
The EigenTrust Algorithm for Reputation Management in
P2P Networks

Sepandar D. Kamvar
Stanford University

sdkamvar@stanford.edu

Mario T. Schlosser
Stanford University

schloss@db.stanford.edu

Hector Garcia-Molina
Stanford University

hector@db.stanford.edu

ABSTRACT
Peer-to-peer file-sharing networks are currently receiving much at-
tention as a means of sharing and distributing information.How-
ever, as recent experience shows, the anonymous, open nature of
these networks offers an almost ideal environment for the spread of
self-replicating inauthentic files.

We describe an algorithm to decrease the number of downloads
of inauthentic files in a peer-to-peer file-sharing network that as-
signs each peer a unique global trust value, based on the peer’s
history of uploads. We present a distributed and secure method to
compute global trust values, based on Power iteration. By having
peers use these global trust values to choose the peers from whom
they download, the network effectively identifies malicious peers
and isolates them from the network.

In simulations, this reputation system, called EigenTrust, has
been shown to significantly decrease the number of inauthentic files
on the network, even under a variety of conditions where malicious
peers cooperate in an attempt to deliberately subvert the system.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; H.3.3 [Information Systems]: In-
formation Storage and Retrieval—Selection; H.2.7 [Information
Systems]: Database Management—Security, integrity and protec-
tion

General Terms
Algorithms,Performance,Theory

Keywords
Peer-to-Peer, reputation, distributed eigenvector computation

1. INTRODUCTION
Peer-to-peer file-sharing networks have many benefits over stan-

dard client-server approaches to data distribution, including im-
proved robustness, scalability, and diversity of available data. How-
ever, the open and anonymous nature of these networks leads to a
complete lack of accountability for the content a peer puts on the
network, opening the door to abuses of these networks by malicious
peers.

Attacks by anonymous malicious peers have been observed on
today’s popular peer-to-peer networks. For example, malicious
users have used these networks to introduce viruses such as the
Copyright is held by the author/owner(s).
WWW2003, May 20–24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

VBS.Gnutellaworm, which spreads by making a copy of itself in a
peer’s Gnutella program directory, then modifying the Gnutella.ini
file to allow sharing of .vbs files [19]. Far more common have been
inauthentic file attacks, wherein malicious peers respond to virtu-
ally any query providing “decoy files” that are tampered withor do
not work.

It has been suggested that the future development of P2P systems
will depend largely on the availability of novel methods forensur-
ing that peers obtain reliable information on the quality ofresources
they are receiving [6]. In this context, attempting to identify mali-
cious peers that provide inauthentic files is superior to attempting to
identify inauthentic files themselves, since malicious peers can eas-
ily generate a virtually unlimited number of inauthentic files if they
are not banned from participating in the network. We presentsuch a
method wherein each peeri is assigned a uniqueglobal trust value
that reflects the experiences of all peers in the network withpeeri.
In our approach, all peers in the network participate in computing
these values in a distributed and node-symmetric manner with min-
imal overhead on the network. Furthermore, we describe how to
ensure the security of the computations, minimizing the probabil-
ity that malicious peers in the system can lie to their own benefit.
And finally, we show how to use these values to identify peers that
provide material deemed inappropriate by the users of a peer-to-
peer network, and effectively isolate them from the network.

2. DESIGN CONSIDERATIONS
There are five issues that are important to address in any P2P

reputation system.

1. The system should beself-policing. That is, the shared ethics
of the user population are defined and enforced by the peers
themselves and not by some central authority.

2. The system should maintainanonymity. That is, a peer’s rep-
utation should be associated with an opaque identifier (such
as the peer’s Gnutella username) rather than with an exter-
nally associated identity (such as a peer’s IP address).

3. The system should not assign anyprofit to newcomers. That
is, reputation should be obtained by consistent good behav-
ior through several transactions, and it should not be advan-
tageous for malicious peers with poor reputations to contin-
uously change their opaque identifiers to obtain newcomers
status.

4. The system should haveminimal overheadin terms of com-
putation, infrastructure, storage, and message complexity.

5. The system should berobust to malicious collectivesof peers
who know one another and attempt to collectively subvert the
system.

3. REPUTATION SYSTEMS
An important example of successful reputation management is

the online auction system eBay [9]. In eBay’s reputation system,
buyers and sellers can rate each other after each transaction, and
the overall reputation of a participant is the sum of these ratings
over the last 6 months. This system relies on a centralized system
to store and manage these ratings.

In a distributed environment, peers may still rate each other after
each transaction, as in the eBay system. For example, each time
peeri downloads a file from peerj, it may rate the transaction as
positive (tr(i, j) = 1) or negative (tr(i, j) = −1). Peeri may
rate a download as negative, for example, if the file downloaded
is inauthentic or tampered with, or if the download is interrupted.
Like in the eBay model, we may define alocal trust valuesij as
the sum of the ratings of the individual transactions that peer i has
downloaded from peerj: sij =

P

trij .
Equivalently, each peeri can store the number satisfactory trans-

actions it has had with peerj, sat(i, j) and the number of unsatis-
factory transactions it has had with peerj, unsat(i, j). Then,sij

is defined:

sij = sat(i, j) − unsat(i, j) (1)

Previous work in P2P reputation systems [6, 1] has all been based
on similar notions of local trust values. The challenge for reputa-
tion systems in a distributed environment is how to aggregate the
local trust valuessij without a centralized storage and management
facility. While each of the previous systems cited above addresses
this issue, each of the previous systems proposed suffers from one
of two drawbacks. Either it aggregates the ratings of only a few
peers and doesn’t get a wide view about a peer’s reputation, or it
aggregates the ratings of all the peers and congests the network with
system messages asking for each peer’s local trust values atevery
query.

We present here a reputation system that aggregates the local
trust values of all of the users in a natural manner, with minimal
overhead in terms of message complexity. Our approach is based
on the notion of transitive trust: A peeri will have a high opinion of
those peers who have provided it authentic files. Moreover, peeri
is likely to trust the opinions of those peers, since peers who are
honest about the files they provide are also likely to be honest in
reporting their local trust values.

We show that the idea of transitive trust leads to a system where
global trust values correspond to the left principal eigenvector of a
matrix of normalized local trust values. We show how to perform
this eigenvector computation in a distributed manner with just a few
lines of code, where the message complexity is provably bounded
and empirically low. Most importantly, we show that this system is
highly effective in decreasing the number of unsatisfactory down-
loads, even when up to 70% of the peers in the network form a
malicious collective in an attempt to subvert the system.

4. EIGENTRUST
In this section, we describe the EigenTrust algorithm. In Eigen-

Trust, the global reputation of each peeri is given by the local trust
values assigned to peeri by other peers, weighted by the global
reputations of the assigning peers. In Section 4.1, we show how to
normalize the local trust values in a manner that leads to an elegant
probabilistic interpretation and an efficient algorithm for aggregat-
ing these values. In Section 4.2, we discuss how to aggregatethe
normalized trust values in a sensible manner. In Section 4.3, we
discuss the probabilistic interpretation of the local and global trust
values. In Section 4.4 through Section 4.6, we present an algorithm
for computing the global trust values.

