Spectral Learning

Sepandar D. Kamvar Dan Klein Christopher D. Manning
SCCM Computer Science Dept. Computer Science Dept.
Stanford University Stanford University Stanford University
Stanford, CA 94305-9040 Stanford, CA 94305-9040 Stanford, CA 94305-9040
sdkamvar@cs.stanford.edu klein@cs.stanford.edu manning@cs.stanford.edu
Abstract 2 The “Interested Reader” Model
We propose a Markov chain model similar in spirit to the
We present a simple, easily implemented spectral ~ “random surfer” model ofPageet al, 1994.1 This descrip-
learning algorithm that applies equally whether we tion is motivated in the context of text categorization, thet
have no supervisory information, pairwise link con- model depends only on notions of pairwise data similarity
straints, or labeled examples. In the unsupervised  and is completely general. In the model, there is a collectio
case, it performs consistently with other spectral of documents, each of which has some (possibly unknown)

clustering algorithms. In the supervised case, our  topic. A reader begins with some document of interest and
approach achieves high accuracy on the catego- continues to read successive documents. When she chooses
rization of thousands of documents given only a the next document to read, she tries to read another document
few dozen labeled training documents for the 20 on the same topic, and hence will prefer other documents
Newsgroups data set. Furthermore, its classifica-  which are similar to her current document. Some mapping

tion accuracy increases with the addition of unla- between similarities and transition probabilities musthe-
beled documents, demonstrating effective use of  sen; we describe a specific choice in Section 3.
unlabeled data. These transition probabilities define a Markov chain

among the documents in the collection. If there exist dis-
tinct topic areas in the document set (or, generally, ifgher
are clusters in the data), this Markov chain will be composed
1 Introduction of subsets that have high intra-set transition probagdjtand
low inter-set transition probabilities. We will refer toebe
) . ) ) ) . subsets asliques Each of the cliques corresponds to a topic
Spectral algorithms use |nform§tlon_conta|_nez_d in the ©igenin the text clustering problem.
vectors of a data affinity (i.e., item-item similarity) miatr Of course, the natural clusters in the data need not be per-

to detect structure. Such an approach has proven effectivgq(y compatible with document labels, and we have said
on many tasks, including information retriedeerwester  nathing about the use of supervision information. In Sec-

etal, 1990, web searciPageet al, 1998; Kleinberg, 1998 tjon 4" we use supervision to override the similarity-based
image segmentatidMeila and Shi, 200D word class detec-  ansition probilities. For example, we will disallow tigition

tion [Brew and Schulte im Walde, 20pand data clustering peween two documents which are known to be differently-
[Ng et al, 2004. But while spectral algorithms have been labeled, regardless of their pairwise similarity.

very useful in unsupervised learning (clustering), littlerk

has been done in developing spectral algorithms for supets . .
vised learning (classification). % Spectral Clustering Algorithms

In this work, we consider the adaptation of spectral cluster!n this section, we discuss the process of turningiimity
ing methods to classification. We first present a method fof1atrix Aof pairwise document similarities into a normalized
combining item similarities with supervision informatiom ~ Markov transition procesN. The eigenvectors dfl are then
produce a Markov transition process between data items. Wesed to detect blocks or or near-blocksNpwhich will cor-
call this Markov process the “interested reader” model by ap'€SPond to clusters of the data.
peal to the special case of text clustering/classificatoor ——
algorithm incorporates supervisory information wheneater
is available, either in the _f(_)rm of pa'rw'se. ConStra.'nt.Saw | left eigenvector of the transition matrix, which indicatbs relative
beled data (or both). Empirically, our algorithm achieviggh  amount of time the process spends at each data item. On te oth
accuracy when supplied either small amounts of labeled datgand, we are interested in right eigenvectors of our tramsihatrix,
(Section 4) or small numbers of pairwise constraints (Secwhich more straightforwardly relate to (near-)block stewe in the
tion 5). transition matrix.

