The EigenTrust Algorithm for

Reputation Management in

P2P Networks

Sepandar D. Kamvar
Stanford University

sdkamvar@stanford.edu

Stanford Un

ABSTRACT

Peer-to-peer file-sharing networks are currently recgiwninich at-
tention as a means of sharing and distributing informatidow-
ever, as recent experience shows, the anonymous, opere roditur
these networks offers an almost ideal environment for theaspof
self-replicating inauthentic files.

We describe an algorithm to decrease the number of downloads
of inauthentic files in a peer-to-peer file-sharing netwdrt tas-
signs each peer a unique global trust value, based on thé& peer
history of uploads. We present a distributed and secureadeth
compute global trust values, based on Power iteration. Binga
peers use these global trust values to choose the peers fnom w
they download, the network effectively identifies malicgopeers
and isolates them from the network.

In simulations, this reputation system, called EigenTrhsts
been shown to significantly decrease the number of inalithiéat
on the network, even under a variety of conditions whereciwals
peers cooperate in an attempt to deliberately subvert stersy

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applicationsH.3.3 Information Systemq: In-
formation Storage and RetrievalSelection H.2.7 [Information
System$. Database ManagementSecurity, integrity and protec-
tion

General Terms
Algorithms,Performance, Theory

Keywords

Peer-to-Peer, reputation, distributed eigenvector coatioun

1. INTRODUCTION

Peer-to-peer file-sharing networks have many benefits ¢aer s
dard client-server approaches to data distribution, oy im-
proved robustness, scalability, and diversity of avadatata. How-
ever, the open and anonymous nature of these networks leads t
complete lack of accountability for the content a peer putshe
network, opening the door to abuses of these networks byinad
peers.

Attacks by anonymous malicious peers have been observed on

today’s popular peer-to-peer networks. For example, noaigc
users have used these networks to introduce viruses sudieas t
Copyright is held by the author/owner(s).

WWW2003May 20-24, 2003, Budapest, Hungary.
ACM 1-58113-680-3/03/0005.

Mario T. Schlosser

schloss@db.stanford.edu

Hector Garcia-Molina
Stanford University

hector@db.stanford.edu

iversity

VBS.Gnutellavorm, which spreads by making a copy of itself in a
peer’s Gnutella program directory, then modifying the @fatini
file to allow sharing of .vbs files [19]. Far more common haverbe
inauthentic file attacks, wherein malicious peers respondrtu-
ally any query providing “decoy files” that are tampered wattdo
not work.

It has been suggested that the future development of P2¢hsyst
will depend largely on the availability of novel methods @nsur-
ing that peers obtain reliable information on the qualityesfources
they are receiving [6]. In this context, attempting to idnmali-
cious peers that provide inauthentic files is superior gnagttting to
identify inauthentic files themselves, since maliciouspean eas-
ily generate a virtually unlimited number of inauthentie§lif they
are not banned from participating in the network. We presech a
method wherein each pegis assigned a uniquglobal trust value
that reflects the experiences of all peers in the network petr:.

In our approach, all peers in the network participate in cotimg
these values in a distributed and node-symmetric mannbamaiit-
imal overhead on the network. Furthermore, we describe loow t
ensure the security of the computations, minimizing thebabdl-

ity that malicious peers in the system can lie to their ownelfien
And finally, we show how to use these values to identify peleas t
provide material deemed inappropriate by the users of atpeer
peer network, and effectively isolate them from the network

2. DESIGN CONSIDERATIONS

There are five issues that are important to address in any P2P
reputation system.

1. The system should tself-policing That is, the shared ethics
of the user population are defined and enforced by the peers

themselves and not by some central authority.

. The system should maintaamonymity That is, a peer’s rep-
utation should be associated with an opaque identifier (such
as the peer’s Gnutella username) rather than with an exter-
nally associated identity (such as a peer’s IP address).

. The system should not assign gmgfit to newcomersThat
is, reputation should be obtained by consistent good behav-
ior through several transactions, and it should not be advan
tageous for malicious peers with poor reputations to centin
uously change their opaque identifiers to obtain newcomers
status.

. The system should hawainimal overheadn terms of com-
putation, infrastructure, storage, and message complexit

. The system should ebust to malicious collectivesf peers
who know one another and attempt to collectively subvert the
system.

3. REPUTATION SYSTEMS

An important example of successful reputation managengent i
the online auction system eBay [9]. In eBay’s reputatiortesys
buyers and sellers can rate each other after each transaatid
the overall reputation of a participant is the sum of thesimga
over the last 6 months. This system relies on a centralizetky
to store and manage these ratings.

In a distributed environment, peers may still rate eachraifter
each transaction, as in the eBay system. For example, aaeh ti
peer: downloads a file from peet, it may rate the transaction as
positive ¢r(¢,7) = 1) or negative {r (i, 7) —1). Peeri may
rate a download as negative, for example, if the file dowrddad
is inauthentic or tampered with, or if the download is intgted.
Like in the eBay model, we may definelacal trust values;; as
the sum of the ratings of the individual transactions thatr pdas
downloaded from peef: s;; = > trs;.

Equivalently, each peércan store the number satisfactory trans-
actions it has had with pegr sat (i, j) and the number of unsatis-
factory transactions it has had with pegernsat(i, j). Then,s;;
is defined:

sij = sat(i,j) — unsat(i, j)

1)

Previous work in P2P reputation systems [6, 1] has all besada
on similar notions of local trust values. The challenge f&puta-
tion systems in a distributed environment is how to aggetfa
local trust values;; without a centralized storage and management
facility. While each of the previous systems cited abovereskkes
this issue, each of the previous systems proposed suffersdne
of two drawbacks. Either it aggregates the ratings of onlgwa f
peers and doesn't get a wide view about a peer’s reputatioit, o
aggregates the ratings of all the peers and congests thenketith
system messages asking for each peer’s local trust valis®gt
query.

We present here a reputation system that aggregates the loca

trust values of all of the users in a natural manner, with mati
overhead in terms of message complexity. Our approach exbas
on the notion of transitive trust: A peéwill have a high opinion of
those peers who have provided it authentic files. Moreowesrp

is likely to trust the opinions of those peers, since peers aie
honest about the files they provide are also likely to be hoines
reporting their local trust values.

We show that the idea of transitive trust leads to a systemavhe
global trust values correspond to the left principal eigetor of a
matrix of normalized local trust values. We show how to perfo
this eigenvector computation in a distributed manner wigh few
lines of code, where the message complexity is provably dedin
and empirically low. Most importantly, we show that thistgm is
highly effective in decreasing the number of unsatisfactiown-

loads, even when up to 70% of the peers in the network form a

malicious collective in an attempt to subvert the system.

4. EIGENTRUST

In this section, we describe the EigenTrust algorithm. IgeBi
Trust, the global reputation of each péés given by the local trust
values assigned to peeérby other peers, weighted by the global
reputations of the assigning peers. In Section 4.1, we sloowtb
normalize the local trust values in a manner that leads tdemyast
probabilistic interpretation and an efficient algorithm &mygregat-
ing these values. In Section 4.2, we discuss how to aggréigate
normalized trust values in a sensible manner. In Sectionwe3
discuss the probabilistic interpretation of the local atabgl trust
values. In Section 4.4 through Section 4.6, we present amitig
for computing the global trust values.

