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Abstract. We determine analytically the modulus of the second eigaavior
the web hyperlink matrix used by Google for computing Pagé&R8pecifically,
we prove the following statement:

“For any matrixA = [cP + (1 — ¢)E]”, whereP is ann x n row-stochastic
matrix, E is a nonnegative x n rank-one row-stochastic matrix, adk ¢ < 1,
the second eigenvalue df has modulugAz| < c. Furthermore, ifP has at least
two irreducible closed subsets, the second eigenvalue c¢.”

This statement has implications for the convergence rateeo$tandard PageR-
ank algorithm as the web scales, for the stability of PagkRaperturbations to
the link structure of the web, for the detection of Googlenspeers, and for the
design of algorithms to speed up PageRank.

1 Theorem

Theorem 1. Let P be ann x n row-stochastic matrix. Letbe a real number such that
0 < ¢ < 1. Let E be then x n rank-one row-stochastic matri& = ev”, wheree

is the n-vector whose elements are gll= 1, andv is an n-vector that represents a
probability distributiort.

Define the matrixd = [cP + (1 — ¢)E]7. Its second eigenvalyes| < c.

Theorem 2. Further, if P has at least two irreducible closed subsets (which is the cas
for the web hyperlink matrix), then the second eigenvalué isfgiven by, = c.

2 Notation and Preliminaries

P is ann x n row-stochastic matrixE' is then x n rank-one row-stochastic matrix
E = evT, wheree to be the n-vector whose elements areeal= 1. A is then x n
column-stochastic matrix:

A=[cP+(1-c)E)" (1)

We denote théth eigenvalue ofd as);, and the corresponding eigenvectougs
A.’Bi = )\1:3, (2)

By convention, we choose eigenvectarssuch that|x;||; = 1. SinceA is column-
stochastich; = 1,1 > |A2| > ... > |\, > 0.

1i.e., a vector whose elements are nonnegative and whoserin is 1.



We denote theth eigenvalue ofP” as~;, and its corresponding eigenvector gs
PTy; = ~v;y;. SincePT is column-stochastiey; = 1,1 > |y2| > ... > |y,| > 0.

We denote theth eigenvalue ofE” asy;, and its corresponding eigenvector gs
ET2z; = p;z;. SinceE™ is rank-one and column-stochasiig, = 1, io = ... = jt, =
0.

An n x n row-stochastic matrid/ can be viewed as the transition matrix for a Markov
chain withn, states.

For any row-stochastic matrix/, Me = e.

A set of statesS is aclosed subseif the Markov chain corresponding fid if and only

if i € Sandj ¢ S implies that)/;; = 0.

A set of statesS is anirreducible closed subsetf the Markov chain corresponding to
M if and only if S is a closed subset, and no proper subséf fa closed subset.
Intuitively speaking, each irreducible closed subset of@kdv chain corresponds to
a leaf node in the strongly connected component (SCC) grépeadirected graph
induced by the nonzero transitions in the chain.

Note thatE, P, andA” are row stochastic, and can thus be viewed as transitioriaesitr
of Markov chains.

3 Proof of Theorem 1

We first show that Theorem 1 is true for= 0 andc = 1.

Casel:ic=0
If ¢ = 0, then, from equation 14 = E7. SincekE is a rank-one matrix\s = 0. Thus,
Theorem 1 is proved for c=0.

CAse2:c=1
If ¢ = 1, then, from equation 14 = P7. SinceP” is a column-stochastic matrix,
[A2] < 1. Thus, Theorem 1 is proved for c=1.

Case3:0<c<1
We prove this case via a series of lemmas.

Lemma 1. The second eigenvalue df has modulu$h,| < 1.

Proof. Consider the Markov chain corresponding4d’. If the Markov chain corre-
sponding toA” has only one irreducible closed subché&inand if S is aperiodic, then
the chain corresponding 1’ must have a unique eigenvector with eigenvalue 1, by the
Ergodic Theorem [3]. So we simply must show that the Markoaicltorresponding

to AT has a single irreducible closed subch&inand that this subchain is aperiodic.
Lemma 1.1 shows that” has a single irreducible closed subch&irand Lemma 1.2
shows this subchain is aperiodic.



Lemma 1.IThere exists a unique irreducible closed sulssef the Markov chain cor-
responding tad”.

