete sentences would belin,...,, with  al., 2011a§2.4) to train unlexicalized models, alter-
the last also filed unde®y;,,;,, as it has only a trail- nating between the objectives of ordinary (soft) and
ing punctuation mark. Spitkovsky et al. suggestelard EM algorithms, until neither can improve its
two curriculum learning strategies: (i) one in whichown objective without harming the other’s. This ap-
induction begins with clean, simple daf,..,, and proach does not require tuning termination thresh-
a basic model, DBM-1 (2012b); and (ii) an alternaolds, allowing optimizers to run to numerical con-
tive bootstrapping approach: starting with still moreyergence if necessary, and handles only our shorter
simpler data — namely, short inter-punctuation fraginputs ( < 15), starting with soft EM { = SL, for
ments up to length = 15, D! ;, 2 D, —and a “soft lateen”). Lexicalized models will cover full
bare-bones model, DBM-0 (2012a). In our examplegata ( < 45) and employ “early-stopping lateen”
Dypiic Would hold five text snippets: (ilinguistics EM (2011a,§2.3), re-estimating via hard EM until
(i) Linguistics (i) sometimes called philology soft EM’s objective suffers. Alternating EMs would
(iv) is the science that studies languaged (v)Sci-  pe expensive here, since updates take (at legst)
entists who study language are called linguiststime, and hard EM’s objectiveL( = H) is the one
Only the last piece of text would still be consideredpetter suited to long inputs (Spitkovsky et al., 2010).
complete, isolating its contribution to sentence root Our decoders a|WayS force an inter-punctuation
and boundary word distributions from those of infragment to derive itself (Spitkovsky et al., 2011b,
complete fragments. The sparse model, DBM-0, ag2 2)# |n evaluation, suchl¢ose constraints may
sumes a uniform distribution for roots of incompletene|p attachsometimesnd philology to called (and
inputs and reduces conditioning contexts of stoppinghe science..to is). In training, stronger strict)
probabilities, which works well with split data. We constraints also disallow attachment of fragments’
will exploit both DBM-0 and the full DBMZ, draw- heads by non-heads, to conné&dhguistics called

ing also on split, simple and raw views of input text.andis (assuming each piece got parsed correctly).
All experiments prior to final multi-lingual eval-

uation will use the Penn English Treebank’s WalB.4 Final Evaluation and Metrics

Street Journal (WSJ) portion (Marcus etal., 1993) 88, g|yation is against held-out CoNLL shared task
the underlying tokenized and sentence-broken cofiq (Buchholz and Marsi, 2006; Nivre et al., 2007),
pusD. Instead of gold parts-of-speech, we pluggedyanning 19 languages. We compute performance
in 200 context-sensitive unsupervised tags, froms girected dependency accuracies (DDA), fractions
Spitkovsky et al. (2011c}for the word categories. o correct unlabeled arcs in parsed output (an extrin-
sic metric)? For most WSJ experiments we include
also sentence and parse tree cross-entropies (soft and

All unlexicalized instances of DBMs will be esti- hard EMs’ intrinsic metrics), in bits per token (bpt).
mated with “add one” (a.k.a. Laplace) smoothing

3.2 Smoothing and L exicalization

“But these constraints do not impact training with shorter
2\We use the short-hand DBM to refer to DBM-3, which isinputs, since there is no internal punctuatiomif};; Of Dgimp.
equivalent to DBM-2 ifD has no internally-punctuated sen-  ®*We converted gold labeled constituents in WSJ to unlabeled
tences PD=Ds1;;), and DBM-1 if all inputs also have trailing reference dependencies using deterministic “head-piocnf
punctuation D=Dxinmp); DBMg is our short-hand for DBM-0.  rules (Collins, 1999); sentence root symbols, though natpu
3http://nlp.stanford.edu/pubs/goldtags-data.tar.bz2  tuation arcs, contribute to scores, as is standard (Pa00ib).



