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Abstract. We determine analytically the condition number of the PageRank prob-
lem. Specifically, we prove the following statement:
“Let P be ann × n row-stochastic matrix whose diagonal elementsPii = 0.
Let c be a real number such that0 ≤ c < 1. Let E be then × n rank-one
row-stochastic matrixE = evT , wheree is the n-vector whose elements are all
ei = 1, andv is an n-vector that represents a probability distribution.
Define the matrixA = [cP + (1 − c)E]T . The problemAx = x has condition
numberκ = (1 + c)/(1 − c).”
This statement has implications for the accuracy to which PageRank can be com-
puted, currently and as the web scales. Furthermore, it provides a simple proof
that, for values ofc that are used by Google, small changes in the link structure
of the web do not cause large changes in the PageRanks of pagesof the web.

1 Theorem

Theorem 1. LetP be ann × n row-stochastic matrix whose diagonal elementsPii =
0.. Let c be a real number such that0 ≤ c ≤ 1. Let E be then × n rank-one row-
stochastic matrixE = evT , wheree is the n-vector whose elements are allei = 1, and
v is an n-vector that represents a probability distribution1.
Define the matrixA = [cP + (1 − c)E]T . The problemAx = x has condition number
κ = (1 + c)/(1 − c).

2 Notation and Preliminaries

P is ann × n row-stochastic matrix whose diagonal elementsPii = 0. E is then × n
rank-one row-stochastic matrixE = evT , wheree is the n-vector whose elements are
all ei = 1 andv is an n-vector whose elements are all non-negative and sum to1. A is
then × n column-stochastic matrix:

A = [cP + (1 − c)E]T (1)

We letx be the dominant eigenvector ofA. By convention, we choose eigenvectorsx

such that||x||1 = 1. SinceA is a non-negative matrix, the dominant eigenvectorx is
also non-negative. Therefore,

eT x = ||x||1 = 1 (2)

SinceA is column-stochastic, it’s dominant eigenvalueλ1 = 1, 1 ≥ |λ2| ≥ . . . ≥
|λn| ≥ 0. That is,

Ax = x (3)
1 i.e., a vector whose elements are nonnegative and whose L1 norm is 1.



3 Proof of Theorem 1

We prove this case via a series of lemmas.

Lemma 1. ET x = v.

Proof.By definition,E = evT . Therefore,ET x = veT x. From equation 2,eT x = 1.
Therefore,ET x = v, and Lemma 1 is proved.

Lemma 2. The eigenvalue problemAx = x can be rewritten as the nonsingular system
of equations(I − cPT )x = (1 − c)v.

Proof.FromAx = x, we can rearrange terms to get

(I − A)x = 0.

By the definition ofA (equation 1):

[I − (cP + (1 − c)E)T ]x = 0.

From Lemma 1,ET x = v. Therefore,(I− cPT )x− (1− c)v = 0. Rearranging terms,
we get(I − cPT )x = (1 − c)v, and Lemma 2 is proved.

Lemma 3. x = (I − cPT )−1v.

Proof. Let M = I − cPT . ThenMT = I − cP . SinceP has zeros on the diago-
nals and is row-stochastic, and sincec < 1, I − cP is strictly diagonally dominant and
therefore invertible. SinceMT is invertible,M is also invertible. Therefore, we may
write x = (I − cPT )−1v and Lemma 3 is proved.

Lemma 4. ||I − cPT ||1 = 1 + c.

Proof.Since the diagonal elements ofcPT are all zero,

||I − cPT ||1 = ||I||1 + c||PT ||1 = 1 + c||PT ||1.

SincePT is a column-stochastic matrix,||PT ||1 = 1. Thus,||I − cPT ||1 = 1 + c and
Lemma 4 is proved.

Lemma 5. ||(I − cPT )−1||1 = 1/(1 − c).

Proof. Recall from equation 1 thatA = [cP + (1 − c)E]T , whereE = evT and
v is somen-vector whose elements are non-negative and sum to 1. Letx(ei) be the
n-vector that satisfies the following equations:

v = ei

Ax(ei) = x(ei)

||x(ei)||1 = 1.



From Lemma 2,x = (1−c)(I−cPT )−1v. Therefore,x(ei) = (1−c)(I−cPT )−1ei.
Taking the norm of both sides,||x(ei)||1 = (1−c)||(I−cPT )−1ei||1. Since||x(ei)||1 =
1, we have

||(I − cPT )−1ei||1 = 1/(1 − c). (4)

Notice that(I−cPT )−1ei gives theith column of(I−cPT )−1. Thus, from equation 4,
the L1 norm of the matrix(I − cPT )−1 is ||(I − cPT )−1|| = 1/(1 − c).

Lemma 6. The 1-norm condition number ofx = (I−cPT )−1v is κ = (1+c)/(1−c).

Proof. By definition, the 1-norm condition numberκ of the problemy = M−1b is
given byκ = ||M ||1||M

−1||1. From Lemmas 4 and 5, this isκ = (1 + c)/(1 − c).

4 Implications

The matrixA is used by Google to compute PageRank, an estimate of web-page im-
portance used for ranking search results [3]. PageRank is defined as the stationary dis-
tribution of the Markov chain corresponding to then × n stochastic transition matrix
AT . The matrixP corresponds to the web link graph; in makingP stochastic, there are
standard techniques for dealing with web pages with no outgoing links [1].

The strongest implication of this result has to do with the stability of PageRank.
A proof of stability of PageRank is given in [2], but we show a tighter stability bound
here. Imagine that the Google matrixA is perturbed slightly, either by modifying the
link structure of the web (by adding or taking away links), orby changing the value ofc.
Let us call this perturbed matrix̃A = A+εB, whereεB is the “error matrix” describing
the change to the web matrixA. Letx be the PageRank vector corresponding to the web
matrixA, and letx̃ be the vector corresponding to the web matrixÃ. It is known that,
for a linear system of equations,

||x − x̃||1 ≤ κε||B||

From Theorem 1, we can rewrite this as:

||x − x̃||1 ≤ ε
1 + c

1 − c
||B||

What this means is, for values ofc near to 1, PageRank is not stable, and a small change
in the link structure may cause a large change in PageRank. However, for smaller values
of c such as those likely used by Google (.8 < c < .9), PageRank is stable, and a small
change in the link structure will cause only a small change inPageRank.

Another implication of this is the accuracy to which PageRank may be computed.
Again, for values ofc likely used by Google, PageRank is awell-conditionedproblem
meaning that it may be computed accurately by a stable algorithm. However, for values
of c close to 1, PageRank is anill-conditionedproblem, and it cannot be computed to
great accuracy by any algorithm.



Acknowledgments

We would like to thank Gene Golub for useful conversations.
This paper is based on work supported in part by the National Science Foundation

under Grant No. IIS-0085896 and Grant No. CCR-9971010, and in part by the Research
Collaboration between NTT Communication Science Laboratories, Nippon Telegraph
and Telephone Corporation and CSLI, Stanford University (research project on Concept
Bases for Lexical Acquisition and Intelligently Reasoningwith Meaning).

References

1. S. D. Kamvar, T. H. Haveliwala, C. D. Manning, and G. H. Golub. Extrapolation methods for
accelerating PageRank computations. InProceedings of the Twelfth International World Wide
Web Conference, 2003.

2. A. Y. Ng, A. X. Zheng, and M. I. Jordan. Link analysis, eigenvectors and stability. InIJCAI,
pages 903–910, 2001.

3. L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRankcitation ranking: Bringing
order to the web.Stanford Digital Libraries Working Paper, 1998.


