
PARSING AND HYPERGRAPHS

Dan Klein and Christopher D. Manning
Computer Science Department

Stanford University
Stanford, CA 94305-9040

fklein, manningg@cs.stanford.edu

Abstract
While symbolic parsers can be viewed as deduction systems, this view is less natural for probabilistic parsers.

We present a view of parsing as directed hypergraph analysis which naturally covers both symbolic and probabilistic
parsing. We illustrate the approach by showing how a dynamic extension of Dijkstra’s algorithm can be used to
construct a probabilistic chart parser with anO(n3) time bound for arbitrary PCFGs, while preserving as much of the
flexibility of symbolic chart parsers as allowed by the inherent ordering of probabilistic dependencies.

1 Introduction

An influential view of parsing is as a process of logical deduction, in which a parser is presented as a set of pars-
ing schemata. The grammar rules are the logical axioms, and the question of whether or not a certain category
can be constructed over a certain span becomes the question of whether that category can be derived over that
span, treating the initial words as starting assumptions (Pereira and Warren 1983, Shieber et al. 1995, Sikkel and
Nijholt 1997). But such a viewpoint is less natural when we turn to probabilistic parsers, since probabilities, or,
generalizing, scores, are not an organic part of logical systems.1 There is also a deep connection between logic,
in particular propositional satisfiability, and directed hypergraphs (Gallo et al. 1993). In this paper, we develop
and exploit the third side of this triangle, directly connecting parsing with directed hypergraph algorithms.
The advantage of doing this is that scored arcsare a central and well-studied concept of graph theory, and
we can exploit existing graph algorithms for probabilistic parsing. We illustrate this by developing a concrete
hypergraph-based parsing algorithm, which does probabilistic Viterbi chart parsing over word lattices. Our
algorithm offers the same modular flexibility with respect to exploration strategies and grammar encodings as
a categorical chart parser, in the same cubic time bound, and in an improved space bound.

2 Hypergraphs and Parsing

First, we introduce directed hypergraphs, and illustrate how general-purpose hypergraph algorithms can be
applied to parsing problems.

The basic idea underlying all of this work is rather simple, and is illustrated in figure 1. There is intuitively
very little difference between (a) combining subtrees to form a tree, (b) combining hypotheses to form a con-
clusion, and (c) visiting all tail nodes of a hyperarc before traversing to a head node. We will be building
hypergraphs which encode a grammar and an input, and whose paths correspond to parses of that input.

We would like to thank participants at the 2001 Brown Conference on Stochastic and Deterministic Approaches in Vision, Language,
and Cognition for comments, particularly Mark Johnson. Thanks also to the anonymous reviewers for valuable comments on the paper, and
in particular for bringing Knuth (1977) to our attention. This paper is based on work supported in part by the National Science Foundation
under Grant No. IIS-0085896, and by an NSF Graduate Fellowship.

1This is not to say that there isnoway to incorporate probabilities into a deductive framework, for example by reifying the probabilities.



DT NN

NP DT:[0,1]
NN:[0,1]
DT:[i; k] ^ NN:[k; j]! NP:[i; j]
NP:[0,2]

DT:[0,1]

NN:[1,2]

s NP:[0,2]

(a) (b) (c)

Figure 1: Three views of parsing: (a) tree construction, (b) logical deduction, and (c) hypergraph exploration.

true falsex w

y

z

�a =f x, x!y, x!z, ŷ z!w, :w g

true falsex w

y

z u

�b = f x, x!z, ŷ z!w, z!u, :w g

(a) (b)

Figure 2: Two hypergraphs. Graph (a) is a B-path fromtrue to false, while (b) is not. Also shown are proposi-
tional rule sets to which these graphs correspond.�b is satisfiable, while�a is not.

2.1 Directed Hypergraph Basics

We give some preliminary definitions about directed hypergraphs, objects like in figure 2 , weaving in a corre-
spondence to propositional satisfiability as we go. For a more detailed treatment, see (Gallo et al. 1993).

Directed hypergraphs are much like standard directed graphs. However, while standard arcs connect a single
tail node to a single head node, hyperarcs connect a set of tail nodes to a set of head nodes. Often, as in the
present work, multiplicity is needed only in the tail. When the head contains exactly one node, we call the
hyperarc aB-arc.

Definition 1 A directed hypergraphG is a pair (N;A) whereN is a set of nodes andA is a set of directed
hyperarcs. Adirected hyperarcis a pair (T;H) where the tailT and headH are subsets ofN .

Definition 2 A B-arcis a directed hyperarc for whichH is a singleton set. AB-graphis a directed hypergraph
where the hyperarcs are B-arcs.

It is easy to see the construction which provides the link to satisfiability. Nodes correspond to propositions,
and directed hyperarcsft1; : : : ; tmg ) fh1; : : : ; hng correspond to rulest1 ^ � � � ^ tm ! h1 _ � � � _ hn. In
the case of B-arcs, the corresponding rules are Horn clauses. The construction also requires two special nodes,
true andfalse. For the Horn clause case, it turns out that satisfiability is equivalent to the non-existence of a
certain kind of path fromtrue to false.

With the notion of arc generalized, there are multiple kinds of paths. The simplest is the kind inherited from
standard graphs, in which a path can enter a hyperarc at any tail node and leave from any head node.

Definition 3 A simple pathp = s ; t is a sequence(s = v0; a1; v1; : : : an; vn = t) of alternating nodes
and hyperarcs where: (1) each hyperarcai is distinct, (2)8i 2 f0; : : : ; n � 1g; vi 2 tail(ai+1), and (3)8i 2
f1; : : : ; ng; vi 2 head(ai) A nodet is simply reachablefrom a nodes if a simple path exists froms to t.

In the more important kind of path, each tail node must be reachable before the arc is traversable.