INote that there is an important difference between the waseth
two models are used; the random surfer model is used for téte fir



Form spectral representation: Spectral Learning k-means

1. Given dataB, form the affinity matrixA € R"™<" = f (B). 3 NEwsS 0.84 0.20
2. DefineD to be the diagonal matrix witDj; = Y Ajj. 20 News 0.36 0.07
o LYMPHOMA 0.50 0.10
3. Normalize:N = (A+ dmaxl — D)/dmax- : )
. . SOYBEAN 0.41 0.34
4. Findxq, ..., X, thek largest eigenvectors df and form the
matrix X = [xq, ..., xc] € RN<k=1, Table 2: A comparison of Spectral Learning and k-means.

5. Normalize the rows oK to be unit length.

well, but some of the details differ; our algorithm is shown

in Figure 1. This algorithm is most similar to the algorithm

6. Treating each row oX as a point iriRk, cluster intok clusters presented il[lNg etal, 2004, which we call NJW after its au-
using k-means or any other sensible clustering algorithm.  thors. |n fact, the only difference is the type of normaiizat

7. Assign the original poing; to clusterj if and only if rowi of  ysed. There are two differences between our algorithm and

For clustering:

X was assigned to clustgr MNCuUT from [Meila and Shi, 200}t the normalization of
For classification: Ais again different, and, additionally, MNG does not row
6. Represent each data pairtty the rowX; of X. normalizeX (step 5). Table 1 describes the different types of

normalizations and mentions some algorithms that use them.
It should be noted that for data sets where there are distant

outliers, additive normalization can lead to very poor perf

mance. This is because, with additive normalization, thte ou

7. Classify these rows as pointsm‘f using any reasonable clas-
sifier, trained on the labeled points.

8. Assign the data poirntthe class that X; was assigned.

Figure 1: Spectral Learning Algorithm. liers become their own clique. Therefore, the clusters will
_ o represent outliers rather than true clusters. In a dataseten
Algorithm - Normalization v(A, D) there are distant outliers, divisive normalization is ljkeo
MNCuT  Divisive N=D""A lead to better performance.
NJW Symmetric Divisive N = D~Y2AD~1/2
LSA None ~ N=A 3.2 Parameter Selection
SL Normalized Additive N = (A+ dmaxl — D)/dmax

The importance of parameter selection is often overlooked
in the presentation of standard spectral clustering method
With different values obr, the results of spectral clustering
3.1 Calculating the Transition Matrix can be vastly different. IfNg et al, 2004, the parametes

In order to fully specify the data-to-data Markov transitio IS chosen based on that valueothat gives the least distorted

matrix, we must map document similarities to transitiortpro  clusters. _
abilities. LetA be the affinity matrix over documents whose In our text experiments, the datawas a term-document

j. When we are given documentsas pointsx; and a Similarities, with an entryjj set to zero if neither was one
distance functiord(x;, Xj), a common definition is; = of the topk nearest-neighbors ¢fnor the reverse. Threshold-

ing the affinity matrix in this manner is very useful, as spaict
methods empirically work much better when there are zeros
in the affinity matrix for pairs of items that are notin the sam
class. For our experiments, we chdse- 20; however, one
may learn the optimak in the same manner thiiig et al,,
2007 learn the optimal scale facter.

Table 1: Normalizations used by spectral methods.

e~d0i.x)/20% \whereo is a free scale parameter. In LSA
[Deerwesteret al, 1994, we are given a row-normalized
term-document matrixB, and A is defined to beBT B (the
cosine similarity matrifSalton, 1989.

We may map document similarities to transition probabil-
ities in several ways. We can defihe= DA [Meila and
Shi, 2001, whereD is the diagonal matrix whose elements 3.3 Empirical Results
Dii = Zj Djj . This corresponds to transitioning with proba-
bility proportional to relative similarity values. Alteatively,
we can defineN = (A 4 dmaxl — D)/dmax [Fiedler, 1975; ) )
Here, transition probabilities are sensitive to the akisatim- postings from each of 20 usenet newsgrofips.
ilarity values. For example, if a given document is similar t « 3 NEWsSGROUPS3 of the 20 newsgroups: sci.crypt,
very few others, the interested reader may keep reading that talk.politics.mideast, and soc.religion.christian.
document repeatedly, rather than move on to another docu-
ment. While either of these normalizations are plausibke, w
chose the latter, since it had slight empirical performdmere
efits for our data.

