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ABSTRACT

We present the MAC network, a novel fully differentiable neural network archi-
tecture, designed to facilitate explicit and expressive reasoning. MAC moves away
from monolithic black-box neural architectures towards a design that encourages
both transparency and versatility. The model approaches problems by decompos-
ing them into a series of attention-based reasoning steps, each performed by a
novel recurrent Memory, Attention, and Composition (MAC) cell that maintains
a separation between control and memory. By stringing the cells together and im-
posing structural constraints that regulate their interaction, MAC effectively learns
to perform iterative reasoning processes that are directly inferred from the data in
an end-to-end approach. We demonstrate the model’s strength, robustness and in-
terpretability on the challenging CLEVR dataset for visual reasoning, achieving
a new state-of-the-art 98.9% accuracy, halving the error rate of the previous best
model. More importantly, we show that the model is computationally-efficient and
data-efficient, in particular requiring 5x less data than existing models to achieve
strong results.

1 INTRODUCTION

Reasoning, the ability to manipulate previously acquired knowledge to draw novel inferences or
answer new questions, is one of the fundamental building blocks of the intelligent mind. As we
seek to advance neural networks beyond their current great success with sensory perception towards
tasks that require more deliberate thinking, conferring them with the ability to move from facts to
conclusions is thus of crucial importance. To this end, we consider here how best to design a neural
network to perform the structured and iterative reasoning necessary for complex problem solving.

Q: Do the block in front of the
tiny yellow cylinder and the
tiny thing that is to the right
of the large green shiny object
have the same color? A: No

Figure 1: A CLEVR example.
Color added for illustration.

Concretely, we develop a novel model that we apply to the CLEVR
task (Johnson et al., 2017a) of visual question answering (VQA).
VQA (Antol et al., 2015; Gupta, 2017) is a challenging multimodal
task that requires responding to natural language questions about im-
ages. However, Agrawal et al. (2016) show how the first generation
of successful VQA models tends to acquire only superficial compre-
hension of both the image and the question, exploiting dataset bi-
ases rather than capturing a sound perception and reasoning process
that would lead to the correct answer (cf. Sturm (2014)). CLEVR
was created to address this problem. As illustrated in figure 1, the
dataset features unbiased, highly compositional questions that require
an array of challenging reasoning skills, such as transitive and logical
relations, counting and comparisons, without allowing any shortcuts
around such reasoning.

However, deep learning approaches often struggle to perform well on tasks with a compositional and
structured nature (Garnelo et al., 2016; Lake et al., 2017). Most neural networks are essentially very
large correlation engines that will hone in on any statistical, potentially spurious pattern that allows
them to model the observed data more accurately. The depth, size and statistical nature that allows
them to cope with noisy and diverse data often limits their interpretability and hinders their capacity
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Figure 2: Model Overview. The MAC net-
work consists of an input unit, a core recur-
rent network and an output unit. (1) The in-
put unit transforms the raw image and ques-
tion into distributed vector representations.
(2) The core recurrent network reasons se-
quentially over the question by decompos-
ing it into a series of operations (control)
that retrieve information from the image
(knowledge base) and aggregate the results
into a recurrent memory. (3) The output
classifier computes the final answer using
the question and the final memory state.

to perform explicit and sound inference procedures that are vital for problem solving tasks. To miti-
gate this issue, some recent approaches adopt symbolic structures, resembling the expression trees of
programming languages, that compose neural modules from a fixed predefined collection (Andreas
et al., 2016a; Johnson et al., 2017b). However, they consequently rely on externally provided struc-
tured representations and functional programs, brittle handcrafted parsers or expert demonstrations,
and require relatively complex multi-stage reinforcement learning training schemes. The rigidity
of these models’ structure and the use of an inventory of specialized operation-specific modules
ultimately undermines their robustness and generalization capacities.

Seeking a balance between the versatility and robustness of end-to-end neural approaches on the
one hand and the need to support more explicit and structured reasoning on the other, we propose
the MAC network, a novel fully differentiable architecture for reasoning tasks. Our model performs
structured and explicit reasoning by sequencing a new recurrent Memory, Attention and Compo-
sition (MAC) cell. The MAC cell was deliberately designed to capture the inner workings of an
elementary, yet general-purpose reasoning step, drawing inspiration from the design principles of
computer architectures. The cell explicitly separates out memory from control, both represented
recurrently, and consists of three operational units that work in tandem to perform a reasoning step:
the control unit updates the control state to attend at each iteration to some aspect of a given ques-
tion; the read unit extracts information out of a knowledge base, guided by the control and memory
states; and the write unit integrates the retrieved information into the memory state, iteratively com-
puting the answer. This universal design of the MAC cell serves as a structural prior that encourages
the network to solve problems by decomposing them into a sequence of attention-based reasoning
operations that are directly inferred from the data, without resorting to any strong supervision. With
self-attention connections between the cells, the MAC network is capable of representing arbitrar-
ily complex acyclic reasoning graphs in a soft manner, while still featuring a physically sequential
structure and end-to-end differentiabillity, amenable to training simply by backpropagation.

We demonstrate the model’s quantitative and qualitative performance on the CLEVR task and its
associated datasets. The model achieves state-of-the-art accuracy across a variety of reasoning tasks
and settings, both for the primary dataset as well as the more difficult human-authored questions.
Notably, it performs particularly well on questions that involve counting and aggregation skills,
which tend to be remarkably challenging for other VQA models (Santoro et al., 2017; Hu et al.,
2017; Johnson et al., 2017b). Moreover, we show that the MAC network learns rapidly and gen-
eralizes effectively from an order of magnitude less data than other approaches. Finally, extensive
ablation studies and error analysis demonstrate MAC’s robustness, versatility and generalization
capacity. These results highlight the significance and value of imposing strong structural priors to
guide the network towards compositional reasoning. The model contains structures that encourage
it to explicitly perform a chain of operations that build upon each other, allowing MAC to develop
reasoning skills from the ground up, realizing the vision of an algebraic, compositional model of
inference as proposed by Bottou (2014). Although each cell’s functionality has only a limited range
of possible continuous behaviors, geared to perform a simple reasoning operation, when chained
together in a MAC network, the whole system becomes expressive and powerful. TensorFlow im-
plementation of the model is available at https://github.com/stanfordnlp/mac-network.
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Figure 3: The MAC cell architecture. The MAC recurrent cell consists of a control unit, read unit, and
write unit, that operate over dual control and memory hidden states. The control unit successively attends to
different parts of the task description (question), updating the control state to represent at each timestep the
reasoning operation the cell intends to perform. The read unit extracts information out of a knowledge base
(here, image), guided by the control state. The write unit integrates the retrieved information into the memory
state, yielding the new intermediate result that follows from applying the current reasoning operation.