Definition 4 A B-pathP in a B-graphG from a nodes to a nodet is a minimal subgraph2 (NP ; AP ) < G
in which: (1)s; t 2 NP , and (2)8v 2 NP � fsg; 9p = s ; t, p a simple path inP . A nodet is B-reachable
from a nodes if a B-path exists froms to t.

This fits well with the logical rule interpretation: each hypothesis must be true before a conclusion is implied.
It is perhaps not surprising, then, that B-paths fromtrue to falseare what correspond to non-satisfiability.

As an example, the B-graph in figure 2(a) is a valid B-path fromtrue to false. However, the one in figure 2(b)
is not a B-path, for two reasons. First, not all nodes are simply reachable froms (y is not). Second, even

2An important point to note is that one cannot choose only part of a hyperarc to include in a subgraph; once the arc is included, all
nodes in its head and tail must also be included.



if we added a B-arcfxg ) y, the graph would not be minimal (the B-arcfzg ) u could be removed).
Correspondingly, there is no satisfying assignment to the rule sets in figure 2(a), whilefx=true, y=false, z=true,
w=false, u=trueg is a satisfying assignment for figure 2(b).

For the remainder of this paper, we will often drop the “B-” when it is clear from context what kind of graph,
arc, path, or reachability is meant.

2.2 Symbolic Parsing and Reachability

We now show how reachability in a certain hypergraph corresponds to parse existence.
In chart parsing terminology, the core declarative object is theedge, which is a labeled span. For example,

NP:[0,2] represents anNP spanning position 0 to 2. Parsing requires a grammar and an input. Here, we take
the input to be alattice, which is a collection of edges stating which words can occur over which spans. The
grammar is a set of context-free productions of the formC ! X1 : : :Xn. These productions state that edges
with labelsXi can be combined to form an edge with labelC, subject to adjacency constraints on the edges’
spans. When a production is instantiated with specific edges, it is called atraversal. Traversals state a particular
way an edge can be constructed, for example, thatS:[0,8] can be composed ofNP:[0,2] andVP:[2,8].

There is an unfortunate clash between chart parsing and hypergraph terminology. A chart (see figure 3c) is
typically seen as an undirected graph with numbers as nodes and edges as arcs. Traversals, which record how
an edge was constructed, are not part of the graph, but stored in an auxiliary data structure, if at all. However, in
the present context, the numbers are not represented graphically (their relative structure is self-evident), edges
are nodes in the hypergraph, and traversals are B-arcs in the hypergraph. For this paper, we use “edge” to refer
only to labeled spans, and “arc” when we mean a (hyper)graph connection.

Given a grammarG and a latticeL, we wish to construct a hypergraph in which node reachability corre-
sponds to edge parsability. This graph, which we call theinduced B-graph ofG andL, is given as follows.
For each instantiation of categoryC in G as an edgeC:[i; j], create a node. For each instantiation of a pro-
ductionC ! X1 : : :Xn in G as a traversalC:[i; j]! X1:[i; k1] X2:[k1; k2] : : : Xn:[kn�1; j], create a B-arc
fX1:[i; k1]; X2:[k1; k2]; : : : Xn:[kn�1; j]g ) C:[i; j]. This much of the construction represents the con-
nectivity of the grammar. To represent the data, create a special source edges, and add arcs of the form
fsg ) C:[i; j] for each word edgeC:[i; j] andfsg ) C:[i; i] for each categoryC with an empty production.

Similarly, we define a mapping� which takes parse treesT to B-graphs�(T ), where the nodes of�(T ) are
the edges ofT (along withs), and the B-arcs in�(T ) are the traversals ofT (along withs arcs to terminals
in T ). For example, figure 1(c) is the image of figure 1(a). For any treeT , �(T ) is not only a B-graph, but a
B-path froms to the root edge ofT .

For a givenG andL, this mapping is onto the set of B-paths in the induced graph with sources: any B-path
from s is �(T ) for some treeT which can be constructed overL usingG. It is not necessarily one-to-one,
because of cyclic same-span constructions.3 However, this does not matter for determining parseexistence; it
is enough that the inverse image of a B-path be non-empty.

The reduction between parse existence and hypergraph reachability is expressed by the following theorem.

Theorem 1 For a grammarG and a latticeL, a nodee in the induced B-graph is B-reachable froms iff a
parse of the edgee exists. Each parseT of e corresponds to a particular B-path�(T ) froms to e, and for each
B-pathP , there is a unique canonical tree��1(P ) in which no edge dominates itself.

For instance, in figure 3(b), theNP node is B-reachable, but thePPnode is not (becauseIN:[1,2] is not). Thus,
over the span [0,2], anNP can be parsed, while aPPcannot.

Therefore, if we wish to know if some edgee can be parsed overL, we can construct the induced graph
and use any B-reachability algorithm to ask whethere is reachable froms. For example, Gallo et al. (1993)
describe an algorithm which generalizes depth-first search, and which runs in time linear in the size of the
graph. Moreover, since� is easy to invert, any B-path produced can be turned into a concrete parse ofe.

3It will be one-to-one if the grammar contains neither empty nor unary productions; not much is lost if this case is used for intuition.



2.3 Viterbi Parsing and Shortest Paths

A more complex problem than parse existence is the problem of discovering a best, or Viterbi, parse for an
edgee, where “best” is given by some scoring function over trees. For the present work, we assume that the
scoring function takes a particular form. Namely, for the proofs to go through, it must be that combining trees
(1) cannot yield a score better than the best scored component, and (2) replacing a subtree with a lower scoring
subtree will worsen the score of any containing tree. These assumptions are acheived if each production (and
category) is associated with an element of a�S-ordered c-semiring4 (Bistarelli et al. 1997), and a tree’s score
is the semiring product of its production (and node) scores. In particular, maximizing multiplied production
probabilities, minimizing the number of tree nodes, and many other scoring functions are of this form.

