Computer Science Dept.
Stanford University
Stanford,cA 94305-9040

klein@cs.stanford.edu

1

Named Entity Recognition with Character-Level Models

Dan Klein Joseph Smarr

Stanford University
Stanfora;A 94305-2181
jsmarr@stanford.edu

Abstract

We discuss two nhamed-entity recognition mod-
els which use characters and charantgrams
either exclusively or as an important part of
their data representation. The first model
is a character-level HMM with minimal con-
text information, and the second model is a
maximum-entropy conditional markov model
with substantially richer context features. Our
best model achieves an overall Bf 86.07%

on the English test data (92.31% on the devel-
opment data). This number represents a 25%
error reduction over the same model without
word-internal (substring) features.
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Yarowsky (1999), which used prefix and suffix tries,
though to our knowledge incorporating all charaater
grams is new. In section 2, we discuss a character-level
HMM, while in section 3 we discuss a sequence-free
maximum-entropy (maxent) classifier which usegram
substring features. Finally, in section 4 we add additional
features to the maxent model, and chain these models
into a conditional markov model (CMM), as used for tag-
ging (Ratnaparkhi, 1996) or earlier NER work (Borth-
wick, 1999).

2 A Character-Level HMM

Figure 1 shows a graphical model representation of our
character-level HMM. Characters are emitted one at a
time, and there is one state per character. Each state’s
identity depends only on the previous state. Each char-
acter’s identity depends on both the current state and on

For most sequence-modeling tasks with word-level evathe previous1 — 1 characters. In addition to this HMM
uation, including named-entity recognition and part-ofview, it may also be convenient to think of the local emis-
speech tagging, it has seemed natural to use entire worglen models as type-conditionaigram models. Indeed,

as the basic input features.

For example, the classiBe character emission model in this section is directly

HMM view of these two tasks is one in which the ob-based on the-gram proper-name classification engine
servations are words and the hidden states encode classcribed in (Smarr and Manning, 2002). The primary

labels.

However, because of data sparsity, sophistddition is the state-transition chaining, which allows th

cated unknown word models are generally required fomodel to do segmentation as well as classification.
good performance. A common approach is to extract When using character-level models for word-evaluated
word-internal features from unknown words, for exampleéasks, one would not want multiple characters inside a

suffix, capitalization, or punctuation features (Mikheevsingle word to receive different labels.

This can be

1997, Wacholder et al., 1997, Bikel et al., 1997). Oneavoided in two ways: by explicitly locking state tran-
then treats the unknown word as a collection of such feaitions inside words, or by careful choice of transition
tures. Having such unknown-word models as an add-dnpology. In our currentimplementation, we do the latter.

is perhaps a misplaced focus: in these tasks, providirigach state is a pait, k) wheret is an entity type (such
correct behavior on unknown words is typically the keyasPERSONand including amthertype) andk indicates
challenge. the length of time the system has been in stat€here-
Here, we examine the utility of taking character sefore, a state likePERSONZ2) indicates the second letter
guences as a primary representation. We present tirtside a person phrase. The final letter of a phrase is a fol-
models in which the basic units are characters and chdowing space (we insert one if there is none) and the state
actern-grams, instead of words and word phrases. Eais a special final state likePERSON F). Additionally,
lier papers have taken a character-level approach tmcek reaches oun-gram history order, it stays there.
named entity recognition (NER), notably Cucerzan antlVe then use empirical, unsmoothed estimates for state-



