
Using Feature Conjunctions across Examples

for Learning Pairwise Classifiers

Satoshi Oyama1 and Christopher D. Manning2

1 Department of Social Informatics, Kyoto University,
Kyoto 606-8501, Japan

oyama@kuis.kyoto-u.ac.jp

http://www.dl.kuis.kyoto-u.ac.jp/~oyama/
2 Department of Computer Science, Stanford University,

Stanford, CA 94305-9040, USA
manning@cs.stanford.edu

http://www-nlp.stanford.edu/~manning/

Abstract. We propose a kernel method for using combinations of fea-
tures across example pairs in learning pairwise classifiers. Identifying two
instances in the same class is an important technique in duplicate de-
tection, entity matching, and other clustering problems. However, it is a
difficult problem when instances have few discriminative features. One
typical example is to check whether two abbreviated author names in dif-
ferent papers refer to the same person or not. While using combinations
of different features from each instance may improve the classification
accuracy, doing this straightforwardly is computationally intensive. Our
method uses interaction between different features without high compu-
tational cost using a kernel. At medium recall levels, this method can
give a precision 4 to 8 times higher than that of previous methods in
author matching problems.

1 Introduction

Pairwise classifiers, which identify whether two instances belong to the same
class or not, are important components in duplicate detection, entity matching,
and other clustering applications. For example, in citation matching [8], two
citations are compared and determined whether they refer to the same paper or
not (Figure 1).

In early work, these classifiers were based on fixed or manually tuned dis-
tance metrics. In recent years, there have been several attempts to make pairwise
classifiers automatically from labeled training data using machine learning tech-
niques [1, 2, 11, 14]. Most of them are based on string edit distance or common
features between two examples.

These methods are effective when two instances from the same class have
many common features like two variant citations to the same paper. However,
if two instances from the same class have few common features, these methods
have difficulties in finding these pairs and achieving high recall. An instance of
this is trying to identify the same author across different papers.

2 Satoshi Oyama and Christopher D. Manning

Gupta, A., Mumick, I, Subrahmanian, V. 1993. Maintaining Views Incrementally. In Proc. of ACM SIGMOD, pp. 157-166

A. Gupta, I. S. Mumick, V. S. Subrahmanian: Maintaining Views Incrementally. SIGMOD Conference 1993: 157-166

A. Gupta, I. S. Mumick, K. A. Ross: Adapting Materialized Views after Redefinitions. SIGMOD Conference 1995: 211-222

Fig. 1. Matching citations

A. Gupta, V. Harinarayan, D. Quass: Aggregate-Query Processing in Data Warehousing Environments. VLDB 1995: 358-369

A. Gupta, I. S. Mumick, V. S. Subrahmanian: Maintaining Views Incrementally. SIGMOD Conference 1993: 157-166

A. Gupta, M. Tambe: Suitability of Message Passing Computers for Implementing Production Systems. AAAI 1988: 687-692

Fig. 2. Matching authors

First names of authors are abbreviated to initials in many citations. As
shown in Figure 2, identifying the same authors among abbreviated names is
another important problem in citation analysis or evaluating researchers. How-
ever, fielded citation databases such as ISI Citation Index3 or “Most Cited Au-
thors in Computer Science” in CiteSeer4 cannot distinguish different authors
with the same first initial and the same last name. Distinguishing these authors
is important for treating people as first class entities in citation databases.

Matching authors is a harder problem than matching citations. As we can
see in Figure 1, two citations to the same paper have many common keywords.
Conversely, if two citation strings are the same or have many common keywords,
we can suspect the two citations refer to the same paper. On the other hand,
even if two strings of author names are exactly same, we cannot conclude these
names refer to the same person in the real world. To disambiguate author names,
we have to look into other fields in citations than author names themselves.

However, there is another difficulty in this problem. The first two records in
Figure 2 have no common words other than the names of the first authors even
though these two authors are the same person. Humans can somehow infer the
identity of these two persons by considering the strong connection between the
two conferences and the topical similarity between words in the titles. However,
in such a case, where pairs from the same class have few common features, it is
difficult to automatically determine these pairs using pairwise classifiers based
on string similarity or common features.