4.1 Normalizing Local Trust Values

In order to aggregate local trust values, it is necessarptmal-
ize them in some manner. Otherwise, malicious peers cagrassi
arbitrarily high local trust values to other malicious peeand ar-
bitrarily low local trust values to good peers, easily suting the
system. We define mormalized local trust value:;;, as follows:

_ max(s;,0)
> ; max(sij, 0)
This ensures that all values will be between 0 and 1. (Notice

that if 3° max(s;;) = 0, thenc;; is undefined. We address this
case in Section 4.4.) There are some drawbacks to norn@lizin
this manner. For one, the normalized trust values do noinélist
guish between a peer with whom peetid not interact and a peer
with whom peeri has had poor experience. Also, these val-
ues are relative, and there is no absolute interpretatibiat i8, if
cij = cik, We know that peej has the same reputation as peén
the eyes of peer, but we don't know if both of them are very rep-
utable, or if both of them are mediocre. However, we are atilé
to achieve substantially good results despite the dravebamn-
tioned above. We choose to normalize the local trust valudisis
manner because it allows us to perform the computation thatew
scribe below without renormalizing the global trust valaégach
iteration (which is prohibitively costly in a large disttited envi-
ronment) and leads to an elegant probabilistic model.

4.2 Aggregating Local Trust Values

We wish to aggregate the normalized local trust values. A-nat
ral way to do this in a distributed environment is for pe¢o ask
its acquaintances about their opinions about other peergould
make sense to weight their opinions by the trust peglaces in

them:
tik = Z Cij Cik
J

wheret;;, represents the trust that pegslaces in peek based on
asking his friends.

We can write this in matrix notation: If we defing to be the
matrix [c;;] andi; to be vector containing the valueg, theni; =
C*é. (Note thaty t;; = 1 as desired.)

This is a useful way to have each peer gain a view of the network
that is wider than his own experience. However, the trustesl
stored by peet still reflect only the experience of peéland his
acquantainces. In order to get a wider view, pemay wish to ask
his friends’ friends { = (C™)2¢;). If he continues in this manner,
(t = (CT)™¢;), he will have a complete view of the network after
n = large iterations (under the assumptions thais irreducible
and aperiodic, which we guarantee in practice and addreSedn
tion 4.5).

Fortunately, ifn is large, the trust vectas, will converge to the
same vectofor every peer.i Namely, it will converge to the left
principal eigenvector of . In other words? is a global trust vector
in this model. Its elements;, quantify how much trust the system
as a whole places pegr

4.3 Probabilistic Interpretation

Itis useful to note that there exists a straightforward plolistic
interpretation of this method, similar to the Random Sunfiedel
of [12]. If an agent were searching for reputable peers ritaawl
the network using the following rule: at each pégit will crawl
to peerj with probability c;;. After crawling for a while in this
manner, the agent is more likely to be at reputable peersuhan
reputable peers. The stationary distribution of the Markbain

@)

Cij

®)

A

repeat
FE+1) _ oT 7).
§ = |[t* D) — ¢k);

until § < ¢

Algorithm 1: Simple non-distributed EigenTrust algorithm

defined by the normalized local trust matriXis our global trust
vectort.

4.4 Basic EigenTrust

In this section, we describe the basic EigenTrust algoritigm
noring for now the distributed nature of the peer-to-pedwnek.
That is, we assume that some central server knows atlthalues
and performs the computation. In Section 4.6, we describethe
computation may be performed in a distributed environment.

We simply wish to computé = (C7)"¢, for n =large, where
we definee to be them-vector representing a uniform probability
distribution over allm peers,e; = 1/m. (In Section 4.2, we said
we wish to compute = (CT)"¢;, whereg; is the normalized local
trust vector of some peér However, since they both converge to
the principal left eigenvector af', we may use instead.)

At the most basic level, the algorithm would proceed as imAlg
rithm 1.

45 Practical Issues

There are three practical issues that are not addressedsby th
simple algorithm: a priori notions of trust, inactive peeaad ma-
licious collectives.

A priori notions of trust. Often, there are some peers in the
network that are known to be trustworthy. For example, s fiw
peers to join a network are often known to be trustworthy;esithe
designers and early users of a P2P network are likely to lesge |
motivation to destroy the network they built. It would be fude¢o
incorporate such notions of trust in a natural and seamlesmer.
We do this by defining some distributighover pre-trusted peérs
For example, if some set of peefsare known to be trusted, we
may definep; = 1/|P|if ¢ € P, andp; = 0 otherwise.) We
use this distributiony’in three ways. First of all, in the presence of
malicious peerst = (CT)"5 will generally converge faster than
t'= (CT)"€, so we use as our start vector. We describe the other
two ways to use this distributiopibelow.

Inactive Peers. If peeri doesn’t download from anybody else,
or if it assigns a zero score to all other peets,from Equation 1
will be undefined. In this case, we sgf = p;. So we redefine;;

2 maz(s;j)

as:
Cij =
pj

That is, if peeri doesn’t know anybody, or doesn't trust anybody,
he will choose to trust the pre-trusted peers.

Malicious Collectives. In peer-to-peer networks, there is poten-
tial for malicious collectives to form [8]. A malicious celttive is

maz(si;,0)

if =, max(si;,0) # 0;
otherwise

4)

a group of malicious peers who know each other, who give each

other high local trust values and give all other peers lovaldiwst
values in an attempt to subvert the system and gain high giaish

'The idea of pre-trusted peers is also used in [2], where thgpoe
tation of the trust metric is performed relative to a “seetftrosted
accounts.

0 = p;

repeat
FU1) — T fR).
tRHD = (1 — @)t 4 o
6= ||t<k+1) _ t(k)||;

until § < ¢

Algorithm 2: Basic EigenTrust algorithm

values. We address this issue by taking

D = (1 —)T 4 ap (5)

wherea is some constant less than 1. This is equivalent to setting
the opinion vector for all peers to lig¢ = (1 — a)¢; + ap, break-

ing collectives by having each peer place at least someitriise
peersP that are not part of a collective. Probabilistically, thss i
equivalent to saying that the agent that is crawling the agtvay

the probabilistic model given in Section 4 is less likely & gtuck
crawling a malicious collective, because at each step, baluar-
tain probability of crawling to a pre-trusted peer. Notibattthis
also makes the matri&' is irreducible and aperiodic, guaranteeing
that the computation will converge.

The modified algorithm is given in Algorithm 2.

It should be emphasized that the pre-trusted peers aretiedsen
to this algorithm, as they guarantee convergence and byeatad
licious collectives. Therefore, the choice of pre-truspezbrs is
important. In particular, it is important that no pre-tretpeer be
a member of a malicious collective. This would compromise th
quality of the algorithm. To avoid this, the system may cleas
very few number of pre-trusted peers (for example, the dessy
of the network). A thorough investigation of different mets of
choosing pre-trusted peers is an interesting research laued is
outside of the scope of this paper.

