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ABSTRACT

In this paper, we look at the “social tag prediction” prob-
lem. Given a set of objects, and a set of tags applied to
those objects by users, can we predict whether a given tag
could/should be applied to a particular object? We inves-
tigated this question using one of the largest crawls of the
social bookmarking system del.icio.us gathered to date. For
URLs in del.icio.us, we predicted tags based on page text,
anchor text, surrounding hosts, and other tags applied to
the URL. We found an entropy-based metric which captures
the generality of a particular tag and informs an analysis of
how well that tag can be predicted. We also found that
tag-based association rules can produce very high-precision
predictions as well as giving deeper understanding into the
relationships between tags. Our results have implications for
both the study of tagging systems as potential information
retrieval tools, and for the design of such systems.

Categories and Subject Descriptors

H.3.3 [Information Storage and Retrieval]: Informa-
tion Search and Retrieval; H.1.2 [Models and Principles]:
User/Machine Systems—Human information processing

General Terms

Design, Experimentation, Human Factors, Measurement

1. INTRODUCTION

Social tags (keyword annotations) have recently emerged
as a popular way to allow users to contribute metadata to
large and dynamic corpora. Standard taxonomies force ob-
jects into predefined categories. By contrast, tags have no
such requirement. This makes tags appropriate for corpora
like the web and user contributed video and photo collec-
tions where the distribution or type of content may change
rapidly. However, despite increased interest in tagging, tags
are still poorly understood. In particular, little is known
about the predictability of tags. Given a set of objects, and
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a set of tags applied to those objects by users, can we predict
whether a given tag could/should be applied to a particular
object? We call this the “social tag prediction” problem. In
this paper, we look at how effective different types of data
are at predicting tags in a tagging system.

Solving the social tag prediction problem has two benefits.
At a fundamental level, we gain insights into the “informa-
tion content” of tags: that is, if tags are easy to predict
from other content, they add little value. At a practical
level, we can use a tag predictor to enhance a social tagging
site. These enhancements can take a variety of forms:
Increase Recall of Single Tag Queries/Feeds Many,

if not most, queries in tagging systems are for objects
labeled with a particular tag. Similarly, many tagging
systems allow users to monitor a feed of items tagged
with a particular tag. For example, a user of a
social bookmarking site might set up a feed of all
“photography” related web pages. Tag prediction
could serve as a recall enhancing device for such
queries and feeds. In Section 4.2, we set up such a
recall enhancing tag prediction task.

Inter-User Agreement Many users have similar inter-
ests, but different vocabularies. Tag prediction would
ease sharing of objects despite vocabulary differences.

Tag Disambiguation Many tags are polysemous, that is,
they have different meanings. For example, “apple”
might mean the fruit, or the computer company. Pre-
dicting additional tags (like “macos” or “computer”)
might aid in disambiguating what a user meant when
annotating an object. Past work by Aurnhammer et
al. [2] looks at similar issues in photo tagging.

Bootstrapping Sen et al. [16] find that the way users use
tags is determined by previous experience with tags
in the system. For example, in systems with low tag
usage, fewer users will apply tags. If tag usage in the
system is mostly personal tags, users tend to apply
more personal tags. Using tag prediction, a system
designer could pre-seed a system with appropriate tags
to encourage quality contributions from users.

System Suggestion Some tagging systems provide tag
suggestions when a user is annotating an object (see
for example, Xu et al. [18]). Predicted tags might be
reasonable to suggest to users in such a system. How-
ever, unlike the other applications in this list, it might
be more informative for the system to suggest tags that
it is unsure of to see if the user selects them.

In this paper, we use one of the largest tagging datasets
available, the Stanford Tag Crawl 2007 dataset based on the



del.icio.us social bookmarking site. We examine whether
tags are predictable based on the page text, anchor text,
and surrounding domains of pages they annotate. We find
that there is a high variance in the predictability of tags,
and we look at metrics associated with predictability. One
such metric, a novel entropy measure, captures a notion of
generality that we think might be helpful for other tasks in
tagging systems. Next, we look at how to predict tags based
on other tags annotating a URL. We find that we can expand
a small set of tags with high confidence. We conclude with a
summary of our findings and their broader implications for
tagging systems and web search.