One approach to solving this problem is using conjunctions of features across
examples. In the case of Figure 2, we could give similarities to different words
across examples like “SIGMOD” and “VLDB”, and compute the overall similar-
ity based on them. This helps avoiding zero similarity and breaking orthogonal-

3 http://isiknowledge.com/
4 http://citeseer.ist.psu.edu/mostcited.html

Learning Pairwise Classifiers 3

ity. If there are many pairs where one paper is published in VLDB and the other
paper is published in SIGMOD in labeled positive data (pairs of papers authored
by the same person), we can expect that the learning algorithm incorporates this
feature into the classifier. However, if we straightforwardly make all pairs from
original features, the dimension of the resulting feature space become large and
we cannot apply learning algorithms to real problems with many features.

In this paper, we propose a method for using feature conjunctions across ex-
amples in learning pairwise classifiers without causing excessive computational
cost by using kernel methods [12, 13]. By using our kernel, learning algorithms
can use feature conjunctions across examples without actually computing them.
This results in high classification accuracy for problems with few common fea-
tures, which are difficult for existing methods.

2 Pairwise Classification

2.1 Problem Definition

Pairwise classification is the problem of determining whether a pair of instances,
xα and xβ , belong to the same class or not. In a binary classification case, we
look for the following function:

f(xα, xβ) =
{

1 (if xα and xβ belong to the same class),
−1 (otherwise).

Pairwise classification and pairwise similarity have a close relation. We can
also consider a problem where the function f outputs continuous values such as
f(xα, xβ) ∈ [0, 1], which give similarities between instances. We can change this
into a binary classifier by introducing a certain threshold. On the other hand,
many binary classifiers can be converted to a classifier that outputs continuous
values [2]. Therefore, we will sometimes use the terms pairwise classification and
pairwise similarity interchangeably.

Pairwise classification is an important component in duplicate detection,
identity matching, and many other clustering problems. We make a global clus-
tering decision based on pairwise classifications, for instance, by making the
transitive closure of guessed positive pairs [2].

2.2 Making Pair Instances from the Original Data

It is a difficult problem to define accurate pairwise classifiers by hand. Thus there
have been many works on inducing classifiers automatically from data using
machine learning techniques. Many earlier methods first sample pair instances
from the data and have humans label them according to whether they belong to
the same class or not. Then these training examples are fed to binary classifier
learning algorithms such as Support Vector Machines (SVMs) [15].

For example, Bilenko and Mooney [2] represent an original instance by a
feature vector xα = (xα

1 , xα
2 , . . . , xα

n), where each feature corresponds to whether

4 Satoshi Oyama and Christopher D. Manning

a word in a vocabulary appears in the string representation of the instance and
the dimension of feature vectors n is the number of words in the vocabulary.
From two original instances xα = (xα

1 , xα
2 , . . . , xα

n) and xβ = (xβ
1 , xβ

2 , . . . , xβ
n),

they make a pair instance x̂ = (xα, xβ) and represent it as a vector in an n
dimensional feature space:

x̂common = (xα
1 xβ

1 , xα
2xβ

2 , . . . , xα
nxβ

n) . (1)

(They also do normalization by dividing the value of each feature by |xα||xβ|.)
This method is effective for a problem like citation matching, where two

instances from the same class have many common features. However, in the
problem where two instances from the same class have few common features, this
method cannot achieve high classification accuracy. For example, in Figure 2, the
first and the second papers have no common words other than “A. Gupta” even
though they are actually written by the same person. The representation of this
pair instance by Equation (1) becomes a zero vector. This phenomenon is not
rare in papers written by the same author, and the method based on common
features cannot distinguish these pairs from the many negative examples that
also have zero vectors as their representation.

One approach to avoiding the problem of zero vectors is using conjunctions
of different features across examples xα

i xβ
j and representing a pair instance as

x̂Cartesian = (xα
1 xβ

1 , . . . , xα
1 xβ

n, xα
2 xβ

1 , . . . , xα
2xβ

n, . . . , xα
nxβ

1 , . . . , xα
nxβ

n) . (2)

That is, the set of mapped features, {xα
i xβ

j |i = 1, . . . , n; j = 1, . . . , n}, is a Carte-
sian product between the sets of original features of xα and xβ . In this feature
space, a pair instance does not become a zero vector unless one of the original
instances is a zero vector. If there are many positive pairs in which “VLDB”
appears in one citation and “SIGMOD” appears in the other, we can expect
that a learning algorithm incorporates the conjunction of these two features into
the learned classifier, and it successfully classifies the case of Figure 2.

