
Published as a conference paper at ICLR 2018

REINFORCEMENT LEARNING ON WEB INTERFACES
USING WORKFLOW-GUIDED EXPLORATION

Evan Zheran Liu†∗, Kelvin Guu‡∗, Panupong Pasupat†∗, Tianlin Shi†, Percy Liang†
†Department of Computer Science, ‡Department of Statistics
Stanford University, Stanford, CA 94305, USA
{evanliu,kguu,ppasupat,tianlins}@stanford.edu,pliang@cs.stanford.edu

ABSTRACT

Reinforcement learning (RL) agents improve through trial-and-error, but when re-
ward is sparse and the agent cannot discover successful action sequences, learning
stagnates. This has been a notable problem in training deep RL agents to perform
web-based tasks, such as booking flights or replying to emails, where a single
mistake can ruin the entire sequence of actions. A common remedy is to “warm-
start” the agent by pre-training it to mimic expert demonstrations, but this is prone
to overfitting. Instead, we propose to constrain exploration using demonstrations.
From each demonstration, we induce high-level “workflows” which constrain the
allowable actions at each time step to be similar to those in the demonstration
(e.g., “Step 1: click on a textbox; Step 2: enter some text”). Our exploration pol-
icy then learns to identify successful workflows and samples actions that satisfy
these workflows. Workflows prune out bad exploration directions and accelerate
the agent’s ability to discover rewards. We use our approach to train a novel neural
policy designed to handle the semi-structured nature of websites, and evaluate on
a suite of web tasks, including the recent World of Bits benchmark. We achieve
new state-of-the-art results, and show that workflow-guided exploration improves
sample efficiency over behavioral cloning by more than 100x.

1 INTRODUCTION

We are interested in training reinforcement learning (RL) agents to use the Internet (e.g., to book
flights or reply to emails) by directly controlling a web browser. Such systems could expand the ca-
pabilities of AI personal assistants (Stone & Soper, 2014), which are currently limited to interacting
with machine-readable APIs, rather than the much larger world of human-readable web interfaces.

Reinforcement learning agents could learn to accomplish tasks using these human-readable web
interfaces through trial-and-error (Sutton & Barto, 1998). But this learning process can be very slow
in tasks with sparse reward, where the vast majority of naive action sequences lead to no reward
signal (Vecerik et al., 2017; Nair et al., 2017). This is the case for many web tasks, which involve a
large action space (the agent can type or click anything) and require a well-coordinated sequence of
actions to succeed.

A common countermeasure in RL is to pre-train the agent to mimic expert demonstrations via behav-
ioral cloning (Pomerleau, 1991; Kim et al., 2013), encouraging it to take similar actions in similar
states. But in environments with diverse and complex states such as websites, demonstrations may
cover only a small slice of the state space, and it is difficult to generalize beyond these states (over-
fitting). Indeed, previous work has found that warm-starting with behavioral cloning often fails to
improve over pure RL (Shi et al., 2017). At the same time, simple strategies to combat overfitting
(e.g. using fewer parameters or regularization) cripple the policy’s flexibility (Bitzer et al., 2010),
which is required for complex spatial and structural reasoning in user interfaces.

In this work, we propose a different method for leveraging demonstrations. Rather than training an
agent to directly mimic them, we use demonstrations to constrain exploration. By pruning away bad
exploration directions, we can accelerate the agent’s ability to discover sparse rewards. Furthermore,

∗First three authors contributed equally

1

Published as a conference paper at ICLR 2018

train

explore

demonstrations

replay buffer

workflow policy π 

neural policy π 

workflow lattices

DOMNET
p ( a | s)

V ( s )

train

episodes

episodes

store

store

w

n

s

state

action

train

explore

Preprocessing:
for all demonstrations d do

Induce workflow lattice from d

Every iteration:
Observe an initial environment state
πw samples a workflow from a lattice
Roll out an episode e from the workflow
Use e to update πw

if e gets reward +1 then
Add e to replay buffer

Periodically:
if replay buffer size > threshold then

Sample episodes from replay buffer
Update πn with sampled episodes

Observe an initial environment state
πn rolls out episode e
Update πn and critic V with e
if e gets reward +1 then

Add e to replay buffer

Figure 1: Workflow-guided exploration (WGE). After inducing workflow lattices from demonstra-
tions, the workflow policy πw performs exploration by sampling episodes from sampled workflows.
Successful episodes are saved to a replay buffer, which is used to train the neural policy πn.

because the agent is not directly exposed to demonstrations, we are free to use a sophisticated neural
policy with a reduced risk of overfitting.

To constrain exploration, we employ the notion of a “workflow” (Deka et al., 2016). For instance,
given an expert demonstration of how to forward an email, we might infer the following workflow:

Click an email title→ Click a “Forward” button
→ Type an email address into a textbox→ Click a “Send” button

This workflow is more high-level than an actual policy: it does not tell us exactly which email to
click or which textbox to type into, but it helpfully constrains the set of actions at each time step.
Furthermore, unlike a policy, it does not depend on the environment state: it is just a sequence of
steps that can be followed blindly. In this sense, a workflow is environment-blind. The actual policy
certainly should not be environment-blind, but for exploration, we found environment-blindness to
be a good inductive bias.

To leverage workflows, we propose the workflow-guided exploration (WGE) framework as illus-
trated in Figure 1:

1. For each demonstration, we extract a lattice of workflows that are consistent with the ac-
tions observed in the demonstration (Section 3).

2. We then define a workflow exploration policy πw (Section 4), which explores by first se-
lecting a workflow, and then sampling actions that fit the workflow. This policy gradually
learns which workflow to select through reinforcement learning.

3. Reward-earning episodes discovered during exploration enter a replay buffer, which we use
to train a more powerful and expressive neural network policy πn (Section 5).

A key difference between the web and traditional RL domains such as robotics (Atkeson & Schaal,
1997) or game-playing (Bellemare et al., 2013) is that the state space involves a mix of structured
(e.g. HTML) and unstructured inputs (e.g. natural language and images). This motivates us to pro-
pose a novel neural network policy (DOMNET), specifically designed to perform flexible relational
reasoning over the tree-structured HTML representation of websites.