4 Concrete Operators At each instance where a wo@ attachesz on

] ) ] say) the right, our implementation attributes half its
We will now instantiate the opera_tors s_ketched OL{S\/eight to the intended constructio@ @, reserving
in §2 specifically for the grammar induction task. the other half for the symmetric structure, attach-

Throughout, we repeatedly employ single Steps Qfiy 1o its left: @12. For the desired effect, these
Viterbi training to transfer information between SUb'aggregated counts are left unnormalized. while all

networks in a model-independent way: when a mogsiner counts (of word fertilities and sentence roots)

uIe’_s output-is a se? c_’f (Vi-terbi) parse trees, it necesget discarded. To see why we don’t turn word attach-
sarily contains sufficient information required to eSthent scores into probabilities, consider sentences

timate an arbitrarily-factored model down-stre&m. @@ and© @. The fact that) co-occurs with@

41 Transform #1: A Simple Filter introduces an _asymmetry int®'s relation with ©:

P(@ | ©) = 1 differs fromP(© | @) = 1/2. Normal-
Given a model that was estimated from (and therqzing might force the interpretationf @ (and also
fore parses) a data set, the simple filter £) at-  572)), not because there is evidence in the data, but
tempts to extract a cleaner model, based on the sirgs 5 side-effect of a model's head-driven nature (i.e.,
pler complete sentences Dfiv.,. It is implemented  factored with dependents conditioned on heads). Al-
as a single (unlexicalized) step of Viterbi training: ways branching right would be a mistake, however,

C o  for example if@ is a noun, since either @ or ©

) ) could be a determiner, with the other a verb.
The idea here is to focus on sentences that are not

too complicated yet grammatical. This punctuation4.3 Join: A Combiner
sensitive heuristic may steer a learner towards easy,
but representative training text and, we showed, aiqﬁ
grammar induction (Spitkovsky et al., 2012f7,1).

e combiner must admit arbitrary inputs, includ-
g models not estimated from, unlike the trans-
forms. Consequently, as a preliminary step, we con-
42 Transform #2: A Symmetrizer vert gach inpuCZ- intq parge trees ab, with coun.ts

) ) C!, via Viterbi-decoding with a smoothed, unlexical-
The symmetrizerg) reduces input models to sets ofi; ¢ version of the corresponding incoming model.
word assouatlpn scores. It blurs all details of iN- t,al combination is then performed in a more pre-
duced parses in a data sef except the number of se (unsmoothed) fashior:: are the (lexicalized)
times each (ordered) word pair participates in a deso|ytions starting frons; andc; is initialized with
pendency relation. We implemented symmetrizatio[heir sum,>, C. Counts of the lexicalized model

also as a single unlexicalized Viterbi training stepyith jowest cross-entropy of become the output:
but now with proposed parse trees’ scores, for a sen-

tence inD, proportional to a product over non-root Ch m ©
dependency arcs of one plus how often the left and &
right tokens (are expected to) appear connected:

c@® @ 5 Basic Networks

The idea behind the symmetrizer is to glean inforYve are ready to propose a non-trivial subnetwork for
mation from skeleton parses. Grammar inducers c&f@mmar induction, based on the transform and join
sometimes make good progress in resolving undRpeerators, which we will reuse in larger networks.
rected parse structures despite being wrong abo, :

the pola?rities of most arcs (Sppitkovsk;] et aI.,gZOO9,él't'L Fork/Join (FJ)

Figure 3: Uninformed). Symmetrization offers anGiven a model that parses a base datarsetthe
extra chance to make heads or tails of syntactic relfrk/join subnetwork will output an adaptation of

tions, after learning which words tend to go togethethat model forD. It could facilitate a grammar in-

- duction process, e.g., by advancing it from smaller
®A related approach — initializing EM training with an

M-step — was advocated by Klein and Manning (20§2). ’In our diagrams, lexicalized modules are shaded black.



to larger — or possibly more complex — data sets.causes initial parse trees to be chosen uniformly at
We first fork off two variations of the incoming random, as suggested by Cohen and Smith (2010):

model based om,: (i) a filtered view, which fo- BTN Y 12

cuses on cleaner, simpler data (transform #1); and

(i) a symmetrized view that backs off to word asso-

ciations (transform #2). Next is grammar inductior>-2 |térated Fork/Join (IFJ)

overD. We optimize a full DBM instance starting oyr second network daisy-chains grammar induc-

from the first fork, and bootstrap a reduced DBM o, starting from the single-word inter-punctuation

from the second. Finally, the two new induced setgagments iDL 1, then retraining orD2 ,, and so

10 RNE IR L R G CE)

We diagrammed this system as not taking an input,
since the first inductor’s output is fully determined
by unique parse trees of single-token strings. This
iterative approach to optimization is akin to deter-
ministic annealing (Rose, 1998), and is patterned af-
ter “baby steps” (Spitkovsky et al., 20081.2).