4.1 Normalizing Local Trust Values
In order to aggregate local trust values, it is necessary to normal-

ize them in some manner. Otherwise, malicious peers can assign
arbitrarily high local trust values to other malicious peers, and ar-
bitrarily low local trust values to good peers, easily subverting the
system. We define anormalized local trust value, cij , as follows:

cij =
max(sij , 0)

P

j
max(sij , 0)

(2)

This ensures that all values will be between 0 and 1. (Notice
that if

P

j
max(sij) = 0, thencij is undefined. We address this

case in Section 4.4.) There are some drawbacks to normalizing in
this manner. For one, the normalized trust values do not distin-
guish between a peer with whom peeri did not interact and a peer
with whom peeri has had poor experience. Also, thesecij val-
ues are relative, and there is no absolute interpretation. That is, if
cij = cik, we know that peerj has the same reputation as peerk in
the eyes of peeri, but we don’t know if both of them are very rep-
utable, or if both of them are mediocre. However, we are stillable
to achieve substantially good results despite the drawbacks men-
tioned above. We choose to normalize the local trust values in this
manner because it allows us to perform the computation that we de-
scribe below without renormalizing the global trust valuesat each
iteration (which is prohibitively costly in a large distributed envi-
ronment) and leads to an elegant probabilistic model.

4.2 Aggregating Local Trust Values
We wish to aggregate the normalized local trust values. A natu-

ral way to do this in a distributed environment is for peeri to ask
its acquaintances about their opinions about other peers. It would
make sense to weight their opinions by the trust peeri places in
them:

tik =
X

j

cijcjk (3)

wheretik represents the trust that peeri places in peerk based on
asking his friends.

We can write this in matrix notation: If we defineC to be the
matrix [cij] and~ti to be vector containing the valuestik, then~ti =
CT ~ci. (Note that

P

j
tij = 1 as desired.)

This is a useful way to have each peer gain a view of the network
that is wider than his own experience. However, the trust values
stored by peeri still reflect only the experience of peeri and his
acquantainces. In order to get a wider view, peeri may wish to ask
his friends’ friends (t = (CT)2ci). If he continues in this manner,
(t = (CT)nci), he will have a complete view of the network after
n = large iterations (under the assumptions thatC is irreducible
and aperiodic, which we guarantee in practice and address inSec-
tion 4.5).

Fortunately, ifn is large, the trust vector~ti will converge to the
same vectorfor every peer i. Namely, it will converge to the left
principal eigenvector ofC. In other words,~t is a global trust vector
in this model. Its elements,tj , quantify how much trust the system
as a whole places peerj.

4.3 Probabilistic Interpretation
It is useful to note that there exists a straightforward probabilistic

interpretation of this method, similar to the Random Surfermodel
of [12]. If an agent were searching for reputable peers, it can crawl
the network using the following rule: at each peeri, it will crawl
to peerj with probability cij . After crawling for a while in this
manner, the agent is more likely to be at reputable peers thanun-
reputable peers. The stationary distribution of the Markovchain

~t(0) = ~e;
repeat

~t(k+1) = CT~t(k);
δ = ||t(k+1) − tk||;

until δ < ε;

Algorithm 1: Simple non-distributed EigenTrust algorithm

defined by the normalized local trust matrixC is our global trust
vector~t.

4.4 Basic EigenTrust
In this section, we describe the basic EigenTrust algorithm, ig-

noring for now the distributed nature of the peer-to-peer network.
That is, we assume that some central server knows all thecij values
and performs the computation. In Section 4.6, we describe how the
computation may be performed in a distributed environment.

We simply wish to compute~t = (CT)n~e, for n =large, where
we define~e to be them-vector representing a uniform probability
distribution over allm peers,ei = 1/m. (In Section 4.2, we said
we wish to compute~t = (CT)n~ci, where~ci is the normalized local
trust vector of some peeri. However, since they both converge to
the principal left eigenvector ofC, we may use~e instead.)

At the most basic level, the algorithm would proceed as in Algo-
rithm 1.

4.5 Practical Issues
There are three practical issues that are not addressed by this

simple algorithm: a priori notions of trust, inactive peers, and ma-
licious collectives.

A priori notions of trust. Often, there are some peers in the
network that are known to be trustworthy. For example, the first few
peers to join a network are often known to be trustworthy, since the
designers and early users of a P2P network are likely to have less
motivation to destroy the network they built. It would be useful to
incorporate such notions of trust in a natural and seamless manner.
We do this by defining some distribution~p over pre-trusted peers1.
For example, if some set of peersP are known to be trusted, we
may definepi = 1/|P | if i ∈ P , andpi = 0 otherwise.) We
use this distribution~p in three ways. First of all, in the presence of
malicious peers,~t = (CT)n~p will generally converge faster than
~t = (CT)n~e, so we use~p as our start vector. We describe the other
two ways to use this distribution~p below.

Inactive Peers. If peer i doesn’t download from anybody else,
or if it assigns a zero score to all other peers,cij from Equation 1
will be undefined. In this case, we setcij = pj . So we redefinecij

as:

cij =

(

max(sij ,0)
P

j max(sij)
if

P

j
max(sij , 0) 6= 0;

pj otherwise
(4)

That is, if peeri doesn’t know anybody, or doesn’t trust anybody,
he will choose to trust the pre-trusted peers.

Malicious Collectives. In peer-to-peer networks, there is poten-
tial for malicious collectives to form [8]. A malicious collective is
a group of malicious peers who know each other, who give each
other high local trust values and give all other peers low local trust
values in an attempt to subvert the system and gain high global trust

1The idea of pre-trusted peers is also used in [2], where the compu-
tation of the trust metric is performed relative to a “seed” of trusted
accounts.

~t(0) = ~p;
repeat

~t(k+1) = CT~t(k);
~t(k+1) = (1 − a)~t(k+1) + a~p;
δ = ||t(k+1) − t(k)||;

until δ < ε;

Algorithm 2: Basic EigenTrust algorithm

values. We address this issue by taking

~t(k+1) = (1 − a)CT~t(k) + a~p (5)

wherea is some constant less than 1. This is equivalent to setting
the opinion vector for all peers to be~ci = (1 − a)~ci + a~p, break-
ing collectives by having each peer place at least some trustin the
peersP that are not part of a collective. Probabilistically, this is
equivalent to saying that the agent that is crawling the network by
the probabilistic model given in Section 4 is less likely to get stuck
crawling a malicious collective, because at each step, he has a cer-
tain probability of crawling to a pre-trusted peer. Notice that this
also makes the matrixC is irreducible and aperiodic, guaranteeing
that the computation will converge.

The modified algorithm is given in Algorithm 2.
It should be emphasized that the pre-trusted peers are essential

to this algorithm, as they guarantee convergence and break up ma-
licious collectives. Therefore, the choice of pre-trustedpeers is
important. In particular, it is important that no pre-trusted peer be
a member of a malicious collective. This would compromise the
quality of the algorithm. To avoid this, the system may choose a
very few number of pre-trusted peers (for example, the designers
of the network). A thorough investigation of different methods of
choosing pre-trusted peers is an interesting research area, but it is
outside of the scope of this paper.

4.6 Distributed EigenTrust
Here, we present an algorithm where all peers in the network co-

operate to compute and store the global trust vector, and thecom-
putation, storage, and message overhead for each peer are minimal.

In a distributed environment, the first challenge that arises is how
to storeC and~t. In previous sections, we suggested that each peer
could store its local trust vector~ci. Here, we also suggest that each
peer store its own global trust valueti. (For presentation purposes,
we ignore issues of security for the moment and allow peers tostore
their own trust values. We address issues of security in Section 5.)