We evaluate workflow-guided exploration and DOMNET on a suite of web interaction tasks, includ-
ing the MiniWoB benchmark of (Shi et al., 2017), the flight booking interface for Alaska Airlines,

2

Published as a conference paper at ICLR 2018

and a new collection of tasks that we constructed to study additional challenges such as noisy en-
vironments, variation in natural language, and longer time horizons. Compared to previous results
on MiniWoB Shi et al. (2017), which used 10 minutes of demonstrations per task (approximately
200 demonstrations on average), our system achieves much higher success rates and establishes new
state-of-the-art results with only 3–10 demonstrations per task.

2 SETUP

In the standard reinforcement learning setup, an agent learns a policy π(a|s) that maps a state s to a
probability distribution over actions a. At each time step t, the agent observes an environment state
st and chooses an action at, which leads to a new state st+1 and a reward rt = r(st, at). The goal
is to maximize the expected return E[R], where R =

∑
t γ

trt+1 and γ is a discount factor. Typical
reinforcement learning agents learn through trial-and-error: rolling out episodes (s1, a1, . . . , sT , aT)
and adjusting their policy based on the results of those episodes.

We focus on settings where the reward is delayed and sparse. Specifically, we assume that (1) the
agent receives reward only at the end of the episode, and (2) the reward is high (e.g., +1) for only a
small fraction of possible trajectories and is uniformly low (e.g.,−1) otherwise. With large state and
action spaces, it is difficult for the exploration policy to find episodes with positive rewards, which
prevents the policy from learning effectively.

We further assume that the agent is given a goal g, which can either be a structured key-value map-
ping (e.g., {task: forward, from: Bob, to: Alice}) or a natural language utterance (e.g., “Forward
Bob’s message to Alice”). The agent’s state s consists of the goal g and the current state of the web
page, represented as a tree of elements (henceforth DOM tree). We restrict the action space to click
actions Click(e) and type actions Type(e,t), where e is a leaf element of the DOM tree, and
t is a string from the goal g (a value from a structured goal, or consecutive tokens from a natural
language goal). Figure 2 shows an example episode for an email processing task. The agent receives
+1 reward if the task is completed correctly, and −1 reward otherwise.

3 INDUCING WORKFLOWS FROM DEMONSTRATIONS

Given a collection of expert demonstrations d = (s̃1, ã1, . . . , s̃T , ãT), we would like explore actions
at that are “similar” to the demonstrated actions ãt. Workflows capture this notion of similarity by
specifying a set of similar actions at each time step. Formally, a workflow z1:T is a sequence of
workflow steps, where each step zt is a function that takes a state st and returns a constrained
set zt(st) of similar actions. We use a simple compositional constraint language (Appendix A) to
describe workflow steps. For example, with zt = Click(Tag("img")), the set zt(st) contains
click actions on any DOM element in st with tag img.

We induce a set of workflows from each demonstration d = (s̃1, ã1, . . . , s̃T , ãT) as follows. For
each time step t, we enumerate a set Zt of all possible workflow steps zt such that ãt ∈ zt(s̃t). The
set of workflows is then the cross product Z1 × · · · ×ZT of the steps. We can represent the induced
workflows as paths in a workflow lattice as illustrated in Figure 2.

To handle noisy demonstrations where some actions are unnecessary (e.g., when the demonstrator
accidentally clicks on the background), we add shortcut steps that skip certain time steps. We
also add shortcut steps for any consecutive actions that can be collapsed into a single equivalent
action (e.g., collapsing two type actions on the same DOM element into a single Type step). These
shortcuts allow the lengths of the induced workflows to differ from the length of the demonstration.
We henceforth ignore these shortcut steps to simplify the notation.

The induced workflow steps are not equally effective. For example in Figure 2, the workflow step
Click(Near(Text("Bob"))) (Click an element near text “Bob”) is too specific to the demon-
stration scenario, while Click(Tag("div")) (Click on any <div> element) is too general and
covers too many irrelevant actions. The next section describes how the workflow policy πw learns
which workflow steps to use.

3

Published as a conference paper at ICLR 2018

Click(Near(
Text("Bob")))

Click(Near(
Like(Field("from"))))

Click(Near(
Text("Forward")))

Click(And(Tag("img"),
Class("icon")))

Type(SameRow(
Like("to")), Field("to"))

Type(Tag("input"),
Field("to"))

Type(Tag("input"),
Field(*))Click(Tag("div"))

Click(Tag("span"))

Click(Near(Tag("div")))

Demonstration: goal = {task: forward, from: Bob, to: Alice}

Workflow lattice:

s1 s2 s3 s4a1 a2 a3 a4

Figure 2: From each demonstration, we induce a workflow lattice based on the actions in that
demonstration. Given a new environment, the workflow policy samples a workflow (a path in the
lattice, as shown in bold) and then samples actions that fit the steps of the workflow.

4 WORKFLOW EXPLORATION POLICY

Our workflow policy interacts with the environment to generate an episode in the following man-
ner. At the beginning of the episode, the policy conditions on the provided goal g, and selects a
demonstration d that carried out a similar goal:

d ∼ p(d|g) ∝ exp[sim(g, gd)] (1)
where sim(g, gd) measures the similarity between g and the goal gd of demonstration d. In our tasks,
we simply let sim(g, gd) be 1 if the structured goals share the same keys, and −∞ otherwise.

Then, at each time step t with environment state st, we sample a workflow step zt according to the
following distribution:

zt ∼ πw(z|d, t) ∝ exp(ψz,t,d), (2)
where each ψz,t,d is a separate scalar parameter to be learned. Finally, we sample an action at
uniformly from the set zt(st).

at ∼ p(a|zt, st) =
1

|zt(st)|
(3)

The overall probability of exploring an episode e = (s1, a1, . . . , sT , aT) is then:

p(e|g) = p(d|g)
T∏
t=1

p(st|st−1, at−1)
∑
z

p(at|z, st)πw(z|d, t) (4)

where p(st|st−1, at−1) is the (unknown) state transition probability.