The idea here is to prepare for two scenarios: an Unlike the basic FJ, where symmetrization was a
incoming grammar that is either good or bad far Nno-op (since there were no countsdh= 0), IFJ
If the model is good, DBM should be able to hangnakes use of symmetrizers — e.g., in the third in-
on to it and make improvements. But if it is bad,ductor, whose input is based on strings with up to
DBM could get stuck fitting noise, whereas DBM two tokens. Although it should be easy to learn
might be more likely to ramp up to a good alternawords that go together from very short fragments,
tive. Since we can't know ahead of time which is theextracting correct polarities of their relations could
true case, we pursue both optimization paths simupe a challenge: to a large extent, outputs of early in-
taneously and let a combiner later decide for us. ductors may be artifacts of how our generative mod-

Note that the forks start (and end) optimizing with€!S factor (seé4.2) or how ties are broken in opti-
soft EM. This is because soft EM integrates previfization (Spitkovsky etal., 2012a, Appendix B). We
ously unseen tokens into new grammars better tha€refore expect symmetrization to be crucial in ear-
hard EM, as evidenced by our failed attempt to reller stages butto weaken any high quality grammars,
produce the “baby steps” strategy with Viterbi train-€arer the end; it YVI|| be up to combiners to handle
ing (Spitkovsky et al., 2010, Figure 4). A combinerSUch phase transitions correctly (or gracefully).
then executes hard EM, and since outputs of trans-
forms are trees, the end-to-end process is a chain®B Grounded Iterated Fork/Join (GIFJ)
lateen alternations that starts and ends with hard EM,, far, our networks have been either purely itera-

We will use a “grammar inductor” to representtive (IFJ) or static (FJ). These two approaches can
subnetworks that transition from’ ., to D\, by also be combined, by injecting FJ’s solutions into
taking transformed parse trees of inter-punctuatiofFJ's more dynamic stream. Our new transition sub-

fragments up to length (base data set),) to ini- network will join outputs of grammar inductors that

tialize training over fragments up to length- 1: either (i) continue a previous solution (as in IFJ); or
O — vt ay (i) start over from scratch (“grounding” to an FJ):
] ) ) C I+1 (14)
The FJ network instantiates a grammar inductor ! I+1 Criq

with [ = 14, thus training on inter-punctuation frag-
ments up to length 15, as in previous work, starting he full GIFJ network can then be obtained by un-
from an empty set of counts; = @. Smoothing rolling the above template from= 14 back to one.
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=C Random Projective Parse
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|
[
[
[
H(Cy+)=C1 | L-DBM 7.02: 7.04| 64.2 6.64  6.65 62./ 12/8 Fork/Join
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[
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-
9
4
0
4
0
Ci+C;=Cy | L-DBM || 7.20 | 7.27| 640| 682 6.88 625 123 Combination
8
9
6
9
7
0

L-DBM 6.91' 6.92| 714 6.52: 6.57 69.|2 15, Grounded lterated/Boin
L-DBM 6.83, 6.83| 723 6.4, 6.41 70.2 17| Grammar Transfor{@dr)
L-DBM 6.92 1 6.93] 719 6.53 6.53 69.8 16, IFY w/lterated
L-DBM 6.83 ' 6.83| 729 6.41 641 706 18/0 GT F Combiners

Table 1: Sentence string and parse tree cross-entropiegtjirand accuracies (DDA), on inter-punctuation fragraent
up to length 15 (WSbl,@lit) and its subset of simple, complete sentences Q\?A@J\Nith exact tree accuracies — TA).

6 Performance of Basic Networks then obtained by re-optimizing fromy,. This so-
lution performs slightly better (64.2%) and will be
We compared our three networks’ performance ofhe |ocal optimum returned by FJ's join operator, be-

their final training setsws1y;;, (see Table 1, which cause it attains the lowest cross-entropy (7.04bpt).

also tabulates results for a cleaner subge}’ ).