However, implementing this idea straightforwardly causes the following prob-
lems. One is that the dimension of the feature space becomes n2 and the com-
putational cost becomes prohibitive for practical problems with many features.
Moreover, learning in a high dimensional feature space is in danger of overfitting,
that is, the “curse of dimensionality.”

3 Kernel Methods for Using Feature Conjunctions across
Examples

3.1 Kernel Methods

Some learning algorithms such as SVMs can be written in forms where exam-
ples always appear as inner products 〈x · z〉 of two examples and never appear
individually [12, 13]. Kernel methods enable classification in higher dimensional

Learning Pairwise Classifiers 5

space by substituting kernel functions K(x, z) for inner products 〈x ·z〉 in these
algorithms.

Let us consider the following kernel function:

K(x, z) = 〈x · z〉2 . (3)

Learning with this kernel function is equivalent to mapping examples into the
following higher dimensional feature space,

φ(x) = (x1x1, . . . , x1xn, x2x1, . . . , x2xn, . . . , xnx1, . . . , xnxn) ,

and then applying the learning algorithm. We can show this as follows:

〈x · z〉2 =

(
n∑

i=1

xizi

)
 n∑

j=1

xjzj


 =

n∑
i=1

n∑
j=1

xizixjzj

=
n∑

i=1

n∑
j=1

(xixj)(zizj) = 〈φ(x) ·φ(z)〉 .

The kernel above is called a quadratic polynomial kernel. Previous work has
also used another popular kernel, the Gaussian kernel, K(x, z) = exp

(
−‖x−z‖2

2σ2

)
,

which corresponds to a feature mapping into an infinite dimensional space. Using
kernels, the algorithms can learn classifiers in a high dimensional feature space
without actually doing feature mappings, which are computationally expensive.
Moreover, SVMs with kernels are known to be robust against the overfitting
problem of learning in a high dimensional feature space.

3.2 Using Kernels for Feature Conjunctions

A straightforward way to conjoin different features across examples is using the
polynomial kernel mentioned above. We represent a pair instance as a vector
with 2n dimensions,

x̂ = (xα, xβ) = (xα
1 , . . . , xα

n, xβ
1 , . . . , xβ

n) , (4)

and then apply the kernel of Equation (3) on this feature space.
The set of conjoined features resulting from the corresponding feature map-

ping is {xα
i xα

j }∪{xα
i xβ

j }∪{xβ
i xα

j }∪{xβ
i xβ

j } and it includes the set of features in
Equation (2). However, it also includes features from the same example, {xα

i xα
j }

and {xβ
i xβ

j }. These features are clearly irrelevant to pairwise classification be-
cause they are related to only one party of the pair. When the frequencies of
original instances are different between the set of positive pairs and the set of
negative pairs, there is a possibility that a learning algorithm give weight to joint
features from single parties and the generalization performance deteriorates.

6 Satoshi Oyama and Christopher D. Manning

What we want is the following feature mapping, which generates conjunctions
of features only across the two original instances:

φ(x̂) = φ((xα, xβ))

= (xα
1 xβ

1 , . . . , xα
1 xβ

n, xα
2xβ

1 , . . . , xα
2 xβ

n, . . . , xα
nxβ

1 , . . . , xα
nxβ

n) . (5)

So we propose using the following kernel for pair instances:

K(x̂, ẑ) = K((xα, xβ), (zα, zβ)) = 〈xα · zα〉〈xβ · zβ〉 . (6)

This kernel first computes the inner product of xα and zα and that of xβ and
zβ respectively, then computes the product of these two real values.

We can show that this kernel does the feature mapping of Equation (5):

〈xα · zα〉〈xβ · zβ〉 =

(
n∑

i=1

xα
i zα

i

) n∑
j=1

xβ
j zβ

j


 =

n∑
i=1

n∑
j=1

xα
i zα

i xβ
j zβ

j

=
n∑

i=1

n∑
j=1

(xα
i xβ

j)(zα
i zβ

j) = 〈φ((xα, xβ)) · φ((zα, zβ))〉 = 〈φ(x̂) · φ(ẑ)〉 .