2. PRELIMINARIES

A social tagging system consists of usersu € U, tagst € T,
and objects o € O. We call an annotation of a set of tags
to an object by a user a post. A post is made up of one
or more (t;,u;,0r) triples. We imagine that every object
o has a vast set of tags that do not describe it, a smaller
set of tags which do describe it, and an even smaller set
of tags which users have actually chosen to input into the
system as applicable to the object. We say that the first
set of tags negatively describes the object, the second set of
tags positively describes the object, and the last set of tags
currently annotates the object. We model each of these
three relationships as relations or tables:

R, A set of (t,0) pairs where each pair means that tag ¢
positively describes object o.

R, A set of (t,0) pairs where each pair means that tag ¢
negatively describes object o.

Ro A set of (¢, u, 0) triples where each triple means that user
u annotated object o with tag t.

In practice, the system owner only has access to Rg.

We manipulate the relations R,, R,, and R, using two
standard relational algebra operators with set semantics.
Selection, or o, selects tuples from a relation where a par-
ticular condition ¢ holds. Projection, or m, projects a rela-
tion into a smaller number of attributes. o. is equivalent to
the WHERE c clause in SQL whereas 7, is equivalent to the
SELECT p clause in SQL. 0. can be read as “select all tuples
satisfying c¢.” m, can be read as “show only the attributes
in p from each tuple.”

Suppose a tagging system had only two objects, a web
page Opagels about a downtown bagel shop and a web page
Opizza about a pizzeria next door. We might have:

Rp = (tbagels, Obagels), (tshop7 Obagels)7 (tdowntown, Obagels)7

(tpizza, Opizza), (tpizze'ria7 Opizza)

Rn = (tpizzeriay Obagels)y (tpizza, Obagels), (tbagels, Opizzu) e

If we want to know all of the tags which positively describe
Obagel, we would write m¢(do,,,., (Rp)) and the result would
be (tbagels, tshop, tdowntown ). 1f we want all (¢, 0) pairs which
do not describe 0pizza, We would write 7t 0)(0o,;.., (Bn))-
Suppose also that a user usqiy has annotated the pizzeria
web page with the tag tpizzeria:

Ra = (tpizzeria, Usally, Opizza)

If we want to know all users who have tagged o0pizza, We
would write 7y (00, (Ra)) and the result would be (usazy)-
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Figure 1: Average new tags versus number of posts.

3. DATASET

The Stanford Tag Crawl Dataset consists of one contigu-
ous month of data starting May 25th 2007. This data was
gathered from the del.icio.us recent feed. The recent feed
is filtered by del.icio.us, so it is likely that the recent feed
is only a significant portion of all posts during the period.
For each URL posted to the recent feed, the dataset also
contains a crawl of that URL within 2 hours of its posting,
pages linked from that URL, and inlinks to the URL. The
dataset is likely to have within 1% of all of the posts that
were present in the recent feed during the month long pe-
riod. This dataset consists of 3,630,250 posts, 2,549,282
unique URLs, 301,499 active unique usernames and about
2 TB of crawled data. We call the set of the top 100 tags
in the dataset by frequency Tioo for short (shown in Figure
2). For more details about the dataset, how it was gathered,
and tradeoffs in gathering it, see Heymann et al. [8].

3.1 Tradeoffs

Based on the Stanford Tag Crawl dataset, we wanted to
construct a dataset approximating R, and R,, for our predic-
tion experiments. However, we only know R,. In previous
work, Heymann et al. [8] suggest that if (t;, 0r) € 7(s,0)(Ra)
then (¢;, 0x) € Rp. In other words, annotated tags tend to be
accurate. However, the reverse is not true. The case where
(ti,0r) € Tt,0)(Ra) and (ti,0r) € Ry occurs sufficiently of-
ten that measures of precision, recall, and accuracy can be
heavily skewed. In early experiments on a naively created
dataset, we found that as many as % of false positives were
erroneous according to manual reviews we conducted. Our
classifiers had accurately predicted for a given (t;,0x) pair
that (ti,0r) € Ry, but (ti, 0r) € T(t,0)(Ra)-

When comparing systems, it is reasonable to use a par-
tially labeled dataset, because the true relative ranking of
the systems is likely to be preserved. Pooling [11], for ex-
ample, makes this assumption. However, for this work, we
wanted to give absolute numbers for how accurately tags
can be predicted, rather than comparing systems.