In fact, each peer can compute its own global trust value:

t
(k+1)
i = (1 − a)(c1it

(k)
1 + . . . + cnit

(k)
n) + api (6)

Inspection will show that this is the component-wise version of
~t(k+1) = (1−a)CT~t(k)+a~p. Notice that, since peeri has had lim-
ited interaction with other peers, many of the components inequa-
tion 6 will be zero. This lends itself to the simple distributed algo-
rithm shown in Algorithm 3. It is interesting to note two things
here. First of all, only the pre-trusted peers need to know their pi.
This means that pre-trusted peers may remain anonymous; nobody
else needs to know that they are pre-trusted2. Therefore, the pre-
trusted peers maintain anonymity as pre-trusted peers. (One may
imagine that pre-trusted peers may be identified because they have
high global trust values. However, simulations show that, while the
2Recall that, for the moment, we assume that peers are honest and
may report their own trust values, including whether or not they are
a pre-trusted peer. The secure version is presented in Section 5.

Definitions:

• Ai: set of peers which have downloaded files from peeri

• Bi: set of peers from which peeri has downloaded files

Algorithm :
Each peeri do{

Query all peersj ∈ Ai for t
(0)
j = pj ;

repeat
Computet

(k+1)
i = (1 − a)(c1it

(k)
1 + c2it

(k)
2 + . . . +

cnit
(k)
n) + api;

Sendcijt
(k+1)
i to all peersj ∈ Bi;

Computeδ = |t
(k+1)
i − t

(k)
i |;

Wait for all peersj ∈ Ai to returncjit
(k+1)
j ;

until δ < ε.;
}

Algorithm 3: Distributed EigenTrust Algorithm.

pre-trusted peers have above averageti values, they rarely have the
highest values ofti.)

Secondly, in most P2P networks, each peer has limited interac-
tion with other peers. There are two benefits to this. First, the com-
putationt

(k+1)
i = (1−a)(c1it

(k)
1 +c2it

(k)
2 +. . .+cnit

(k)
n)+api is

not intensive, since mostcji are zero. Second, the number of mes-
sages passed is small, sinceAi andBi are small. In the case where
a network is full of heavily active peers, we can enforce these ben-
efits by limiting the number of local trust valuescij that each peer
can report.

4.7 Algorithm Complexity
The complexity of the algorithm is bounded in two ways. First,

the algorithm converges fast: For a network of 1000 peers after 100
query cycles (refer to Section 7.1 for a description of how wesim-
ulate our system), Figure 1 depicts the residual‖t(k+1) − t(k)‖1.
Clearly, the algorithm has converged after less than 10 iterations,
i.e., the computed global trust values do not change significantly
any more after a low number of iterations. In the distributedver-
sion of our algorithms, this corresponds to less than 10 exchanges
of updated trust values among peers. The reason for the fast con-
vergence of the EigenTrust algorithm is discussed in [10].

Second, we can specifically limit the number of local trust values
that a peer reports. In the modified version of EigenTrust, each peer
reports a subset of its total set of local trust values. Preliminary
simulations have shown this scheme to perform comparably well as
the algorithm presented here, where peers report all of their local
trust values.

5. SECURE EIGENTRUST
In the algorithm presented in the previous section, each peer i

computes and reports its own trust valueti. Malicious peers can
easily report false trust values, subverting the system.

We combat this by implementing two basic ideas. First, the cur-
rent trust value of a peer must not be computed by and reside at
the peer itself, where it can easily become subject to manipula-
tion. Thus, we have a different peer in the network compute the
trust value of a peer. Second, it will be in the interest of malicious
peers to return wrong results when they are supposed to compute
any peer’s trust value. Therefore, the trust value of one peer in the
network will be computed by more than one other peer.

0 5 10 15 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Iterations

R
es

id
ua

l

Figure 1: EigenTrust convergence

1

7

5

4

8

2

9

6

3

pos
2
 = h
1
(ID
1
)

pos
6
 = h
2
(ID
1
)

pos
3
 = h
3
(ID
1
)

Figure 2: Two-dimensional CAN hash space

In the secure version of the distributed trust algorithm, M peers
(dubbedscore managersof a peeri) compute the trust value of a
peeri. If a peer needs the trust value of peeri, it can query all M
score managers for it. A majority vote on the trust value thensettles
conflicts arising from a number of malicious peers being among the
score managers and presenting faulty trust values as opposed to the
correct one presented by the non-malicious score managers.

To assign score managers, we use a distributed hash table (DHT),
such as CAN [13] or Chord [18]. DHTs use a hash function to de-
terministically map keys such as file names into points in a logical
coordinate space. At any time, the coordinate space is partitioned
dynamically among the peers in the system such that every peer
covers a region in the coordinate space. Peers are responsible for
storing (key, value) pairs the keys of which are hashed into apoint
that is located within their region.

In our approach, a peer’s score manager is located by hashinga
unique ID of the peer, such as its IP address and TCP port, intoa
point in the DHT hash space. The peer which currently covers this
point as part of its DHT region is appointed as the score manager
of that peer. All peers in the system which know the unique ID of
a peer can thus locate its score manager. We can modify our initial
algorithm such that it can be executed by score managers.

As an example, consider the CAN in Figure 2. Peer 1’s unique
ID, ID1, is mapped into points covered by peers 2, 3 and 6, respec-
tively, by hash functionsh1, h2 andh3. Thus, these peers become
peer 1’s score managers.

To cope with the inherent dynamics of a P2P system, we rely
on the robustness of a well-designed DHT. For example, when a
score manager leaves the system, it passes on its state (i.e., trust
values or ongoing trust computations) to its neighbor peer in the
DHT coordinate space. DHTs also introduce replication of data
to prevent loss of data (in this case, trust values) in case a score
manager fails.

5.1 Algorithm Description
Here we describe the secure algorithm to compute a global trust

vector. We will use these definitions: Each peer has a numberM
of score managers, whose DHT coordinates are determined by ap-
plying a set of one-way secure hash functionsh0, h1, . . . , hM−1 to
the peer’s unique identifier.posi are the coordinates of peeri in the
hash space. Since each peer also acts as a score manager, it isas-
signed a set of daughtersDi - the set contains the indexes of peers
whose trust value computation is covered by the peer. As a score
manager, peeri also maintains the opinion vectorci

d of its daugh-
ter peerd (whered ∈ Di) at some point in the algorithm. Also,
peeri will learn Ai

d which is the set of peers which downloaded
files from its daughter peerd: It will receive trust assessments from
these peers referring to its daughter peerd. Finally, peeri will get
to know the setBi

d which denotes the set of peers which its daugh-
ter peerd downloaded files from: Upon kicking off a global trust
value computation, its daughter peerd is supposed to submit its
trust assessments on other peers to its score manager, providing the
score manager withBi

d.

foreach peeri do
Submit local trust values~ci to all score managers at posi-
tionshm(posi), m = 1 . . . M − 1;
Collect local trust values~cd and sets of acquaintancesBi

d

of daughter peersd ∈ Di;
Submit daughterd’s local trust valuescdj to score man-
agershm(posd), m = 1 . . . M − 1, ∀j ∈ Bi

d;
Collect acquaintancesAi

d of daughter peers;
foreach daughter peerd ∈ Di do

Query all peersj ∈ Ai
d for cjdpj ;

repeat
Computet(k+1)

d = (1 − a)(c1dt
(k)
1 + c2dt

(k)
2 +

. . . + cndt
(k)
n) + apd;

Sendcdjt
(k+1)
d to all peersj ∈ Bi

d;

Wait for all peersj ∈ Ad
i to returncjdt

(k+1)
j ;

until |t(k+1)
d − t

(k)
d | < ε.;

end
end

Algorithm 4: Secure EigenTrust Algorithm

Upsides of the secure algorithm in terms of increased security
and reliability include:

Anonymity. It is not possible for a peer at a specific coordinate
to find out the peer ID for whom it computes the trust values –
hence malicious peers cannot increase the reputation of other mali-
cious peers.