2 THE MAC NETWORK

A MAC network is an end-to-end differentiable architecture primed to perform an explicit multi-step
reasoning process, by stringing together p recurrent MAC cells, each responsible for performing one
reasoning step. Given a knowledge base K (for VQA, an image) and a task description q (for VQA,
a question), the model infers a decomposition into a series of p reasoning operations that interact
with the knowledge base, iteratively aggregating and manipulating information to perform the task
at hand. It consists of three components: (1) an input unit, (2) the core recurrent network, composed
out of p MAC cells, and (3) an output unit, all described below.

2.1 THE INPUT UNIT

The input unit transforms the raw inputs given to the model into distributed vector representations.
Naturally, this unit is tied to the specifics of the task we seek to perform. For the particular case of
VQA, it receives a question and an image and processes each of them respectively:

The question string, of length S, is converted into a sequence of learned word embeddings that is
further processed by a d-dimensional biLSTM yielding: (1) contextual words: a series of output
states cw1, . . . , cwS that represent each word in the context of the question, and (2) the question
representation: q =

[←−−cw1,
−−→cwS

]
, the concatenation of the final hidden states from the backward

and forward LSTM passes. Subsequently, for each step i = 1, . . . , p, the question q is transformed
through a learned linear transformation into a position-aware vector qi = W d×2d

i q+bdi , representing
the aspects of the question that are relevant to the ith reasoning step.

The image is first processed by a fixed feature extractor pre-trained on ImageNet (Russakovsky
et al., 2015) that outputs conv4 features from ResNet101 (He et al., 2016), matching prior work
for CLEVR (Hu et al., 2017; Santoro et al., 2017; Perez et al., 2017). The resulting tensor is then
passed through two CNN layers with d output channels to obtain a final image representation, the
knowledge base KH×W×d = {kd

h,w|
H,W
h,w=1,1}, where H = W = 14 are the height and width of the

processed image, corresponding to each of its regions.

2.2 THE MAC CELL

The MAC cell is a recurrent cell designed to capture the notion of an atomic and universal reasoning
operation and formulate its mechanics. For each step i = 1, . . . , p in the reasoning process, the ith

cell maintains dual hidden states: control ci and memory mi, of dimension d, initialized to learned
parameters m0 and c0, respectively.

The control ci represents the reasoning operation the cell should accomplish in the ith step, selec-
tively focusing on some aspect of the question. Concretely, it is represented by a soft attention-based
weighted average of the question words cws; s = 1, . . . , S.
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cqi =W d×2d [ci−1, qi] + bd (c1)

cai,s =W 1×d(cqi � cws) + b1 (c2.1)

cv i,s = softmax(cai,s) (c2.2)

ci =

S∑
s=1

cv i,s · cws (c2.3)

Figure 4: The Control Unit (CU) architecture. The control unit attends at each iteration to some part of the
question, by applying soft attention over the question words, and updates the control state accordingly. The
unit’s inputs and outputs are in bold. See section 2.2.1 for details.

The memory mi holds the intermediate result obtained from the reasoning process up to the ith

step, computed recurrently by integrating the preceding hidden state mi−1 with new information
ri retrieved from the image, performing the ith reasoning operation ci. Analogously to the control,
ri is a weighted average over its regions {kh,w|H,W

h,w=1,1}.

Building on the design principles of computer organization, the MAC cell consists of three oper-
ational units: control unit CU, read unit RU and write unit WU, that work together to accomplish
tasks by performing an iterative reasoning process: The control unit identifies a series of operations,
represented by a recurrent control state; the read unit extracts relevant information from a given
knowledge base to perform each operation, and the write unit iteratively integrates the information
into the cell’s memory state, producing a new intermediate result.

Through their operation, the three units together impose an interface that regulates the interaction
between the control and memory states. Specifically, the control state, which is a function of the
question, guides the integration of content from the image into the memory state only through in-
direct means: soft-attention maps and sigmoidal gating mechanisms. Consequently, the interaction
between these two modalities – visual and textual, or knowledge base and query – is mediated
through probability distributions only. This stands in stark contrast to common approaches that fuse
the question and image together into the same vector space through linear combinations, multipli-
cation, or concatenation. As we will see in section 4, maintaining a strict separation between the
representational spaces of question and image, which can interact only through interpretable discrete
distributions, greatly enhances the generalizability of the network and improves its transparency.

In the following, we describe the cell’s three components: control, read and write units, and detail
their formal specification. Unless otherwise stated, all the vectors are of dimension d.

2.2.1 THE CONTROL UNIT

The control unit (see figure 4) determines the reasoning operation that should be performed at each
step i, attending to some part of the question and updating the control state ci accordingly. It
receives the contextual question words cw1, . . . , cwS , the question position-aware representation
qi, and the control state from the preceding step ci−1 and consists of two stages:

1. First, we combine qi and ci−1 through a linear transformation into cqi, taking into account
both the overall question representation qi, biased towards the ith reasoning step, as well
as the preceding reasoning operation ci−1. This allows the cell to base its decision for the
ith reasoning operation ci on the previously performed operation ci−1.

2. Subsequently, we cast cq i onto the space of the question words. Specifically, this is
achieved by measuring the similarity between cqi and each question word cws and pass-
ing the result through a softmax layer, yielding an attention distribution over the question
words cw1, . . . , cwS . Finally, we sum the words according to this distribution to produce
the reasoning operation ci, represented in terms of the question words.