In the case of such scoring functions, the same induced graph used for parse existence can be used for finding
a best parse. We simply score each arc with the score of the local tree to which it corresponds. The score of
a B-path5 is then the score of at least one parse which maps to that B-path. Furthermore, the canonical parse
mentioned in theorem 1 for that B-path is a best parse and has the same score as its B-graph.

Thus, any algorithm for finding shortest (or, more generally, best) paths in B-graphs can be used to find best
parses, using the construction and mapping above. For example, Gallo et al. (1993) describe an extension of
Dijkstra’s algorithm to B-graphs, which runs in time linear in the size of the graph.6

2.4 Practical Issues

At this point, one might wonder what is left to be done. We have a reduction which, given a grammarG and a
latticeL, allows us to build and score the induced graph. From this graph, we can use reachability algorithms
to decide parse existence, and we can use shortest-path algorithms to find best parses. Furthermore, this view
can be extended to other problems of parsing. For example, algorithms for summing paths can be adapted to
calculate inside probabilities (see Klein and Manning (2001a)).

However, there are two primary issues which remain. First, there is the issue of efficiency. Reachability and
shortest-path algorithms, such as those cited above, generally run in time linear in the size of the induced graph.
However, the size of the induced graph, while polynomial in the size of the latticeL, is exponential in the arity
of the grammarG, having a term ofjLjarity(G)+1 in its size. The implicit binarization of the grammar done by
chart parsers is responsible for their cubic bounds, and we wish to preserve this bound for our Viterbi parsing.

Second, one does not, in general, wish to construct the entire induced graph in advance, or even at all. Rather,
one would like to dynamically create only the portions which are needed, as they are needed. Various factors
which can affect what regions of the graph are built at what times include:

� Structural search strategies, such as bottom-up, top-down, left-corner, and so on.

� Lattice scanning strategies, such as scanning the lattice from left to right, or in whatever order it becomes
available from previous processing.

� Rule encodings. Practical grammars are often encoded in a variety of ways, such as tries or fully minimized
DFSAs (Klein and Manning 2001b), rather than simply as linear rewrite rules as in theoretical presentations.

Therefore, in section 3, we present a chart parser for arbitrary PCFGs which can be seen as dynamically
constructing the reachable regions of an induced graph and doing a Dijkstra’s algorithm style shortest-path
computation over it. This parser preserves the time bounds of categorical chart parsers and allows a variety
of introduction strategies and rule encodings. We discuss the kinds of subtle errors that can arise in a naive
implementation and present simple conditions that ensure the correctness of various parsing strategies.

4These semirings have been used in work on soft constraint satisfaction, hence the “c-” prefix. They are semiringshA;�;
; 0; 1i
where� is idempotent and1�x = 1 for all x. The order�S required is thata �S b iff a� b = b. h[0; 1];max;�; 0; 1i is an example.

5The score of a node in a B-path is defined recursively as the semiring product of the score of the arc entering that node with the scores
of the nodes in that arc’s tail. The source has score 1 (the maximum score in the semiring).

6The choice of algorithm may impact the permitted generality of the scoring function. The algorithm in (Gallo et al. 1993) actually
does work for all�S -ordered c-semiring scoring functions, though their presentation does not state this; one must also note that their score
addition corresponds to the semiring multiplication. In any case, the algorithm in section 3 is entirely self-contained.



2.5 Relation to Superior Grammars

Knuth (1977) introduces a formalism ofsuperior grammars, where the terminals are superior functions, which
calculate a score for a rule as a function of the scores of nonterminals on the righthand side. The formalism
is closely related to the above hypergraph formalism, and can also be seen as a generalization of PCFGs. He
also presents a generalization of Dijsktra’s algorithm for the problem of finding the best cost string in the
language defined by such a grammar (there is no concept of comparing parses for a single string). Rather
than constructing B-graphs, we could cast the present work in terms of superior grammars, building a large
grammar isomorphic to our B-graph, with a non-terminal for each edge and a terminal for each lattice element.
Knuth’s superiority criterion would then be used in place of the�S-ordered c-semiring property.7 When the
superior functions are uniform across productions, superior grammars reduce to c-semiring scored B-graphs.
The choice of which formalism to base our work on is thus more aesthetic than substantive, but we believe that
the hypergraph presentation allows easier access to a greater variety of algorithmic tools, and presents a clearer,
more visually appealing intuition. At any rate, the practical issues described above, and their solutions, which
form the bulk of this paper, would be unchanged under either framework.

3 Viterbi Parsing Algorithm

Agenda-based active chart parsing (Kay 1980, Pereira and Shieber 1987) is an attractive presentation of the
central ideas of tabular methods for CFG parsing. Earley (1970)-style dotted items combine via deduction
steps (“the fundamental rule”) in an order-independent manner, such that the same basic algorithm supports
top-down, bottom-up, and left-corner parsing, and the parser deals naturally and correctly with the difficult
cases of left-recursive rules, empty elements, and unary rules.