The first network starts from = (), helping us es- 6.2 Iterated Fork/Join (IFJ)

tablish several straw-man baselines. Its empty injg s iterative approach results in an improvement:
tializer corresponds to guessing (projective) parsgp 50, accuracy and 6.96bpt cross-entropy. To test
trees uniformly at random, which has 21.4% accunhow much of this performance could be obtained by
racy and sentence string cross-entropy of 8.76bpt. 3 simpler iterated network, we experimented with
ablated systems that don't fork or join, i.e., our clas-
6.1 Fork/Join (FJ) sic “baby steps” schema (chaining together 15 op-

FJ's symmetrizer yields random parsesvesy’,,, timizers), using both DBM and DBY with and
which initialize training of DBM. This baseline (B) without a transform in-between. However, all such

lowers cross-entropy to 6.18bpt and scores 57.094inear” networks scored well below 50%. We con-

FJ's filter starts from parse treeswSZ,, only, and clude from these results that an ability to branch out
trains up a full DBM. This choice makes a strongeli”to different promising regions of a solution space,
baseline (A), with 5.89bpt cross-entropy, at 62.2%.and to merge solutions of varying quality into better

The join operator uses counts from A and @, models, are important properties of FJ subnetworks.

andC,, to obtain parse trees whose own coufifs 6.3 Grounded Iterated Fork/Join (GIFJ)

andcy initialize lexicalized training. From eadatt, o ,
an optimizer arrives at’. Grammars corresponding Grounding improves GIFJ’'s performance further, to

to these counts have higher cross-entropies, because4? accuracy and 6.92bpt cross-entropy. This re-

of vastly larger vocabularies, but also better accuré—UIt shows that fresh perspectives from optlmlgers
cies: 59.2 and 62.3%. Their mixtuce, is a simple that start over can make search efforts more fruitful.

sum of counts irC; andC3: it is not expected to be 7 Enhanced Subnetworks

an improvement but happens to be a good move, re-

sulting in a grammar with higher accuracy (64.0%)Modularity and abstraction allow for compact repre-
though not better Viterbi cross-entropy (7.27 fallssentations of complex systems. Another key benefit
between 7.08 and 7.30bpt) than both sources. Tlgthat individual components can be understood and
combiner’s third alternative, a locally optimal , is  improved in isolation, as we will demonstrate next.



7.1 An lterative Combiner (IC)
Our basic combiner introduced a third optiatt;,

Into a F;OOI of cantd:;jate s_olu|t|0n$_pj[{,c;}f. tr']l'hls . The output of this subnetwork can then be refined,
new entry may not be a simple mixture ot the Orlg'by reconciling it with a previous dynamic solution.

inals, because of non-linear effects from applying We perform a mini-join of a new ground's counts

to € +C3, but could most likely still be improved. with C;, using the filter transform (single steps of

_R_atherthan stop at ,whgn '_t IS petter than both lexicalized Viterbi training on clean, simple data),
originals, we could recombine it with a next best so-

) o . ) ~_ahead of the main join (over more training data):
lution, continuing until no further improvement is
made. Iterating can’t harm a given combiner’s cross- @)
entropy (e.g., it lowers FJ's from 7.04 to 7.00bpt),

and its advantages can be realized more fully in thenis template can be unrolled, as before, to obtain
larger networks (_albelt without any end—_to—end gualpyr last network (GT), which achieves 72.9% accu-
antees): upgrading all 15 combiners in IFJ wouldacy and 6.83bpt cross-entropy (slightly less accu-

improve performance (slightly) more than groundyate with basic combiners, at 72.3% — see Table 1).
ing (71.5vs.71.4%), and lower cross-entropy (from

6.96 to 6.93bpt). But this approach is still a bit timid.8 Full Training and System Combination
A more greedy way is to proceed so long@s . i
is not worse tharboth predecessors. We shall nova",SyStemS t_hat we described so far stop training at
15 . We will use a two-stage adaptor network to

state our most general iterative combiner (IC) algot— Split'.t. thei 10 a full data spi>:
rithm: Start with a solution poagl = {C;},. Next, ransition their grammars to a fufl data Set”

construcy’ by addingCt = L(3"1, C;) topand re- (18)
moving the worst of + 1 candidates in the new set. € %@7