Note that πw(z|d, t) is not a function of the environment states st at all. Its decisions only depend
on the selected demonstration and the current time t. This environment-blindness means that the
workflow policy uses far fewer parameters than a state-dependent policy, enabling it to learn more
quickly and preventing overfitting. Due to environment-blindness, the workflow policy cannot solve
the task, but it quickly learns to certain good behaviors, which can help the neural policy learn.

To train the workflow policy, we use a variant of the REINFORCE algorithm (Williams, 1992; Sutton
& Barto, 1998). In particular, after rolling out an episode e = (s1, a1, . . . , sT , aT), we approximate
the gradient using the unbiased estimate∑

t

(Gt − vd,t)∇ψ log
∑
z

p(at|z, st)πw(z|d, t), (5)

4

Published as a conference paper at ICLR 2018

where Gt is the return at time step t and vd,t is a baseline term for variance reduction.

Sampled episodes from the workflow policy that receive a positive reward are stored in a replay
buffer, which will be used for training the neural policy πn.

5 NEURAL POLICY

As outlined in Figure 1, the neural policy is learned using both on-policy and off-policy updates
(where episodes are drawn from the replay buffer). Both updates use A2C, the synchronous version
of the advantage actor-critic algorithm (Mnih et al., 2016). Since only episodes with reward +1 enter
the replay buffer, the off-policy updates behave similarly to supervised learning on optimal trajec-
tories. Furthermore, successful episodes discovered during on-policy exploration are also added to
the replay buffer.

Model architecture. We propose DOMNET, a neural architecture that captures the spatial and
hierarchical structure of the DOM tree. As illustrated in Figure 5, the model first embeds the DOM
elements and the input goal, and then applies a series of attentions on the embeddings to finally
produce a distribution over actions πn(a|s) and a value function V (s), the critic. We highlight our
novel DOM embedder, and defer other details to Appendix C.

We design our DOM embedder to capture the various interactions between DOM elements, similar
to recent work in graph embeddings (Kipf & Welling, 2017; Pham et al., 2017; Hamilton et al.,
2017). In particular, DOM elements that are “related” (e.g., a checkbox and its associated label)
should pass their information to each other.

To embed a DOM element e, we first compute the base embedding vebase by embedding and con-
catenating its attributes (tag, classes, text, etc.). In order to capture the relationships between DOM
elements, we next compute two types of neighbor embeddings:

1. We define spatial neighbors of e to be any element e′ within 30 pixels from e, and then
sum up their base embeddings to get the spatial neighbor embedding vespatial.

2. We define depth-k tree neighbors of e to be any element e′ such that the least common
ancestor of e and e′ in the DOM tree has depth at most k. Intuitively, tree neighbors of a
higher depth are more related. For each depth k, we apply a learnable affine transformation
f on the base embedding of each depth-k tree neighbor e′, and then apply max pooling to
get vetree[k] = max f(ve

′

base). We let the tree neighbor embedding vetree be the concatenation
of vetree[k] for k = 3, 4, 5, 6.

Finally, we define the goal matching embedding vematch to be the sum of the embeddings of all words
in e that also appear in the goal. The final embedding veDOM of e is the concatenation of the four
embeddings [vebase; v

e
spatial; v

e
tree; v

e
match].

6 EXPERIMENTS

6.1 TASK SETUPS

We evaluate our approach on three suites of interactive web tasks:

1. MiniWoB: the MiniWoB benchmark of Shi et al. (2017)

2. MiniWoB++: a new set of tasks that we constructed to incorporate additional challenges
not present in MiniWoB, such as stochastic environments and variation in natural language.

3. Alaska: the mobile flight booking interface for Alaska Airlines, inspired by the FormWoB
benchmark of Shi et al. (2017).

We describe the common task settings of the MiniWoB and MiniWoB++ benchmarks, and defer the
description of the Alaska benchmark to Section 6.3.3.

5

Published as a conference paper at ICLR 2018

click
dialog

click
test

click
collapsible

focus
text

focus
text
2

click
test
2

click
button

click
dialog

2

click
checkboxes

click
link

grid
coordinate

click
color

click
button

sequence

navigate
tree

click
option

enter
text

enter
text

dynamic

login
user

enter
password

0

25

50

75

100

Su
cc

es
s

R
at

e

100 100 98 95
83 83

62
53 48

31 26 23 22 20 18

0 0 0 0

100 100 100 100 100 100 100 100 98 100 100 100 99 99 100 100 100 99 99100 100 100 100 100 100 100 100 100 100 100 100 100 99 100 100 100 100 100

click
tab

identify
shape

click
widget

use
auto-

complete

click
collapsible

2

click
tab
2

enter
date

count
shape

enter
time

click
shades

email
inbox

click
shape

social
media

search
engine

tic
tac
toe

click
pie

choose
list

choose
date

use
spinner

book
flight

guess
number

0

25

50

75

100

Su
cc

es
s

R
at

e

97

36 34

0
11 8

61

18
8

27

3
11

23

0

34

15
25

0

17

0

20

55

90 93

78
65 64

0

59
52

22

42

64

15
26

37 32

16

0 4 0 0

100 100
92

98 99 98 96

76
90

99 99

63

100 99

47 52

16

52

4 0 0

SHI17 DOMNET+BC+RL DOMNET+WGE

Figure 3: Success rates of different approaches on the MiniWoB tasks. DOMNET+WGE outper-
forms SHI17 on all but two tasks and effectively solves a vast majority.