The casting of cq i onto question words serves as a form of regularization that restricts the space of
the valid reasoning operations by anchoring them back in the original question words, and due to the
use of soft attention may also improve the MAC cell transparency, since we can interpret the control
state content and the cell’s consequent behavior based on the words it attends to.
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Ii,h,w =[W d×d
m mi−1 + bdm] �

[W d×d
k kh,w + bdk]

(r1)

I ′i,h,w =W d×2d [Ii,h,w,kh,w] + bd (r2)

rai,h,w =W d×d(ci � I ′i,h,w) + bd (r3.1)

rv i,h,w = softmax(rai,h,w) (r3.2)

ri =

H,W∑
h,w=1,1

rv i,h,w · kh,w (r3.3)

Figure 5: The Read Unit (RU) architecture. The read unit retrieves information from the knowledge base
that is necessary for performing the current reasoning operation (control) and potentially related to previously
obtained intermediate results (memory). It extracts the information by performing a two-stage attention process
over the knowledge base elements. See section 2.2.2 for details.

2.2.2 THE READ UNIT

For the ith step, the read unit (see figure 5) inspects the knowledge base (the image) and retrieves
the information ri that is required for performing the ith reasoning operation ci. The content’s
relevance is measured by an attention distribution rv i that assigns a probability to each element
in the knowledge base kd

h,w, taking into account the current reasoning operation ci and the prior
memory mi−1, the intermediate result produced by the preceding reasoning step. The attention
distribution is computed in several stages:

1. First, we compute the direct interaction between the knowledge-base element kh,w and the
memory mi−1, resulting in Ii,h,w. This term measures the relevance of the element to
the preceding intermediate result, allowing the model to perform transitive reasoning by
considering content that now seems important in light of information obtained from the
prior computation step.

2. Then, we concatenate the element kh,w to Ii,h,w and pass the result through a linear trans-
formation, yielding I ′i,h,w. This allows us to also consider new information that is not
directly related to the prior intermediate result, as sometimes a cogent reasoning process
has to combine together independent facts to arrive at the answer (e.g., for a logical OR
operation, set union and counting).

3. Finally, aiming to retrieve information that is relevant for the reasoning operation ci, we
measure its similarity to each of the interactions Ii,h,w and pass the result through a softmax
layer. This produces an attention distribution over the knowledge base elements, which we
then use to compute a weighted average over them – ri.

Figure 6: Attention maps produced
by a MAC network of length 3.

To give an example of the read unit operation, consider the ques-
tion in figure 6, which refers to the purple cylinder in the image.
Initially, no cue is provided to the model to attend to the cylin-
der, since no direct mention of it is given in the question. Instead,
the model approaches the question in steps: in the first iteration
it attends to the “tiny blue block”, updating m1 accordingly to
the visual representation of the block. At the following step, the
control unit realizes it should now look for “the sphere in front”
of the block, storing that in c2. Then, when considering both m1

and c2, the read unit realizes it should look for “the sphere in
front” (c2) of the blue block (stored in m1), thus finding the cyan
sphere and updating m2. Finally, a similar process repeats in the
next iteration, allowing the model to traverse from the cyan ball to
the final objective – the purple cylinder, and answer the question
correctly.
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minfo
i =W d×2d[ri,mi−1] + bd (w1)

saij = softmax
(
W 1×d(ci � cj) + b1

)
(w2.1)

msa
i =

i−1∑
j=1

saij ·mj (w2.2)

m′i =W d×d
s msa

i +W d×d
p minfo

i + bd (w2.3)

c′i =W 1×dci + b1 (w3.1)

mi = σ
(
c′i
)
mi−1 +

(
1− σ

(
c′i
))
m′i (w3.2)

Figure 7: The Write Unit (WU) architecture. The write unit integrates the information retrieved from the
knowledge base into the recurrent memory state, producing a new intermediate result mi that corresponds to
the reasoning operation ci. See section 2.2.3 for details.

2.2.3 THE WRITE UNIT

The write unit (see figure 7) is responsible for computing the ith intermediate result of the reasoning
process and storing it in the memory state mi. Specifically, it integrates the information retrieved
from the read unit ri with the preceding intermediate result mi−1, guided by the ith reasoning op-
eration ci. The integration proceeds in three steps, the first mandatory while the others are optional1:

1. First, we combine the new information ri with the prior intermediate result mi−1 by a
linear transformation, resulting in minfo

i .
2. Self-Attention (Optional). To support non-sequential reasoning processes, such as trees

or graphs, we allow each cell to consider all previous intermediate results, rather than just
the preceding one mi−1: We compute the similarity between the ith operation ci and
the previous ones c1, . . . , ci−1 and use it to derive an attention distribution over the prior
reasoning steps sai,j for j = 0, . . . , i− 1. The distribution represents the relevance of
each previous step j to the current one i, and is used to compute a weighted average of the
memory states, yielding msa

i , which is then combined with minfo
i to produce m′i. Note that

while we compute the attention based on the control states, we use it to average over the
memory states, in a way that resembles Key-Value Memory Networks (Miller et al., 2016).

3. Memory Gate (Optional). Not all questions are equally complex – some are simpler while
others are more difficult. To allow the model to dynamically adjust the reasoning process
length to the given question, we add a sigmoidal gate over the memory state that interpolates
between the previous memory state mi−1 and the new candidate m′i, conditioned on the
reasoning operation ci. The gate allows the cell to skip a reasoning step if necessary,
passing the previous memory value further along the network, dynamically reducing the
effective length of the reasoning process as demanded by the question.

2.3 THE OUTPUT UNIT

Figure 8: The output unit. A classi-
fier that predicts an answer based on the
question and the final memory state.

The output unit predicts the final answer to the question based
on the question representation q and the final memory mp,
which represents the final intermediate result of the reason-
ing process, holding relevant information from the knowledge
base.2 For CLEVR, where there is a fixed set of possible
answers, the unit processes the concatenation of q and mp

through a 2-layer fully-connected softmax classifier that pro-
duces a distribution over the candidate answers.

1Both self-attention connections as well as the memory gate serve to reduce long-term dependencies. How-
ever, note that for the CLEVR dataset we were able to maintain almost the same performance with the first step
only, and so we propose the second and third ones as optional extensions of the basic write unit, and explore
their impact on the model’s performance in section 4.3.

2Note that some questions refer to important aspects that do not have counterpart information in the knowl-
edge base, and thus considering both the question and the memory is critical to answer them.
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Table 1: CLEVR and CLEVR-Humans Accuracy by baseline methods, previous methods, and our method
(MAC). For CLEVR-Humans, we show results before and after fine-tuning. (*) denotes use of extra supervisory
information through program labels. (†) denotes use of data augmentation. (‡) denotes training from raw pixels.