Randomization. Peers that enter the system cannot select at
which coordinates in the hash space they want to be located (this
should be a property of a well-designed DHT) - hence it is not
possible for a peer to, for example, compute the hash value ofits
own ID and locate itself at precisely this position in the hash space
to be able to compute its own trust value.

Redundancy. Several score managers compute the trust value

for one peer. To assign several score managers to a peer, we use sev-
eral multi-dimensional hash functions. Peers in the systemstill take
over a particular region in the coordinate space, yet now there are
several coordinate spaces, each of which is created by one multi-
dimensional hash function. A peer’s unique ID is thus mappedinto
a different point in every multi-dimensional hash space.

5.2 Discussion
A couple of points are important to note here. First, the issue of

secure score management in P2P networks is an important problem,
with implications for reputation management, incentive systems,
and P2P micropayment schemes, among others. An extended dis-
cussion of secure score management in P2P networks, and various
concrete score management schemes (including a variant of the one
presented above), are given in [20]. The main contribution of this
work is not in the secure score management scheme, but ratherin
the core EigenTrust algorithm. We discuss the secure score man-
agement scheme becausesomesecure score management scheme
is essential to the EigenTrust algorithm. However, it is important
to note that the core EigenTrust algorithm may be used with many
different secure score management schemes.

Second, the secure protocols proposed here and in [20] describe
how to use large collections of entities to mitigate singular or group-
based manipulation of the protocol. These protocols are notsecured
in the traditional sense; rather, we can show that the probability is
small that a peer is able to get away with misreporting a score. This
is discussed further in [20].

6. USING GLOBAL TRUST VALUES
There are two clear ways to use these global trust values in a

peer-to-peer system. The first is to isolate malicious peersfrom
the network by biasing users to download from reputable peers.
The second is to incent peers to share files by rewarding reputable
peers.

Isolating Malicious Peers.When peeri issues a query, the sys-
tem may use the trust valuestj to bias the user towards download-
ing from more reputable peers. One way to do this would be to
have each peer download from the most highly trusted peer who
responds to its query. However, such a policy leads to the most
highly trusted peers being overloaded, as shown in Section 7. Fur-
thermore, since reputation is built upon sharing authenticfiles, this
policy does not enable new peers to build up reputation in thesys-
tem.

A different strategy is to select the peers from whom to down-
load probabilistically based on their trust values. In particular, we
can make type probability that a peer will download a file from
responding peerj be directly proportional to the trust valuetj of
peerj.

Such a policy limits the number of unsatisfactory downloadson
the network, while balancing the load in the network and allow-
ing newcomers to build reputation. The experiments in Section 7
validate this.

It should be noted here that peers may easily choose to bias their
choice of download by a convex combination of the global trust
values and their own local trust assessments of other peers (and use
the trust values given by the vector~tpersonal = d~t + (1 − d)~c,
whered is a constant between 0 and 1. This way, a peer can avoid
downloading from a peer that has given it bad service, even ifit
gives the rest of the network good service.

Incenting Freeriders to Share. Secondly, the system may re-
ward peers with high trust values. For example, reputable peers
may be rewarded with increased connectivity to other reputable
peers, or greater bandwidth. Rewarding highly trusted peers has a

twofold effect. First, it gives users an incentive to share files, since
a high global trust value may only be achieved by sharing authentic
files. In the current Gnutella network, less than 7% of the peers
are responsible for over 50% of the files, and as many as 25% of
peers on the network share no files at all [16]. Incentives based on
trust values should reduce the number of free riders on peer-to-peer
networks. Some such incentives are discussed in [11].

Second, rewarding highly trusted peers gives non-malicious peers
an incentive to delete inauthentic files that they may have acciden-
tally downloaded from malicious peers, actively keeping the net-
work tidy. This makes it more difficult for inauthentic files to repli-
cate in the system.

7. EXPERIMENTS
In this section, we will assess the performance of our schemeas

compared to a P2P network where no reputation system is imple-
mented. We shall demonstrate the scheme’s performance under a
variety of threat models.

7.1 Simulation
Our findings are based on simulations of a P2P network model

which we shall explain briefly in the following.
Network model. We consider a typical P2P network: Intercon-

nected, file-sharing peers are able to issue queries for files, peers
can respond to queries, and files can be transferred between two
peers to conclude a search process. When a query is issued by a
peer, it is propagated by broadcast with hop-count horizon through-
out the network (in the usual Gnutella way), peers which receive
the query forward it and check if they are able to respond to it.
We interconnect peers by a power-law network, a type of network
prevalent in real-world P2P networks [15].

Node model.Our network consists of good nodes (normal nodes,
participating in the network to download and upload files) and ma-
licious nodes (adversarial nodes, participating in the network to un-
dermine its performance). In our experiments, we consider differ-
ent threat models, where a threat model describes the behavior of
a malicious peer in the network. Threat models will be described
in more detail later on. Note also that, based on the considerations
in Section 4.5, some good nodes in the network are appointed as
highly trusted nodes.

Content distribution model. Interactions between peers – i.e.,
which queries are issued and which queries are answered by given
peers – are computed based on a probabilistic content distribution
model. The detailed model will not be described here, it is pre-
sented in [17]. Briefly, peers are assumed to be interested ina sub-
set of the total available content in the network, i.e., eachpeer ini-
tially picks a number of content categories and shares files only in
these categories. Reference [7] has shown that files shared in a P2P
network are often clustered by content categories. Also, weassume
that within one content category files with different popularities ex-
ist, governed by a Zipf distribution. When our simulator generates
a query, it does not generate a search string. Instead, it generates
the category and rank (or popularity) of the file that will satisfy
the query. The category and rank are based on Zipf distributions.
Each peer that receives the query checks if it supports the category
and if it shares the file. Files are assigned probabilistically to peers
at initialization based on file popularity and the content categories
the peer is interested (that is, peers are likely to share popular files,
even if they have few files). The number of files shared by peersand
other distributions used in the model are taken from measurements
in real-world P2P networks [16].

Simulation execution. The simulation of a network proceeds
in simulation cycles: Each simulation cycle is subdivided into a

number of query cycles. In each query cycle, a peeri in the net-
work may be actively issuing a query, inactive, or even down and
not responding to queries passing by. Upon issuing a query, apeer
waits for incoming responses, selects a download source among
those nodes that responded and starts downloading the file. The
latter two steps are repeated until a peer has properly received a
good copy of the file that it has been looking for3. Upon the con-
clusion of each simulation cycle, the global trust value computation
is kicked off. Statistics are collected at each node, in particular, we
are interested in the number of authentic and inauthentic up- and
downloads of each node. Each experiment is run several timesand
the results of all runs are averaged. We run an experiment until we
see convergence to a steady state (to be defined in the descriptions
of the experiments), initial transient states are excludedfrom the
data.