In [Meila and Shi, 200}, it is shown that a probability
tr"?mS'tlon m?mXN,for a Markov ,Cham withk strong cliques 2From http://www.ai.mit.edu/~jrennie/20Newsgroups/; a total of
will havek piecewise constant eigenvectors, and they suggegigg2s documents. Documents were stripped of headers, stdgw
clustering by finding approximately equal segments in tpe to and converted to lowercase. All numbers were discardedvétts
k eigenvectors. Our algorithm uses this general method athat occur in more than 150 or less than 2 documents were emov

We compared the spectral learning algorithm in Figure 1 to
k-means on 4 data sets:

* LYMPHOMA gene expression profiles of 96 normal and
malignant lymphocyte samples. There are 2 classes:
Diffuse Large B-Cell Lymphoma (42 samples), and
Non-DLBCL (54 samples)Alizadeh, 2000.



* SOYBEAN is the SOYBEAN-LARGE data set from the 1. Define the affinity matrixA as in the previous algo-
UCI repository. 15 classes. rithms.

The results are shown in Table 2. The numbers reported are2- First, for each pair of pointg, ) that are in the same
Adjusted Rand Index valudsiubert and Arabie, 1985or class, assign the valuds; = Aji = 1.

the clusters output by the algorithms. The Adjusted Rand In- 3. Likewise, for each pair of poinis, j) that are in differ-
dex is frequently used for evaluating clusters, and is based ent classes, assign the valulg = Ajj = 0.

whether pairs are placed in the same or different clusters in 4 NormalizeN = dL(A—i- dmax! — D).

two partitionings. The Adjusted Rand Index ranges freth o max _ .

to 1, and its key property is that the expected value for a ran- This gives us a symmetric Markov matrix describing the
dom clustering is 0. The result that spectral methods generinterested reader” process which uses supervisory infor-
ally perform better than k-means is consistent with theltesu mation when present, and data similarities otherwise. A
in [Ng et al, 2002; Brew and Schulte im Walde, 24oan  strength of this model lies in the fact that it incorporateta
some cases, the poor performance of k-means reflects its iReled data, whereas the majority of classification modeds de
ability to cope with noise dimensions (especially in theecas strictly with the labeled data. A benefit of additive normal-
of the text data) and highly non-spherical clusters (in teec  ization is that, after the affinities are adjusted, sameilkd

of the composite negative cluster formPHOMA).* How-  pairs will always have a higher (or equal) mutual transition
ever, spectral learning outperforms k-means orsthesean  Probability than unlabeled pairs. This will not necesyeli
dataset as well, which is a low-dimensional, multi-classda the case with other normalization schemes.

set. 4.2 A Spectral Classification Algorithm

ot Again, if natural classes occur in the data, the Markov
4 Spectral Classification cr?ain described above should have cliques. Furthermage, th
In the previous section, we describeldsteringa data setby cliques will become stronger as the number of labeled doc-
creating a Markov chain based on the similarities of the datgyments increases. Given this model, we wish to categorize
items with one another, and analyzing the dominant eigenveocuments by assigning them to the appropriate clique in the
tors of the resulting Markov matrix. In this section, we show Markov chain. The spectral clustering methods given in Sec-
how toclassifya data set by making two changes. First, wetion 3 can be adapted to do classification by replacing thé fina
modify the Markov chain itself by using class labels, whentfew steps (clustering in spectral space) with the steps show
known, to override the underlying similarities. Second, wein Figure 1 (which classify in spectral space).
use a classification algorithm in the spectral space rati@rt  The key differences between the spectral classifier and the
a clustering algorithm. clustering algorithm are (a) that our transition mathiincor-
s y ” orates labeling information, and (b) we use a classifidnén t