Model CLEVR Count Exist Compare Query Compare Humans Humans
Overall Numbers Attribute Attribute before FT after FT

Human (Johnson et al., 2017b) 92.6 86.7 96.6 86.5 95.0 96.0 - -
Q-type baseline (Johnson et al., 2017b) 41.8 34.6 50.2 51.0 36.0 51.3 - -
LSTM (Johnson et al., 2017b) 46.8 41.7 61.1 69.8 36.8 51.8 27.5 36.5
CNN+LSTM (Johnson et al., 2017b) 52.3 43.7 65.2 67.1 49.3 53.0 37.7 43.2
CNN+LSTM+SA+MLP (Johnson et al., 2017a) 73.2 59.7 77.9 75.1 80.9 70.8 50.4 57.6
N2NMN* (Hu et al., 2017) 83.7 68.5 85.7 84.9 90.0 88.7 - -
PG+EE (9K prog.)* (Johnson et al., 2017b) 88.6 79.7 89.7 79.1 92.6 96.0 - -
PG+EE (18K prog.)* (Johnson et al., 2017b) 95.4 90.1 97.3 96.5 97.4 98.0 54.0 66.6
PG+EE (700K prog.)* (Johnson et al., 2017b) 96.9 92.7 97.1 98.7 98.1 98.9 - -
CNN+LSTM+RN†‡ (Santoro et al., 2017) 95.5 90.1 97.8 93.6 97.9 97.1 - -
CNN+GRU+FiLM (Perez et al., 2017) 97.7 94.3 99.1 96.8 99.1 99.1 56.6 75.9
CNN+GRU+FiLM‡ (Perez et al., 2017) 97.6 94.3 99.3 93.4 99.3 99.3 - -

MAC 98.9 97.1 99.5 99.1 99.5 99.5 57.4 81.5

3 RELATED WORK

There have been several prominent models that address the CLEVR task. By and large they can be
partitioned into two groups: module networks, which in practice have all used the strong supervision
provided in the form of structured functional programs that accompany each data instance, and large,
relatively unstructured end-to-end differentiable networks that complement a fairly standard stack
of CNNs with components that aid them in performing reasoning tasks. In contrast to modular
approaches (Andreas et al., 2016a;b; Hu et al., 2017; Johnson et al., 2017b), our model is fully
differentiable and does not require additional supervision, making use of a single computational cell
chained in sequence rather than a collection of custom modules deployed in a rigid tree structure.
In contrast to augmented CNN approaches (Santoro et al., 2017; Perez et al., 2017), we suggest that
our approach provides an ability for relational reasoning with better generalization capacity, higher
computational efficiency and enhanced transparency. These approaches and other related work are
discussed and contrasted in more detail in the supplementary material in appendix D.

4 EXPERIMENTS

We evaluate our model on the recent CLEVR task for visual reasoning (Johnson et al., 2017a).
The dataset consists of rendered images featuring 3D-objects of various shapes, materials, colors
and sizes, coupled with machine-generated compositional multi-step questions that measure per-
formance on an array of challenging reasoning skills such as following transitive relations, count-
ing objects and comparing their properties. Each question is also associated with a tree-structured
functional program that was used to generate it, specifying the reasoning operations that should be
performed to compute the answer.

In the following experiments, our model’s training is cast as a supervised classification problem
to minimize the cross-entropy loss of the predicted candidate answer out of the 28 possibilities.
The model uses a hidden state size of d = 512 and, unless otherwise stated, length of p = 12
MAC cells.3 While some prior work uses the functional programs associated with each question as
additional supervisory information at training time (see table 1), we intentionally do not use these
structured representations to train our model, aiming to infer coherent reasoning strategies directly
from the question and answer pairs in an end-to-end approach.

We first perform experiments on the primary 700k dataset. As shown in table 1, our model out-
performs all prior work both in overall accuracy, as well as in each of the categories of specific
reasoning skills. In particular, for the overall performance, we achieve 98.94% accuracy, more than
halving the error rate of the best prior model, FiLM (Perez et al., 2017).

Counting and Numerical Comparison. In particular, our performance on questions about counting
and numerical comparisons is significantly higher than existing models, which consistently struggle

3We initialize the word embeddings of our model to random vectors using a uniform distribution. In an ear-
lier version of this work, we used pretrained GloVe vectors, but found that they did not improve the performance
for CLEVR and led to only a marginal improvement for CLEVR-Humans.
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Figure 9: From left to right: (1) Learning curve of MAC and alternative approaches (accuracy / epoch). (2)
Models’ performance as a function of the CLEVR subset size used for training, ranging from 1% to 100%.
(3),(4) Learning curves for ablated MAC variants. See section 4.3 for details.

on these question types. Again, we nearly halve the corresponding error rate. These are significant
results, as counting and aggregations are known to be particularly challenging in the area of VQA
(Chattopadhyay et al., 2017). In contrast to CNNs, using attention enhances our model’s ability to
perform reasoning operations such as counting that pertain to the global aggregation of information
across different regions of the image.

4.1 CLEVR HUMANS AND ERROR ANALYSIS

Figure 10: Error distri-
bution for CLEVR and
CLEVR-Humans.

We analyze our model’s performance on the CLEVR-Humans dataset
(Johnson et al., 2017b), consisting of natural language questions col-
lected through crowdsourcing. As such, the dataset has a diverse vocabu-
lary and linguistic variations, and it also demands more varied reasoning
skills. Since the training set is relatively small, comprising 18k samples,
we use it to finetune a model pre-trained on the primary CLEVR dataset,
following prior work.

As shown in table 1, our model achieves state-of-the-art performance on
CLEVR-Humans both before and after fine-tuning. It surpasses the next-
best model by 5.6% percent, achieving 81.5%. The results substantiate
the model’s robustness against linguistic variations and noise as well as
its ability to adapt to new and more diverse vocabulary and reasoning
skills. The soft attention performed over the question allows the model
to focus on the words that are most critical to answer the question while
paying less attention to irrelevant linguistic variations. See figure 11, and
figures 16 and 17 in the appendix for examples.