Proof. We split this proof into a proof of existence and a proof ofqu@ness.
Existencelet the setU be the states with nonzero componentsirLet .S consist of

the set of all states reachable frémalong nonzero transitions in the chattrivially
forms a closed subset. Further, since every state has dtioarte U, no subset of5

can be closed. Thereforg,forms an irreducible closed subset.

Uniquenesstvery closed subset must contéinand every closed subset containiiig
must containS. Therefore,S must be the unique irreducible closed subset of the chain.

Lemma 1.2rhe unique irreducible closed subsggis an aperiodic subchain.

Proof. From Theorem 5 in the Appendix, all members in an irreducitdsed subset

have the same period. Therefore, if at least one state las a self-transition, then
the subseft is aperiodic. Letu. be any state id/. By construction, there exists a self-
transition fromu to itself. ThereforeS must be aperiodic.

From Lemmas 1.1 and 1.2, and the Ergodic Theotggi,< 1 and Lemma 1 is proved.
Lemma 2. The second eigenvectss of A is orthogonal tee: e’ x5 = 0.

Proof. Since|\2| < |A1]| (by Lemma 1), the second eigenvecigy of A is orthogo-
nal to the first eigenvector oi” by Theorem 3 in the Appendix. From Section 2, the
first eigenvector ofA” is e. Thereforey, is orthogonal tee.

Lemma3. ETxzo =0

Proof. By definition, E = ev”, and ET = wve”. Thus, ETzy = velx,. From
Lemma 2T x4 = 0. Therefore ET x4 = 0.

Lemma 4. The second eigenvectar, of A must be an eigenvectay; of P”, and
the corresponding eigenvaluejs= \y/c.

Proof. From equation 1 and equation 2:
cPTay 4+ (1 —c)ETxy = Moo (3)
From Lemma 3 and equation 3, we have:
cPT:cz = Ao (4)

We can divide through by to get:

PTCBz = ?.’132 (5)

If we lety; = 2 andy; = A\a/¢, we can rewrite equation 4.

Ply; = viys (6)



Thereforex, is also an eigenvector @*”', and the relationship between the eigenval-
ues ofA and PT that correspond te is given by:

Ao = ¢ (7)

Lemmab. [X\z] <c¢

Proof. We know from Lemma 4 that, = c¢v;. BecauseP is stochastic, we have that
|vi] < 1. Therefore|\s| < ¢, and Theorem 1 is proved.

4 Proof of Theorem 2
Recall that Theorem 2 states: If P has at least two irredeciolsed subsetsp = c.

Proof.
Caselic=0
This is proven in Case 1 of Section 3.

Case2:c=1
This is proven trivially from Theorem 3 in the Appendix.

CAsE3:0<c<1

We prove this as follows. We assuniehas at least two irreducible closed subsets. We
then construct a vectar; that is an eigenvector of and whose corresponding eigen-
value is\; = c. Therefore|\2] > ¢, and there exists &; = ¢. From Theorem 1,

X2 < c. Therefore, ifP has at least two irreducible closed subsgts= c.

Lemma 1. Any eigenvectoy; of P that is orthogonal tce is an eigenvector; of
A. The relationship between eigenvaluesjs= c¢v;.

Proof. It is given thate” y; = 0. Therefore,
E'y; =ve'y; =0 (8)

By definition,
Plys = viys ©)]
Therefore, from equations 1, 8, and 9,

Ay; = cPTy; + (1 - )BTy = cPTy; = vy (10)
Therefore Ay; = ¢vy;y; and Lemma 1 is proved.

Lemma 2. There exists &; = c.

Proof. We construct a vectaog; that is an eigenvector aP and is orthogonal te.



From Theorem 3 in the Appendix, the multiplicity of the eigalue 1 forP is equal

to the number of irreducible closed subsetdfThus we can find two linearly inde-
pendent eigenvectorg andy, of P” corresponding to the dominant eigenvalue 1.
Let

]{1 = lee (11)
ko =y2Tle (12)

If k1 = 0, letx; = y1, elseifky = 0, let x; = yo. If ki, ko > 0, then let
x; = y1/k1 — y2/k2. Note thatz; is an eigenvector oP” with eigenvalue exactly
and thate; is orthogonal ta:. From Lemma 1g- is an eigenvector ofl corresponding
to eigenvalue:. Therefore, the eigenvalug of A corresponding to eigenvecter; is
/\i = C.