Task Description Steps BC+RL πw only WGE
click-checkboxes Click 0–6 specified checkboxes 7 98 81 100
click-checkboxes-large+ . . . 5–12 targets 13 0 43 84
click-checkboxes-soft+ . . . specifies synonyms of the targets 7 51 34 94
click-checkboxes-transfer+ . . . training data has 0-3 targets 7 64 17 64
multi-ordering+ Fill a form with varying field orderings 4 5 78 100
multi-layout+ Fill a form with varying UIs layouts 4 99 9 100
social-media Do an action on the specified Tweet 2 15 2 100
social-media-all+ . . . on all matching Tweets 12 1 0 0
social-media-some+ . . . on specified no. of matching Tweets 12 2 3 42
email-inbox Perform tasks on an email inbox 4 43 3 99
email-inbox-nl+ . . . natural language goal 4 28 0 93

Table 1: Results on additional tasks. (+ = MiniWoB++, Steps = task length as the maximum number
of steps needed for a perfect policy to complete the task)

Environment. Each task contains a 160px × 210px environment and a goal specified in text. The
majority of the tasks return a single sparse reward at the end of the episode; either +1 (success) or−1
(failure). For greater consistency among tasks, we disabled all partial rewards in our experiments.
The agent has access to the environment via a Selenium web driver interface.

The public MiniWoB benchmark1 contains 80 tasks. We filtered for the 40 tasks that only require
actions in our action space, namely clicking on DOM elements and typing strings from the input
goal. Many of the excluded tasks involve somewhat specialized reasoning, such as being able to
compute the angle between two lines, or solve algebra problems. For each task, we used Amazon
Mechanical Turk to collect 10 demonstrations, which record all mouse and keyboard events along
with the state of the DOM when each event occurred.

Evaluation metric. We report success rate: the percentage of test episodes with reward +1. Since
we have removed partial rewards, success rate is a linear scaling of the average reward, and is
equivalent to the definition of success rate in Shi et al. (2017).

6.2 MAIN RESULTS

We compare the success rates across the MiniWoB tasks of the following approaches:

• SHI17: the system from Shi et al. (2017), pre-trained with behavioral cloning on 10 minutes
of demonstrations (approximately 200 demonstrations on average) and fine-tuned with RL.
Unlike DOMNET, this system primarily uses a pixel-based representation of the state.2

1http://alpha.openai.com/miniwob/
2It is augmented with filters that activate on textual elements which overlap with goal text.

6

http://alpha.openai.com/miniwob/

Published as a conference paper at ICLR 2018

• DOMNET+BC+RL: our proposed neural policy, DOMNET, but pre-trained with behav-
ioral cloning on 10 demonstrations and fine-tuned with RL, like SHI17. During behavioral
cloning, we apply early stopping based on the reward on a validation set.

• DOMNET+WGE: our proposed neural policy, DOMNET, trained with workflow-guided
exploration on 10 demonstrations.

For DOMNET+BC+RL and DOMNET+WGE, we report the test success rate at the time step where
the success rate on a validation set reaches its maximum.

The results are shown in Figure 3. By comparing SHI17 with DOMNET+BC+RL, we can roughly
evaluate the contribution of our new neural architecture DOMNET, since the two share the same
training procedure (BC+RL). While SHI17 also uses the DOM tree to compute text alignment fea-
tures in addition to the pixel-level input, our DOMNET uses the DOM structure more explicitly. We
find DOMNET+BC+RL to empirically improve the success rate over SHI17 on most tasks.

By comparing DOMNET+BC+RL and DOMNET+WGE, we find that workflow-guided explo-
ration enables DOMNET to perform even better on the more difficult tasks, which we analyze in the
next section. Some of the workflows that the workflow policy πw learns are shown in Appendix B.

6.3 ANALYSIS

6.3.1 MINIWOB++ BENCHMARK

We constructed and released the MiniWoB++ benchmark of tasks to study additional challenges a
web agent might encounter, including: longer time horizons (click-checkboxes-large), “soft” rea-
soning about natural language (click-checkboxes-soft), and stochastically varying layouts (multi-
orderings, multi-layouts). Table 1 lists the tasks and their time horizons (number of steps needed for
a perfect policy to carry out the longest goal) as a crude measure of task complexity.

We first compare the performance of DOMNET trained with BC+RL (baseline) and DOMNET
trained with WGE (our full approach). The proposed WGE model outperforms the BC+RL model
by an average of 42% absolute success rate. We analyzed their behaviors and noticed two common
failure modes of training with BC+RL that are mitigated by instead training with WGE:

1. The BC+RL model has a tendency to take actions that prematurely terminate the episode
(e.g., hitting “Submit” in click-checkboxes-large before all required boxes are checked).
One likely cause is that these actions occur across all demonstrations, while other non-
terminating actions (e.g., clicking different checkboxes) vary across demonstrations.

2. The BC+RL model occasionally gets stuck in cyclic behavior such as repeatedly checking
and unchecking the same checkbox. These failure modes stem from overfitting to parts of
the demonstrations, which WGE avoids.

Next, we analyze the workflow policy πw learned by WGE. The workflow policy πw by itself is too
simplistic to work well at test time for several reasons:

1. Workflows ignore environment state and therefore cannot respond to the differences in the
environment, such as the different layouts in multi-layouts.

2. The workflow constraint language lacks the expressivity to specify certain actions, such as
clicking on synonyms of a particular word in click-checkboxes-soft.

3. The workflow policy lacks expressivity to select the correct workflow for a given goal.

Nonetheless the workflow policy πw is sufficiently constrained to discover reward some of the time,
and the neural policy πn is able to learn the right behavior from such episodes. As such, the neural
policy can achieve high success rates even when the workflow policy πw performs poorly.