4.1 Modifying the “Interested Reader” Model gpectral spacegrather than a cIustEer?ng method. What id nove
The model described in Section 2 can be modified to incorhere is that this algorithm is able to classify documents by
porate labeled data in the following simple manner. If thethe similarity of their transition probabilities to knownis
interested reader happens to be at a labeled document, thets ofB. Because the model incorporates both labeled and
probability that she will choose another labeled documént ounlabeled data, it should improve not only with the addition
the same category is high, while the probability that shé wil of labeled data, but also with the addition of unlabeled data
choose a labeled document of a different category is low (0We observe this empirically in Section 4.3.
zero). Transition probabilities to unlabeled documents ar .
still proportional to their similarity to the current soerdoc- 4.3  Empirical Results
ument, whether the current document is labeled or not. Cliques

We wish to create a Markov matrix that reflects this mod-It was suggested in Section 4.2 that the Markov chain de-
ified model. We propose doing this in the following manner,scribed above will have cliques, that is, subsets of nodes in
using the normalization introduced in Section 3. For mosthe graph that are internally fast-mixing, but are not mutu-
similarity functions, the maximum pairwise similarity v&  ally fast-mixing. Figure 4 shows the thresholded sparsity p
is 1, and the minimum similarity is 0. Therefore, we would tern for the affinity matrices for the 3 Newgroups data set, as
like to say that two points in the same class are maximallyabeled data is added. The left matrix is the affinity matrix
similar, and two points in different classes are minimaiig-s  for 1% labeled data. Even the underlying similarities show
ilar: block-like behavior, if weakly. To the extent that the unla-
T beled data gives a block-like affinity matrix, clusters Ratu
'?hlly exist in the data; this is the basis for spectral cltiste
The subsequent matrices have increasing fractions of @ata |
is partially illusory, due to the zeroed expectation of thdjusted beled. The effect of addlng labeled de}ta is to sharpen and
Rand index, and partially a real consequence of the spagte hi CO€rce the natural clusters into the desired classes. As mor
dimensionality of the text data. Bettermeans results on text typ- |abels are added, the blocks become clearer, the cliques be-
ically require some kind of aggressive dimensionality wiw, ~ COme stronger, and, in the limit of 100% labeled data, the
(usually LSA, another spectral method) or careful featelection  interested reader will never accidently jump from a documen
(or both). of one topic to one of another.

3There are has 562 instances, 35 features, and 15 differe
classes. It is nominal; Hamming distance was used.
4For some of these sets, tlemeans numbers are low. This



! 1 —— documents to incorporate.
i Figure 2(b) shows the effect of supplying increasingly
o8 i large fractions of the 3 BwsGRouPsdata set as labeled
06 o8l training instances, and using the remainder of the data set
i as test instances. The spectral classifier outperformseNaiv
0.4 _ 07f _ Bayes, more substantially so when there is little labeldd.da
v e R i Figures 3(a) and (b) show the same graphs for the RO/
020 400 0 80 % o0z o4 o0s o8 1 GROUPSdata set. Again, spectral classification performs

(a) Adding Unlabeled Data (b) Adding Labeled Data well, especially when less than 10% of the data is labeled.
It should be noticed that, for this data set, Naive Bayes out-

Figure 2: Categorization accuracy on the 8WsGRouPstask as  performs the spectral classifier in the strongly supervisese

the number of (a) unlabeled and (b) labeled points incredsda),  (>15% labeled data). The strength of Spectral Learning lies
12 labeled documents and the given number of unlabeled ddsme in incorporating unlabeled data, and, for the strongly supe
were used as a training set. In (b), the training set is all HE3vS- vised case, this is of less value.

GROUPS with the given fraction labeled. In both cases, the test set

for a given run consisted of all documents in BMsGrRouPsvhose  Spectral Space

labels were not known during training for that run. To further investigate the behavior of the spectral classi-
fier, we performed the following experiment. We took the

o o - 3 NEwsGRouPsdata and labeled various fractions of each
035 0.6 - of the 3 classes. We then plotted each document’s position
03] | oo Baves clnasi S in the resulting 3-dimensional spectral space (the space of
o4r 7 the rows of the matrixX as defined by our spectral learn-

025 L s ing algorithm). Figure 4 shows dimensions 2 and 3 of these
o2f .. 21 | —Spectal Ciassier ‘ plots. With no labels, the data does not tightly cluster. As
0.5 oL L——Naive Bayes Classifi we add labels (circled points), two things happen. Firs, th

0 500 1000 1500 2000 o o1 02 03 04 labeled points move close to same-labeled points, away from

(a) Adding Unlabeled Data (b) Adding Labeled Data different-labeled points, and generally towards the oietsi
since they are “hubs” of the Markov process. Second, they
pull the unlabeled points out radially along with them. Tikis
effective in that it seems to pull the classes apart, evemgho
the classes were not naturally very strong clusters in the un
labeled data. Notice in Figure 5 that adding unlabeled data
also better separates the points patterns in the data eet; sh
ing the Spectral Learning is able to exploit both labeled and

rd.mlabeled data.