We decided to filter our dataset by looking at the total
number of posts for a given URL:

postcount (o) = |Tu (00, (Ra))l

As postcount(oy) increases, we expect the probability for
any given t; that (ti,or) € m(,0)(Ra) and (ti,0r) € R, to
decrease.! We chose a cutoff of 100, which leads us to ap-

1 Using postcount(ox) for filtering relies to a certain ex-
tent on evaluating popular tags. While we do not
examine it here, for lower frequency tags we suggest
vocabcount(t;, or) = wj €m0y (Ra)) m’in(|0'(ti7uj)(Ra)|7 1)



# Tag # Tag # Tag

4225 | reference || 3469 | technology 3012 web
3794 toread 3366 tools 2996 | web2.0
3788 | resources || 3365 internet 2879 | online
3677 cool 3205 computer 2759 free

3593 work 3016 blog 2661 | software
# Tag # Tag # Tag
396 politics 328 mp3 226 | fashion
396 mobile 326 health 216 rails
351 game 310 | environment 135 food
343 jobs 266 finance 74 recipes
341 | wordpress || 233 ruby 5 fic

Table 1: The top 15 tags account for more than % of
top 100 tags added to URLs after the 100th book-
mark. Most are relatively ambiguous and personal.
The bottom 15 tags account for very few of the top
100 tags added to URLs after the 100th bookmark.
Most are relatively unambiguous and impersonal.

proximate R, and R, as:

(ti,on) € R, iff 100 < postcount(ox) < 3000

t, t
and |7Tu(0'ti,ok(Ra))‘ > %ug(ok)

(ti,or) € R, iff 100 < postcount(ox) < 3000
and 04,0, (Ra) =0

This results in a filtered set of |7 (R, UR,)| ~ 62,000 URLs
and their corresponding tags.

Our reasoning for the 100 post minimum is based on the
rate at which new unique tags from the top 100 tags, Tho0,
are added to a URL. Figure 1 shows the average number
of new tags t; € Tipo that are added to a URL by the nth
post. This information is computed over all URLs which oc-
cur at least 200 times in our dataset. On average, the first
person to post a URL adds one tag from Tioo, the second
adds 0.6 of a tag from Tigp, and so on. By the 100th post,
the probability of a post adding a new tag from Tigo is less
than 5% and remains relatively flat. Furthermore, the top
tags which are added later tend to be much more ambiguous
or personal. Table 1 shows the fifteen tags which most and
least commonly get added after the 100th post. Tags like
“mp3” and “food” are relatively clear in meaning, whereas
tags like “internet” and “toread” are much more ambiguous
and personal. While we cannot completely eliminate the
possibility of erroneous tuples in R, and R,, our approach
is most accurate for unambiguous or impersonal tags and
does not require creating a gold standard based on human
annotation. Such a gold standard would be especially diffi-
cult to create for subjective tags like “cool” or “toread.”

4. TAG PREDICTION

In this section, we look at the predictability of tags given
two broad types of data. In Section 4.1 we look at the pre-
dictability of the tags in Tipo given information we have
about the web pages in our dataset. We look at page
text, anchor text, and surrounding hosts to try to determine
whether particular tags apply to objects in our dataset. This
task is specific to social bookmarking systems because the

which should behave similarly to postcount (o) but relies on
users’ vocabularies rather than raw number of posts.

data we use for prediction is specific to web pages. However,
the predictability of tags for web pages may also be impor-
tant for web search, which may want to determine if tags
provide information above and beyond page text, anchor
text, and surrounding hosts, and to vertical (web) search,
which may want to categorize parts of the web by tags.
Heymann et al. [8] provides some initial answers to these
questions, but does not address predictability directly, nor
does it look specifically at anchor text. “Predictability” is
approximated by the predictive power of a support vector
machine. While classifiers differ, we believe our results en-
able qualitative conclusions about the machine predictabil-
ity of tags for state of the art text classifiers.