The base settings that apply for most of the experiments are sum-
marized in Table 1. The settings represent a fairly small network to
make our simulations tractable. However, we have experimented
with larger networks in some instances and our conclusions con-
tinue to hold. That is, schemes that do well in a small setting, do
proportionately as well as the network is scaled up. Also note that
our settings describe a pessimistic scenario with a powerful adver-
sary: Malicious peers connect to the most highly connected peers
when joining the network (see Section 7.3), they respond to the top
20% of queries received and thus have a large bandwidth, theyare
able to communicate among themselves in most of our threat mod-
els, and they make up a significant fraction of the network in most
of our experiments. Yet, our experiments indicate that our scheme
works well in this hostile a scenario, and thus will also workin less
hostile environments.

As metrics, we are particularly interested in the number of inau-
thentic file downloads versus the number of authentic file down-
loads: If the computed global trust values accurately reflect each
peer’s actual behavior, the number of inauthentic file downloads
should be minimized.

Before we consider the strengths of our scheme in suppressing
inauthentic downloads in a P2P network, we examine if it leads to
unwanted load imbalance in the network. In the following section,
we also give a precise definition on how we use global trust values
in downloading files.

7.2 Load Distribution in a Trust-based
Network

In P2P networks, a natural load distribution is establishedby
peers with more content and higher bandwidth being able to re-
spond to more queries and thus having a higher likelihood of being
chosen as download source for a file transfer. In our scheme, ahigh
global trust value of a peer additionally contributes to a peer’s like-
lihood of being chosen as download source. Possibly, this might
lead a peer into a vicious circle of accumulating reputationby re-
sponding to many queries, thus being chosen even more frequently
as download source in the future, thus accumulating even more rep-
utation. In a non-trust based system, this situation does not oc-
cur: From responding peers, a peer usually is randomly picked and
selected as download source, somewhat balancing the load inthe
network. In the following, we are interested in integratingload-
distributing randomization into our scheme. In the experiment in
Figures 3 and 4, we study the load distribution performance of a

3In Section 7.2 we will consider two different ways of choosing
download sources from those nodes that respond to a query and
compare their performance in one of our experiments.

Network # of good peers 60
of malicious peers 42
of pre-trusted peers 3
of initial neighbors of good peers 2
of initial neighbors of malicious peers 10
of initial neighbors of pre-trusted peers 10
Time-to-live for query messages 7

Content Distribution # of distinct files at good peeri file distribution in [16]
set of content categories supported by good peeri Zipf distribution over 20 content categories
of distinct files at good peeri in categoryj uniform random distribution over peeri’s

total number of distinct files
top % of queries for most popular categories and20%
files malicious peers respond to
top % of queries for most popular categories and5%
files pre-trusted peers respond to
% of time peeri is up and processing queries uniform random distribution over [0%, 100%]
% of time pre-trusted peeri is up and processing 1
queries
% of up-time good peeri issues queries uniform random distribution over [0%, 50%]
% of up-time pre-trusted peeri issues queries 1

Peer Behavior % of download requests in which good peeri 5%
returns inauthentic file
% of download requests in which malicious peeri 0% (varied in Section 7.3)
returns inauthentic file
download source selection algorithm probabilistic algorithm (varied in Section 7.2)
probability that peer with global trust value 0 is 10%
selected as download source

Simulation # of simulation cycles in one experiment 30
of query cycles in one simulation cycle 50
of experiments over which results are averaged5

Table 1: Simulation settings

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Peer

P
e

e
r

lo
a

d
 s

h
a

re

Random download source selection Deterministic trust-based download source selection

Figure 3: Load distribution in a network using deterministi c
download source selection versus a non-trust based network.
The load distribution is heavily skewed, peer 2 will eventually
accumulate all reputation in the network.

network in which our scheme is activated. We consider two differ-
ent trust-based algorithms for selecting download sourcesamong
peers responding to a query, a deterministic algorithm and aproba-
bilistic algorithm.

If {t0, t1, . . . , tR−1} are the trust values of peers responding to
a query, the deterministic and probabilistic algorithms proceed as
follows.

Deterministic algorithm Choose the peer with the highest trust
valuetmax among the peers responding to a query as down-
load source.

Probabilistic algorithm Choose peeri as download source with
probability ti

P

R
j=0

tj
. With a probability of 10%, select a

peerj that has a trust valuetj = 0.

If a download returns an inauthentic file, delete the peer from the
list of responding peers and repeat the algorithm.

To give new peers in the network – which start with a global trust
value of 0 – the chance of building up reputation, the probabilistic
algorithm assigns a fixed 10% chance to download from the group
of responding peers with trust value 0. Otherwise, new peerswould
maybe never be chosen as download source, depriving them of the
chance to become a trusted member of the network. Based on our
experience, a probability of 10% strikes a balance between granting
malicious peers (which might also have a trust value of 0) toohigh
a chance of uploading inauthentic files and allowing new peers to
prove themselves as download sources of authentic files.

We compare these download source selection algorithms to a net-
work where no reputation system is deployed, i.e., among peers re-
sponding to a query a peer is picked as download source entirely at
random. We examine the load distribution in these networks.We
do not assume the existence of any malicious peers in this experi-
ment.4

4Malicious peers would not impact the load distribution among
good peers since downloading peers keep trying until they have
found an authentic copy of a file (assuming they have enough band-

0

0.02

0.04

0.06

0.08

0.1

0.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Peer

P
e
e
r

lo
a
d

 s
h

a
re

Random download source selection Probabilistic trust-based download source selection

Figure 4: Load distribution in a network using probabilisti c
download source selection versus a non-trust based network.
The load distribution does not deviate too much from the load
distribution in a network based on random, non-trust based
download source selection and is thus close to the natural load
distribution in a normal Gnutella network.

Setup. We simulate a network consisting of 20 good peers, no
pre-trusted peers and no malicious peers. Other than that, the stan-
dard settings in Table 1 apply. After running queries on the system
for 20 query cycles, the load distribution is measured in Figures
3 and 4: For each peer 1 – 20 in the network, we depict its load
share, i.e., the fraction of its uploads after a full run of the experi-
ment divided by the total number of uploads in the entire network.
The load distribution in a network using the deterministic download
source selection algorithm is compared to the load distribution in
a network using no reputation system at all in Figure 3, whereas a
system employing the probabilistic download source selection al-
gorithm is compared to the non-trust based network in Figure4.

Discussion.Always choosing the responding peer with the high-
est global trust value as download source leads to a vast loadimbal-
ance in the network: Popular peers do not stop accumulating trust
value and gain further popularity. In Figure 3, peer 2 will eventu-
ally become the download source for virtually all queries that it is
able to answer. Also note that in each experiment we ran another
peer turned out to be the most trusted peer. Choosing download
sources probabilistically yields only a slight deviation in terms of
individual load share of each peer from the case where trust values
are not used to select download sources among responding peers,
therefore leading to a much better natural load distribution in the
network. In Figure 4, peer 2 becomes the download source for 8%
of all queries in the system, and many other peers participate in
sharing the load, mainly determined by the number of and popular-
ity of files the peers share. Our measurements also show that the
efficiency in suppressing inauthentic downloads does not vary be-
tween the two approaches. Thus, for the remaining experiments we
use the probabilistic peer selection algorithm.