However, whileO(n3) methods for parsing PCFGs are well known (Baker 1979, Jelinek et al. 1992, Stolcke
1995), aO(n3) probabilistic parser corresponding to active chart parsing for categorical CFGs, has not yet
been provided. Producing a probabilistic version of an agenda-driven chart parser is not trivial. A central
idea of such parsers is that the algorithm is correct and complete regardless of the order in which items on the
agenda are processed. Achieving this is straightforward for categorical parsers, but problematic for probabilistic
parsers. For example, consider extending an active edgeVP!V.NP PP:[1,2] with anNP:[2,5] to form an edge
VP!V NP.PPover [1,5]. In a categorical chart parser (CP), we can assert theparsabilityof this edge as soon as
both component edges are built. AnyNP edge will do; it need not be a bestNP over that span. However, if we
wish to score edges as we go along, there is a problem. In a Viterbi chart parser, if we later find a better way to
form theNP, we will have to update not only the score of thatNP, but also the score of any edge whose current
score depends on thatNP’s score. This can potentially lead to an extremely inefficient upward propagation of
scores every time a new traversal is explored.8

Most exhaustive PCFG parsing work has used the bottom-up CKY algorithm (Kasami 1965, Younger 1967)
with Chomsky Normal Form (CNF) Grammars (Baker 1979, Jelinek et al. 1992) or extended CKY parsers
that work withn-ary branching grammars, but still not with empty constituents (Kupiec 1991, Chappelier and
Rajman 1998). Such bottom-up parsers straightforwardly avoid the above problem, by always building all edges
over shorter spans before building edges over longer spans which make use of them. However, such methods
do not allow top-down grammar filtering, and often do not handle empty elements, cyclic unary productions,
orn-ary rules. Stolcke (1995) presents a top-down parser for arbitrary PCFGs, which incorporates elements of

7This has the theoretical – but not clearly useful – advantage of allowing the score combination function to vary per production.
8Goodman (1998) provides an insightful presentation unifying many categorical and probabilistic parsing algorithms in terms of the

problem’s semiring structure, but he merely notes this problem (p. 172), and on this basis puts probabilistic agenda-based chart parsers
aside. The agenda-based chart parser of Caraballo and Charniak (1998) (used for determining inside probabilities) suffers from exactly
this problem: In Appendix A (p. 293), they note that such updates “can be quite expensive in terms of CPU time”, but merely suggest a
method of thresholding which delays probability propagation until the amount of unpropagated probability mass has become significant,
and suggest that this thresholding allows them to keep the performance of the parser “asO(n3) empirically.” We do not present an inside
probability algorithm here, but the hypergraphical view of parsing can be developed to give an inside parsing algorithm, as discussed in
(Klein and Manning 2001a).



NP! ��:[0,0] DT:[0,1]

NP!DT��:[0,1] NN:[1,2]

NP:[0,2]

PP! �Æ
[0,0]NP! ��

[0,0]

DT

[0,1] NN

[1,2]

s

IN

[0,1]

PP

[0,1]

NP!
DT��
[0,1]

NP

[0,2]

0 1 2
DT NN

NP

NP!
DT��

NP! ��

PP! �Æ
[NN+

NP!DT��]
) NP

Passive Edges
Active Edges
Traversals

(a) (b) (c)

Figure 3: Various representations of a parse: (a) a binary tree of chart edges, (b) a path in an induced hyper-
graph, and (c) a collection of edges and traversals entered into a standard chart.

the control strategies of Earley’s (1970) parser and Graham et al.’s (1980) parser. Stolcke provides a correct
and efficient solution for parsing arbitrary PCFGs, avoiding the problem of left-recursive predictions and unary
rule completions through the use of precomputed matrices giving values for the closure of these operations.
However, the add-ons for grammars with such rules make the resulting parser rather complex, and again we
have a method only for a single parsing regimen, rather than a general tabular parsing framework.

In the current hypergraphical context, we can interpret these effects as follows. A CP is performing a single-
source reachability search. Any path from the source is as good as any other for reachability, and the various
processing orders all eventually explore the entire region of the graph which is accessible given the rule intro-
duction strategy (and goal). However, once scores are introduced, one cannot simply explore traversals in an
arbitrary order, just as how, in relaxation-based shortest path algorithms, one cannot relax arcs in an arbitrary
order. CKY parsers ensure a correct exploration order by exploring an entire tier of the graph before moving
on to the next. For CNF grammars, all parses of the same string have the same number of productions in them,
and so this tiering strategy works. However, in general, we will have to follow the insight behind Dijkstra’s
algorithm: always explore the current best candidate, leaving the others on a queue until later.

3.1 The Algorithm

Our algorithm has many of the same data structures of a standard CP. The fundamental data structure is the
chart, which is composed of numberedverticesplaced between words, edges, and traversals (see figure 3(c)).
Unlike in the general presentation above, there are two kinds of edges, active and passive.Passive edgesare
identified by a span and a category, such asNP:[2,5], and represent that there is some parse of that category
over the span.Active edgesare identified by a span and a grammar state, such asVP!V.NP PP:[1,2], and
indicate that that grammar state is reachable over that span. In the case where grammar rules are encoded
as lists, this state is simply an Earley-style dotted rule, and to reach it one must have been able to parse the
sequence of categories to the left of the dot. However, grammar rules can be compacted in various ways,
and so the label of the active edges for this parser is in general a deterministic finite state automaton (DFSA)
state. List rules denote particularly simple, linear DFSAs, whereas trie DFSAs are equivalent to left-factoring
the grammar. The “fundamental rule” states that new edges are produced by combining active edges with
compatible passive edges, advancing the active edge. For example, the two edges described above can combine
to form the active edgeVP!V NP.PP:[1,5]. This information is recorded in a traversal, which, due to the
active/passive binarization, is simply an (active edge, passive edge, result edge) triple.9 As each edge can
potentially be formed by many different traversals, this distinction between an edge and a traversal of an edge
is crucial to parsing efficiently (but often lost in pedagogical presentations: e.g., Gazdar and Mellish (1989)).

9The result edge is primarily to simplify proofs and pseudocode; it need not ever be stored in a traversal’s coded representation.



de fe

e is discovered e is finished

no traversal ofe explored
score(e) does not change
score(e) = 0

some traversal explored
score(e) only goes up
score(e) � �(e)

an optimal traversal explored
score(e) can never change
score(e) = �(e)

Figure 4: The life cycle of an edgee

Finishing
Agenda

of
Edges

Exploration
Agenda

of
Traversals

Finished edges generate
traversals which are inserted
into the exploration agenda.