Finally, if p = p’, return the best of the solutions;in

otherwise, repeat from := p’. At n — 2, one could The firs‘F stage exposes grammar indu_cers to longer
think of taking L(C; + C3) as performing a kind of inputs (inter-punctuation fragments with up to 45
bisection search in some (strange) space. With thel@€ns); the second stage, at last, reassembles text

new and improved combiners, the IFJ network perSNIPPEts into actual sentences (also up-tois).
forms better: 71.9% (up from 70.5 — see Table 1), After full training, our IFJ and GT systems parse

lowering cross-entropy (down from 6.96 to 6.93bpt)Section 23 of WSJ at 62.7 and 63.4% accuracy, bet-

We propose a distinguished notation for the ICs: t€r than the previous state-of-the-art (61.2% — see
Table 2). To test the generalized IC algorithm, we

(15) . .
Gy j:C * I merged our implementations of these three strong
C2 grammar induction pipelines into a combined sys-

tem (CS). It scored highest: 64.4%.

(16)

7.2 A Grammar Transformer (GT)

#3 (19)
The levels of our systems’ performance at grammar IFJ) #2 CS
e e H €N 4L HEW

induction thus far suggest that the space of possible

networks (say, with up té& components) may itself The quality of bracketings corresponding to (non-
be worth exploring more thoroughly. We leave thigrivial) spans derived by heads of our dependency
exercise to future work, ending with two relatively structures is competitive with the state-of-the-art in
straight-forward extensions for grounded systems. unsupervisedonstituentparsing. On the WSJ sen-
Our static bootstrapping mechanism (“ground” otences up to length 40 in Section 23, CS attains sim-

GIFJ) can be improved by pretraining with simpléjlar £, -measure (54.2s.54.6, with higher recall) to
sentences first — as in the curriculum for learnin

. 8Note that smoothing in the final (unlexicalized) Viterbirste
DBM-1 (Spitkovsky et al., 2012b§7.1), but now masks the fact that model parts that could not be properly es-

with a variable length cut-off (much lower than the timated in the first stage (e.g., probabilities of puncurati
original 45) — instead of starting frofhdirectly: crossing arcs) are being initialized to uniform multinotsia



System| DDA@10) System Fy
(Gimpel and Smith, 2012 53.164.3) Binary-Branching Upper Bound 85.7
(Gillenwater et al., 2010 53.%4.3) " Left-Branching = =~ Baseling  12.0
(Bisk and Hockenmaier, 2012) 53.815) CCM (Klein and Manning, 2002 33.7
(Blunsom and Cohn, 2010 55.87.7) Right-Branching Baseline 40.7
(Tu and Honavar, 2012 57.¢1.9) F-CCM (Huang et al., 2012) 45.1
(Spitkovsky et al., 2011b 58.471.4) HMM (Ponvert etal., 2011) 46.3
(Spitkovsky et al., 2011c 59.171.9) LLCCM (Golland etal., 2012), 47.6 P R
#3 (Spitkovsky et al., 2012a 61.21.4) CCL (Seginer, 2007) 52.4 546 511
w2 (TR | 62.7 (703 PRLG (Ponvert et al., 2011) 54.6 || 60.4 | 49.8
w/Full Training
#1 GT | 63.4 (703 CS  System Combination 542 || 55.6 | 52.8
#1+#2+#3  System Combination CS 64.4 (720 " Supervised DBM~ ~ ~ ~ Skylingl "59.3) ~ 65.7 ~ 54.1
Supervised DBM (also wittoosedecoding)| 76.3(85.4) Dependency-Based Upper Bound 872 100 77.3

Table 2: Directed dependency accuracies (DDA) on Sedable 3: Harmonic meanr() of precision ¢) and re-
tion 23 of WSJ (all sentences and up to length ten) focall (R) for unlabeled constituent bracketings on Section
recent systems, our full networks (IFJ and GT), and thre&3 of WSJ (sentences up to length 40) for our combined
way combination (CS) with the previous state-of-the-artsystem (CS), recent state-of-the-art and the baselines.