4.6 Distributed EigenTrust

Here, we present an algorithm where all peers in the netwark ¢
operate to compute and store the global trust vector, anddime
putation, storage, and message overhead for each peerraneaini

In a distributed environment, the first challenge that ariséow
to storeC' and. In previous sections, we suggested that each peer
could store its local trust vectai. Here, we also suggest that each
peer store its own global trust valug (For presentation purposes,
we ignore issues of security for the moment and allow peestre
their own trust values. We address issues of security in@ebt)

In fact, each peer can compute its own global trust value:

(6)

Inspection will show that this is the component-wise varsod
t*) = (1—a)CTi™ +ap. Notice that, since peéhas had lim-
ited interaction with other peers, many of the componentxjuna-
tion 6 will be zero. This lends itself to the simple distriedtalgo-
rithm shown in Algorithm 3. It is interesting to note two thm
here. First of all, only the pre-trusted peers need to knair .
This means that pre-trusted peers may remain anonymousgdnob
else needs to know that they are pre-trustetherefore, the pre-
trusted peers maintain anonymity as pre-trusted peerse (@ay
imagine that pre-trusted peers may be identified becaugehthe
high global trust values. However, simulations show théitexthe

t5) — (1= a) (et + .+ i) + aps

2Recall that, for the moment, we assume that peers are hamest a
may report their own trust values, including whether or heytare
a pre-trusted peer. The secure version is presented iro8écti

Definitions: 14 ' ' '
o A;: set of peers which have downloaded files from peer 12y
e B;: set of peers from which peéihas downloaded files 1t
Algorlthm‘: 08
Each peei do { 3
Query all peerg € A; for t§0) =pj; 806
repeat
Computetz(.k“) = (1 — a)(cutgk) + Czit;k) + ...+ 0.4}
cm-t%k)) + ap;;
Sendc;; 1% to all peersj € B;; 0.2f
Computes = [t* 1) — ¢¥).
Wait for all peersj € A, to returncjit§k+1); % 5 10 15 20
until 6 < e.; Iterations
}
Figure 1: EigenTrust convergence
Algorithm 3: Distributed EigenTrust Algorithm.
pre-trusted peers have above averagalues, they rarely have the _°
. posg = h,(ID,)
highest values of;.) @
Secondly, in most P2P networks, each peer has limited mtera
tion with other peers. There are two benefits to this. Fingtdom- @
putationt* ™ = (1—a) (c1st{® +coitS +. . +cnit) +apiis
not intensive, since mos}; are zero. Second, the number of mes- °
sages passed is small, sitdeand B; are small. In the case where @ @
a network is full of heavily active peers, we can enforce d¢Hssn- pos, =h,(ID,)
efits by limiting the number of local trust values that each peer
can report. e @
pos, = h,(ID,)

4.7 Algorithm Complexity

The complexity of the algorithm is bounded in two ways. First
the algorithm converges fast: For a network of 1000 peees 460
query cycles (refer to Section 7.1 for a description of howsime-
ulate our system), Figure 1 depicts the resid{f&f ™" — ¢*)||,.
Clearly, the algorithm has converged after less than 1@titers,
i.e., the computed global trust values do not change signifi
any more after a low number of iterations. In the distributed
sion of our algorithms, this corresponds to less than 10an@és
of updated trust values among peers. The reason for thedast c
vergence of the EigenTrust algorithm is discussed in [10].

Second, we can specifically limit the number of local trustea
that a peer reports. In the modified version of EigenTrust) @aer
reports a subset of its total set of local trust values. migkry
simulations have shown this scheme to perform comparabhawe
the algorithm presented here, where peers report all of kel
trust values.

Figure 2: Two-dimensional CAN hash space

In the secure version of the distributed trust algorithm, &3
(dubbedscore managersf a peer:) compute the trust value of a
peer:. If a peer needs the trust value of pégit can query all M
score managers for it. A majority vote on the trust value gedties
conflicts arising from a number of malicious peers being agrtbe
score managers and presenting faulty trust values as apppmtee
correct one presented by the non-malicious score managers.

To assign score managers, we use a distributed hash tabté(DH
such as CAN [13] or Chord [18]. DHTs use a hash function to de-
terministically map keys such as file names into points ingickl
coordinate space. At any time, the coordinate space idipagd
dynamically among the peers in the system such that eveny pee
covers a region in the coordinate space. Peers are resf@fib
storing (key, value) pairs the keys of which are hashed irgoiat

5. SECURE EIGENTRUST that is located within their region.

In the algorithm presented in the previous section, each pee In our approach, a peer’s score manager is located by haahing
computes and reports its own trust valye Malicious peers can unique ID of the peer, such as its IP address and TCP portainto
easily report false trust values, subverting the system. point in the DHT hash space. The peer which currently covess t

We combat this by implementing two basic ideas. First, tire cu point as part of its DHT region is appointed as the score manag
rent trust value of a peer must not be computed by and reside atof that peer. All peers in the system which know the unique 1D o
the peer itself, where it can easily become subject to mémipu a peer can thus locate its score manager. We can modify aiad ini
tion. Thus, we have a different peer in the network compuge th algorithm such that it can be executed by score managers.

trust value of a peer. Second, it will be in the interest oficialis As an example, consider the CAN in Figure 2. Peer 1's unique
peers to return wrong results when they are supposed to ¢empu 1D, I D4, is mapped into points covered by peers 2, 3 and 6, respec-
any peer’s trust value. Therefore, the trust value of one ipethe tively, by hash function&., he andhs. Thus, these peers become

network will be computed by more than one other peer. peer 1's score managers.

To cope with the inherent dynamics of a P2P system, we rely

for one peer. To assign several score managers to a peerg\sews

on the robustness of a well-designed DHT. For example, when a eral multi-dimensional hash functions. Peers in the systidhtake

score manager leaves the system, it passes on its stater(ise.
values or ongoing trust computations) to its neighbor peehé
DHT coordinate space. DHTs also introduce replication dada
to prevent loss of data (in this case, trust values) in casmees
manager fails.

5.1 Algorithm Description

Here we describe the secure algorithm to compute a globstl tru
vector. We will use these definitions: Each peer has a number
of score managers, whose DHT coordinates are determineg-by a
plying a set of one-way secure hash functiénshi, . .., har—1 to
the peer’s unigue identifiepos; are the coordinates of pegin the
hash space. Since each peer also acts as a score managas; it is
signed a set of daughtefs; - the set contains the indexes of peers
whose trust value computation is covered by the peer. As @ sco
manager, peer also maintains the opinion vectej; of its daugh-
ter peerd (whered € D;) at some point in the algorithm. Also,
peeri will learn A% which is the set of peers which downloaded
files from its daughter peet: It will receive trust assessments from
these peers referring to its daughter péeFinally, peer: will get
to know the seB3’, which denotes the set of peers which its daugh-
ter peerd downloaded files from: Upon kicking off a global trust
value computation, its daughter peeiis supposed to submit its
trust assessments on other peers to its score managedipgpthie
score manager with?.

foreach peeri do
Submit local trust valueg; to all score managers at posi-
tionshm, (pos;),m=1...M —1;
Collect local trust values;; and sets of acquaintancé
of daughter peer§ € D;;
Submit daughtet!’s local trust values:q; to score man-
agershm (posq), m =1...M —1,Vj € BY;
Collect acquaintances’, of daughter peers;
foreach daughter peetl € D; do
Query all peerg € A’ for cjap;;
repeat
Computet) = (1
ot cnatt)) + apa;
Sendeq;t"™ to all peersj € Bjj;

—a) (C1dt§k) + C2dtgk) +

Wait for all peersj € A¢ to returncjdtg.k“);
until [¢§" — 807] < e
end
end

Algorithm 4: Secure EigenTrust Algorithm

Upsides of the secure algorithm in terms of increased ggcuri
and reliability include:

Anonymity. It is not possible for a peer at a specific coordinate
to find out the peer ID for whom it computes the trust values —
hence malicious peers cannot increase the reputation ef otéli-
cious peers.