Explored traversals cause edges to
be discovered and possibly improve
their score estimates, advancing them
in the finishing agenda.

Finished edges
generate new active
edges according to
the parsing strategy..

Figure 5: The core loop of the parser

The core cycle of a CP is to process traversals into edges and to combine new edges with existing edges to
create new traversals. Edges which are not formed from other edges via traversals (for example, the terminal
edges in figure 3(a)) areintroduction edges. Passive introduction edgesare words from the lattice and are often
all introduced during initialization.Active introduction edgesare the initial states of rules and are introduced in
accordance with the grammar strategy (top-down, bottom-up, etc.). To hold the traversals or edges which have
not yet been processed, a CP has a data structure called anagenda, which holds both traversals and introduction
edges. Items from this agenda can be processed in any order whatsoever, even arbitrarily or randomly, without
affecting the final chart contents.

In our probabilistic chart parser (PCP), the central data structures are augmented with scores. Grammar
rules, which were previously encoded as symbolic DFSAs are scored DFSAs, as in Mohri (1997), with a score
for entering the initial state, a score on each transition, and, for each accepting state, a score for accepting in
that state. Each edgee is also scored at all times. This value,score(e) (or score(e; t) at a timet), is the best
estimate to date of that edge’s true best score,�(e). In our algorithm, the estimate will always be conservative:
score(e) will always be worse than or equal to�(e).

The full algorithm is shown in pseudocode in figure 6. It is broadly similar to a standard categorical chart
parsing algorithm. However, in order to solve the problem of entering edges into the chart before their correct
score is known, we have a more articulated edge life cycle (shown in figure 4).10 We crucially distinguish
edgediscoveryfrom edgefinishing. A non-introduction edge is discovered the first time we explore a traversal
which forms that edge (in exploreTraversal). An introduction edge is discovered at a time which depends on our
parsing strategy (during initialize or another edge’s finishEdge). Discovery is the point when we know that the
edgecanbe parsed. An edge is finished when it is inserted into the chart and acted upon (in finishEdge). The
primary significance of an edge’s finishing time is that, as we will show, our algorithm maintains the Dijkstra’s
algorithm property that when an edge is finished, it is correctly scored, i.e.,score(e) = �(e).

A CP stores all outstanding computation tasks in a single agenda, whether the tasks are unexplored traversals
or uninserted introduction edges. We have two agendas and stronger typing. To store edges which have been
discovered but not yet finished, we have afinishing agenda. To store traversals which have been generated but
not explored, we have anexploration agenda.

The algorithm works as follows. During initialization, all passive introduction edges (one per word in the
lattice) are discovered, along with any initial active edges (for example, allS!.�:[0,0] edges if we are using
a top-down strategy andS:[0,n] is the goal edge).11 Passive introduction edges get their initial scores from the
lattice, while active introduction edges get their initial scores from the grammar (often all are simply given the

10Note that the comments in the figure apply only to non-introduction edges, but the timeline applies to all edges.
11Other word introduction strategies are possible, such as scanning the words incrementally in an outer loop from left-to-right whenever

the finishing agenda is empty. A sufficient constraint on scanning strategies is presented in section 4.



parse(Lattice sentence, Edge goal)
initialize(sentence, goal)
while finishingAgenda is non-empty

while explorationAgenda is non-empty
get a traversalt from the explorationAgenda
exploreTraversal(t)

get a best edgee from the finishingAgenda
finishEdge(e)

initialize(Lattice sentence, Edge goal)
create a new chart and new agendas
for each word w:[start,end] in the sentence

discoverEdge(w:[start,end])
for each vertexx in the sentence

if allow-empties
discoverEdge(empty:[x,x])

doRuleInitialization(goal)

exploreTraversal(Traversal t)
e = t.result
if notYetDiscovered(e)

discoverEdge(e)
relaxEdge(e, t)

relaxEdge(Edgee, Traversal t)
newScore = combineScores(t)
if (newScore is better thane.score)
e.score =t.score
e.bestTraversal =t

discoverEdge(Edgee)
adde to the finishingAgenda

finishEdge(Edgee)
adde to the chart
doFundamentalRule(e)
doRuleIntroduction(e)

doFundamentalRule(Edgee)
if e is passive

for all active edgesa which end ate.start
for active and/or passive result edgesr

create the traversalt = (a, e, r)
addt to the explorationAgenda

if e is active
for all passive edgesp which start ate.end

for active and/or passive result edgesr

create the traversalt = (e, p, r)
addt to the explorationAgenda

doRuleIntroduction(Edge e)
if top-down ande is active

for all categoriesc that can followe.label
for all intro active edgesa at e.end with LHSc

if notDiscovered(a) then discoverEdge(a)
if bottom-up ande is passive

for all categoriesc with a RHS beginning withe.label
a = c:[e.start,e.start]
if notDiscovered(a) then discoverEdge(a)

doRuleInitialization(Edge goal)
if top-down

for all intro active edgesa at goal.start with LHS goal.label
discoverEdge(a)

Figure 6: Pseudocode for our probabilistic chart parser

maximum score). Introduction edges are correctly scored at discovery and their scores never change afterwards.

The core loop of the algorithm is shown in figure 5. If there are any traversals to explore, a traversalt is
removed from the exploration agenda and processed with exploreTraversal. Any removal order is allowed. In
exploreTraversal,t’s result edgee is calculated. Ife is an undiscovered edge, then it becomes discovered (and
given the minimum score). In any case,e’s score is checked againstt (relaxEdge). Ift formse with a better
score than previously known fore, e’s score (and best traversal) is updated.