6.3.2 NATURAL LANGUAGE INPUTS

While MiniWoB tasks provide structured goals, we can also apply our approach to natural language
goals. We collected a training dataset using the overnight data collection technique (Wang et al.,
2015). In the email-inbox-nl task, we collected natural language templates by asking annotators

7

Published as a conference paper at ICLR 2018

0.86
0.68

0.86
1

-1 -1

-0.44

-0.7
-0.84

0.17 0.08

-0.41

-0.76

0.3 0.34

-0.43

-0.85

0.35
0.53

-0.23

-1

-0.5

0

0.5

1

alaska click-checkboxes-large email-inbox-nl social-media

Te
st

 R
ew

ar
d

WGE (10 demos)
BC+RL (10 demos)
BC+RL (100 demos)
BC+RL (300 demos)
BC+RL (1000 demos)

Figure 4: Comparison between DOMNET+BC+RL and DOMNET+WGE on several of the most
difficult tasks, evaluated on test reward. DOMNET+WGE trained on 10 demonstrations outper-
forms DOMNET+BC+RL even with 1000 demonstrations.

to paraphrase the task goals (e.g., “Forward Bob’s message to Alice” → “Email Alice the email I
got from Bob”) and then abstracting out the fields (“Email <TO> the email I got from <FROM>”).
During training, the workflow policy πw receives states with both the structured goal and the natural
language utterance generated from a random template, while the neural policy πn receives only the
utterance. At test time, the neural policy is evaluated on unseen utterances. The results in Table 1
show that the WGE model can learn to understand natural language goals (93% success rate).

Note that the workflow policy needs access to the structured inputs only because our constraint
language for workflow steps operates on structured inputs. The constraint language could potentially
be modified to work with utterances directly (e.g., After("to") extracts the utterance word after
“to”), but we leave this for future work.

6.3.3 SCALING TO REAL WORLD TASKS

We applied our approach on the Alaska benchmark, a more realistic flight search task on the Alaska
Airlines mobile site inspired by the FormWoB task in Shi et al. (2017). In this task, the agent must
complete the flight search form with the provided information (6–7 fields). We ported the web page
to the MiniWoB framework with a larger 375px × 667px screen, replaced the server backend with
a surrogate JavaScript function, and clamped the environment date to March 1, 2017.

Following Shi et al. (2017), we give partial reward based on the fraction of correct fields in the sub-
mitted form if all required fields are filled in. Despite this partial reward, the reward is still extremely
sparse: there are over 200 DOM elements (compared to ≈ 10–50 in MiniWoB tasks), and a typical
episode requires at least 11 actions involving various types of widgets such as autocompletes and
date pickers. The probability that a random agent gets positive reward is less than 10−20.

We first performed experiments on Alaska-Shi17, a clone of the original Alaska Airlines task in Shi
et al. (2017), where the goal always specifies a roundtrip flight (two airports and two dates). On their
dataset, our approach, using only 1 demonstration, achieves an average reward of 0.97, compared to
their best result of 0.57, which uses around 80 demonstrations.

Our success motivated us to test on a more difficult version of the task which additionally requires
selecting flight type (a checkbox for one-way flight), number of passengers (an increment-decrement
counter), and seat type (hidden under an accordion). We achieve an average reward of 0.86 using 10
demonstrations. This demonstrates our method can handle long horizons on real-world websites.

6.3.4 SAMPLE EFFICIENCY

To evaluate the demonstration efficiency of our approach, we compare DOMNET+WGE with
DOMNET+BC+RL trained on increased numbers of demonstrations. We compare DOM-
NET+WGE trained on 10 demonstrations with DOMNET+BC+RL on 10, 100, 300, and 1000
demonstrations. The test rewards3 on several of the hardest tasks are summarized in Figure 4.

Increasing the number of demonstrations improves the performance of BC+RL, as it helps pre-
vent overfitting. However, on every evaluated task, WGE trained with only 10 demonstrations still
achieves much higher test reward than BC+RL with 1000 demonstrations. This corresponds to an

3We report test reward since success rate is artificially high in the Alaska task due to partial rewards.

8

Published as a conference paper at ICLR 2018

over 100x sample efficiency improvement of our method over behavioral cloning in terms of the
number of demonstrations.

7 DISCUSSION

Learning agents for the web. Previous work on learning agents for web interactions falls into two
main categories. First, simple programs may be specified by the user (Yeh et al., 2009) or may be
inferred from demonstrations (Allen et al., 2007). Second, soft policies may be learned from scratch
or “warm-started” from demonstrations (Shi et al., 2017). Notably, sparse rewards prevented Shi
et al. (2017) from successfully learning, even when using a moderate number of demonstrations.
While policies have proven to be more difficult to learn, they have the potential to be expressive and
flexible. Our work takes a step in this direction.

Sparse rewards without prior knowledge. Numerous works attempt to address sparse rewards
without incorporating any additional prior knowledge. Exploration methods (Osband et al., 2016;
Chentanez et al., 2005; Weber et al., 2017) help the agent better explore the state space to encounter
more reward; shaping rewards (Ng et al., 1999) directly modify the reward function to encourage
certain behaviors; and other works (Jaderberg et al., 2016; Andrychowicz et al., 2017) augment the
reward signal with additional unsupervised reward. However, without prior knowledge, helping the
agent receive additional reward is difficult in general.

Imitation learning. Various methods have been proposed to leverage additional signals from ex-
perts. For instance, when an expert policy is available, methods such as DAGGER (Ross et al.,
2011) and AGGREVATE (Ross & Bagnell, 2014; Sun et al., 2017) can query the expert policy to
augment the dataset for training the agent. When only expert demonstrations are available, inverse
reinforcement learning methods (Abbeel & Ng, 2004; Ziebart et al., 2008; Finn et al., 2016; Ho &
Ermon, 2016; Baram et al., 2017) infer a reward function from the demonstrations without using
reinforcement signals from the environment.

The usual method for incorporating both demonstrations and reinforcement signals is to pre-train
the agent with demonstrations before applying RL. Recent work extends this technique by (1) intro-
ducing different objective functions and regularization during pre-training, and (2) mixing demon-
strations and rolled-out episodes during RL updates (Hosu & Rebedea, 2016; Hester et al., 2018;
Vecerik et al., 2017; Nair et al., 2017).