This kernel is a tensor product [6] of two linear kernels (inner products) on
the original feature space. An intuitive explanation of this kernel is the following.
A kernel defines similarity in an input space. In our case, the input space is the
space of pair instances. The kernel of Equation (6) defines the similarity between
pair instances so that it yields a high value only if each of the original instances
in one pair has high similarity (a large value for the inner product) with the
corresponding original instance in the other pair. For example, if the value of
〈xα ·zα〉 is 0, the overall value of Equation (6) always becomes 0 even if the value
of 〈xβ ·zβ〉 is large. This is a desirable property because a pairwise classification
decision should be based on both examples in a pair.

The feature mapping of Equation (5) depends on the order of instances,
that is, φ((xα, xβ)) �= φ((xβ, xα)). We can also make a product between two
pair instances by making inner products between instances with different super-
scripts as 〈xα · zβ〉〈xβ · zα〉. However, if we have both (xα, xβ) and (xβ , xα)
in the training set, both definitions of kernels are equivalent in terms of learned
classifiers.

4 Experiments

4.1 Datasets and Code

We show experimental results on the following two datasets. One is the DBLP
dataset which is a bibliography of more than 400,000 computer science papers.5

The data is publicly available in XML format. We used journal papers and
5 http://dblp.uni-trier.de/

Learning Pairwise Classifiers 7

conference papers as the data for our experiments. Bibliographic entries in DBLP
were entered by humans and many author names are given as their full names.
To make a training set and a test set for the author matching problem, we
abbreviated first names into initials and removed middle names. We used words
in titles, journal names, and names of coauthors as features.

The other is the Cora Citation Matching dataset provided by Andrew Mc-
Callum.6 We used these data for citation matching problems. They are also used
in [2] and [3]. The dataset is composed of 1,879 citations to 191 papers in Cora,
a computer science research paper search engine. We used each word appearing
in citations as a feature.

We used SVMlight, an implementation of an SVM learning algorithm devel-
oped by Thorsten Joachims [7]. SVMlight provides basic kernels such as polyno-
mial and Gaussian, and allow use of user-defined kernels. We implemented the
kernel of Equation (6) for our experiments.

4.2 Results

From among the top 20 “Most Cited Authors in Computer Science,”7 we selected
four cases of first-initial-plus-surname names which involve a collapsing of many
distinct authors (that is, we select names like J. Smith but not J. Ullman). To
make a training set and a test set for each abbreviated name, we retrieved papers
written by authors with the same last name and the same first initial from the
DBLP data. If we make all pairs of instances, the number of negative examples
becomes much larger than that of positive examples because the number of pairs
from different classes is larger than that of pairs from same classes. To assess the
effect of the imbalance between the numbers of positive and negative data, we
prepared two different datasets. One is the imbalanced data sets, for which we
generated pair instances from all combinations of two papers. The other is the
balanced data sets, for which we first generated positive examples by making all
combinations of papers in same classes, and then we generated negative exam-
ples by randomly sampling pairs from different classes. We evaluated classifiers
learned from (im)balanced training sets by (im)balanced test sets respectively.

We trained classifiers on the training sets and evaluated them on the test
sets in terms of precision and recall. In [2], the precision and recall are evaluated
after making the transitive closure of guessed positive pairs. To make evaluation
focused on the accuracy of pairwise classifiers, we calculated the precision and
recall simply based on how many positive pairs classifiers can find. As suggested
in [3], we drew precision-recall curves by shifting the decision boundary induced
by SVMs and evaluating precision values on 20 different recall levels.

We evaluated the performance of classifiers with three different kernels.

Common The Gaussian kernel applied to pair instances of Equation (1), which
uses only common features across examples. The parameter of the Gaussian
kernel is set to σ = 10, according to the preceding work [2].

6 http://www.cs.umass.edu/˜mccallum/code-data.html
7 http://citeseer.ist.psu.edu/mostcited.html

8 Satoshi Oyama and Christopher D. Manning

D. Johnson

0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

A. Gupta

0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

J. Smith

0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

R. Johnson

0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

Fig. 3. Results of author matching problems with the balanced data sets

D. Johnson

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

A. Gupta

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

J. Smith

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

R. Johnson

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

Fig. 4. Results of author matching problems with the imbalanced data sets

Polynomial The quadratic polynomial kernel applied to pair instances of Equa-
tion (4)

Cartesian Our kernel of Equation (6)