PRLG (Ponvert et al., 2011), which is the strongest0 Discussion

system of which we are aware (see Tablé 3). . . .
CoNLL training sets were intended for comparing

9 Multi-Lingual Evaluation supervised systems, and aren't all suitable for unsu-
i i ervised learning: 12 languages have under 10,000
Last, we checked how our algorithms generalize OuE’entences (with Arabic, Basque, Danish, Greek, Ital-
side English WSJ, by testing in 23 more set-ups: ajl,,, - gjoyenian, Spanish and Turkish particularly
2006/7 CoNLL test sets (Buchholz and Marsi, 200 émall) compared to WSJ's nearly 50,000. In some
Nivre et al., 2007), spanning 19 languages. Most rgzeepans sentences are very short (e.g., Chinese and
cent work evaluates against this multi-lingual datajapanese which appear to have been split on punc-
with the unrealistic assumption of part-of-Speechy;ation). and in others extremely long (e.g., Arabic).
tags. But since inducing high quality word clusterg,zven gold tags aren't always helpful, as their num-
for many languages would be beyond the scope @fq is rarely ideal for grammar induction (e.g., &2
our paper, here we too plugged in gold tags for wordgg o nglish). These factors contribute to high
categories (instead of unsupervised tags, 8848). \aiances of our (and previous) results (see Table 4).
K Wel(():ompared t? tl?e t\c’jvzo t;strli)ngl?stzzysztemsdwe Nevertheless, if we look at the more stable aver-
new: ,MZ (Marecek andzabo rf[S y, 2012) an age accuracies, we see a positive trend as we move
SAJ(Spitkovsky et al., 2012b), which report averagg. . o simpler fully-trained system (IFJ, 40.0%),
accuracies of 40.0 and 42.9% for CoNLL data (sego a more complex system (GT, 47.6%), to system
Table 4). Our fully-trained IFJ and GT §ystems SCOr€ 1 bination (CS, 48.6%). Grounding seems to be
40'?( anqh47.6%. AS blefore, cqmblr}lnr? tgese "Chore important for the CoNLL sets, possibly be-
WOrKsS with our own Imp ementatlor_1 of the best pre<.» ;se of data sparsity or availability of gold tags.
vious state-of-the-art systensAJ) yields a further
improvement, increasing final accuracy to 48.6%. 11 Related Work
9These numbers differ from Ponvert et al.'s (2011, Table 6)|_h t ¢ id | | i is t ft
for the full Section 23 because we restricted thial -ps.py e ;ure§ way (o aVO,I ocal opuma Is to cra
script to a maximum length of 40 words, in our evaluation, t@N Objective that doesn’t have them. For example,
match other previous work: Golland et al.’'s (2012, Figuréot) Wang et al. (2008) demonstrated a convex train-
CCM and LLCCM; Huang et al.’s (2012, Table 2) for the rest. ing method for semi-supervised dependency pars-

During review, another strong system (Maretek and Straka, . . .
2013, scoring 48.7%) of possible interest to the reader carme %g’ Lashkari a_nd Go”_an":i (2008) mtr_oduced a con-
exploiting prior knowledge of stopping probabilities (esated  VEX reformulation of likelihood functions for clus-

from large POS-tagged corpora, via reducibility principle tering tasks; and Corlett and Penn (2010) designed



Directed Dependency Accuracies (DDA)@10)

translation (but also suggested better and faster re-

CoNLL Data| MZ | SAJ IFJ | GT Cs i : :

Abc 20061 265 : 09l 333 : 831 93 @02 place_ments — see below); Ravi and Knight (2009,

7| 279! 449 || 261" 25.6|| 26.8use) §5, I_:lg_ure 8) found random rest_arts 1_‘or EM to be
Basque 71| 26.8, 333 || 23.5, 24.2| 24.4328 crucial in parts-of-speech disambiguation. However,
Bulgarian "7 || 46.01 65.2 | 358 1 64.2)| 63.4een | other reviews are few and generally negative (Kim
Catalan 7| 47.0, 62.1) 650, 684 | 68.0 =02 |  5nq Mooney, 2010; Martin-Brualla et al., 2010).
Chinese 6| — | 63.2 | 56.0, 55.8| 58.4(0.) .

71 — 1570 || 49.01 48.6| 525660 Iterated local search methods (Hoos and Stiitzle,
Czech  '6|| 49.5, 55.1 || 445, 43.9| 44.0s23 | 2004; Johnson et al., 198#ter alia) escape lo-