Instead of training the agent on demonstrations directly, our work uses demonstrations to guide ex-
ploration. The core idea is to explore trajectories that lie in a “neighborhood” surrounding an expert
demonstration. In our case, the neighborhood is defined by a workflow, which only permits action
sequences analogous to the demonstrated actions. Several previous works also explore neighbor-
hoods of demonstrations via reward shaping (Brys et al., 2015; Hussein et al., 2017) or off-policy
sampling (Levine & Koltun, 2013). One key distinction of our work is that we define neighborhoods
in terms of action similarity rather than state similarity. This distinction is particularly important for
the web tasks: we can easily and intuitively describe how two actions are analogous (e.g., “they both
type a username into a textbox”), while it is harder to decide if two web page states are analogous
(e.g., the email inboxes of two different users will have completely different emails, but they could
still be analogous, depending on the task.)

Hierarchical reinforcement learning. Hierarchical reinforcement learning (HRL) methods de-
compose complex tasks into simpler subtasks that are easier to learn. Main HRL frameworks include
abstract actions (Sutton et al., 1999; Konidaris & Barto, 2007; Hauser et al., 2008), abstract partial
policies (Parr & Russell, 1998), and abstract states (Roderick et al., 2017; Dietterich, 1998; Li et al.,
2006). These frameworks require varying amounts of prior knowledge. The original formulations
required programmers to manually specify the decomposition of the complex task, while Andreas
et al. (2016) only requires supervision to identify subtasks, and Bacon et al. (2017); Daniel et al.
(2016) learn the decomposition fully automatically, at the cost of performance.

Within the HRL methods, our work is closest to Parr & Russell (1998) and the line of work on
constraints in robotics (Phillips et al., 2016; Perez-D’Arpino & Shah, 2017). The work in Parr &
Russell (1998) specifies partial policies, which constrain the set of possible actions at each state,

9

Published as a conference paper at ICLR 2018

similar to our workflow items. In contrast to previous instantiations of the HAM framework (Andre,
2003; Marthi & Guestrin, 2005), which require programmers to specify these constraints manually,
our work automatically induces constraints from user demonstrations, which do not require special
skills to provide. Phillips et al. (2016); Perez-D’Arpino & Shah (2017) also resemble our work, in
learning constraints from demonstrations, but differ in the way they use the demonstrations. Whereas
our work uses the learned constraints for exploration, Phillips et al. (2016) only uses the constraints
for planning and Perez-D’Arpino & Shah (2017) build a knowledge base of constraints to use at test
time.

Summary. Our workflow-guided framework represents a judicious combination of demonstra-
tions, abstractions, and expressive neural policies. We leverage the targeted information of demon-
strations and the inductive bias of workflows. But this is only used for exploration, protecting the
expressive neural policy from overfitting. As a result, we are able to learn rather complex policies
from a very sparse reward signal and very few demonstrations.

Acknowledgments. This work was supported by NSF CAREER Award IIS-1552635.

Reproducibility. Our code and data are available at https://github.
com/stanfordnlp/wge. Reproducible experiments are available on the Co-
daLab platform at https://worksheets.codalab.org/worksheets/
0x0f25031bd42f4aabbc17625fe1484066/.

REFERENCES

P. Abbeel and A. Ng. Apprenticeship learning via inverse reinforcement learning. In International
Conference on Machine Learning (ICML), 2004.

J. Allen, N. Chambers, G. Ferguson, L. Galescu, H. Jung, M. Swift, and W. Taysom. PLOW: A
collaborative task learning agent. In Association for the Advancement of Artificial Intelligence
(AAAI), pp. 1514–1519, 2007.

D. Andre. Programmable reinforcement learning agents. PhD thesis, University of California,
Berkeley, 2003.

J. Andreas, D. Klein, and S. Levine. Modular multitask reinforcement learning with policy sketches.
arXiv preprint arXiv:1611.01796, 2016.

M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder, B. McGrew, J. Tobin,
P. Abbeel, and W. Zaremba. Hindsight experience replay. arXiv preprint arXiv:1707.01495,
2017.

C. G. Atkeson and S. Schaal. Robot learning from demonstration. In International Conference on
Machine Learning (ICML), volume 97, pp. 12–20, 1997.

P. Bacon, J. Harb, and D. Precup. The option-critic architecture. In Association for the Advancement
of Artificial Intelligence (AAAI), pp. 1726–1734, 2017.

N. Baram, O. Anschel, I. Caspi, and S. Mannor. End-to-end differentiable adversarial imitation
learning. In International Conference on Machine Learning (ICML), pp. 390–399, 2017.

M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling. The arcade learning environment: An
evaluation platform for general agents. Journal of Artificial Intelligence Research (JAIR), 47:
253–279, 2013.

S. Bitzer, M. Howard, and S. Vijayakumar. Using dimensionality reduction to exploit constraints in
reinforcement learning. In International Conference on Intelligent Robots and Systems (IROS),
pp. 3219–3225, 2010.

T. Brys, A. Harutyunyan, H. B. Suay, S. Chernova, M. E. Taylor, and A. Now’e. Reinforcement
learning from demonstration through shaping. In International Joint Conference on Artificial
Intelligence (IJCAI), 2015.

10

https://github.com/stanfordnlp/wge
https://github.com/stanfordnlp/wge
https://worksheets.codalab.org/worksheets/0x0f25031bd42f4aabbc17625fe1484066/
https://worksheets.codalab.org/worksheets/0x0f25031bd42f4aabbc17625fe1484066/

Published as a conference paper at ICLR 2018

N. Chentanez, A. G. Barto, and S. P. Singh. Intrinsically motivated reinforcement learning. In
Advances in Neural Information Processing Systems (NIPS), pp. 1281–1288, 2005.

C. Daniel, G. Neumann, O. Kroemer, and J. Peters. Hierarchical relative entropy policy search.
Journal of Machine Learning Research (JMLR), 17:3190–3239, 2016.

B. Deka, Z. Huang, and R. Kumar. Erica: Interaction mining mobile apps. In User Interface
Software and Technology (UIST), pp. 767–776, 2016.

T. G. Dietterich. The MAXQ method for hierarchical reinforcement learning. In International
Conference on Machine Learning (ICML), 1998.

C. Finn, S. Levine, and P. Abbeel. Guided cost learning: Deep inverse optimal control via policy
optimization. In International Conference on Machine Learning (ICML), pp. 49–58, 2016.