Description ALL | LOC MISC ORG _PER Using this model, we tested two variants, one in
Official Baseline | 71.2| 80.5 835 664 5523 \\hich preceding context was discarded (for example,
Word-level HMM 745|795 69.7 675 77.6 P(e|t 0_Denv, LOC, 5) was turned into Re|xx_Denv
Char-level, noconx| 82.2 | 86.1 82.2 73.4 84.6 " ’ > - ’
Char-level, context | 83.2| 869 83.0 751 854 LOC,5), and another where context was used as out-
lined above. For comparison, we also built a first-order
Table 1: HMM F performance, English development setword-level HMM; the results are shown in table 1. We
give F both per-category and overall. The word-level
model and the (context disabled) character-level model
are intended as a rough minimal pair, in that the only in-
formation crossing phrase boundaries was the entity type,
isolating the effects of character- vs word-level modeling
(a more precise minimal pair is examined in section 3).
Switching to the character model raised the overall score
Figure 1: A character-level HMM. Thenodes are char- greatly, from 74.5% to 82.2%. On top of this, context
acter observations arshodes are entity types. helped, but substantially less, bringing the total to 83.2%
We did also try to incorporate gazetteer information by
state transitions. This annotation and estimation enforcaddingn-gram counts from gazetteer entries to the train-
consistent labellings in practice. For exampRERSON ing counts that back the above character emission model.
2) can only transition to the next stalERSON3) or the  However, this reduced performance (by 2.0% with con-
final state PERSONF). Final states can only transition text on). The supplied gazetteers appear to have been

to beginning states, likeother, 1). built from the training data and so do not increase cover-
For emissions, we must estimate a quantity o&ge, and provide only a flat distribution of name phrases
the form Rcglc_n-1),....C-1,8), for example, whose empirical distributions are very spiked.

P(s|Thoma, PERSONG6).! We use am-gram model of
ordern = 6.2 Then-gram estimates are smoothed via3 A Character-Feature Based Classifier

deleted interpolation. Gi h £i f . del
Given this model, we can do Viterbi decoding in lven the amount of improvement from using a mode

the standard way. To be clear on what this mod acked by_ characte'f-grgms instead _Of worq-grams,
does and does not capture, we consider a few exart® immediate question is whetherth|s_benef|t is com_ple—
ples ( indicates a space). First, we might be asked fopentary to the be_nefltfromfeatures which have tradmon_—
P(e|t 0_Denv, LOC, 5). In this case, we know both that ally been of use in W_ord level systems, such as syntactic
we are in the middle of a location that begins widanv context feat!”es’ topic features, and so on. . )
and also that the preceding context was In essence, To test this, we constructed a maxent classifier which

encodingk into the state lets us distinguish the begin-loca"y classifies smgle words, without modelmg the en-
es” These local classifiers map a fea-

nings of phrases, which lets us model trends like namddly type sequenc f h d " ;
entities (all the classes besidether) generally starting fure representation of each worg position to entlty types,

with capital letters in English. Second, we may be askegch asPERSON We present a hill-climb over feature
for quantities like |1 t al y, LOC, F), which allows us sets for the English development set data in table 2. First,

to model the ends of phrases. Here we have a slight cof® tried only the local word as a feature; the result was

plexity: by the notation, one would expect such emissiontah"“lt each word was assigned its most common class in

to have probability 1, since nothing else can be emitteii€ training data. The overall F-score was 52.29%, well

. . . ici i 6
from a final state. In practice, we have a special stop synl?—gl;)wd:he Oﬁ'(f:'al CoNLL batsflehn"e of 7%'18 /"(\jNe nﬁXt g
bol in our n-gram counts, and the probability of emitting?dded-gram features; specitically, we framed each wor

a space from a final state is the probability of the n-grarW'th spe_cial start and _end symbols, and t_hen added ev-
having chosen the stop charadter. ery contiguous substring to the feature list. Note that

this subsumes the entire-word features. Using the sub-
1we index characters, and other vector elements by relatiiring features alone scored 73.10%, already breaking the
location subscriptscy is the current character; is the follow-  —
ing character, and_ is the previous character. 4The classifier was trained using conjugate gradient descent
2The smaller space of characters allows us to obtain denssed equal-scale gaussian priors for smoothing, and léarne
estimates for longen-grams than is possible with word-level models of over 800K features in approximately 2 hours.
models. The valua = 6 was the empirically optimal order. 5The B-/I- distinction in the data was collapsed, though see
3This can be cleaned up conceptually by considering the egection 4.
tire process to have been a hierarchical HMM (Fine et al.81,99 6The latter assigns phrases at once, which is generally supe-
where then-gram model generates the entire phrase, followedor, but is noticeably worse at multi-word person namesgei
by a tier pop up to the phrase transition tier. it cannot synthesize new first-name/last-name pairs.