Figure 3 shows the results with the balanced data sets. For low recall lev-
els, Common yields high precision values. However, when recall levels become
larger than a certain threshold, the precision start to decrease drastically. This

Learning Pairwise Classifiers 9

D. Johnson

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

A. Gupta

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

J. Smith

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

R. Johnson

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

Fig. 5. Results of author matching problems by a general classifier

seems to be because there are many (nearly) zero vectors among positive pairs
generated by Equation (1) and these positive examples cannot be distinguished
from negative pairs. On the other hand, Polynomial and Cartesian keep high
precision in higher recall levels. Among the two kernels, Cartesian generally
yields higher precision than Polynomial. Figure 4 shows the results with the
imbalanced data sets. As in the case of the balanced data sets, the methods using
feature conjunctions are much superior to the method using only common fea-
tures. Cartesian can give a precision 4 to 8 times higher than that of Common
at medium recall levels.

In the above experiments, we trained different classifiers for each abbreviated
author name. A general classifier, which can identify papers written by the same
author, given any pair of papers, is preferable because we need not train many
classifiers. It could also classify papers by new authors, for which we do not
have enough training data. We trained a general classifier in the following steps.
First, we listed 50,000 authors who have more than one paper in the DBLP
dataset, according to their alphabetical order. For each author, we chose two
papers randomly and use the pair as a positive training example. Then we made
pairs of papers written by different authors and prepared the same number
of negative training examples. We used the same test data that was used in
the experiments in Figure 4. We present the results by a general classifier in
Figure 5. In the region where recall is smaller than 0.3, Common get better
results than the others. For the higher recall levels, however, it gives worse results
than Cartesian and Common, among which Cartesian generally yields better

10 Satoshi Oyama and Christopher D. Manning

Training and test sets divided by citation

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

Training and test sets divided by paper

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Recall

Pr
ec

is
io

n

Common

Polynomial

Cartesian

Fig. 6. Results of citation matching problems with the Cora dataset

precision. The overall results are not as good as those of specific classifiers.
This seems to be because the word distributions in the test sets for the specific
abbreviated names are different from the distribution in the training set collected
using many different names. Similar phenomena are also reported in [2].

Figure 6 shows the results of citation matching (as opposed to author match-
ing) with the Cora dataset. We tried two different methods for splitting the data
into a training set and a test set according to [3]. One method simply assigns
each citation into the training set or the test set without considering the paper it
refers to. The other method first assigns each paper into the training or the test
set, then assigns all citations to the paper to the same set. For the Cora dataset,
Common works as well as Cartesian. In citation matching, two citations to
the same paper usually have many common words and the learning algorithm
can find clues to identify these examples by only using their common features.

5 Related Work

A general definition of a tensor product between two kernels can be found in [6].
A tensor product between kernels on input space and output space is used in [16]
for inducing metrics both Euclidean and Fisher separable spaces, on which the
triangle inequality is satisfied and a distance between examples from different
classes is always larger than a distance between examples from the same class.
On the other hand, our work uses a tensor product between two kernels both on
input space for solving the problem of zero similarities between examples, which
has not been addressed in the preceding work.

Duplicate detection and entity matching have been studied for a long time in
the database community. Recently these problems have attracted interest from
machine learning researchers. We refer to only recent literature using machine
learning technologies. Other conventional approaches are summarized by Bilenko
et al. [1].

The work by Bilenko and Mooney [2] is most relevant to our research. They
proposed using learnable domain-specific string similarities for duplicate detec-
tion and showed the advantage of their approach against fixed general-purpose

Learning Pairwise Classifiers 11

similarity measures. They trained a different similarity metric for each database
field and calculated similarities between records composed of multiple fields by
combining these field level similarities. In our work, we treated examples as single
field datasets and focused on improving single level similarity measures. Sarawagi
and Bhamidipaty [11] and Tejada et al. [14] used active learning for interactively
finding informative training examples when learning classifiers that distinguish
between duplicated pairs and non-duplicated ones. Their method need only a
small number of training examples to obtain high accuracy classifiers. Bilenko
and Mooney [3] advocated using precision-recall curves in evaluation of dupli-
cate detection methods, and they also discussed different methods of collecting
training examples for learnable duplicate detection systems.