If the exploration agenda is empty, the finishing agenda is checked. If it is non-empty, the edge with the
best current score estimate is finished – removed and processed with finishEdge. This is the point at which the
fundamental rule is applied (doFundamentalRule) and new active edges are introduced (in accordance with the
active edge introduction strategy).12

4 Analysis

We outline the completeness of the algorithm: that it will discover and finish all edges and traversals which the
grammar, goal, and words present allow. Then we argue correctness: that every edgee which is finished is, at
its finishing time, assigned the correct score. Finally, we give tight worst-case bounds on the time and memory
usage of the algorithm.

12In the application of the fundamental rule, an (active, passive) pair can potentially create two traversals. In categorical DFSA chart
parsing, edges may be active, passive, or both. However, the passive and active versions of what would have been a single active/passive
edge in a categorical parser will not in general have the same score, because the passive one is assessed an acceptance cost, and so the
algorithm introduces separate edges.



4.1 Completeness

For space reasons, we simply sketch a proof of the reduction of the completeness of our PCP to the known
completeness of a CP. We state this reduction rather than prove completeness directly in order to stress the
parallelism between the two parser types. To argue completeness for a variety of word and rule introduction
strategies, it is important to have a concrete notion of what such strategies are. Constraints on the word intro-
duction strategy are only needed for correctness, and so we defer discussion until then. LetE be the set of
edges,P the set of passive introduction edges (i.e., word edges), andA the set of active introduction edges
(i.e., rule introductions).

Definition 5 An edge-drivenrule introduction strategy is a mappingR:E ! 2A which takes an edgee to a
setAe of active introduction edges which are to be immediately discovered whene is finished.

The standard top-down and bottom-up strategies are both edge-driven.13

Theorem 2 For any edge-driven active edge introduction strategyR, any DFSA grammarG, and any input
lattice L, and goal edgeg, there exists some agenda selection functionS for which the sequence of edge
insertionsI made by a categorical chart parser and the sequence of edge finishingsF made by our probabilistic
chart parser are the same.

The proof is by simulation. We run the two parsers in parallel, showing by induction over corresponding
points in their execution thatI = F and that every edge in the PCP’s finishing agenda is backed by some edge
or traversal from the CP’s agenda. The selection function is chosen to make the CP process agenda items which
will cause the insertion of whichever edge the PCP will next select from its finishing agenda.

The completeness reduction means that the edges found (i.e.,finished) by both parsers will be the same.
From the known completeness of a CP under weaker conditions (Kay 1980), this means that the PCP will find
every edge which has a parse allowed by the grammar, words, and goal,not that it will score them correctly.

4.2 Correctness

We now show that any edge which is finished is correctly scored when it is finished.

First, we need some terminology about traversal trees. A traversal treeT is a binary tree of edge tokens, as in
figure 3(a). A leaf in this tree is a token of an introduction edge, either a word (if passive) or a rule introduction
(if active). A non-leafx is a token of a non-introduction edge and has two children,a andp, which are tokens of
an active edge and a passive edge, respectively, forming a traversal token(a; p; x). The reason we must make
a type/token distinction is that a given edge or traversal may appear more than once in a traversal tree. For
example, consider empty words which may be used several times over the same zero-span, or an introduction
active edge for a left-recursive rule. We usetype(x) to denote the type of an edge tokenx.

The basic idea is to avoid finishing incorrectly scored edges by always finishing the highest-scored edge
available. This will cause us to work in an inside-outwards fashion when necessary to ensure that score propa-
gation is never needed. The chief difficulties therefore occur when what should have been a high-scoring edge
is unavailable for some reason. A subtle way this can occur is if an introduction edge is discovered too late.
If this happens, we may have already mistakenly finished some other edge, assigning it the best score that it
could have hadwithout that introduction edge’s presence in the grammar or input. Therefore, we need tighter
constraints on word and rule introduction strategies to prove correctness than those needed for completeness.

The condition on word introduction is simple.

Definition 6 TheWord Introduction Condition(or “no internal insertion”): Whenever an edgee with spanS
is finished at timefe, all words (passive introduction edges) contained inS must have been discovered atfe.

13An example of a non-edge-driven strategy would be if we introduced an arbitrary undiscovered edge from A into an arbitrary zero-span
whenever the finishing agenda was empty. It appears very difficult to state a criterion for non-edge-driven strategies which guarantees both
their completeness and correctness.



This is satisfied by any reasonable lattice scanning algorithm and any sentence scanning algorithm what-
soever. The only disallowed strategy is to insert words from a lattice into a span which has already had some
covering set of words discovered and parsed. It should be fairly clear that this kind of internal-insertion strategy
will lead to problems.

Now we supply some theoretical machinery for a condition on rule introductions.

Definition 7 A (possibly partial) ordering�T of nodes (edge tokens) in a traversal treeT allows descentif
whenever a nodex dominates a set of childrenC, for anyc 2 C, c �T x.

Definition 8 TheRule Introduction Condition(or “no rule blocking”): In any parseT of an edgee, there is
some ordering�T of nodes which allows descent and such that for any active introduction edgea 2 T , EITHER

(1) there is some edgex with a tokenx0 in T which does not dominate any tokena0 of a and whose finishing
will cause the introduction ofa (i.e.,a 2 R(x)) andx0 �T a0, OR

(2) any parse ofe will contain eithera or an edgeb whose discovery would be simultanous with that ofa.

This is wordy, but the key idea is that active introduction edges must “depend” on some other edge in the
parse in such a way that if an active introduction edge is undiscovered, we can track back to find another edge
earlier in the parse which must also be undiscovered.

The last constraint we need is one on the scores of the DFSA rules. If a prefix of a rule is bad, its continuations
must be as bad or worse. Otherwise, we may incorrectly delay extending a low scoring prefix.