Figure 3: Categorization accuracy on the 28\MWsGRouPgask as
the (a) amount of unlabeled data and (b) fraction of labelat d
increases.

Accuracies

To validate the utility of spectral classification, we penfeed
the following experiments on the 20BWSGRoOUPata set.

We built two batch classifiers. The first was a standa
multinomial Naive Bayes (NB) classifier with standard add-4 4 Related Work
one smoothing. The second was a spectral classifier as de- i , )
scribed above, which used a single-nearest neighborfitassi N [Yu and Shi, 2001, a spectral grouping method, which
to perform the final classification in the spectral space. Théhey call “Grouping with Bias”, is presented that allows for
affinity matrix A was the thresholded cosine similarity be- {OP-1evelbias, as in labeled data. They formulate the @bl
tween documentsWe note here that the thresholding is im- &S & constrained optimization problem, where the optimal pa
portant, since it weakens the effect of outliers. Furtheemip  {ition is sought, subject to the constraint that the norpeali
saves space and computation time, since the resultingtgffini €Ut values of any two nodes that are preassigned to the same
matrix is sparse. class shoqld be the same. _ _

We split the data into a labeled training set and an unla- _The main drawback with the algorithm iivu and Shi,
beled test set. For classification, the spectral classifier p 200]]_ is that it only constrains same-labeled data points. The
cessed both the training and test set, but was evaluatecon tR!90rithm we present here benefits from the zeros in the spar-
test set only. sity pattern introduced by dlffgrently—labgled pairs. ther-

Figure 2(a) shows the effect of using a sample of 12 docuMore. it should be noted that, in the multi-class case, é&bel
ments from the 3 NwsGRoupPsdata as a labeled training sets combinatorialy tend to _embody more differently-label
set, with an increasing number of unlabeled documents aRairs than same-labeled pairs. The other drawback to not us-
a test set. The accuracy of the NB classifier is, of coursed the information given by differently-labeled pointsigt
constant up to sampling variation, since it discards uniéabe the trivial partition (all points in one cluster) will safysthe
data. The spectral classifier is more accurate than the NBONStraints, even when many points are labeled. In factnwhe

classifier when given sufficiently many additional unladele @l the data is labeled, it is likely that the partition fouby
the Grouping with Bias algorithm will be the trivial partti.

SFor each document, we take the most similar 20 documents, andigure 6(a) shows that our Spectral Classifier outperfohas t
put those similarities in the appropriate row and columnl.ofier ~ Grouping with Bias algorithm for the 3 BlvsGRouPsdata
entries are 0. set. In fact, Grouping with Bias started performing slightl



1% Labeled 50% Labeled 100% Labeled

Figure 4: Three classes of the 2EINSGRoUPgata set in spectral space with increasing mountatm¥leddata. The classes are sci.crypt
(pluses), talk.politics.mideast (dots), and soc.religitiristian (squares). The labeled points are circled.bbtm graphs show the sparsity
patterns of the associated affinity matrices.
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Figure 5: Three classes of the 2@WNsGRouPSlata set in spectral space with increasing amountslabeleddata. The classes are sci.crypt
(pluses), talk.politics.mideast (dots), and soc.refigibristian (squares). There are 12 labeled documentie@)r

worse when a large fraction of the data was labeled. volves clustering with two types of pairwise constraints:

5 Constrained Spectral Clustering

Recently, there has been interestdonstrained clustering
[Wagstaff and Cardie, 2000; Kleiet al, 2004, which in- 2. Cannot-links two items are in different classes.

1. Must-links two items are known to be in the same class.
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