Randomization. Peers that enter the system cannot select at
which coordinates in the hash space they want to be locaté (t
should be a property of a well-designed DHT) - hence it is not
possible for a peer to, for example, compute the hash valits of
own ID and locate itself at precisely this position in thethapace
to be able to compute its own trust value.

Redundancy. Several score managers compute the trust value

over a particular region in the coordinate space, yet novnethee
several coordinate spaces, each of which is created by olte mu
dimensional hash function. A peer’s unique ID is thus mappex

a different point in every multi-dimensional hash space.

5.2 Discussion

A couple of points are important to note here. First, thedssu
secure score management in P2P networks is an importanéprob
with implications for reputation management, incentiveteys,
and P2P micropayment schemes, among others. An extended dis
cussion of secure score management in P2P networks, amdivari
concrete score management schemes (including a varidre ohie
presented above), are given in [20]. The main contributibthis
work is not in the secure score management scheme, but iather
the core EigenTrust algorithm. We discuss the secure scare m
agement scheme becausmmesecure score management scheme
is essential to the EigenTrust algorithm. However, it is am@ant
to note that the core EigenTrust algorithm may be used withyma
different secure score management schemes.

Second, the secure protocols proposed here and in [20]ildescr
how to use large collections of entities to mitigate singafagroup-
based manipulation of the protocol. These protocols arsamired
in the traditional sense; rather, we can show that the pitityais
small that a peer is able to get away with misreporting a scies
is discussed further in [20].

6. USING GLOBAL TRUST VALUES

There are two clear ways to use these global trust values in a
peer-to-peer system. The first is to isolate malicious p&era
the network by biasing users to download from reputable peer
The second is to incent peers to share files by rewardingablaut
peers.

Isolating Malicious Peers.When peetr issues a query, the sys-
tem may use the trust valuésto bias the user towards download-
ing from more reputable peers. One way to do this would be to
have each peer download from the most highly trusted peer who
responds to its query. However, such a policy leads to the mos
highly trusted peers being overloaded, as shown in Sectiéui?
thermore, since reputation is built upon sharing authdités, this
policy does not enable new peers to build up reputation irsyise
tem.

A different strategy is to select the peers from whom to down-
load probabilistically based on their trust values. In igaitr, we
can make type probability that a peer will download a file from
responding peej be directly proportional to the trust valde of
peer;.

Such a policy limits the number of unsatisfactory downloads
the network, while balancing the load in the network andvello
ing newcomers to build reputation. The experiments in $acTi
validate this.

It should be noted here that peers may easily choose to l@as th
choice of download by a convex combination of the globalttrus
values and their own local trust assessments of other pamisice
the trust values given by the vect@fcrsonal = di + (1 — d)¢,
whered is a constant between 0 and 1. This way, a peer can avoid
downloading from a peer that has given it bad service, evén if
gives the rest of the network good service.

Incenting Freeriders to Share. Secondly, the system may re-
ward peers with high trust values. For example, reputabéespe
may be rewarded with increased connectivity to other rdpeta
peers, or greater bandwidth. Rewarding highly trustedpkas a

twofold effect. First, it gives users an incentive to shakesfisince
a high global trust value may only be achieved by sharingemiit
files. In the current Gnutella network, less than 7% of therpee

number of query cycles. In each query cycle, a peerthe net-
work may be actively issuing a query, inactive, or even dowd a
not responding to queries passing by. Upon issuing a qug@sea

are responsible for over 50% of the files, and as many as 25% of waits for incoming responses, selects a download sourcexg@mo

peers on the network share no files at all [16]. Incentivesdhas
trust values should reduce the number of free riders ontoepeer
networks. Some such incentives are discussed in [11].

Second, rewarding highly trusted peers gives non-malcp@ers
an incentive to delete inauthentic files that they may hacelao-
tally downloaded from malicious peers, actively keeping ttet-
work tidy. This makes it more difficult for inauthentic files tepli-
cate in the system.

7. EXPERIMENTS

In this section, we will assess the performance of our schasne
compared to a P2P network where no reputation system is imple
mented. We shall demonstrate the scheme’s performance ande
variety of threat models.

7.1 Simulation

Our findings are based on simulations of a P2P network model

which we shall explain briefly in the following.

Network model. We consider a typical P2P network: Intercon-
nected, file-sharing peers are able to issue queries for fikers
can respond to queries, and files can be transferred between t
peers to conclude a search process. When a query is issued by
peer, itis propagated by broadcast with hop-count horikoough-
out the network (in the usual Gnutella way), peers whichivece
the query forward it and check if they are able to respond.to it
We interconnect peers by a power-law network, a type of ndtwo
prevalent in real-world P2P networks [15].

Node model.Our network consists of good nodes (normal nodes,
participating in the network to download and upload files) ara-
licious nodes (adversarial nodes, participating in thevogk to un-
dermine its performance). In our experiments, we considtard
ent threat models, where a threat model describes the lwelaivi
a malicious peer in the network. Threat models will be descti
in more detail later on. Note also that, based on the corsiders
in Section 4.5, some good nodes in the network are appoirged a
highly trusted nodes.

Content distribution model. Interactions between peers —i.e.,
which queries are issued and which queries are answeredéry gi
peers — are computed based on a probabilistic contenttdistn
model. The detailed model will not be described here, it & pr
sented in [17]. Briefly, peers are assumed to be interestadir-
set of the total available content in the network, i.e., gaeér ini-
tially picks a number of content categories and shares filgsin
these categories. Reference [7] has shown that files shasgd2P
network are often clustered by content categories. Als@sgeme
that within one content category files with different popitias ex-
ist, governed by a Zipf distribution. When our simulator geates
a query, it does not generate a search string. Instead, érges
the category and rank (or popularity) of the file that willisit
the query. The category and rank are based on Zipf distabsti
Each peer that receives the query checks if it supports tiegagy
and if it shares the file. Files are assigned probabilisti¢alpeers
at initialization based on file popularity and the contertegaries
the peer is interested (that is, peers are likely to sharalpofiles,
even if they have few files). The number of files shared by paeils
other distributions used in the model are taken from measenés
in real-world P2P networks [16].

Simulation execution. The simulation of a network proceeds
in simulation cycles: Each simulation cycle is subdividatbia

those nodes that responded and starts downloading the file. T
latter two steps are repeated until a peer has properlyvetteai
good copy of the file that it has been looking¥otJpon the con-
clusion of each simulation cycle, the global trust value patation
is kicked off. Statistics are collected at each node, ini@agr, we
are interested in the number of authentic and inauthentiang
downloads of each node. Each experiment is run several ames
the results of all runs are averaged. We run an experimeitumt
see convergence to a steady state (to be defined in the deswip
of the experiments), initial transient states are excluiech the
data.

The base settings that apply for most of the experimentsuane s
marized in Table 1. The settings represent a fairly smallogk to
make our simulations tractable. However, we have expeitiegen
with larger networks in some instances and our conclusioms ¢
tinue to hold. That is, schemes that do well in a small settileg
proportionately as well as the network is scaled up. Als@ nioat
our settings describe a pessimistic scenario with a powadier-
sary: Malicious peers connect to the most highly connecesd
when joining the network (see Section 7.3), they respondeddp
20% of queries received and thus have a large bandwidth atteey
gble to communicate among themselves in most of our thredt mo
€ls, and they make up a significant fraction of the network asm
of our experiments. Yet, our experiments indicate that chese
works well in this hostile a scenario, and thus will also workess
hostile environments.