7.3 Threat Models
We now evaluate the performance of our system in suppressing

inauthentic downloads. We will consider several strategies of mali-
cious peers to cause inauthentic uploads even when our scheme is
activated. In short, malicious peers operating under threat model A

width to do so) – hence malicious peers would add inauthenticup-
loads to the network, but not change anything about the number of
authentic uploads from good peers.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 10% 20% 30% 40% 50% 60% 70%

Fraction of malicious peers

F
ra

c
ti

o
n

 o
f

in
a
u

th
e
n

ti
c
 d

o
w

n
lo

a
d

s

non-trust based trust based

Figure 5: Reduction of inauthentic downloads by basing down-
load source selection on global trust values in a network where
independent malicious peers are present. Upon activation of
our reputation scheme, the number of inauthentic downloads
in the network is significantly decreased to around 10% of all
downloads in the system, malicious peers in the network are
virtually banned from uploading inauthentic files.

simply try to upload inauthentic files and assign high trust values
to any other malicious peer they get to interact with while partic-
ipating in the network. In threat model B, malicious peers know
each other upfront and deterministically give high local trust val-
ues to each other. In threat model C, malicious peers try to get
some high local trust values from good peers by providing authen-
tic files in some cases when selected as download sources. Under
threat model D, one group of malicious peers in the network pro-
vides only authentic files and uses the reputation they gain to boost
the trust values of another group of malicious peers that only pro-
vides inauthentic files.

We start our experiments considering the simplest threat model,
where malicious peers are not initially aware of other malicious
peers and simply upload inauthentic files.

Threat Model A. Individual Malicious Peers.Malicious peers
always provide an inauthentic file when selected as downloadsource.
Malicious peers set their local trust values to besij = inauth(j)−
auth(j), i.e., malicious peers valueinauthenticfile downloads in-
stead of authentic file downloads.

Setup. We simulate a network consisting of 63 good nodes, 3
of which are highly trusted nodes, applying the standard settings
from Table 1. In each experiment, we add a number of malicious
peers to the network such that malicious nodes make up between
0% and 70% of all nodes in the network. For each fraction in steps
of 10% we run experiments and depict the results in Figure 5. Upon
joining the network, malicious peers connect to the 10 most highly
connected peers already in the network in order to receive asmany
queries travelling through the network as possible. In practice, P2P
protocols such as the Gnutella protocol enable nodes to crawl the
network in search of highly connected nodes. We run the exper-
iments on a system where download sources are selected proba-
bilistically based on our global trust values and on a systemwhere
download sources are chosen randomly from the set of peers re-
sponding to a query. Bars depict the fraction of inauthenticfiles
downloaded in one simulation cycle versus the total number of files
downloaded in the same period of time. The results are averaged
over the last 10 query cycles in each experiment.

Discussion. In the absence of a reputation system, malicious

Threat Model File Upload Behavior Local Trust Behavior Figure
A Always upload inauthentic files. Assign trust to peers which upload inauthentic files. 5
B Always upload inauthentic files. Assign trust to previously known malicious 6

peer to form malicious collective.
C Upload inauthentic files inf% of all cases. Assign trust to previously known malicious 7, 8

peer to form malicious collective.
D Upload authentic files. Assign equal trust share to all type B nodes in the network.9

Table 2: Threat models and associated experiments

peers succeed in inflicting many inauthentic downloads on the net-
work. Yet, if our scheme is activated, malicious peers receive high
local trust values only from other malicious peers, and eventhat
only occasionally – since malicious peers have to happen to get ac-
quainted with each other through a file exchange. Because of their
low trust values, malicious peers are rarely chosen as download
source which minimizes the number of inauthentic file downloads
in the network. We observed a 10% fraction of inauthentic down-
loads, mostly due to the fact that good nodes make mistakes once in
a while and upload inauthentic files (for example, by not deleting
a downloaded inauthentic file from their shared folders). Even if
no malicious peers are present in the network, downloads areeval-
uated as inauthentic in 5% of all cases – this accounts for mistakes
users make when creating and sharing a file, e.g., by providing the
wrong meta-data or creating and sharing an unreadable file.

Note that, due to the fact that our current secure algorithm uses
majority vote, a cooperating malicious collective that comprises
over 40% of the network will be able to influence the assignment of
global trust values values in the network during their computation.
This is not represented in Figure 5, which assumes that the trust
values are computed correctly. However, it is unlikely thatover
40% of the peers in a network are in a single malicious collective,
unless the malicious collective is a result of pseudospoofing (a.k.a.
the Sybil attack [8]), where a single adversary initiates thousands
of peers onto the network. This type of attack can be avoided by
imposing a cost of entry into the network. For example, a peer
wishing to enter the network may be required to solve a puzzlethat
a computer cannot solve [3, 5]. Currently, YAHOO! requires a user
to read some text from a JPEG file in order to open a YAHOO! Mail
account.

Thus, in knowing that our scheme is present in a system, mali-
cious peers know that they have to gain a somewhat high local trust
value in order to be considered as download sources. Therefore, we
will examine strategies on how malicious peers can increasetheir
global trust valuedespiteuploading inauthentic files.

Since malicious peers cannot expect to receive any high local
trust values from non-malicious peers, they can try to increase their
global trust value by teaming up as a malicious collective. In the
experiment depicted in Figure 6, we vary the number of malicious
peers in the network to assess their impact on the network’s per-
formance when they are aware of each other and form a malicious
collective.

Threat Model B. Malicious Collectives.Malicious peers always
provide an inauthentic file when selected as download source. Ma-
licious peers form a malicious collective by assigning a single trust
value of 1 to another malicious peer in the network. Precisely, if M
denotes the set of malicious peers in the network, eachpeeri ∈ M
sets

speeripeerj
=

8

<

:

1 if j = i + 1
1 if i = |M | andj = 0
0 else

which resembles a malicious chain of mutual high local trustval-

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0% 10% 20% 30% 40% 50% 60% 70%

Fraction of malicious peers

F
ra

c
ti

o
n

 o
f

in
a
u

th
e
n

ti
c
 d

o
w

n
lo

a
d

s

non-trust based trust based

Figure 6: Trust-based reduction of inauthentic downloads in
a network where a fraction of peers forms a malicious collec-
tive and always uploads inauthentic files. Forming a malicious
collective does not boost the trust values of malicious peers sig-
nificantly, they are still virtually banned from uploading i nau-
thentic files, similar to Figure 5.

ues. In terms of the probabilistic interpretation of our scheme, mali-
cious peers form a collective out of which a random surfer or agent,
once it has entered the collective, will not be able to escape, thus
boosting the trust values of all peers in the collective.

Setup.We proceed exactly as in the previously described exper-
iment, albeit with malicious nodes operating under threat model B.
As shown in Figure 6, we run the experiments on a system where
download sources are selected based on our global trust values and
on a system where download sources are chosen randomly from the
set of peers responding to a query.