7 || 48.01 54.2 || 42.91 245| 34.361 cal basins of attraction by perturbing candidate so-
Danish ‘6| 386 | 22.21 37.8' 17.1) 214008 | |ytions, without undoing all previous work. “Large-
Dutch '6 || 44.2, 46.6|| 40.8 513 || 48.0 (48.7) " .. . .
English 7 || 4921 29.6| 39.3 57.4 58.2 (so) step moves can come from jittering (Hinton and
German ‘6| 44.8 : 391 34,1: 54.5| 56.2 (71.2) Roweis, 2003), dithering (Price et al., 2005, Ch. 2)
Greek 6| 202, 26.9|| 23.7, 45.0 454 22| or smoothing (Bhargava and Kondrak, 2009). Non-
Hungarian 7)) 51.81 58.2| 24.8 52.9 883 @9 | jmproving “sideways” moves offer substantial help
tallan 7 || 433, 40.7)) 868  3L1)) S49w@a | \ih hard satisfiability problems (Selman et al
Japanese ‘6| 50.8 |, 22.7| 32.6, 63.7 || 63.0 (68.9) A ; ) "
Portuguese '6|| 50.6 | 72.4| 38.00 72.7| 745 @1y 1992); and injecting non-random noise (Selman et
Slovenian ‘6 || 18.1, 35.2| 42.1; 50.8| 509 s79 | al., 1994), by introducing “uphill” moves via mix-
Spanish :6 51.9: 28.2 57.0: 61.7 || 61.4 (732 tures of random walks and greedy search strate-
iﬁiiﬁh : 4i2 : 22:31 gg:g : gg:g gg;gzz gies, does better than random noise alone or simu-

7 1| 15.7 1 448 || 42.11 41.7| 37.9424 | lated annealing (Kirkpatrick et al., 1983). In NLP,

Average: 40.0 ' 42.9]| 40.0" 47.6] 486 (79 Moore and Quirk’s (2008) random walks from pre-

vious local optima were faster than uniform sam-

Table 4: Blind evaluation on 2006/7 CoNLL test sets (alpling and also increased BLEU scores; Elsner and
sentences) for our full networks (IFJ and GT), previougchudy (2009) showed that local search can outper-
state-of-the-art systems of Spitkovsky et al. (2012b) angh,y greedy solutions for document clustering and
yg{gg%tﬁgﬁig%kritﬁmé?:;?g’sarggJgr;el'e\':ahctzr:f"chat disentanglement tasks; and Mei et al. (2001)
' incorporated tabu search (Glover, 1989; Glover and
Laguna, 1993, Ch. 3) into HMM training for ASR.
a search algorithm for encoding decipherment prob- Genetic algorithms are a fusion of what's best in
lems that guarantees to quickly converge on optimébcal search and multi-start methods (Houck et al.,
solutions. Convexity can be ideal for comparativel 996), exploiting a problem’s structure to combine
analyses, by eliminating dependence on initial convalid parts of any partial solutions (Holland, 1975;
ditions. But for many NLP tasks, including grammarGoldberg, 1989). Evolutionary heuristics proved
induction, the most relevant known objective funcuseful in the induction of phonotactics (Belz, 1998),
tions are still riddled with local optima. Renewed eftext planning (Mellish et al., 1998), factored mod-
forts to find exact solutions (Eisner, 2012; Gormleeling of morphologically-rich languages (Duh and
and Eisner, 2013) may be a good fit for the smalleKirchhoff, 2004) and plot induction for story gener-
and simpler, earlier stages of our iterative networksation (Mclntyre and Lapata, 2010). Multi-objective
Multi-start methods (Solis and Wets, 1981) camgenetic algorithms (Fonseca and Fleming, 1993) can
recover certain global extrema almost surely (i.ehandle problems with equally important but con-
with probability approaching one). Moreover, ran4licting criteria (Stadler, 1988), using Pareto-optimal
dom restarts via uniform probability measures caensembles. They are especially well-suited to lan-
be optimal, in a worst-case-analysis sense, with paguage, which evolves under pressures from compet-
allel processing sometimes leading to exponentidihg (e.g., speaker, listener and learner) constraints,
speed-ups (Hu et al., 1994). This approach is raregnd have been used to model configurations of vow-
emphasized in NLP literature. For instance, Moorels and tone systems (Ke et al., 2003). Our transform
and Quirk (2008) demonstrated consistent, substaand join mechanisms also exhibit some features of
tial gains from random restarts in statistical machingenetic search, and make use of competing objec-