In order to gain insight into the nature of the mistakes our model makes,
we perform an error analysis for the CLEVR and CLEVR-Humans
datasets (See figure 10). Overall, we see that most of the errors in the
CLEVR dataset are either off-by-one counting mistakes or result from heavy object occlusions.
For CLEVR-Humans, we observe many errors that involve new reasoning skills that the model has
not been trained for, such as ones that relate to physical properties (stability and reflections), rel-
ative distances and amounts, commonalities and uniqueness of objects, or negative questions. See
appendix B for further details. Nevertheless, the model does respond correctly to many of the ques-
tions that fall under these reasoning skills, as illustrated in figures 11 and 16, and so we speculate
that the errors the model makes stem in part from the small size of the CLEVR-Human dataset.

4.2 COMPUTATIONAL AND DATA EFFICIENCY

We examine the learning curves of MAC and compare them to previous models4: specifically, FiLM
(Perez et al., 2017), the strongly-supervised PG+EE (Johnson et al., 2017b), and stacked-attention

4For previous models, we use the author’s original publicly available implementations. All the models were
trained with an equal batch size of 64 (as in the original implementations) and using the same hardware – a
single Maxwell Titan X GPU per model. To make sure the results are statistically significant, we run each
model multiple (10) times, and plot the averages and confidence intervals.
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Q: What is the shape of
the large item, mostly
occluded by the metallic
cube? A: sphere 3

Q: What color is the
object that is a different
size? A: purple 3

Q: What color ball is
close to the small purple
cylinder? A: gray 3

Q: What color block is
farthest front? A: purple
3

Q: Are any objects gold?
A: yes 3

Figure 11: CLEVR-Humans examples showing the model performs novel reasoning skills that do not appear
in CLEVR, including: obstructions, object uniqueness, relative distances, superlatives and new concepts.

networks (SA) (Johnson et al., 2017b; Yang et al., 2016). As shown in figure 9, our model learns
significantly faster than other approaches. While we do not have learning curves for the recent Re-
lation Network model, Santoro et al. (2017) report 1.4 million iterations (equivalent to 125 epochs)
to achieve 95.5% accuracy, whereas our model achieves a comparable accuracy after only 3 epochs,
yielding a 40x reduction in the length of the training process. Likewise, Perez et al. (2017) report a
training time of 4 days, equivalent to 80 epochs, to reach accuracy of 97.7%. In contrast, we achieve
higher accuracy in 6 epochs, 9.5 hours overall, leading to a 10x reduction in training time.

In order to study the ability of MAC to generalize from a smaller amount of data, we explore its
performance on subsets of CLEVR, sampled at random from the original 700k dataset. As shown
in figure 9, MAC outperforms the other models by a wide margin: For 50% of the data, equivalent
to 350k samples, other models obtain accuracies ranging between 70% and 93%, while our model
achieves 97.6%. The gap becomes larger as the dataset size reduces: for 25% of the data, equivalent
to 175k samples, the performance of other models is between 50% and 77%, while MAC maintains
a high 94.3% accuracy.

Finally, for just 10% of the data, amounting to 70k samples, our model is the only one to general-
ize well, with performance of 85.5% on average, whereas the other leading models fail, achieving
49.0%-54.9%. Note that, as pointed out by Johnson et al. (2017a), a simple baseline that predicts
the most frequent answer for each question type already achieves 42.1%, suggesting that answer-
ing only half of the questions correctly means that the other models barely learn to generalize from
this smaller subset. These results demonstrate the robustness and generalization capacity of our
architecture and its key role as a structural prior guiding MAC to learn the intended reasoning skills.

4.3 ABLATIONS
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Figure 12: Model perfor-
mance as a function of the
network length.

To gain better insight into the relative contribution of the design choices
we made, we perform extensive ablation studies. See figure 9 and ap-
pendix C for accuracies and learning curves. The experiments demon-
strate the robustness of the model to hyperparameter variations such as
network dimension and length, and shed light on the significance of vari-
ous aspects and components of the model, as discussed below:

Question Attention. The ablations show that using attention over the
question words (see section 2.2.1) is highly effective in accelerating learn-
ing and enhancing generalization capacity. Using the complete question
q instead of the attention-based control state leads to a significant drop of
18.5% in the overall accuracy. Likewise, using unconstrained recurrent
control states, without casting them back onto the question words space (step (3) in section 2.2.1)
leads to a 6x slowdown in the model convergence rate. These results illustrate the importance and
usefulness of decomposing the question into a series of simple operations, such that a single cell
is faced with learning the semantics of one or a few words at a time, rather than grasping all of
the question at once. They provide evidence for the efficacy of using attention as a regularization
mechanism, by restricting the input and output spaces of each MAC cell.

Control and Memory. Maintaining separation between control and memory proves to be another
key property that contributes significantly to the model’s accuracy, learning rate and data efficiency.
We perform experiments for a variant of the MAC cell in which we maintain one hidden state that
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Figure 14: Attention maps produced by MAC which provide some evidence for the ability of the model to
perform counting and summation of small numbers. Note how the first iterations focus on the key structural
question words “many” and “or” that inform the model of the required reasoning operation it has to perform.

plays both the roles of the control and memory, iteratively attending and integrating information
from both the question and the image. While this approach achieves a final accuracy of 93.75%, it
leads to a sharp drop in the convergence rate, as shown in figure 9, and a 20.2% reduction in the
final accuracy for a smaller 10% subset of CLEVR. The results make a strong case for our model’s
main design choice, namely, splitting the computation into two dual paths: one that decomposes the
linguistic information and another that reconstructs the corresponding visual information.

The design choices discussed above were found to be the most significant to the model’s overall
accuracy, convergence rate and generalization. Other design choices that were found beneficial in-
clude (1) predicting the final answer based on both the final memory state and the question (see
section 2.3), and (2) considering knowledge base elements directly (step (2) in section 2.2.2), re-
sulting in 19.8% and 11.1% improvement for a 10% subset of CLEVR, respectively. Please refer to
appendix C for further discussion and results.

4.4 INTERPRETABILITY

Figure 13: Attention maps pro-
duced by MAC, showing how
it tracks transitive relations be-
tween objects.

To obtain better insight into the underlying reasoning processes
MAC learns to perform, we study visualizations of the attention dis-
tributions produced by the model during its iterative computation,
and provide examples in figures 13, 14, 17, and 18. Examining the
sequence of attention maps over the image and the question reveals
several qualitative patterns and properties that characterize MAC’s
mode of operation.