6 Future Work

In this paper, we presented entity matching in citation databases as an applica-
tion of our method. Entity matching has been also studied in natural language
processing under the name of coreference resolution, where coreferent terms in
texts are to be identified [9, 10]. Our future work includes application of the
proposed method for this problem.

Our approach is applicable to the problem of matching different kinds of
object. For example, English texts and Japanese texts have few common words.
However, our method could learn a matching function between them without
using external information sources like dictionaries. Our method can learn sim-
ilarities between objects of different kinds based on similarities between objects
of the same kind. This indicates great potential of our approach because there
is no straightforward way to define similarity between completely different kinds
of objects like texts and images while defining similarities between two texts and
similarities between two images is much easier.

As mentioned in Section 4, learning pairwise classifiers faces the problem of
imbalanced data. Employing techniques for handling imbalanced data [4] could
improve the accuracy. We will also compare our supervised approach with un-
supervised dimension reduction approaches such as LSI [5] for sparse data.

7 Conclusion

Pairwise classification is an important technique in entity matching. Preceding
methods have difficulty in learning precise classifiers for problems where exam-
ples from the same class have few common features. Since similarities between
examples from the same class become small, classifiers fail to distinguish positive
pairs from negative pairs. To solve this problem, we proposed using conjunctions
of features across examples in learning pairwise classifiers. Using a kernel on pair
instances, our method can use feature conjunctions without causing a large com-
putational cost. Our experiments on the author matching problem show that the
new kernel introduced here yields higher precision than existing methods at mid-
dle to high recall levels.

12 Satoshi Oyama and Christopher D. Manning

Acknowledgements

This research was partially supported by the Informatics Research Center for De-
velopment of Knowledge Society Infrastructure (Kyoto University 21st Century
COE Program) and by a Grants-in-Aid for Scientific Research (16700097) from
the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

1. M. Bilenko, W. W. Cohen, S. Fienberg, R. J. Mooney, and P. Ravikumar. Adaptive
name-matching in information integration. IEEE Intell. Syst., 18(5):16–23, 2003.

2. M. Bilenko and R. J. Mooney. Adaptive duplicate detection using learnable string
similarity measures. In Proc. KDD-2003, pages 39–48, 2003.

3. M. Bilenko and R. J. Mooney. On evaluation and training-set construction for du-
plicate detection. In Proc. KDD-2003 Workshop on Data Cleaning, Record Linkage,
and Object Consolidation, pages 7–12, 2003.

4. N. Chawla, N. Japkowicz, and A. Kolcz, editors. Special Issue on Learning from
Imbalanced Datasets, SIGKDD Explorations, 6(1), 2004.

5. S. C. Deerwester, S. T. Dumais, T. K. Landauer, G. W. Furnas, and R. A. Harsh-
man. Indexing by latent semantic analysis. J. Am. Soc. Inf. Sci., 41(6):391–407,
1990.

6. D. Haussler. Convolution kernels on discrete structures. Technical Report UCSC-
CRL-99-10, Baskin School of Engineering, University of California, Santa Cruz,
1999.

7. T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf,
C. Burges, and A. Smola, editors, Advances in Kernel Methods - Support Vector
Learning. MIT-Press, 1999.

8. S. Lawrence, K. Bollacker, and C. L. Giles. Autonomous citation matching. In
Proc. Third International Conference on Autonomous Agents, 1999.

9. A. McCallum and B. Wellner. Toward conditional models of identity uncertainty
with application to proper noun coreference. In Proc. IJCAI Workshop on Infor-
mation Integration on the Web, pages 79–84, 2003.

10. T. S. Morton. Coreference for NLP applications. In Proc. ACL-2000, 2000.
11. S. Sarawagi and A. Bhamidipaty. Interactive deduplication using active learning.

In Proc. KDD-2002, pages 269–278, 2002.
12. B. Schölkopf and A. Smola. Learning with Kernels: Support Vector Machines,

Regularization, Optimization and Beyond. MIT Press, 2002.
13. J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis. Cam-

bridge University Press, 2004.
14. S. Tejada, C. A. Knoblock, and S. Minton. Learning domain-independent string

transformation weights for high accuracy object identification. In Proc. KDD-2002,
pages 350–359, 2002.

15. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, 2nd edition,
1999.

16. Z. Zhang. Learning metrics via discriminant kernels and multidimensional scaling:
Toward expected euclidean representation. In Proc. ICML-2003, pages 872–879,
2003.