tives: good sets of parse trees must make sense b@®09, §6.2.2), we managed to specify relatively
lexicalized and with word categories, to rich and im“deep” learning architectures without sacrificing
poverished models of grammar, and for both longtoo much) clarity or simplicity. On a still more
complex sentences and short, simple text fragmentpeculative note, we see two (admittedly, tenuous)
This selection of text filters is a specialized caseonnections to human cognition. First, the benefits
of more general “data perturbation” techniques —ef not normalizing probabilities, when symmetriz-
even cycling over randomly chosen mini-batche#hg, might be related to human language process-
that partition a data set helps avoid some local opag through the base-rate fallacy (Bar-Hillel, 1980;
tima (Liang and Klein, 2009). Elidan et al. (2002)Kahneman and Tversky, 1982) and the availability
suggested how example-reweighing could cause “ifreuristic (Chapman, 1967; Tversky and Kahneman,
formed” changes, rather than arbitrary damage, t8973), since people are notoriously bad at probabil-
a hypothesis. Their (adversarial) training schemity (Attneave, 1953; Kahneman and Tversky, 1972;
guided learning toward improved generalizationsiKahneman and Tversky, 1973). And second, inter-
robust against input fluctuations. Language learrmittent “unlearning” — though perhaps not of the
ing has a rich history of reweighing data via (cokind that takes place inside of our transforms —
operative) “starting small” strategies (Elman, 1993)is an adaptation that can be essential to cognitive
beginning from simpler or more certain cases. Thidevelopment in general, as evidenced by neuronal
family of techniques has met with success in sempruning in mammals (Craik and Bialystok, 2006;
supervised named entity classification (Collins antlow and Cheng, 2006). “Forgetful EM” strategies
Singer, 1999; Yarowsky, 1995%, parts-of-speech that reset subsets of parameters may thus, possibly,
induction (Clark, 2000; 2003), and language modeke no less relevant to unsupervised learning than is
ing (Krueger and Dayan, 2009; Bengio et al., 2009);partial EM,” which only suppresses updates, other
in addition to unsupervised parsing (Spitkovsky eEM variants (Neal and Hinton, 1999), or “dropout
al., 2009; Tu and Honavar, 2011; Cohn et al., 2011jraining” (Hinton et al., 2012; Wang and Manning,
2013), which is important in supervised settings.
12 Conclusion Future parsing models, in grammar induction,

Wi q | simple algorithms f bi may benefit by modeling head-dependent relations
© proposed several simple algorithms for com Iné,eparately from direction. As frequently employed

!ng grammars and _show_ed their usefulness n m(_argﬁ tasks like semantic role labeling (Carreras and
‘N9 t.he outputs of |terat|ve and §tat|c grammar InT\/Iéquuez, 2005) and relation extraction (Sun et al.,
d_uctu_)n systems. Un“k? conver_monal syst_em CO_mZOll), it may be easier to first establish existence,
bination methods, e.g., in machlpe t.ranslafuon (x'a%efore trying to understand its nature. Other key
et al., 2010), ours do not require incoming mOd'next steps may include exploring more intelligent

els to be .Of similar quality tp make |mprovementsWayS of combining systems (Surdeanu and Man-
We exploited these properties of the combiners tﬂing, 2010; Petrov, 2010) and automating the op-

;ecf[onglle gran;mlv?;shlnlcliui:SSSbyodlfferenL VIEWS Oterator discovery process. Furthermore, we are opti-
ata (_ um and Mitchetl, ). One SUCh VIEW 1pistic that both count transforms and model recom-
tains Ju.St the simple sentences, ”_‘ak'”g _'t easier i9ation could be usefully incorporated into sam-
recognize rooF words. Another sp_hts text into man)b”ng methods: although symmetrized models may
mte_r-p_unctuatlor_] fragments, helping learn word Save higher cross-entropies, hence prone to rejection
sociations. The induced dependency trees can them'vanilla MCMC, they could work well as seeds
selves also be viewed not only as directed structures . . ~hain deéignS' existing algorithms, such as
but also as skeleton parses, facilitating the recovery sMmcMeC (Geyer 1é91) which switch éontents
of correct polarities for uniabeled dependency arCSef adjacent chains running at different temperatures,

By reusing templates, as in dynamic Bayesiap,,, 5150 henefit from introducing the option to com-
network (DBN) frameworks (Koller and Friedman, pq sq1utions, in addition to just swapping them.

1The so-called Yarowskgautiousmodification of the orig-
inal algorithm for unsupervised word-sense disambiguatio
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