Definition 9 The Grammar Scoring Condition(or “no score gain”): The grammar DFSAs are scored by
assigning an element of a�S-ordered c-semiring to each initial state, transition, and accepting state. The
score of a trajectory (sequence of DFSA states) is the semiring product of the scores of the initial state and the
transitions, along with the accepting cost (for complete trajectories).

If this is met, then the score of a traversal tree is then simply a product of scores for each introduction edge
token and traversal token. Therefore, the score of an entire traversal tree is no better than the score of any
subtree, and monotonically increasing under substitution of a better scored subtree.

A subtle concrete implication of this condition is that, for example, if grammar productions are going to
be compressed into a DFSA which transduces rule RHSs to sums of log-probabilities, not only must the log-
probabilities of the full productions all be non-positive, but so must each starting cost, transition, and accepting
cost.14 Otherwise, the scoring of the underlyingn-ary grammar trees might have the property that adding
structure reduces the score, but the scoring of the traversal trees will not.

Now we are ready to state the completeness theorem.

Theorem 3 Given any DFSA grammarG, latticeL, and introduction strategies obeying the conditions above,
any edgee which is finished by the algorithm at some timefe has the property thatscore(e; fe) = �(e).

The proof is by contradiction. Take the first edgee which is selected from the finishing agenda and finished
with an incorrect score estimate, so ate’s finishing timefe, score(e; fe) 6= �(e).

Perhapsscore(e; fe) > �(e), contrary to our earlier claim that scoring was always conservative (see fig-
ure 4). Fore to ever be scored incorrectly,e must be a non-introduction edge. Its current incorrect score was
then either set at discovery (when it was initialized to the minimum score, which is not greater than�(e) or
anything else, a contradiction) or by relaxing a traversal(a; p; e). But such a traversal cannot be created until
botha andp are already finished. By choice ofe, a andp were correctly scored at their finishing. Consider
the traversal treeT formed by taking best parses ofa andp, and joining them under a root token ofe. After
relaxation, we hadscore(e) = �(T ).15 But, sinceT is a parse ofe, �(T ) � �(e). Since that relaxation gavee
the score it still has atfe, we havescore(e; fe) � �(e), again a contradiction.

Therefore,score(e; fe) < �(e). Sincee has a parse (by completeness), it has at least one best parse. Choose
one and call itB. By virtue of being a best parse,�(B) = �(e). We claim that there is some edgex inB which,
at fe, has been discovered, is correctly scored, yet has not been finished. Assume such anx exists. Sincex is

14The condition implies this because positive elements are not in the relevant semiring:h[�1;0];max;+;�1;0i.
15We define the score function� for a traversal treeT to be the score of that specific parse.



discovered but not finished atfe, it was in the finishing agenda with its current score just beforeewas chosen to
be finished. Bute was chosen from the finishing agenda, notx, so it must be thatscore(x; fe) � score(e; fe).

On the other hand, sincex is contained inB, some best parse ofP of x is a subtree ofB. But then by
“no score gain” it must be that�(e) = �(B) � �(P ) = �(x). Thus, if we find such an edgex, then
�(e) � �(x) = score(x; fe) � score(e; fe) < �(e), a contradiction.

The rest of the proof involves showing the existence of such anx. Consider the nodes inB. Sincee is
unfinished, there is a non-empty set of unfinished nodes, call itU . We want someu 2 U which both has no
unfinished children and which is minimal by�T . Clearly some elements are minimal sinceU is non-empty
and finite. Call the set of minimal elementsM . For anyu 2 M which has an unfinished child, that child must
also be minimal since�T allows descent. Therefore, removing all elements fromM which have an unfinished
child leaves a non-empty set. Choose anyu from this set.

If u dominates two finished children (call thema andp), then sincee is the first incorrectly finished edge,
type(a) andtype(p) had their correct scores at their finishing times. Whenever the later oftype(a) andtype(p)
was finished, the traversalt = (type(a); type(p); type(u))was generated. And before anything else could have
been finished,t was explored. Thus,type(u) has been discovered and has been relaxed byt, say at timert.
Therefore, atrt, and therefore still atfe, score(type(u)) can be no worse than its score inB, which of course
means its score has been correct sincert, so type(u) is correctly scored atfe. But recall thattype(u) is
unfinished, so we are done.

If u dominates no finished nodes, then it is a leaf. Iftype(u) is a passive introduction edge, then by “no inter-
nal insertion”type(u) has been discovered. Since passive introduction edges are correctly scored at discovery,
we are done. Iftype(u) is an active introduction edge, then we need only show that it has been discovered,
since these are also correctly scored on discovery. To be sure it has been discovered, we must appeal to “no
rule blocking.” It is possible that any parse ofe contains an edge whose discovery would be simultaneous with
that of type(u). If so, since there is some finished parse ofe, type(u) must be discovered, and we are done.
If not, then letx be an edge from (2) whose finishing would guaranteetype(u)’s discovery. Ifx is unfinished,
then some instance ofx is�T u and unfinished, contradictingu’s minimality. Thus we are done.

We have now proven the correctness of the algorithm for strategies meeting the given criteria. The traditional
bottom-up, top-down, and left-corner strategies satisfy the Rule Introduction Condition. We prove this for only
the top-down strategy here; the other proofs are similar.

Theorem 4 The top-down rule introduction strategy satisfies the Rule Introduction Condition.