In Section 4.2 we look at the predictability of tags based
on other tags already annotating an object. This task has
many potential applications within tagging systems, as dis-
cussed in Section 1. Unlike the task in Section 4.1, our work
in Section 4.2 is applicable to tagging systems in general
(including video, photo and other tagging systems) rather
than solely social bookmarking systems because it does not
rely on any particular type of object (e.g., web pages).

4.1 Using Page Information

We chose to evaluate prediction accuracy using page infor-
mation on the top 100 tags in our dataset (i.e., Thoo). These
tags collectively represent 2,145,593 of 9,414,275 triples,
meaning they make up about 22.7% of the user contributed
tags in the full Stanford Tag Crawl dataset. The dataset
contains crawled page text and additional information for
about 60, 000 of the URLSs in 7, (Rp) U, (Ry) (about 95%).

We treated the prediction of each tag t; € Tioo as a binary
classification task. For each tag t; € Tioo, our positive ex-
amples were all o, € 7,(0¢, (Rp)) and our negative examples
were all op € mo(0¢;(Rn)). For each task, we defined two
different divisions of the data into train/test splits. In the
first division, which we call Full/Full, we randomly select %
of the positive examples and % of the negative examples to
be our training set. The other % of each is our test set. For
each Full/Full task, the number of training, test, positive,
and negative examples varies depending on the tag. How-
ever, usually the training set is between 30,000 and 35, 000
examples and the test set is about 15,000 examples. The
proportion of positive examples can vary between 1% and
60% with a median of 14% and a mean of 9%. In the sec-
ond division, which we call 200/200, we randomly select 200
positive and 200 negative examples for our training set, and
the same for our test set.

How well we do on the Full/Full split implies how well
we can predict tags on the naturally occurring distribution
of tagged pages. (We call it Full/Full because the union of
positive and negative examples is the full set of URLs in R,
and R,.) However, we can get high accuracy (if not high
precision) on Full/Full by biasing towards guessing negative
examples for rare tags. For example, because “recipes” only
naturally occurs on 1.2% of pages, we could achieve 98.8%
accuracy by predicting all negative on the “recipes” binary
classification task. One solution to this problem is to change
metrics to precision-recall break even point (PRBEP) or F1
(we report the former later). However, these measures are
still highly impacted by the proportion of positive exam-
ples. We provide 200/200 as an imperfect indication of how
predictable a tag is due to its “information content” rather
than the distribution of examples in the system.



Each example represented one URL and had one of three
different feature representations depending on whether we
were predicting tags based on page text, anchor text, or
surrounding hosts. Page text means all text present at the
URL. Anchor text means all text within fifteen words of
inlinks to the URL (similar to Haveliwala et al. [7]). Sur-
rounding hosts means the sites linked to and from the URL,
as well as the site of the URL itself. For both page text and
anchor text, our feature representation was a bag of words.
We tokenized pages and anchor text using the Penn Tree-
Bank Tokenizer, dropped infrequent tokens (less frequent
than the top 10 million tokens) and then converted tokens
to token ids. For anchor text tasks, we only used URLs
as examples which had at least 100 inlinks.? The value of
each feature was the number of times the token occurred.
For surrounding hosts, we constructed six types of features.
These features were: the hosts of backlinks, the domains
of backlinks, the host of the URL of the example, the do-
main of the URL of the example, the hosts of the forward
links, and the domains of the forward links. The value of
each feature was one if the domain or host in question was a
backlink /forwardlink/current domain/host and zero if not.