As metrics, we are particularly interested in the numbemait
thentic file downloads versus the number of authentic file rdow
loads: If the computed global trust values accurately refach
peer’s actual behavior, the number of inauthentic file doads
should be minimized.

Before we consider the strengths of our scheme in suppgessin
inauthentic downloads in a P2P network, we examine if it $etad
unwanted load imbalance in the network. In the followingtiess
we also give a precise definition on how we use global trustesal
in downloading files.

7.2 Load Distribution in a Trust-based
Network

In P2P networks, a natural load distribution is establishgd
peers with more content and higher bandwidth being able-to re
spond to more queries and thus having a higher likelihoocfdh
chosen as download source for a file transfer. In our schetrigha
global trust value of a peer additionally contributes to arfsdike-
lihood of being chosen as download source. Paossibly, thigimi
lead a peer into a vicious circle of accumulating reputabigrre-
sponding to many queries, thus being chosen even more frdgue
as download source in the future, thus accumulating evee repr
utation. In a non-trust based system, this situation do¢co
cur: From responding peers, a peer usually is randomly diekel
selected as download source, somewhat balancing the Iché in
network. In the following, we are interested in integratiogd-
distributing randomization into our scheme. In the expeninn
Figures 3 and 4, we study the load distribution performarfca o

3In Section 7.2 we will consider two different ways of choagin
download sources from those nodes that respond to a query and
compare their performance in one of our experiments.

Network

of good peers

of malicious peers

of pre-trusted peers

of initial neighbors of good peers

of initial neighbors of malicious peers
of initial neighbors of pre-trusted peers
Time-to-live for query messages

60
42
3
2
10
10
7

Content Distribution

of distinct files at good peer
set of content categories supported by good pe
of distinct files at good peérin category;

top % of queries for most popular categories ar
files malicious peers respond to
top % of queries for most popular categories ar
files pre-trusted peers respond to

% of time peetri is up and processing queries
% of time pre-trusted peéris up and processing
queries

% of up-time good peerissues queries

% of up-time pre-trusted peeissues queries

file distribution in [16]

eZipf distribution over 20 content categories
uniform random distribution over peés
total number of distinct files

d20%

d5%

uniform random distribution over [0%, 1009
1

uniform random distribution over [0%, 50%]
1

Peer Behavior

% of download requests in which good peer
returns inauthentic file

% of download requests in which malicious pee
returns inauthentic file

download source selection algorithm
probability that peer with global trust value 0 is

5%
r 0% (varied in Section 7.3)

probabilistic algorithm (varied in Section 7.2
10%

selected as download source

Simulation

of simulation cycles in one experiment
of query cycles in one simulation cycle
of experiments over which results are averaged

30
50

Table 1: Simulation settings

‘D Random download source selection B Deterministic trust-based download source selection

0.8 q

0.7 4

Peer load share
o
S

[

Lokbhol hoiMoaklnlonn

12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Peer

Figure 3: Load distribution in a network using deterministi ¢

download source selection versus a non-trust based netwark

The load distribution is heavily skewed, peer 2 will eventully
accumulate all reputation in the network.

network in which our scheme is activated. We consider twiedif
ent trust-based algorithms for selecting download souacesng
peers responding to a query, a deterministic algorithm gmolaa-

bilistic algorithm.

If {to

follows.

7t17-'

.,tr—1} are the trust values of peers responding to
a query, the deterministic and probabilistic algorithmsceed as

Deterministic algorithm Choose the peer with the highest trust
valuet .., among the peers responding to a query as down-
load source.

Probabilistic algorithm Choose peet as download source with
probability — With a probability of 10%, select a

Zf‘:?’o tj'
peer; that has a trust valug = 0.

If a download returns an inauthentic file, delete the peanftoe
list of responding peers and repeat the algorithm.

To give new peers in the network — which start with a globadttru
value of 0 — the chance of building up reputation, the prdisiiai
algorithm assigns a fixed 10% chance to download from thepgrou
of responding peers with trust value 0. Otherwise, new pgetsd
maybe never be chosen as download source, depriving theme of t
chance to become a trusted member of the network. Based on our
experience, a probability of 10% strikes a balance betweamtigg
malicious peers (which might also have a trust value of Ohigh
a chance of uploading inauthentic files and allowing new pé®r
prove themselves as download sources of authentic files.

We compare these download source selection algorithmsdab an
work where no reputation system is deployed, i.e., amongspee
sponding to a query a peer is picked as download source lgrdire
random. We examine the load distribution in these netwoks.
do ncit assume the existence of any malicious peers in thiriexp
ment:

“Malicious peers would not impact the load distribution agon
good peers since downloading peers keep trying until thexe ha
found an authentic copy of a file (assuming they have enougt-ba

0.12 q

@ Random download source selection B Probabilistic trust-based download source selection

Peer load share
o o
° o
3 &

o
o
R

0.02 4

8 9 10 11 12 13 14 15 16 17 18 19 20
Peer

1 2 3 4 5 6 7

Figure 4: Load distribution in a network using probabilisti ¢
download source selection versus a non-trust based netwark
The load distribution does not deviate too much from the load
distribution in a network based on random, non-trust based
download source selection and is thus close to the naturaldd
distribution in a normal Gnutella network.

Setup. We simulate a network consisting of 20 good peers, no
pre-trusted peers and no malicious peers. Other than kigastan-
dard settings in Table 1 apply. After running queries on §stesn
for 20 query cycles, the load distribution is measured inurég
3 and 4: For each peer 1 — 20 in the network, we depict its load
share, i.e., the fraction of its uploads after a full run af gxperi-
ment divided by the total number of uploads in the entire netw
The load distribution in a network using the deterministiovdload
source selection algorithm is compared to the load didiohun
a network using no reputation system at all in Figure 3, wéeee
system employing the probabilistic download source seledl-
gorithm is compared to the non-trust based network in Figure

Discussion.Always choosing the responding peer with the high-
est global trust value as download source leads to a vastridzal-
ance in the network: Popular peers do not stop accumulatirsg t
value and gain further popularity. In Figure 3, peer 2 wilketu-
ally become the download source for virtually all queriestthis
able to answer. Also note that in each experiment we ran anoth
peer turned out to be the most trusted peer. Choosing dodnloa
sources probabilistically yields only a slight deviatiantéerms of
individual load share of each peer from the case where talses
are not used to select download sources among responding, pee
therefore leading to a much better natural load distrilbutiothe
network. In Figure 4, peer 2 becomes the download sourcetor 8
of all queries in the system, and many other peers partiijmat
sharing the load, mainly determined by the number of and lpopu
ity of files the peers share. Our measurements also showtthat t
efficiency in suppressing inauthentic downloads does not va-
tween the two approaches. Thus, for the remaining expetswes
use the probabilistic peer selection algorithm.