Discussion.Our system performs well even if a majority of ma-
licious peers is present in the network at a prominent place.The ex-
periment clearly shows that forming a malicious collectivedoes not
decisively boost the global trust values of malicious peers: These
peers are tagged with a low trust value and thus rarely chosenas
download source. The system manages to break up malicious col-
lectives through the presence of pre-trusted peers (see Section 4.4):
If pre-trusted peers were not present in the network, forming a ma-
licious collective in fact heavily boosts the trust values of malicious
nodes. Under the presence of pre-trusted peers, the local trust val-
ues of malicious peers are significantly lower than those of good
peers already after one simulation cycle. This minimizes the num-
ber of inauthentic downloads, and the numbers are virtuallyequal
to the numbers in Figure 5 when peers do not form a malicious
collective. For example, with 40% of all peers in a network being
malicious, around 87% of all file downloads will end up in down-
loading an inauthentic version of the file in a normal, non-trusted
network. Upon activation of our scheme, around 10% of all file

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0 10% 20% 30% 40% 50% 60% 70% 80% 90%

f%

F
ra

c
ti

o
n

 o
f

in
a
u

th
e
n

ti
c
 d

o
w

n
lo

a
d

s

non-trust based trust-based

Figure 7: Trust-based reduction of inauthentic downloads in
a network where a fraction of peers forms a malicious collec-
tive and returns authentic files with certain probabilities. When
malicious peers partly provide authentic uploads, they receive
more positive local trust values and will be selected as download
sources more often, also increasing their chances to uploadin-
authentic files. Yet, uploading authentic files may be associated
with a cost for malicious peers.

downloads return an inauthentic file.

Forming a malicious collective obviously does not increasethe
global trust values of malicious peers sufficiently in orderfor them
to have impact on the network. This leaves malicious peers with
one choice: They have to increase their local trust values byreceiv-
ing positive local trust values from at least some good and trusted
peers in the network. In the experiment in Figure 7, we consider a
strategy for malicious peers that is built on the idea that malicious
peers try to get some positive local trust values from good peers.

Threat Model C. Malicious Collectives with Camoflouge.Ma-
licious peers provide an inauthentic file inf% of all cases when
selected as download source. Malicious peers form a malicious
collective as described above.

Setup. We simulate a network consisting of 53 good peers, 3
of which are pre-trusted peers, and 20 type C malicious peersap-
plying the standard settings in Table 1. In each experiment,we
apply a different setting of parameterf in threat model B such that
the probability that malicious peers return an authentic file when
selected as download source varies from 0% to 90%. We run ex-
periments for each setting of parameterf in steps of 10%. Running
the experiments on both a non-trust based system and on our sys-
tem yields Figure 7. Bars depict the fraction of inauthenticfiles
downloaded in one simulation cycle divided by the total number of
files downloaded in the same period of time.

Discussion.Malicious peers that operate under threat model C
attempt to gain positive local trust values from some peers in the
network by sometimes providing authentic files. Thus, they will
not be assigned zero trust values by all peers in the network since
some peers will receive an authentic file from them. This in turn
provides them with higher global trust values and more uploads – a
fraction of which will be inauthentic. Figure 7 shows that malicious
peers have maximum impact on the network when providing 50%
authentic files: 28% of all download requests return inauthentic
files then. However, this strategy comes at a cost for malicious
peers: They have to provide some share of authentic files, which is
undesirable for them. First of all, they try to prevent the exchange

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

0 1000 2000 3000 4000 5000 6000 7000 8000

Authentic uploads by malicious peers

In
a

u
th

e
n

ti
c

 d
o

w
n

lo
a

d
s

trust-based non-trust based

Figure 8: Inauthentic downloads versus authentic uploads pro-
vided by malicious peers with trust-based and non-trust based
download source selection. When malicious peers provide au-
thentic files in more than 20% of the cases when selected as
download source, the increase in authentic files uploaded by
malicious peers exceeds the increase in inauthentic downloads
in the network, hence possibly coming at a higher cost than
benefit for malicious peers.

of authentic files on the network, and in this strategy they have to
participate in it; second, maintaining a repository of authentic files
requires a certain maintenance overhead.

Figure 8 depicts the trade-off between authentic (horizontal axis)
and inauthentic (vertical axis) downloads. Each scenario from Fig-
ure 7 is represented by one data point in Figure 8. For example,
consider the fourth dark bar in Figure 7, corresponding tof = 30%
and our reputation scheme in place. In this scenario, malicious
peers provide 1850 authentic downloads and 5000 inauthentic ones
in a particular run.5 The value(1850, 5000) is plotted in Figure 8
as the fourth data point (left to right) on the lower curve, represent-
ing the case when our reputation scheme is used. The points on
each curve represent increasingf values, from left to right.

In Figure 8, malicious nodes would like to operate in the up-
per left quadrant, providing a high number of inauthentic down-
loads, and a low number of authentic downloads. However, thefile
sharing mechanism in place constrains malicious nodes to operate
along one of the curves shown. Without our reputation scheme(top
curve), malicious nodes can setf to a small value and move to the
upper left quadrant. On the other hand, with our scheme, malicious
peers have no good choices. In particular, increasingf beyond 20%
does not make much sense to malicious peers since the incremen-
tal authentic uploads they have to host outnumber the increase in
inauthentic downloads. Moreover, for all settings of parameterf
below 50%, malicious peers will lose all positive local trust values
assigned by other peers in the long run – since on average theydo
provide more inauthentic than authentic files.

Notice that the lines cross at the lower right hand side. Thisdoes
not show that the non-trust-based scheme works better for high val-
ues off . Rather, it shows that, when the trust-based scheme is
implemented, malicious peers must upload more authentic files in
order to be able to upload the same number of inauthentic files.
This is the desired behavior.

5More precisely, we run 30 query cycles, exclude the first 15 query
cycles, and count the number of inauthentic and authentic down-
loads. We execute a second run, and add the numbers form both
runs.

0

5000

10000

15000

20000

25000

30000

35000

0 500 1000 1500 2000 2500 3000 3500 4000 4500

Authentic malicious uploads

In
a
u

th
e
n

ti
c
 d

o
w

n
lo

a
d

s

trusted non-trusted

Figure 9: Inauthentic downloads versus authentic uploads pro-
vided by malicious peers with trust-based and non-trust based
download source selection in a network populated by type D
and type B peers. As with threat model C, malicious peers
have to provide a number of authentic uploads in order to in-
crease their global trust values. Yet, as compared to Figure
8, less authentic uploads by malicious peers are necessary to
achieve equal numbers of inauthentic downloads in the net-
work: 5000 inauthentic downloads cost 400 authentic uploads
with this strategy as compared to more than 1000 authentic up-
loads with threat model C.

The previous experiment has shown that malicious peers can in-
crease their impact by partly concealing their malicious identity.
Yet over time, their malicious identity will be uncovered and they
lose their impact on the network. In the experiment in Figure9, we
consider a team effort strategy that malicious peers can useto work
around this drawback. Two different types of malicious peers are
present in the network: Malicious nodes of type B and of type D.

Threat Model D. Malicious Spies.Malicious peers answer 0.05%
of the most popular queries and provide a good file when selected
as download source. Malicious peers of type D assign trust values
of 1 to all malicious nodes of type B in the network. Precisely, if
MB andMD denote the set of malicious type B peers resp. type D
peers in the network, eachpeeri ∈ MD sets

speeripeerj
=



1
‖MB‖

if peerj ∈ MB

0 else

Setup.We simulate a network consisting of 63 good peers, 3 of
which are pre-trusted peers, and 40 (39%) malicious peers, divided
into two groups of malicious type B and type D peers. Otherwise,
the standard settings from Table 1 apply. In each experiment, we
consider a different number of type B and type D peers. Configu-
rations considered are: I. 40 type B, 0 type D peers II. 39 typeB,
1 type D peer III. 36 type B, 4 type D peers IV. 35 type B, 5 type
D peers V. 30 type B, 10 type D peers VI. 25 type B, 15 type D
peers VII. 20 type B, 20 type D peers VIII. 15 type B, 25 type D
peers IX. 10 type B, 30 type D peers X. 5 type B, 35 type D peers.
From left to right, we plot these data points in a graph that depicts
the number of inauthentic file downloads versus the number ofau-
thentic file uploads provided by malicious peers, as in the previous
experiment.