Description Added Features ALL | LOC MISC ORG PER

Words wo 52.29| 41.03 70.18 60.43 60.14
Official Baseline | — 71.18| 80.52 83.52 66.43 55.20
NGrams Nn(wo) 73.10| 80.95 71.67 59.06 77.28
Tags to 74.17| 81.27 74.46 59.61 78.78
Simple Context | w_1, wo,t_1,11 82.39| 87.77 8291 70.62 85.7f
More Context (w_1, wo), (wo, w1), (t_1, to), (to, t1) | 83.09| 89.13 83.51 71.31 85.89
Simple Sequence s_1, (s_1,t_1, to) 85.44| 90.09 80.95 76.40 89.66
More Sequence | (S_2,S-1), (S_2,S-1,t_2,t_1, to) 87.21| 90.76 81.01 81.71 90.80
Final (see text) 92.27| 94.39 87.10 88.44 95.41

Table 2: CMM performance with incrementally added featureshe English development set.

the phrase-based CoNLL baseline, though lower than thiee contexiat G- ace Road, using all of the features
no-context HMM, which better models the context insidadefined to date. Note that the evidence agaisice
phrases. Adding a current tag feature gave a score af a name completely overwhelms tivgram and word
74.17%. At this point, the bulk of outstanding errors werereference foPERSONOther features included second-
plausibly attributable to insufficient context informatio previous and second-next words (when the previous or
Adding even just the previous and next words and tagsext words were very short) and a marker for capitalized
as (atomic) features raised performance to 82.39%. Mowords whose lowercase forms had also been seen. The fi-
complex, joint context features which paired the curremal system also contained some simple error-driven post-
word and tag with the previous and next words and tagsrocessing. In particular, repeated sub-elements (ysuall
raised the score further to 83.09%, nearly to the level dast names) of multi-word person names were given type
the HMM, still without actually having any model of pre- PERSONand a crude heuristic restoration of B- prefixes

vious classification decisions. was performed. In total, this final system had an F-score
of 92.31% on the English development set. Table 3 gives
4 A Character-Based CMM a more detailed breakdown of this score, and also gives

he results of this system on the English test set, and both

In order to include state sequence features, which erman data sets.

low the classifications at various paositions to interact, we
have to abandon_classifying each posit_ion independent_g. Conclusion
Sequence-sensitive features can be included by chain-
ing our local classifiers together and performing joiniThe primary argument of this paper is that character sub-
inference, i.e., by building a conditional markov modebtrings are a valuable, and, we believe, underexploited
(CMM), also known as a maximum entropy markovsource of model features. In an HMM with an admittedly
model (McCallum et al., 2000). very local sequence model, switching from a word model
Previous classification decisions are clearly relevanto a character model gave an error reduction of about
for example the sequen@ ace Road is a single loca- 30%. In the final, much richer chained maxent setting,
tion, not a person’s name adjacent to a location (which e reduction from the best model minugram features
the erroneous output of the model in section 3). AddingP the reported best model was about 25% — smaller, but
features representing the previous classification detisi6till substantial. This paper also again demonstrates how
(s_1) raised the score 2.35% to 85.44%. We found knowthe ease of incorporating features into a discriminative
ing that the previous word was amther wasn't par- maxent model allows for productive feature engineering.
ticularly useful without also knowing its part-of-speech
(e.g., a preceding preposition might indicate a location).
Joint tag-sequence features, along with longer distance
sequence and tag-sequence features, gave 87.21%.
The remaining improvements involved a number of
other features which directly targetted observed error
types. These features included letter type pattern femture
(for example20- nont h would becomed- x for digit-
lowercase andlt al y would become&x for mixed case).
This improved performance substantially, for example al-
lowing the system to detect ALL CAPS regions. Ta-
ble 4 shows an example of a local decision®iace in