7.3 Threat Models

@ non-trust based Mtrust based

o
©

o
=)

o
J

o
o

I
~

o
w

Fraction of inauthentic downloads
o
o

H i

MI1ITT1Y

0% 10% 20% 30% 40% 50% 60% 70%

Fraction of malicious peers

o
N

o

o

Figure 5: Reduction of inauthentic downloads by basing down
load source selection on global trust values in a network whe
independent malicious peers are present. Upon activationfo
our reputation scheme, the number of inauthentic downloads
in the network is significantly decreased to around 10% of all
downloads in the system, malicious peers in the network are
virtually banned from uploading inauthentic files.

simply try to upload inauthentic files and assign high trudties

to any other malicious peer they get to interact with whiletipa
ipating in the network. In threat model B, malicious peerswn
each other upfront and deterministically give high locaktrval-
ues to each other. In threat model C, malicious peers try to ge
some high local trust values from good peers by providinbemt

tic files in some cases when selected as download sourcesr Und
threat model D, one group of malicious peers in the netwodk pr
vides only authentic files and uses the reputation they gaboost

the trust values of another group of malicious peers that pro-
vides inauthentic files.

We start our experiments considering the simplest threaleio
where malicious peers are not initially aware of other nialis
peers and simply upload inauthentic files.

Threat Model A. Individual Malicious Peers Malicious peers
always provide an inauthentic file when selected as dowrdoacte.
Malicious peers set their local trust values tasbe= inauth(j)—
auth(j), i.e., malicious peers valueauthenticfile downloads in-
stead of authentic file downloads.

Setup. We simulate a network consisting of 63 good nodes, 3
of which are highly trusted nodes, applying the standartinggst
from Table 1. In each experiment, we add a number of malicious
peers to the network such that malicious nodes make up betwee
0% and 70% of all nodes in the network. For each fraction ipste
of 10% we run experiments and depict the results in FigureganJ
joining the network, malicious peers connect to the 10 miagili
connected peers already in the network in order to receivesay
queries travelling through the network as possible. IntwacP2P
protocols such as the Gnutella protocol enable nodes ta ¢thaw
network in search of highly connected nodes. We run the exper
iments on a system where download sources are selected-proba

We now evaluate the performance of our system in suppressing pjjistically based on our global trust values and on a systérare

inauthentic downloads. We will consider several strategfemali-
cious peers to cause inauthentic uploads even when our scisem
activated. In short, malicious peers operating under thnealel A

width to do so) — hence malicious peers would add inautheitic
loads to the network, but not change anything about the nuotbe
authentic uploads from good peers.

download sources are chosen randomly from the set of peers re
sponding to a query. Bars depict the fraction of inauthefiliés
downloaded in one simulation cycle versus the total numbfiles
downloaded in the same period of time. The results are agdrag
over the last 10 query cycles in each experiment.

Discussion. In the absence of a reputation system, malicious

Threat Model || File Upload Behavior Local Trust Behavior Figure

A Always upload inauthentic files. Assign trust to peers which upload inauthentic files. 5

B Always upload inauthentic files. Assign trust to previously known malicious 6
peer to form malicious collective.

C Upload inauthentic files iff % of all cases.| Assign trust to previously known malicious 7,8
peer to form malicious collective.

D Upload authentic files. Assign equal trust share to all type B nodes in the networé.

Table 2: Threat models and associated experiments

peers succeed in inflicting many inauthentic downloads em#t-
work. Yet, if our scheme is activated, malicious peers rexhigh
local trust values only from other malicious peers, and etber
only occasionally — since malicious peers have to happeettag
quainted with each other through a file exchange. Becaudef t
low trust values, malicious peers are rarely chosen as daainl
source which minimizes the number of inauthentic file dowd®
in the network. We observed a 10% fraction of inauthentic mow
loads, mostly due to the fact that good nodes make mistalasion
a while and upload inauthentic files (for example, by not tiede
a downloaded inauthentic file from their shared folders)erEif
no malicious peers are present in the network, downloadsvale
uated as inauthentic in 5% of all cases — this accounts faakes
users make when creating and sharing a file, e.g., by prayitie
wrong meta-data or creating and sharing an unreadable file.

Note that, due to the fact that our current secure algoriteesu
majority vote, a cooperating malicious collective that goises
over 40% of the network will be able to influence the assigrtroén
global trust values values in the network during their cotapan.
This is not represented in Figure 5, which assumes that ths¢ tr
values are computed correctly. However, it is unlikely theer
40% of the peers in a network are in a single malicious callect
unless the malicious collective is a result of pseudospgdfirk.a.
the Sybil attack [8]), where a single adversary initiatesudands
of peers onto the network. This type of attack can be avoiged b
imposing a cost of entry into the network. For example, a peer
wishing to enter the network may be required to solve a puhze
a computer cannot solve [3, 5]. CurrenthAYOO! requires a user
to read some text from a JPEG file in order to opema&o! Mail
account.

Thus, in knowing that our scheme is present in a system, mali-
cious peers know that they have to gain a somewhat high lacsl t
value in order to be considered as download sources. Therefe
will examine strategies on how malicious peers can incréasie
global trust valualespiteuploading inauthentic files.

Since malicious peers cannot expect to receive any higH loca
trust values from non-malicious peers, they can try to iasegheir
global trust value by teaming up as a malicious collectivethie
experiment depicted in Figure 6, we vary the number of malisi
peers in the network to assess their impact on the netwogts p
formance when they are aware of each other and form a madiciou
collective.

Threat Model B. Malicious CollectivesMalicious peers always
provide an inauthentic file when selected as download soltae
licious peers form a malicious collective by assigning gkanrust
value of 1 to another malicious peer in the network. Pregigel
denotes the set of malicious peers in the network, @aeh; € M
sets

1 ifj=i+1
Speeripeerj = 1 |f 1= |M| andj =0
0 else

which resembles a malicious chain of mutual high local tuadt

@ non-trust based Mtrust based

o
©

o
=)

o
J

o
o

I
~

o
w

Fraction of inauthentic downloads
o
o

o
N

QLLLLLLLL

0% 10% 20% 30% 40% 50% 60% 70%

Fraction of malicious peers

o

o

Figure 6: Trust-based reduction of inauthentic downloads i
a network where a fraction of peers forms a malicious collec-
tive and always uploads inauthentic files. Forming a malicias
collective does not boost the trust values of malicious peesig-
nificantly, they are still virtually banned from uploading i nau-
thentic files, similar to Figure 5.

ues. Interms of the probabilistic interpretation of ourestle, mali-
cious peers form a collective out of which a random surfeigang,
once it has entered the collective, will not be able to esctpes
boosting the trust values of all peers in the collective.

Setup. We proceed exactly as in the previously described exper-
iment, albeit with malicious nodes operating under threatieh B.

As shown in Figure 6, we run the experiments on a system where
download sources are selected based on our global trugtsvahd

on a system where download sources are chosen randomlyHeom t
set of peers responding to a query.

Discussion.Our system performs well even if a majority of ma-
licious peers is present in the network at a prominent plahe.ex-
periment clearly shows that forming a malicious collectiees not
decisively boost the global trust values of malicious pe@isese
peers are tagged with a low trust value and thus rarely chasen
download source. The system manages to break up malicidus co
lectives through the presence of pre-trusted peers (s¢®®dct):

If pre-trusted peers were not present in the network, fognaima-
licious collective in fact heavily boosts the trust valu¢salicious
nodes. Under the presence of pre-trusted peers, the losahal-
ues of malicious peers are significantly lower than thoseowidg
peers already after one simulation cycle. This minimizesniim-
ber of inauthentic downloads, and the numbers are virtigjlyal

to the numbers in Figure 5 when peers do not form a malicious
collective. For example, with 40% of all peers in a networkibe
malicious, around 87% of all file downloads will end up in dewn
loading an inauthentic version of the file in a normal, narsted
network. Upon activation of our scheme, around 10% of all file

@ non-trust based M trust-based

o
3

o
o

o
13}
L

o
~

o
w

=}
N
L

Fraction of inauthentic downloads

o

0 10% 20% 30% 40% 50% 60% 70% 80% 90%
%

o
|

Figure 7: Trust-based reduction of inauthentic downloads i
a network where a fraction of peers forms a malicious collec-
tive and returns authentic files with certain probabilities. When
malicious peers partly provide authentic uploads, they reeive
more positive local trust values and will be selected as doviwad
sources more often, also increasing their chances to uploaa-
authentic files. Yet, uploading authentic files may be assatied
with a cost for malicious peers.

downloads return an inauthentic file.

