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Abstract. We determine analytically the condition number of the Pagdfprob-
lem. Specifically, we prove the following statement:

“Let P be ann x n row-stochastic matrix whose diagonal elemeRis = 0.
Let ¢ be a real number such that< ¢ < 1. Let E be then x n rank-one
row-stochastic matriy = ev”, wheree is the n-vector whose elements are all
e; = 1, andv is an n-vector that represents a probability distribution.

Define the matrixA = [cP + (1 — ¢)E]". The problemAx = z has condition
numbers = (1+¢)/(1 —¢).”

This statement has implications for the accuracy to whigieRank can be com-
puted, currently and as the web scales. Furthermore, iigeswa simple proof
that, for values of: that are used by Google, small changes in the link structure
of the web do not cause large changes in the PageRanks of glaheswveb.

1 Theorem

Theorem 1. Let P be ann x n row-stochastic matrix whose diagonal elemeRjs=
0.. Letc be a real number such thét < ¢ < 1. Let E be then x n rank-one row-
stochastic matrixZ = ev”™, wheree is the n-vector whose elements areal= 1, and
v is an n-vector that represents a probability distributton

Define the matrixd = [cP + (1 — ¢)E]T. The problemdz = x has condition number
k=1+¢)/(1-c).

2 Notation and Preliminaries

P is ann x n row-stochastic matrix whose diagonal elemeRts= 0. F is then x n
rank-one row-stochastic matri¥ = ev”, wheree is the n-vector whose elements are
all e; = 1 andw is an n-vector whose elements are all non-negative and siimAads
then x n column-stochastic matrix:

A=[cP+(1-c)E]" (1)

We letx be the dominant eigenvector df By convention, we choose eigenvectars
such thatf|z||; = 1. SinceA is a non-negative matrix, the dominant eigenveatas
also non-negative. Therefore,
elw =[xl =1 )
SinceA is column-stochastic, it's dominant eigenvalue= 1,1 > [X\s| > ... >
[An| > 0. Thatis,
Ax =z 3)

1i.e., a vector whose elements are nonnegative and whoserin is 1.



3 Proof of Theorem 1
We prove this case via a series of lemmas.
Lenmal ETx = v.

Proof. By definition, E = ev”. Therefore E”x = ve” z. From equation 2¢”x = 1.
Therefore ETx = v, and Lemma 1 is proved.

Lemma 2. The eigenvalue problemx = x can be rewritten as the nonsingular system
of equationg! — cPT)x = (1 — c)v.

Proof. From Az = x, we can rearrange terms to get
(I-Ax=0.
By the definition ofA (equation 1):
[I = (cP+(1—c)E) ]z =0.
From Lemma 1ETx = v. Therefore(I — cPT)x — (1 — ¢)v = 0. Rearranging terms,
we get(I — cPT)z = (1 — ¢)v, and Lemma 2 is proved.

Lemma3.z = (I — cPT) lo.

Proof.Let M = I — ¢cPT. ThenM”™ = I — cP. SinceP has zeros on the diago-
nals and is row-stochastic, and since 1, I — cP is strictly diagonally dominant and
therefore invertible. Sinca/™ is invertible, M is also invertible. Therefore, we may
write x = (I — cPT)~1v and Lemma 3 is proved.

Lemmad. ||[I — cPT||; =1+ec.

Proof. Since the diagonal elements@?” are all zero,
11 =P |l =[]l + | PT Il = 1+ c||PT )1

SinceP? is a column-stochastic matrif,P7'||; = 1. Thus,||I — ¢PT||; = 1 + c and
Lemma 4 is proved.

Lemma5. ||(I — cPT)~|; = 1/(1 — ¢).

Proof. Recall from equation 1 thatt = [cP + (1 — ¢)E|T, whereE = ev’ and
v is somen-vector whose elements are non-negative and sum to lx (et be the
n-vector that satisfies the following equations:

Ax(e;) = x(e;)
|lz(ed)|lr = 1.



From Lemma2g = (1—c)(I —cPT)~'v. Thereforex(e;) = (1 —c)(I —cPT) e;.
Taking the norm of both sidex(e;)||1 = (1—c)||(I—cPT)e;||1. Sincel|x(e;)||1 =
1, we have

11 = cPT) el =1/(1 = o). (4)

Notice that{ 7 —cPT)~'e; gives theith column of(1 —cP?)~!. Thus, from equation 4,
the L1 norm of the matrix/ — cPT)~tis||(I — cPT)71|| =1/(1 - ¢).

Lemma 6. The 1-norm condition number af = (I —cPT) lvisk = (1+c)/(1—e¢).

Proof. By definition, the 1-norm condition number of the problemy = M~'b is
given byx = ||M]||1||M ~||;. From Lemmas 4 and 5, thisis= (1 + ¢)/(1 — ¢).

4 Implications

The matrixA is used by Google to compute PageRank, an estimate of webipag
portance used for ranking search results [3]. PageRanKiisedieas the stationary dis-
tribution of the Markov chain corresponding to thex n stochastic transition matrix
AT, The matrixP corresponds to the web link graph; in makiRgstochastic, there are
standard techniques for dealing with web pages with no aogdnks [1].

The strongest implication of this result has to do with thebgity of PageRank.
A proof of stability of PageRank is given in [2], but we showighter stability bound
here. Imagine that the Google mattikis perturbed slightly, either by modifying the
link structure of the web (by adding or taking away links)bgrchanging the value af
Let us call this perturbed matrit = A+ ¢B, wherecB is the “error matrix” describing
the change to the web matrik Letx be the PageRank vector corresponding to the web
matrix 4, and let be the vector corresponding to the web matfixit is known that,
for a linear system of equations,

||z —z[|1 < kel|B|
From Theorem 1, we can rewrite this as:

1+c

x—zxl; <
e = &l < e

1Bl

What this means is, for values ehear to 1, PageRank is not stable, and a small change
in the link structure may cause a large change in PageRankev&y, for smaller values

of ¢ such as those likely used by Googlg & ¢ < .9), PageRank is stable, and a small
change in the link structure will cause only a small changedageRank.

Another implication of this is the accuracy to which PagelRaray be computed.
Again, for values ot: likely used by Google, PageRank isvell-conditionedproblem
meaning that it may be computed accurately by a stable #tgorHowever, for values
of ¢ close to 1, PageRank is dhkconditionedproblem, and it cannot be computed to
great accuracy by any algorithm.
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