First, we observe that both the linguistic and visual attentions of the
model are very focused on specific terms or regions in the image,
and commonly refer to concrete objects (“the shiny red cube” or the
“metallic cylinder”) or question structural keywords (“or”, “and” or
“how many”). More importantly, the attention maps give evidence
of the ability of the model to capture the underlying semantic struc-
ture of the question, traversing the correct transitive relations be-
tween the objects it refers to. For instance, we see in figure 13 how
the model explicitly decomposes the question into the correct rea-
soning steps: first identifying the green ball, then focusing on the
red cylinder that is located left of the ball, and finally attending to
the yellow cylinder. In the second step, note how the model attends
only to the relevant red cylinder and not to other red rubber things,
correctly resolving the indirect reference in the question. This shows strong evidence of the ability
of the model to perform transitive reasoning, integrating information from prior steps that allows it
to focus only on the relevant objects, even when they are not mentioned explicitly.

In figure 14, we further see how the model interprets a multi-step counting question, apparently
summing up the amounts of two referenced object groups to produce the correct overall count. These
observations suggest that the model infers and effectively performs complex reasoning processes in
a transparent manner.

10
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5 CONCLUSION

We have introduced the Memory, Attention and Composition (MAC) network, an end-to-end differ-
entiable architecture for machine reasoning. The model solves problems by decomposing them into
a series of inferred reasoning steps that are performed successively to accomplish the task at hand.
It uses a novel recurrent MAC cell that aims to formulate the inner workings of a single universal
reasoning operation by maintaining a separation between memory and control. These MAC cells
are chained together to produce explicit and structured multi-step reasoning processes. We demon-
strate the versatility, robustness and transparency of the model through quantitative and qualitative
studies, achieving state-of-the-art results on the CLEVR task for visual reasoning, and generalizing
well even from a 10% subset of the data. The experimental results further show that the model can
adapt to novel situations and diverse language, and generate interpretable attention-based rationales
that reveal the underlying reasoning it performs. While CLEVR provides a natural testbed for our
approach, we believe that the architecture will prove beneficial for other multi-step reasoning and
inference tasks, including reading comprehension, textual question answering, and real-world VQA.
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Léon Bottou. From machine learning to machine reasoning. Machine learning, 94(2):133–149,
2014.

Prithvijit Chattopadhyay, Ramakrishna Vedantam, Ramprasaath R Selvaraju, Dhruv Batra, and Devi
Parikh. Counting everyday objects in everyday scenes. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1135–1144, 2017.

Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic reinforcement
learning. arXiv preprint arXiv:1609.05518, 2016.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
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Figure 15: Learning curves for ablated MAC variants (accuracy / epoch). See appendix C for details.

SUPPLEMENTARY MATERIAL

A IMPLEMENTATION AND TRAINING DETAILS

We train our model using Adam (Kingma & Ba, 2014), with a learning rate of 10−4 and a batch size
of 64. We use gradient clipping, and employ early stopping based on the validation accuracy, result-
ing in a training process of 10–20 epochs, equivalent to roughly 15–30 hours on a single Maxwell
Titan X GPU. Word vectors have dimension 300 and were initialized randomly using a standard
uniform distribution. The exponential moving averages of the model weights are maintained during
training, with a decay rate of 0.999, and used at test time instead of the raw weights. We use varia-
tional dropout of 0.15 across the network, along with ELU as non-linearity, which, in our experience,
accelerates training and performs favorably compared to the more standard ReLU.

B ERROR ANALYSIS

To gain insight into the model’s failure cases, we perform error analysis for the CLEVR and CLEVR-
Humans datasets. For CLEVR, we see that many of the errors arise from object occlusions, which
may make it harder for the model to recognize the objects’ material or shape. Most of the other
errors are off-by-one counting mistakes, oftentimes for questions that ask to sum up two groups of
objects (see examples in figure 16). Interestingly, we noticed that when the model is required to
count objects that are heavily occluded, it may lead the model to slightly underestimate the correct
number of objects, suggesting that it may perform some sort of “continuous” counting rather than
discrete.

For CLEVR-Humans, the errors made by the model are more diverse. About half of the errors re-
sult from questions about reasoning skills that the model has not been exposed to while training on
CLEVR. These include questions about physical properties: lighting and shadows, reflections and
objects stability (“How many of the items are casting a shadow?”, “Can a ball stay still on top of
one another?”); relative distances (“How many objects. . . are almost touching?”, “What color is the
sphere positioned closest to. . . ”, “What object is in between. . . ”); relative amounts (“Are half the
items. . . ”, “Are the objects mainly. . . ”); commonalities (“What color are the identical objects?”,
“What shape do the items that . . . have in common?”); and negative questions, which refer to objects
that do not maintain some property (“How many items do not. . . ”). In addition, we observed some
cases where the model misinterprets unseen words, capturing plausible but incorrect semantics: for
instance, in some cases it interpreted a “caramel” object as yellow whereas the original question
referred to a brown one, or considered a cylinder to be “circle” while the question referred to the
spheres only. We believe that these errors may arise from diversity in the semantics of these words
across the dataset, making the model learn those potentially valid but incorrect interpretations. Sim-
ilarly to CLEVR, we observed some off-by-one errors in CLEVR-Humans. Finally, in one fifth of
the cases, the errors result from faulty or ambiguous questions, which may mistakenly regard a cyan
object as blue or mention references that cannot be uniquely resolved to a specific object.

C ABLATION STUDIES

Based on the validation set, we have conducted an ablation study for MAC to better understand the
impact of each of its components on the overall performance. We have tested each setting for the
primary 700K CLEVR dataset as well as on a 10% subset of it. See table 2, figure 9 and figure 15 for
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final accuracies and training curves. The following discussion complements the main conclusions
presented in section 4.3:

Network Length. We observe a positive correlation between the network length and its perfor-
mance, with significant improvements up to length p = 8. These results stand out from other
multi-hop architectures that tend to benefit from a lower number of iterations, commonly 2–3 only
(Yang et al., 2016; Kumar et al., 2016), and suggest that MAC makes effective use of the recurrent
cells to perform compositional reasoning.

Weight Sharing. Weight sharing across the p cell instances has also proven to be useful both
for the primary CLEVR task as well as for settings with limited data. In contrast to alternative
approaches that apply specialized modules for different parts of the reasoning, these results provide
some evidence for the ability of the same MAC cell to adapt its behavior to the task at hand and
demonstrate different behaviors as inferred from the context.