W. L. Hamilton, R. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems (NIPS), 2017.

K. Hauser, T. Bretl, K. Harada, and J. Latombe. Using motion primitives in probabilistic sample-
based planning for humanoid robots. Algorithmic foundation of robotics, 7:507–522, 2008.

T. Hester, M. Vecerik, O. Pietquin, M. Lanctot, T. Schaul, B. Piot, A. Sendonaris, G. Dulac-Arnold,
I. Osband, J. Agapiou, J. Z. Leibo, and A. Gruslys. Deep Q-learning from demonstrations. In
Association for the Advancement of Artificial Intelligence (AAAI), 2018.

J. Ho and S. Ermon. Generative adversarial imitation learning. In Advances in Neural Information
Processing Systems (NIPS), pp. 4565–4573, 2016.

I. Hosu and T. Rebedea. Playing Atari games with deep reinforcement learning and human check-
point replay. In Evaluating General Purpose AI, 2016.

A. Hussein, E. Elyan, M. M. Gaber, and C. Jayne. Deep reward shaping from demonstrations. In
International Joint Conference on Neural Networks, 2017.

M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu. Re-
inforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397, 2016.

B. Kim, A. massoud Farahmand, J. Pineau, and D. Precup. Learning from limited demonstrations.
In Advances in Neural Information Processing Systems (NIPS), pp. 2859–2867, 2013.

T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations (ICLR), 2017.

G. Konidaris and A. G. Barto. Building portable options: Skill transfer in reinforcement learning.
In International Joint Conference on Artificial Intelligence (IJCAI), 2007.

S. Levine and V. Koltun. Guided policy search. In International Conference on Machine Learning
(ICML), 2013.

L. Li, T. J. Walsh, and M. L. Littman. Towards a unified theory of state abstraction for mdps. In
International Symposium on Artificial Intelligence and Mathematics (ISAIM), 2006.

B. Marthi and C. Guestrin. Concurrent hierarchical reinforcement learning. In International Joint
Conference on Artificial Intelligence (IJCAI), 2005.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In International Conference on Machine
Learning (ICML), 2016.

A. Nair, B. McGrew, M. Andrychowicz, W. Zaremba, and P. Abbeel. Overcoming exploration in
reinforcement learning with demonstrations. arXiv preprint arXiv:1709.10089, 2017.

A. Y. Ng, D. Harada, and S. Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In International Conference on Machine Learning (ICML),
volume 99, pp. 278–287, 1999.

11

Published as a conference paper at ICLR 2018

I. Osband, C. Blundell, A. Pritzel, and B. V. Roy. Deep exploration via bootstrapped DQN. In
Advances In Neural Information Processing Systems, pp. 4026–4034, 2016.

R. Parr and S. J. Russell. Reinforcement learning with hierarchies of machines. In Advances in
Neural Information Processing Systems (NIPS), pp. 1043–1049, 1998.

C. Perez-D’Arpino and J. A. Shah. C-learn: Learning geometric constraints from demonstrations
for multi-step manipulation in shared autonomy. In International Conference on Robotics and
Automation (ICRA), pp. 4058–4065, 2017.

T. Pham, T. Tran, D. Phung, and S. Venkatesh. Column networks for collective classification. In
Association for the Advancement of Artificial Intelligence (AAAI), 2017.

M. Phillips, V. Hwang, S. Chitta, and M. Likhachev. Learning to plan for constrained manipulation
from demonstrations. Autonomous Robots, 40(1):109–124, 2016.

D. A. Pomerleau. Efficient training of artificial neural networks for autonomous navigation. Neural
Computation, 3(1):88–97, 1991.

M. Roderick, C. Grimm, and S. Tellex. Deep abstract Q-networks. arXiv preprint arXiv:1710.00459,
2017.

S. Ross and J. A. Bagnell. Reinforcement and imitation learning via interactive no-regret learning.
arXiv preprint arXiv:1406.5979, 2014.

S. Ross, G. Gordon, and A. Bagnell. A reduction of imitation learning and structured prediction to
no-regret online learning. In Artificial Intelligence and Statistics (AISTATS), 2011.

T. Shi, A. Karpathy, L. Fan, J. Hernandez, and P. Liang. World of bits: An open-domain platform
for web-based agents. In International Conference on Machine Learning (ICML), 2017.

B. Stone and S. Soper. Amazon Unveils a Listening, Talking, Music-Playing Speaker for Your Home.
Bloomberg L. P., 2014.

W. Sun, A. Venkatraman, G. J. Gordon, B. Boots, and J. A. Bagnell. Deeply aggrevated: Differ-
entiable imitation learning for sequential prediction. In International Conference on Machine
Learning (ICML), 2017.

R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction, volume 1. MIT Press MIT
press Cambridge, 1998.

R. S. Sutton, D. Precup, and S. Singh. Between mdps and semi-mdps: A framework for temporal
abstraction in reinforcement learning. Articial intelligence, 112:181–211, 1999.

M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T. Rothorl, T. Lampe, and
M. Riedmiller. Leveraging demonstrations for deep reinforcement learning on robotics problems
with sparse rewards. arXiv preprint arXiv:1707.08817, 2017.

Y. Wang, J. Berant, and P. Liang. Building a semantic parser overnight. In Association for Compu-
tational Linguistics (ACL), 2015.

T. Weber, S. Racanière, D. P. Reichert, L. Buesing, A. Guez, D. J. Rezende, A. P. Badia, O. Vinyals,
N. Heess, Y. Li, et al. Imagination-augmented agents for deep reinforcement learning. arXiv
preprint arXiv:1707.06203, 2017.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3):229–256, 1992.

T. Yeh, T. Chang, and R. Miller. Sikuli: using GUI screenshots for search and automation. In User
Interface Software and Technology (UIST), 2009.

B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey. Maximum entropy inverse reinforcement
learning. In Association for the Advancement of Artificial Intelligence (AAAI), 2008.