English dev. | Precision| Recall | Fg—1 PPREV PREV CUR  NEXT
LOC 94.44 94.34 | 94.39 States | O (@] LOC LOC
MISC 90.62 | 83.84 | 87.10 Words | morning  at Grace Road
ORG 87.63 89.26 | 88.44 Tags NN IN NNP NNP
PER 93.86 | 97.01 | 95.41 Types | x X:2 XX XX
Overall 92.15 92.39 | 92.27
. . \ [e] \ LOC | MISC | ORG | PER
English test | Precision| Recall | Fg_1 I WO(?EE;S I
-al -0. . -0. . -0.73
LOC 90.04 89.93 | 89.98 CWORD:Grace -0.01 0 0 002 003
NWORD:Road 002 027 001 -025 -0.03
MISC 8349 7707 7885 PWORD-CWORD:at-Grace 0 0 0 0 10
ORG 82.49 78.57 | 80.48 CWORD-NWORD:Grace-Road 0 0 0 0 0
NGRAMS (prefix/suffix only here)
PER 86.66 95.18 | 90.72 e 057 004 026 004 04§
(Gr 0.27 -0.06 0.12 -0.17 -0.16
Overall 86.12 86.49 | 86.31 (Gra o6l 037 019 009 ood
(Grac -0.01 0 0 002 003
— (Grace -0.01 0 0 002 003
German dev, Precision| Recall | Fg_1 (Graco -0.01 0 0 002 003
LOC 75.53 | 66.13 | 70.52 s’ B
ace 0.08 0.24 0.07 -0.30 -0.1Q
MISC 78.71 47.23 | 59.03 ce 0.44 031 -0.34 -0.02 -0.34
ORG 77.57 53.51 | 63.33 e 038 -014 -0.18 -0.06 0
TAGS
PER 7236 7102 7169 PTAG:IN -0.40 0.24 0.16 0.08 -0.08
CTAG:NNP -1.09 0.45 -0.26 0.43 0.47
Overall 75.36 60.36 | 67.03 NTAG:NNP 0.05 -0.19 0.18 -0.12  0.08
PTAG-CTAG:IN-NNP 0 0.14 -0.03 -0.01 -0.10
— CTAG-NTAG:NNP-NNP -0.11 -0.05 0 -0.38 -0.54
German test| Precision| Recall | Fg—1 YPES
PTYPEX2 007 015 035 018 -0.3]
Loc ;gg(j)' 23(5)1 ;ggg CTYPE:Xx -2.02 0.46 0.19 0.57 0.80
MISC . . . NTYPE:Xx -0.22  -0.42 -0.19 029  0.54
PTYPE-CTYPE:x:2-Xx 020 008 010 010 -0.09
ORG 73.26 51.75 | 60.65 CTYPE-NTYPE:Xx-Xx 055 -013 -055 -0.13  0.26
PTYPE-CTYPE-NTYPE:X:2-XX-Xx 0.10 0.37 0.10 0.12 -0.69
PER 87.68 79.83 | 83.57 T ORDSTYES
Overall 80.38 65.04 | 71.90 PWORD-CTYPE.at-Xx 021 057 021 041 05§
CTYPE-NWORD:Xx-Road -0.01 0.27 -0.01 -0.23 -0.03
. . . STATES
Table 3: Final results obtained for the development angirsTatec 291 092 072 058 0.7
test sets for each language on the shared task. PPOTATEPSTATEOD oo 008 043 OO
PSTATE-CWORD:O-Grace [ -0.01 0 0 002 003
TAGS/STATES
PSTATE-PTAG-CTAG:O-IN-NNP 0.12 0.59 -0.29 -0.28 -0.14
PPSTATE-PPTAG-PSTATE-PTAG-| 0.01 -0.03 -0.31 0.31 0.01
CTAG:0O-NN-O-IN-NNP
TYPES/STATES
PSTATE-CTYPE:O-Xx -1.13 0.37 -0.12 0.20 0.64
PSTATE-NTYPE:O-Xx 069 -03 029 039 0.3
- - 0O-X12-XX -0. . -0. -0. -0.
PSTATE-PTYPE-CTYPE:O-x:2-X 0.28 0.82 0.10 0.26 0.20
PPSTATE-PPTYPE-PSTATE- -0.22 -0.04 -0.04 -0.06 0.27
References PTYPE-CTYPE:O-x-O-X:2-XX
Total: -1.40 2.68 -1.74 -0.19 -0.58
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