Therefore,|X\2| > ¢, and there exists &; = ¢. However, from Theorem 1, < c.
Therefore \, = ¢ and Theorem 2 is proved.

5 Implications

The matrixA is used by Google to compute PageRank, an estimate of webipag
portance used for ranking search results [11]. PageRankfisedl as the stationary
distribution of the Markov chain corresponding to the n stochastic transition matrix
AT, The matrixP corresponds to the web link graph; in makiRgstochastic, there
are standard techniques for dealing with web pages with tgoing links [6]. Further-
more, the web graph has been empirically shown to contairyrimeeducible closed
subsets [1], so that Theorem 2 holds for the matrixsed by Google.

Theorem 1 has implications for the rate of convergence oERagk, for the stabil-
ity of PageRank to perturbations to the link structure, andlie design of algorithms
to speed up PageRank computations. Furthermore, it haddaroaplications in areas
ranging from graph partitioning to reputation schemes iarfie-peer networks. We
briefly discuss these implications in this section.

Convergence of PageRarikhe PageRank algorithm uses the power method to com-
pute the principal eigenvector of. The rate of convergence of the power method is
given by% [13,2]. For PageRank, the typical valuefias been given as85; for

this value ofc, Theorem 2 thus implies that the convergence rate of the pmeéhod
|A2/A1] for any web link matrixA is 0.85. Therefore, the convergence rate of PageRank

will be fast, even as the web scales.

Stability of PageRank to Perturbations in the Link Struetdthe modulus of the non-
principal eigenvalues also determines whether the cooretipg Markov chain is well-
conditioned. As shown by Meyer in [9], the greater the eigarid;| — |\2|, the more
stable the stationary distribution is to perturbationshia Markov chain. Our analysis

2 Note that there may be additional eigenvalues with modelgsich as-c.



provides an alternate explanation for the stability of FRagyek shown by Ng et al. [10].

Accelerating PageRank Computatioffsevious work on accelerating PageRank com-
putations assumedl, was unknown [6]. By directly using the equalityy = ¢, im-
proved extrapolation techniques may be developed as in [6].

Spam DetectionThe eigenvectors corresponding to the second eigenvalue ¢ are
an artifact of certain structures in the web graph. In paldic each pair of leaf nodes
in the SCC graph for the chaif corresponds to an eigenvector4fvith eigenvalue:.
These leaf nodes in the SCC are those subgraphs in the wedréipk which may have
incoming edges, but have no edges to other components. pakimers often generate
such structures in attempts to hoard rank. Analysis of thprincipal eigenvectors of
A may lead to strategies for combating link spam.

Broader Implications.This proof has implication for spectral methods beyond web
search. For example, in the field of peer-to-peer netwohes BigenTrust reputation
algorithm given in [7] computes the principal eigenvectbaanatrix of the form de-
fined in equation 1. This result shows that EigenTrust witharge quickly, minimizing
network overhead. In the field of image segmentation, Pemoddreeman [12] present
an algorithm that segments an image by thresholding thesfgetivector of the affinity
matrix of the image. One may normalize the affinity matrix todtochastic as in [8]
and introduce a regularization parameter as in [11] to defimatrix of the form given
in equation 1. The benefit of this is that one can choose thdaggation parameter
¢ to be large enough so that the computation of the dominaeteastor is very fast,
allowing the Perona-Freeman algorithm to work for very ¢asgale images.
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Appendix

This appendix contains theorems that are proven elsewmetare used in proving
Theorems 1 and 2 of this paper.

Theorem 3. (from page 126 of [5]) IfP is the transition matrix for a finite Markov
chain, then the multiplicity of the eigenvalue 1 is equallte humber of irreducible
closed subsets of the chain.

Theorem 4. (from page 4 of [13]) Ifx; is an eigenvector ofi corresponding to the
eigenvalue\;, andy; is an eigenvector afi” corresponding to\;, thenz; Ty, = 0 (if
Ai # Aj).

Theorem 5. (from page 82 of [4]) Two distinct states belonging to the sanass (ir-
reducible closed subset) have the same period. In othersyting property of having
periodd is a class property.