Discussion. Malicious peers establish an efficient division of
labor in this scheme: Type D peers act as normal peers in the net-
work and try to increase their global trust value, which theywill

in turn assign to malicious nodes of type B providing inauthentic
files. The malicious nature of type D peers will not be uncovered
over time since these peers do not provide inauthentic files –hence
they can continue to increase the global local trust values of type
B peers in the network. An interesting configuration for malicious
peers would be configuration I: Malicious peers provide a fairly
low number of authentic downloads (around 100), yet achieveal-
most the same number of inauthentic downloads in the networkas
in other configurations with a higher share of authentic downloads
by malicious peers. In any configuration though, our scheme per-
forms better than a system without trust-based download source
selection. Also, this strategy would probably be the strategy of
choice for malicious peers in order to attack a trust-based network:
For example, by hosting 500 authentic file uploads in this strategy
malicious peers achieve around 5000 inauthentic file downloads –
as opposed to about 2500 inauthentic file downloads in the previous
strategy, given the same effort on providing authentic uploads.

7.3.1 Other Threat Models
In this section, we discuss two slightly more nuanced threatmod-

els.
Threat Model E. Sybil Attack.An adversary initiates thousands

of peers on the network. Each time one of the peers is selectedfor
download, it sends an inauthentic file, after which it disconnected
and replaced with a new peer identity.

Discussion.This threat scenario simply takes advantage of the
fact that the fudge-factor that allows previously unknown users to
obtain a reputation can be abused. Essentially, because there is no
cost to create a new ID, the adversary can dominate that pool (with
ghost identities). Because 10% of all traffic goes to the “unknown”
pool, the malicious entity can behave arbitrarily without fear of
losing reputation. To make matters worse, this kind of attack will
prevent good peers from being able to garner a good reputation
(they are so outnumbered that they will almost never be selected).

However, this threat scenario can be averted by imposing a cost
to creating a new ID as discussed in Section 7.3 and [3]. For ex-
ample, if a user must read the text off of a JPEG (or solve some
othercaptcha[5]), it will be costly for a single adversary to create
thousands of users.

Threat Model F. Virus-Disseminators.(variant of threat model
C) A malicious peer sends one virus-laden (inauthentic) copy of a
particular file every 100th request. At all other times, the authentic
file is sent.

Discussion. This is a threat scenario that is not addressed by
EigenTrust. EigenTrust greatly reduces – but does not completely
eliminate – corrupt files on a P2P network. This is useful on a file-
sharing network where executables are not shared. If executables
are introduced that have potential to do great damage, then mali-
cious peers can develop strategies to upload a few of them. But it
should be noted that no reputation system to date claims to com-
pletely eliminate all corrupt files on a P2P network in an efficient
manner. It should also be noted that the main problem on today’s
P2P networks is not the distribution of malicious executables (i.e.
viruses), but rather the flooding of the network with inauthentic
files. This is likely because today’s P2P networks are mostlyused
to trade digital media, and relatively few users make use of these
networks to share executables.

8. RELATED WORK
An overview of many key issues in reputation management is

given in [14]. Trust metrics on graphs have been presented in[2]
and [4]. Beth et al. [4], also use the notion of transitive trust, but
their approach is quite different from ours. Reputation systems for

P2P networks in particular are presented in [6] and [1], and are
largely based on notions similar to our local trust values. The con-
tribution of this work is that it shows how to aggregate the local
trust assessments of all peers in the network in an efficient,dis-
tributed manner that is robust to malicious peers.

9. CONCLUSION
We have presented a method to minimize the impact of mali-

cious peers on the performance of a P2P system. The system com-
putes a global trust value for a peer by calculating the left principal
eigenvector of a matrix of normalized local trust values, thus tak-
ing into consideration the entire system’s history with each single
peer. We also show how to carry out the computations in a scal-
able and distributed manner. In P2P simulations, using these trust
values to bias downloads has shown to reduce the number of in-
authentic files on the network under a variety of threat scenarios.
Furthermore, rewarding highly reputable peers with betterquality
of service incents non-malicious peers to share more files and to
self-police their own file repository for inauthentic files.

10. REFERENCES
[1] K. Aberer and Z. Despotovic. Managing Trust in a

Peer-2-Peer Information System. InProceedings of the 10th
International Conference on Information and Knowledge
Management (ACM CIKM), New York, USA, 2001.

[2] Advogato’s Trust Metric (White Paper),
http://www.advogato.org/trust-metric.html.

[3] T. Aura, P. Nikander, and J. Leiwo. Dos-resistant
authentication with client puzzles. In8th International
Workshop on Security Protocols, 2000.

[4] T. Beth, M. Borcherding, and B. Klein. Valuation of trustin
open networks. InProc. 3rd European Symposium on
Research in Computer Security – ESORICS ’94, pages 3–18,
1994.

[5] Captcha Project. http://www.captcha.net.

[6] F. Cornelli, E. Damiani, S. D. C. D. Vimercati, S. Paraboschi,
and S. Samarati. Choosing Reputable Servents in a P2P
Network. InProceedings of the 11th World Wide Web
Conference, Hawaii, USA, May 2002.

[7] A. Crespo and H. Garcia-Molina. Semantic Overlay
Networks. Submitted for publication 2002.

[8] J. Douceur. The Sybil Attack. InFirst IPTPS, March 2002.
[9] eBay website. www.ebay.com.

[10] T. H. Haveliwala and S. D. Kamvar. The second eigenvalue
of the google matrix. Technical report, Stanford University,
2003.

[11] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
Incentives for Combatting Freeriding on P2P Networks.
Technical report, Stanford University, 2003.

[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The
PageRank Citation Ranking: Bringing Order to the Web.
Technical report, Stanford Digital Library Technologies
Project, 1998.

[13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
Proceedings of ACM SIGCOMM, August 2001.

[14] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara.
Reputation Systems.Communications of the ACM,
43(12):45–48, 2000.

[15] M. Ripeanu and I. Foster. Mapping the Gnutella Network -
Macroscopic Properties of Large-scale P2P Networks and
Implications for System Design. InInternet Computing
Journal 6(1), 2002.

[16] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
Measurement Study of Peer-to-Peer File Sharing Systems. In
Proceedings of Multimedia Computing and Networking 2002
(MMCN ’02), San Jose, CA, USA, January 2002.

[17] M. T. Schlosser and S. D. Kamvar. Simulating P2P
Networks. Technical report, Stanford University, 2003.

[18] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. InProceedings of the 2001
Conference on Applications, Technologies, Architectures,
and Protocols for Computer Communications, pages
149–160. ACM Press, 2001.

[19] VBS.Gnutella Worm.
http://securityresponse.symantec.com/avcenter/venc/data/
vbs.gnutella.html.

[20] B. Yang, S. D. Kamvar, and H. Garcia-Molina. Secure Score
Management for P2P Systems. Technical report, Stanford
University, 2003.