Control Unit. We have performed several ablations in the control unit architecture to identify its
contribution to the model behavior and performance. First, we observe that, as would be expected,
an ablated model that reasons over the image alone with no access to the question, performs poorly,
achieving accuracy of 51.1%. As discussed in section 4.3, the ablations further show the importance
of applying attention over the question words to decompose it into an explicit sequence of steps.
Finally, we find that using the “contextual words” – the output states of a biLSTM processing the
question – results in better performance and faster learning than attending directly to the learned
word vectors. This implies that the model benefits from interpreting the word semantics and entailed
behaviors in the broader context of the question rather than as a sequence of independent entities.

Write Unit. The basic MAC write unit integrates new information ri with the previous memory
state mi−1 through a linear transformation (step (1) in section 2.2.3). In this experiment, we ex-
plore other variants of the unit. We begin by measuring the impact of the self-attention and gating
mechanisms, both aiming to reduce long-range dependencies in the reasoning process. Compared
to the basic MAC model, which achieves 98.94% on the validation set, self-attention yields an ac-
curacy of 99.23%, memory gating – 99.36%, and adding both results in 99.48%. While we can see
some gain from using these components for CLEVR, we speculate that they may prove more useful
for tasks that necessitate longer or more complex reasoning processes over larger knowledge bases.

Next, we examine ablated write unit variants that assign the newly retrieved information ri (or its
linear transformation) to mi directly, ignoring the prior memory content mi−1. Notably, the results
show that in fact such variants are only slightly worse than the default basic write unit, reducing
accuracy by 0.4% only. We perform further experiments in which we compute the new memory
state mi by averaging the retrieved information ri with the previous memory state mi−1 using
a sigmoidal gate alone. This architecture results in equivalent performance to that of the standard
basic write unit variant.

Gate Bias Initialization. Finally, we test the impact of the gate bias (step (3) in section 2.2.3), ini-
tializing it to either−1, 0 or 1. Intuitively, initialization of−1 amounts to biasing the model to retain
previous memory states and thereby shortening the effective reasoning process, while initialization
of 1 is equivalent to using all new intermediate results derived by each of the cells. The experiments
show that a bias of 1 is optimal for training on the full dataset while 0 is ideal for settings of limited
data (training on 10% of the data). These results demonstrate that when enough data is available,
the MAC network benefits from utilizing its full capacity, whereas biasing the model towards using
less cells helps to mitigate overfitting when data is more scarce.

D RELATED WORK

In this section we provide detailed discussion of related work. Several models have been applied
to the CLEVR task. These can be partitioned into two groups, module networks that use the strong
supervision provided as a tree-structured functional program associated with each instance, and
end-to-end, fully differentiable networks that combine a fairly standard stack of CNNs with com-
ponents that aid them in performing reasoning tasks. We also discuss the relation of MAC to other
approaches, such as memory networks and neural computers.
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Table 2: Accuracies for ablated MAC models, measured for the validation set after training on the full CLEVR
dataset (left) and 10% subset of it (right).

Model Standard CLEVR 10% CLEVR
MAC 98.9 84.5
state dimension 256 98.4 76.3
state dimension 128 97.6 77.0
unshared weights 97.8 67.5
attention over word vectors 98.3 61.4
w/o word-attention 95.3 63.2
question vector as control 80.7 65.0
w/o control 55.6 51.5
w/o memory-control separation 93.9 64.7
w/o direct KB elements 98.4 73.4
retrieved→ memory 98.2 84.5
W · retrieved + b→ memory 98.5 83.7
only memory gate 99.3 83.1
w/ self-attention 99.2 83.2
w/ memory gate 99.4 83.1
w/ self-attention and memory gate 99.5 85.5
gate bias 0 98.7 84.9
gate bias 1 99.4 68.5
gate bias−1 99.0 77.1
prediction w/o question 97.8 64.7

D.1 MODULE NETWORKS

The modular approach (Andreas et al., 2016a;b; Hu et al., 2017; Johnson et al., 2017b) first trans-
lates a given question into a tree-structured action plan, aiming to imitate the question underlying
structural representation externally provided as strong supervision. Then, it constructs a tailor-made
network that progressively executes the plan over the image. The network is composed of discrete
units selected out of a fixed collection of predefined “modules”, each responsible for an elementary
reasoning operation, such as identifying an object’s color, filtering them for their shape, or com-
paring their amounts. Each module has its own set of learned parameters (Johnson et al., 2017b),
or even a hand-crafted design (Andreas et al., 2016a) that guides it towards its intended behavior.
Overall, this approach makes discrete choices at two levels: the identity of each module – the behav-
ior it should learn among a fixed set of possible behavior types, and the network layout – the way
in which the modules are wired together to compute the answer. The model differentiability is thus
confined to the boundaries of a single module.

Several key differences exist between our approaches. First, MAC replaces the fixed and specialized
modules inventory with one universal cell that adapts its operation to the task at hand, selected from
a continuous range of reasoning behaviors. Therefore, in contrast to module networks, our cell can
be applied across all the reasoning steps, sharing both its parameters and architecture. Second, we
replace the dynamic recursive tree structures with a sequential topology, augmented by soft attention
mechanisms, inspired by Bahdanau et al. (2015). This confers the network with the capacity to
represent arbitrarily complex Directed Acyclic Graphs (DAGs) in a soft way, while still having
efficient and readily deployed physical sequential structure. Together, these relaxations allow us to
effectively train our model end-to-end by backpropagation alone, whereas module networks demand
more involved training schemes that rely on the strongly-supervised programs at the first stage, and
on various reinforcement learning (RL) techniques at the second. Finally, since the only source of
supervision in training our model arises from the answer to each question, MAC is free to acquire
more robust and adaptive reasoning strategies from the bottom up – inferred directly form the data,
rather than trying to imitate the behaviors dictated by brittle parsers or closed domain functional
programs, and is thus more applicable to real-world settings.

D.2 AUGMENTED CONVOLUTIONAL NEURAL NETWORKS

Alternative approaches for the CLEVR task that do not rely on the provided programs as a strong
supervision signal are Santoro et al. (2017) and Perez et al. (2017). Both complement standard
multi-layer Convolutional Neural Networks (CNNs) with components that aid them in handling
compositional and relational questions.