Order the nodes inT by the order in which they would be built in a top-down stack parse ofT . Since
no node is completed before its children in such a parse, this allows descent. In a top-down parse, for every
active introduction tokena0 except for leftmost node in the tree, there is another (active) nodex0 which is a
left sibling of a node dominatinga0 and for whichtype(x0)’s finishing will introducetype(a0). For any active
introduction edgea, let a0 be its leftmost token inT . Because it is leftmost, itsx0 will not dominate any token
of a. Therefore, (1) holds unlessa0 is the leftmost node. Assume it is leftmost. SinceT is a parse of some
edgee either of categoryC or with a label with LHSC, a has a label with LHSC. Thus, if any parseS of e
whatsoever is found, its leftmost leaf is a token of some active introduction edgeb with a label with LHSC.
But then, wheneverbwas discovered, so wasa, since the top-down introduction strategy always simultaneously
introduces the initial states of all rules with the same LHS.

4.3 Asymptotic Bounds and Performance

We briefly motivate and state the complexity bounds. Letn be the number of nodes in the input lattice,
C the number of categories in the grammar, andS the number of states in the grammar.C � S since each
category’s encoding contains at least one state. The maximum number of edgesE isO((C+S)n2) = O(Sn2),
and the maximum number of traversalsT is O(SCn3). Time is dominated by the work per traversal, which
can be made amortizedO(1) (with a Fibonacci heap-backed priority queue), so the total time isO(T ) =



O(SCn3). For memory, there are severalO(E) data structures holding edges. The concern is the exploration
agenda which holds traversals. But everything on this agenda at any one time resulted from a single call to
doFundamentalRule, and so its size is alsoO(E). Therefore, the total memory isO(E) = O(Sn2). This is not
necessarily true for a standard CP, which can requireO(T ) space for its agenda.

We have implemented the parser in Java, and tested it with various rule encodings on parsing of Penn Tree-
bank Wall Street Journal sentences. With efficient rule encodings, sentences of up to 100 words can be parsed
in 1 Gb of memory. Graphs of runtime performance can be found in (Klein and Manning 2001b).

5 Conclusion

We have pointed out a deep connection between parsing and hypergraphs. Using that connection, we presented
an agenda-based probabilistic chart parser which naturally handles arbitrary PCFG grammars and works with a
variety of word and rule introduction strategies, while maintaining the same cubic time bounds as a categorical
chart parser.

References

Baker, J. K. 1979. Trainable grammars for speech recognition. In D. H. Klatt and J. J. Wolf (Eds.),Speech Communication
Papers for the 97th Meeting of the Acoustical Society of America, 547–550.

Bistarelli, S., U. Montanari, and F. Rossi. 1997. Semiring-based constraint satisfaction and optimization.Journal of the
ACM44(2):201–236.

Caraballo, S. A., and E. Charniak. 1998. New figures of merit for best-first probabilistic chart parsing.Computational
Linguistics24:275–298.

Chappelier, J.-C., and M. Rajman. 1998. A generalized CYK algorithm for parsing stochastic CFG. InFirst Workshop on
Tabulation in Parsing and Deduction (TAPD98), 133–137, Paris.

Earley, J. 1970. An efficient context-free parsing algorithm.Communications of the ACM6:451–455.
Gallo, G., G. Longo, S. Pallottino, and S. Nguyen. 1993. Directed hypergraphs and applications.Discrete Applied

Mathematics42:177–201.
Gazdar, G., and C. Mellish. 1989.Natural Language Processing in Prolog. Addison-Wesley.
Goodman, J. 1998.Parsing inside-out. PhD thesis, Harvard University.
Graham, S. L., M. A. Harrison, and W. L. Ruzzo. 1980. An improved context-free recognizer.ACM Transactions on

Programming Languages and Systems2(3):415–462.
Jelinek, F., J. D. Lafferty, and R. L. Mercer. 1992. Basic methods of probabilistic context free grammars. In P. Laface

and R. De Mori (Eds.),Speech Recognition and Understanding: Recent Advances, Trends, and Applications, Vol. 75 of
Series F: Computer and Systems Sciences. Springer Verlag.

Kasami, T. 1965. An efficient recognition and syntax analysis algorithm for context-free languages. Technical Report
AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA.

Kay, M. 1980. Algorithm schemata and data structures in syntactic processing. Technical Report CSL-80-12, Xerox PARC,
Palo Alto, CA, October.

Klein, D., and C. D. Manning. 2001a. AnO(n3) agenda-based chart parser for arbitrary probabilistic context-free gram-
mars. Technical Report dbpubs/2001-16, Stanford University.

Klein, D., and C. D. Manning. 2001b. Parsing with treebank grammars: Empirical bounds, theoretical models, and the
structure of the Penn treebank. InACL 39.

Knuth, D. E. 1977. A generalization of Dijkstra’s algorithm.Information Processing Letters6(1):1–5.
Kupiec, J. 1991. A trellis-based algorithm for estimating the parameters of a hidden stochastic context-free grammar. In

Proceedings of the Speech and Natural Language Workshop, 241–246. DARPA.
Mohri, M. 1997. Finite-state transducers in language and speech processing.Computational Linguistics23(4).
Pereira, F., and S. M. Shieber. 1987.Prolog and Natural-Language Analysis. Vol. 10. Stanford, CA: CSLI Publications.
Pereira, F. C., and D. H. Warren. 1983. Parsing as deduction. InACL 21, 137–144.
Shieber, S., Y. Schabes, and F. Pereira. 1995. Principles and implementation of deductive parsing.Journal of Logic

Programming24:3–36.
Sikkel, K., and A. Nijholt. 1997. Parsing of Context-Free languages. In G. Rozenberg and A. Salomaa (Eds.),Handbook

of Formal Languages, Vol. 2: Linear Modelling: Background and Application, chapter 2, 61–100. Berlin: Springer.
Stolcke, A. 1995. An efficient probabilistic context-free parsing algorithm that computes prefix probabilities.Computa-

tional Linguistics21:165–202.
Younger, D. H. 1967. Recognition and parsing of context free languages in timen3. Information and Control10:189–208.