Forming a malicious collective obviously does not incretse
global trust values of malicious peers sufficiently in orfterthem

to have impact on the network. This leaves malicious peetis wi

one choice: They have to increase their local trust valuestsiv-
ing positive local trust values from at least some good amstéd
peers in the network. In the experiment in Figure 7, we carsid
strategy for malicious peers that is built on the idea thataioais
peers try to get some positive local trust values from goadpe
Threat Model C. Malicious Collectives with Camofloug&la-
licious peers provide an inauthentic file ji% of all cases when

selected as download source. Malicious peers form a mascio

collective as described above.

—trust-based —= non-trust based

45000 -
40000 4.
35000 1
30000 A

25000 -

Inauthentic downloads

20000 A

15000 4 S

10000 4

5000 .
I
0 ; ; ; ; ; ™ ; .
0 1000 2000 3000 4000 5000 6000 7000 8000

A i loads by ici peers

Figure 8: Inauthentic downloads versus authentic uploads -
vided by malicious peers with trust-based and non-trust basd
download source selection. When malicious peers provide au
thentic files in more than 20% of the cases when selected as
download source, the increase in authentic files uploaded by
malicious peers exceeds the increase in inauthentic dowlds

in the network, hence possibly coming at a higher cost than
benefit for malicious peers.

of authentic files on the network, and in this strategy theyeha
participate in it; second, maintaining a repository of auitiic files
requires a certain maintenance overhead.

Figure 8 depicts the trade-off between authentic (horalantis)
and inauthentic (vertical axis) downloads. Each scenaoim fFig-
ure 7 is represented by one data point in Figure 8. For example
consider the fourth dark bar in Figure 7, corresponding te 30%
and our reputation scheme in place. In this scenario, noalci
peers provide 1850 authentic downloads and 5000 inauthemis
in a particular rurf. The value(1850, 5000) is plotted in Figure 8
as the fourth data point (left to right) on the lower curveresent-
ing the case when our reputation scheme is used. The points on
each curve represent increasifigalues, from left to right.

In Figure 8, malicious nodes would like to operate in the up-

Setup. We simulate a network consisting of 53 good peers, 3 Per left quadrant, providing a high number of inauthentievdo

of which are pre-trusted peers, and 20 type C malicious pgers
plying the standard settings in Table 1. In each experimest,
apply a different setting of parametgiin threat model B such that
the probability that malicious peers return an authente iihen

loads, and a low number of authentic downloads. Howeveffjlthe
sharing mechanism in place constrains malicious nodesematp
along one of the curves shown. Without our reputation sch¢ope
curve), malicious nodes can séto a small value and move to the

selected as download source varies from 0% to 90%. We run ex- Upper left quadrant. On the other hand, with our scheme cioal

periments for each setting of paramefen steps of 10%. Running

peers have no good choices. In particular, increagingyond 20%

the experiments on both a non-trust based system and on sur sy does not make much sense to malicious peers since the intreme

tem vyields Figure 7. Bars depict the fraction of inauthefitis
downloaded in one simulation cycle divided by the total nemndif
files downloaded in the same period of time.

tal authentic uploads they have to host outnumber the iserga
inauthentic downloads. Moreover, for all settings of paetenf
below 50%, malicious peers will lose all positive local trualues

Discussion. Malicious peers that operate under threat model C @ssigned by other peers in the long run — since on averageithey

attempt to gain positive local trust values from some perithe
network by sometimes providing authentic files. Thus, théy w
not be assigned zero trust values by all peers in the netvinck s
some peers will receive an authentic file from them. This im tu
provides them with higher global trust values and more ujdcaa
fraction of which will be inauthentic. Figure 7 shows thatlitiaus

provide more inauthentic than authentic files.

Notice that the lines cross at the lower right hand side. @bes
not show that the non-trust-based scheme works betterdbnyail-
ues of f. Rather, it shows that, when the trust-based scheme is
implemented, malicious peers must upload more authengis ifil
order to be able to upload the same number of inauthentic files

peers have maximum impact on the network when providing 50% This is the desired behavior.

authentic files: 28% of all download requests return inautibe

files then. However, this strategy comes at a cost for maigcio

peers: They have to provide some share of authentic fileshasi
undesirable for them. First of all, they try to prevent theleange

5More precisely, we run 30 query cycles, exclude the first Jyju
cycles, and count the number of inauthentic and authentimédo
loads. We execute a second run, and add the numbers form both
runs.

—trusted —=-non-trusted

35000 -
30000 1
25000

20000

15000 - I

Inauthentic downloads

10000 -

5000 -

1500 2000 2500 3000 3500 4000 4500

Authentic malicious uploads

1000

Figure 9: Inauthentic downloads versus authentic uploads -
vided by malicious peers with trust-based and non-trust basd
download source selection in a network populated by type D
and type B peers. As with threat model C, malicious peers
have to provide a number of authentic uploads in order to in-
crease their global trust values. Yet, as compared to Figure
8, less authentic uploads by malicious peers are necessary t
achieve equal numbers of inauthentic downloads in the net-
work: 5000 inauthentic downloads cost 400 authentic uploasl
with this strategy as compared to more than 1000 authentic up
loads with threat model C.

The previous experiment has shown that malicious peersnean i
crease their impact by partly concealing their maliciousntity.
Yet over time, their malicious identity will be uncovereddatmey
lose their impact on the network. In the experiment in Fidyrere
consider a team effort strategy that malicious peers catouserk
around this drawback. Two different types of malicious pese
present in the network: Malicious nodes of type B and of type D

Threat Model D. Malicious SpiesMalicious peers answer 0.05%
of the most popular queries and provide a good file when salect
as download source. Malicious peers of type D assign trugesa
of 1 to all malicious nodes of type B in the network. Precisély
Mp andMp denote the set of malicious type B peers resp. type D
peers in the network, eagleer; € Mp sets

if peer; € Mp
else

1
Speeripeerj = { ”NIB!)

Setup. We simulate a network consisting of 63 good peers, 3 of
which are pre-trusted peers, and 40 (39%) malicious pemided
into two groups of malicious type B and type D peers. Othezwis
the standard settings from Table 1 apply. In each experinvant
consider a different number of type B and type D peers. Configu
rations considered are: 1. 40 type B, 0 type D peers Il. 39 §pe
1 type D peer lll. 36 type B, 4 type D peers IV. 35 type B, 5 type
D peers V. 30 type B, 10 type D peers VI. 25 type B, 15 type D
peers VII. 20 type B, 20 type D peers VIlI. 15 type B, 25 type D
peers IX. 10 type B, 30 type D peers X. 5 type B, 35 type D peers.
From left to right, we plot these data points in a graph thaicte
the number of inauthentic file downloads versus the numbauof
thentic file uploads provided by malicious peers, as in tle@ipus
experiment.