12

Published as a conference paper at ICLR 2018

A CONSTRAINT LANGUAGE FOR WORKFLOW STEPS

We try to keep the constraint language as minimal and general as possible. The main part of the
language is the object selector (elementSet) which selects either (1) objects that share a specified
property, or (2) objects that align spatially. These two types of constraints should be applicable in
many typical RL domains such as game playing and robot navigation.

constraint ::= Click(elementSet)
[Any click action on an element in elementSet]

| Type(elementSet,string)
[Any type action that types string on an element in elementSet]

| Type(elementSet,Field(*))
[Any type action that types a goal field value on an element in elementSet]

elementSet ::= Tag(tag)
[Any element with HTML tag tag]

| Text(string)
[Any element with text string]

| Like(string)
[Any element whose text is a substring of string]

| Near(elementSet)
[Any element that is within 30px from an element in elementSet]

| SameRow(elementSet)
[Any element that aligns horizontally with an element in elementSet]

| SameCol(elementSet)
[Any element that aligns vertically with an element in elementSet]

| And(elementSet,Class(classes))
[Any element from elementSet matching some class name in classes]

tag ::= a valid HTML tag name
string ::= a string literal

| Field(fieldName)
[The value from the goal field fieldName]

classes ::= a list of valid HTML class names

To avoid combinatorial explosion of relatively useless constraints, we limit the number of nested
elementSet applications to 3, where the third application must be the Class filter. When we induce
workflow steps from a demonstration, the valid literal values for tag, string, and classes are extracted
from the demonstration state.

B EXAMPLES OF LEARNED WORKFLOWS

login-user
Enter the username "ashlea" and password "k0UQp" and press login.

{username: ashlea, password: k0UQp}
Type(Tag("input_text"),Field("username"))

Type(Tag("input_password"),Field("password"))
Click(Like("Login"))

email-inbox
Find the email by Ilka and forward it to Krista.

{task: forward, name: Ilka, to: Krista}
Click(Near(Field("by")))

Click(SameCol(Like("Forward")))
Type(And(Near("Subject"),Class("forward-sender")),Field("to"))

Click(Tag("span"))

13

Published as a conference paper at ICLR 2018

search-engine
Enter "Cheree" and press "Search", then find and click the 5th search result.

{target: Cheree, rank: 5}
Type(Near(Tag("button")),Field(*))

Click(Text("Search"))
Click(Like(">"))

Click(Text(Field("target")))

Alaska
{departure city: Tampa, destination city: Seattle, ticket type: return flight,

departure day: 6, returning Day: 16, passengers: 3, seat type: first }
Type(And(Near(Like("From")),Class("text-input-pad")),Field("departure city"))

Click(And(SameRow(Tag("label")),Class(["input-selection","last"])))

Type(And(Near(Like("To")),Class("text-input-pad")),Field("destination city"))

Click(Like(Field("destination city")))

Click(And(SameCol(Tag("a")),Class(["calbg","text-input"])))

Click(Text(Field("departure day")))

Click(Like("Done"))

Click(Near(Like("Return")),Class(["calbg","text-input"]))

Click(Text(Field("returning day")))

Click(Like("Done"))

Click(Like("+"))

Click(Like("+"))

Click(Tag("h2"))

Click(Text("First"))

Click(And(Near(Tag("body")),Class("button")))

C DETAILS OF THE NEURAL MODEL ARCHITECTURE

Embeddings. From the input state, we first embed the DOM elements e and the goal units u,
where u is a key-value pair for structured goals and a token for natural language goals.

The process for computing the embedding veDOM of DOM elements is already described in Section 5.
For the goal unit embedding vugoal, we embed each key-value pair as the sum of word embeddings,
and embed natural language goals with an LSTM.

Attentions. After obtaining the embedding veDOM of each DOM element e and vugoal of each goal
unit u, we apply a series of attentions to relate the DOM elements with the goal:

1. DOM context: we applied max-pooling on veDOM to get a query vector, and then attend over
the DOM embeddings veDOM. The DOM context is the weighted average of the attended
DOM embeddings.

2. Goal contexts: we use the DOM context as the query vector to attend over the goal embed-
dings vugoal. We compute two goal contexts from two different attention heads. Each head
uses sentinel attention, where part of the attention can be put on a learned NULL vector,
which is useful for ignoring the goal when the next action should not depend on the goal.

3. DOM element selection: We concatenate the DOM context and goal contexts into a query
vector to attend over on the DOM embeddings veDOM. We use two attention heads, and
combine the attention weights from the two heads based on ratio computed from the goal
contexts. The result is a distribution over the target DOM elements e.

4. Typed string and action selection: For a given target DOM element e, we combine the
goal context and the embedding veDOM of e to get a query vector to attend over the goal
embeddings vugoal. For structured queries, we get a distribution over the goal fields, while
for natural language queries, we get distributions of the start and end tokens. The same
query vector is also used to compute the distribution over the action types (click or
type).

14

Published as a conference paper at ICLR 2018

Goal Embedder DOM Element
Embedder

Goal

Goal embeddings
Ngoal × dgoal

DOM

DOM element embeddings
NDOM × dDOM

Self Attention

DOM context
dDOM

Attention
(2 heads)

Goal context
2dgoal

Concat

State context
dstate

Hard Attention
(2 heads)

e's embedding
dDOM

Concat + MLP

Sampled state context
dstate

MLP

p(Click), p(Type)

Attention

p(typed string)

MLP

value V(s)

DOM element e

Q

Q

Q

M

M

M

Figure 5: The architecture of the neural policy πn. The inputs from the state are denoted in blue,
while the outputs are denoted in red. Q = query vector; M = memory matrix.

15

	Introduction
	Setup
	Inducing workflows from demonstrations
	Workflow exploration policy
	Neural policy
	Experiments
	Task setups
	Main results
	Analysis
	MiniWoB++ benchmark
	Natural language inputs
	Scaling to real world tasks
	Sample efficiency

	Discussion
	Constraint language for workflow steps
	Examples of learned workflows
	Details of the neural model architecture