Relation Networks. Santoro et al. (2017) appends a Relation Network (RN) layer to the CNN. This
layer inspects all pairs of pixels in the image, thereby enhancing the network capacity to reason over
binary relations between objects. While this approach is very simple and elegant conceptually, it
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suffers from quadratic computational complexity, in contrast to our approach, which is linear. But
beyond that, closer inspection reveals that this direct pairwise comparison might be unnecessary.
Based on the analogy suggested by Santoro et al. (2017), according to which pixels are equivalent to
objects and their pairwise interactions to relations, an RN layer attempts to grasp the induced graph
between objects all at once in one shallow and broad layer. Conversely, our attention-based model
proceeds in steps, iteratively comparing the image to a memory state that had aggregated information
from the image in prior iterations. By the same analogy, MAC traverses a narrow and deep reasoning
“path” that progressively follows transitive relations. Consequently, our model exhibits a relational
capacity while circumventing the computational inefficiency.

FiLM. Perez et al. (2017) proposes a model for visual reasoning that interleaves standard CNN
layers with linear layers, reminiscent of layer normalization techniques (Ba et al., 2016; Ioffe &
Szegedy, 2015). Each of these layers, called FiLM, is conditioned on the question, which is trans-
lated into matching bias and variance terms that tilt the layer’s activations to reflect the specifics of
the given question, thus influencing the computation done over the image. Similarly to our model,
this approach features distant modulation between the question and the image, where the former can
affect the latter only through constrained means. However, since the same normalization is applied
across all the activations homogeneously, agnostic to both their spatial location as well as their fea-
ture values, FiLM does not allow the question to differentiate between regions in the image based
on their semantics – the objects or concepts they represent.

This stands in stark contrast to our attention-based model, which readily allows and actually encour-
ages the question to inform the model about relevant regions to focus on. As supported by section 4,
this more selective interaction between the question and the image facilitates learning and increases
the model’s generalizability. Indeed, since attention is commonly used in models designed for stan-
dard VQA (Antol et al., 2015; Gupta, 2017; Lu et al., 2016; Yang et al., 2016), it is reasonable to
assume that it would be beneficial to incorporate such methods into visual reasoning systems for the
CLEVR task as well. In fact, attention mechanisms should be especially useful for multi-step rea-
soning questions such as those present in CLEVR. Such questions refer to several relations between
different objects in the image and feature compositional structure that may be approached one step
at a time. Thus, it should be beneficial for a cogent responder to have the capacity to selectively
focus on one or some objects at each step, traversing the relevant relational links one after the other,
both at the image level, and at the question level.

D.3 MEMORY AND ATTENTION

Our architecture draws inspiration from recent research on mechanisms for neural memory and
attention (Kumar et al., 2016; Xiong et al., 2016; Graves et al., 2014; 2016). Kumar et al. (2016)
and Xiong et al. (2016) propose the Dynamic Memory Network (DMN) model that proceeds in
an iterative process, attending to relevant information from a given knowledge base, which is then
successively accumulated into the model’s memory state. However, the DMN views the question as
one atomic unit, whereas our model decomposes it into a multi-step action plan that informs each
cell of its specific objective. Another key difference is the distant interaction between the question
and the knowledge base that characterizes our model. Conversely, DMN fuses their representations
together into the same vector space.

Graves et al. (2014; 2016) complement a neural network with an external memory it can interact with
through the means of soft attention. Similarly to our approach, the model consists of a controller that
performs read and write operations over a fixed-size memory array. However, in contrast to Graves
et al. (2014; 2016), we employ a recurrent memory structure, where each MAC cell is associated
with its own memory state. Rather than reading and writing iteratively into multiple slots in a shared
memory resource, each cell creates a new memory, building upon the contents of the prior ones.
This allows us to avoid potential issues of content blurring due to multiple global write operations,
while still supporting the emergence of complex reasoning processes that progressively interact with
preceding memories and intermediate results to accomplish the task at hand.

17



Published as a conference paper at ICLR 2018

Q: What color is the metallic
cylinder in front of the silver
cylinder? A: cyan 3

Q: What is the object made of
hiding behind the green cube?
A: rubber 3

Q: What is the color of the ball
that is farthest away? A: blue 3

Q: How many matte cubes are
there? A: 2 3

Q: How many spheres are
pictured? A: 4 3

Q: How many square objects are
in the picture? A: 4 3

Q: What object is to the far
right? A: cube 3

Q: Are the yellow blocks the
same? A: no 3

Q: What shape is the smallestt
object in this image? A: sphere 3

Q: What object looks like a
caramel? A: cube 3

Q: Can a ball stay still on top of
one another? A: yes (no) 7

Q: What color is the center
object? A: blue 3

Q: How many gray objects are
shown? A: 3 3

Q: How many small objects are
rubber? A: 2 3

Q: What color is the largest
cube? A: yellow 3

Q: What shape are most of the
shiny items? A: sphere 3

Q: What is the tan object made
of? A: rubber 3

Q: Are half the items shown
green? A: yes (no) 7

Q: What color object is biggest?
A: blue 3

Q: Which shape is a different
color from the others? A:
cylinder 3

Q: How many other objects are
the same size as the blue ball? A:
7 3

Q: What is the shape of the object
that is to the left of the red rubber
cube and behind the metallic
cylinder? A: sphere (cylinder) 7

Q: How many tiny objects are green things or red objects? A: 4 3

Figure 16: The first five rows show examples of the final attention map produced by the model for CLEVR-
Human questions, demonstrating the ability of the model to perform novel reasoning skills and cope with
new concepts that have not been introduced in CLEVR. These include in particular: obstructions, object
uniqueness, relative distances, superlatives and new terms. The final row shows examples from CLEVR
with object occlusions and summation.
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Figure 17: Attention maps produced by MAC networks of lengths 4 and 6, providing evidence for the ability
of the model to track transitive relations and perform logical operations. Note how the model tends to proceed
from the end of the question backwards, tracking the relevant objects iteratively.
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Figure 18: Attention maps produced by a MAC network of length 6, providing evidence for the ability of the
model to track transitive relations, and perform logical operations, counting and summation. Note how the first
iterations focus on the key structural question words “many” and “or” that serve as indicators for the model
of the required reasoning operation it has to perform. Also note how the model correctly sums up two object
groups in the second example, while correctly accounting for the intersection between them.
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