Discussion. Malicious peers establish an efficient division of
labor in this scheme: Type D peers act as normal peers in the ne
work and try to increase their global trust value, which thélf

in turn assign to malicious nodes of type B providing inaatie
files. The malicious nature of type D peers will not be unceder
over time since these peers do not provide inauthentic filenee
they can continue to increase the global local trust valdiggpe

B peers in the network. An interesting configuration for rwialiis
peers would be configuration I: Malicious peers provide ayfai
low number of authentic downloads (around 100), yet ach#ve
most the same number of inauthentic downloads in the netasrk
in other configurations with a higher share of authentic doaais
by malicious peers. In any configuration though, our scheare p
forms better than a system without trust-based downloadceou
selection. Also, this strategy would probably be the sgwptef
choice for malicious peers in order to attack a trust-bastaork:
For example, by hosting 500 authentic file uploads in thistsgy
malicious peers achieve around 5000 inauthentic file doaddo-
as opposed to about 2500 inauthentic file downloads in thequre
strategy, given the same effort on providing authentic agéo

7.3.1 Other Threat Models

In this section, we discuss two slightly more nuanced threat-
els.

Threat Model E. Sybil Attack.An adversary initiates thousands
of peers on the network. Each time one of the peers is selémted
download, it sends an inauthentic file, after which it diseested
and replaced with a new peer identity.

Discussion. This threat scenario simply takes advantage of the
fact that the fudge-factor that allows previously unknoveens to
obtain a reputation can be abused. Essentially, becauseitheo
cost to create a new ID, the adversary can dominate that patbl (
ghost identities). Because 10% of all traffic goes to the hionn”
pool, the malicious entity can behave arbitrarily withoaaif of
losing reputation. To make matters worse, this kind of &ttait!
prevent good peers from being able to garner a good repatatio
(they are so outnumbered that they will almost never be talic

However, this threat scenario can be averted by imposingt co
to creating a new ID as discussed in Section 7.3 and [3]. For ex
ample, if a user must read the text off of a JPEG (or solve some
othercaptcha[5]), it will be costly for a single adversary to create
thousands of users.

Threat Model F. Virus-Disseminators(variant of threat model
C) A malicious peer sends one virus-laden (inauthenticy aifa
particular file every 100th request. At all other times, théhantic
file is sent.

Discussion. This is a threat scenario that is not addressed by
EigenTrust. EigenTrust greatly reduces — but does not ocetelgl
eliminate — corrupt files on a P2P network. This is useful otea fi
sharing network where executables are not shared. If exelest
are introduced that have potential to do great damage, tlain m
cious peers can develop strategies to upload a few of therhit Bu
should be noted that no reputation system to date claimsrno co
pletely eliminate all corrupt files on a P2P network in an édfit
manner. It should also be noted that the main problem on ®day
P2P networks is not the distribution of malicious execwdalfl.e.
viruses), but rather the flooding of the network with inautie
files. This is likely because today’s P2P networks are mastid
to trade digital media, and relatively few users make usdege
networks to share executables.

8. RELATED WORK

An overview of many key issues in reputation management is
given in [14]. Trust metrics on graphs have been present?] in
and [4]. Beth et al. [4], also use the notion of transitivestribut
their approach is quite different from ours. Reputationeys for

P2P networks in particular are presented in [6] and [1], amd a [6] F. Cornelli, E. Damiani, S. D. C. D. Vimercati, S. Parablois

largely based on notions similar to our local trust valudse €on- and S. Samarati. Choosing Reputable Servents in a P2P

tribution of this work is that it shows how to aggregate thealo Network. InProceedings of the 11th World Wide Web

trust assessments of all peers in the network in an efficiist, ConferenceHawaii, USA, May 2002.

tributed manner that is robust to malicious peers. [7] A. Crespo and H. Garcia-Molina. Semantic Overlay
Networks. Submitted for publication 2002.

9. CONCLUSION [8] J. Douceur. The Sybil Attack. IRirst IPTPS March 2002.

We have presented a method to minimize the impact of mali- [9] eBay website. www.ebay.com. _
cious peers on the performance of a P2P system. The system com[10] T. H. Haveliwala and S. D. Kamvar. The second eigenvalue

putes a global trust value for a peer by calculating the ifigipal of the google matrix. Technical report, Stanford Univeysit
eigenvector of a matrix of normalized local trust valuesisthak- 2003.
ing into consideration the entire system’s history withleaingle [11] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina.
peer. We also show how to carry out the computations in a scal- Incentives for Combatting Freeriding on P2P Networks.
able and distributed manner. In P2P simulations, usingetirest Technical report, Stanford University, 2003.
values to bias downloads has shown to reduce the number of in-[12] L. Page, S. Brin, R. Motwani, and T. Winograd. The
authentic files on the network under a variety of threat stesa PageRank Citation Ranking: Bringing Order to the Web.
Furthermore, rewarding highly reputable peers with bejtelity Technical report, Stanford Digital Library Technologies
of service incents non-malicious peers to share more fildst@an Project, 1998.
self-police their own file repository for inauthentic files. [13] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Shenker. A scalable content-addressable network. In
10. REFERENCES Proceedings of ACM SIGCOMMugust 2001.

[1] K. Aberer and Z. Despotovic. Managing Trust in a [14] P. Resni_ck, R. Zeckhauser, E Fr_iedman, and K. Kuwabara
Peer-2-Peer Information System.Rmoceedings of the 10th Reputation System&ommunications of the ACM
International Conference on Information and Knowledge 43(12):45-48, 2000.

Management (ACM CIKMNew York, USA, 2001. [15] M. Ripeanu and I. Foster. Mapping the Gnutella Network -

[2] Advogato’s Trust Metric (White Paper), Macroscopic Properties of Large-scale P2P Networks and
http:/Aww.advogato.org/trust-metric.html. Implications for System Design. Imternet Computing

[3] T. Aura, P. Nikander, and J. Leiwo. Dos-resistant Journal ,6(1) 2002.))
authentication with client puzzles. 8th International [16] S. Saroiu, P. K. Gummadi, and S. D. Gribble. A
Workshop on Security Protoco2000. Measurement Study of Peer-to-Peer File Sharing Systems. In

[4] T. Beth, M. Borcherding, and B. Klein. Valuation of trust Praceedings of Multimedia Computing and Networking 2002
open networks. IfProc. 3rd European Symposium on (MMCN ‘02), San Jose, CA, USA, January 2002.

Research in Computer Security — ESORICS iges 3-18, [17] M. T. Schlosser and S. D. Kamvar. Simulating P2P
1994. Networks. Technical report, Stanford University, 2003.

[5] Captcha Project. http://www.captcha.net. [18] I. Stoica, R Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A scalable peer-to-peer lookup
service for internet applications. Proceedings of the 2001
Conference on Applications, Technologies, Architectures
and Protocols for Computer Communicatiopages
149-160. ACM Press, 2001.

[19] VBS.Gnutella Worm.
http://securityresponse.symantec.com/avcenter/date/
vbs.gnutella.html.

[20] B. Yang, S. D. Kamvar, and H. Garcia-Molina. Secure $cor
Management for P2P Systems. Technical report, Stanford
University, 2003.