We chose to evaluate page text, anchor text, and host
structure rather than just combining all text of pages linked
to or from the URL of each example because Yang et al. [20]
state that including all surrounding text may reduce accu-
racy. For all representations (page text, anchor text, and
surrounding hosts), we engineered our features by apply-
ing Term Frequency Inverse Document Frequency (TFIDF),
normalizing to unit length, and then feature selected down
to the top 1000 features by mutual information. We chose
mutual information due to discussion in Yang and Peder-
sen [19]. In previous experiments, we found that the impact
of more features was negligible, and reducing the feature
space helped simplify and speed up the training process.

For our experiments, we used support vector machines
for classification. Specifically we used Thorsten Joachims’
SVMlight package with a linear kernel and the default reg-
ularization parameter (see [10]) and his SVMperf package
with a linear kernel and regularization parameters of 4 and
150 (see [9]). With SVMlight, we trained to minimize aver-
age error, with SVMperf, we trained to minimize PRBEP.

Given that we had 100 tags, 2 splits (200/200 and
Full/Full), and 3 feature types for examples (page text, an-
chor text, and surrounding hosts), we conducted 600 binary
classification tasks total. Assuming only a few evaluation
metrics for each binary classification task, we could have
thousands of numbers to report. Instead, in the rest of this
section, we ask several questions intended to give an idea
of the highlights of our analysis. Apart from the questions
answered below, Figure 2 gives a quick at-a-glance view of
which tags are more or less predictable in Too ranked by the
sum of PRBEP (Full/Full), Prec@10% (Full/Full) and Ac-
curacy (200/200).* See discussion below for description of

2We found that the difference between 10 and 100 inlinks
as the cutoff was negligible. More data about a particu-
lar URL improves classification accuracy for that URL, but
more URLs improves classification accuracy for in general.
3Gabrilovich and Markovitch [5] actually find that aggres-
sive feature selection is necessary for SVM to be competitive
with decision trees for certain types of hypertext data.

4Two tags are missing, “system:imported” (a system gener-

cool, online, resources, community, work, culture, portfo-
lio, social, technology, history, advertising, writing, archi-
tecture, flash, inspiration, humor, search, funny, tools, fun,
internet, home, media, free, illustration, fashion, library,
research, ajax, marketing, books, computer, environment,
firefox, art, jobs, productivity, freeware, business, down-
load, education, news, web2.0, language, tips, wiki, word-
press, graphics, mobile, video, google, php, article, blogs,
mp3, travel, security, science, shopping, hardware, pho-
tography, games, reference, tutorials, toread, audio, pho-
tos, movies, javascript, tv, maps, blog, mac, howto, game,
health, photo, design, music, opensource, osx, politics, pho-
toshop, java, web, windows, finance, tutorial, webdesign,
css, software, apple, development, food, linux, ruby, pro-
gramming, rails, recipes

Figure 2: Tags in Tioo in increasing order of pre-
dictability from left to right. “cool” is the least pre-
dictable tag, “recipes” is the most predictable tag.

each metric. In the analysis below, when we give the mean
of the values of tags, we mean the macro-averaged value.

What precision can we get at the PRBEP?

For applications like vertical search (or search enhanced by
topics), one natural question is what our precision-recall
curve looks like at reasonably high recall. PRBEP gives
a good single number measurement of how we can tradeoff
precision for recall. For the Full/Full split, we calculated
the PRBEP for each of the 600 binary classification tasks.
On average, the PRBEP for page text was about 60%, for
anchor text was about 58%, and for surrounding hosts was
about 51% with a standard deviation of between 8% and
10%. This suggests that on realistic data, we can get about
% of the URLs labeled with a particular tag with about %
erroneous URLs in our resulting set. This is pretty good—
we are doing much better than chance given that a majority
of tags in Tioo occur on less than 15% of documents.

What precision can we get with low recall?

For applications like bootstrapping or single tag queries (see
Section 1), we may care less about overall recall (because
the web is huge), but we may want high precision. We used
the Full/Full split to look at this question. For each binary
classification task, we calculated the precision at 10% re-
call (e.g., Prec@10%). With all of our feature types (page
text, anchor text, and surrounding hosts), we were able to
get a mean Prec@10% value of over 90%. The page text
Prec@10% was slightly higher, at 92.5%, and all feature
types had a standard deviation of between 7% and 9%. This
suggests that whatever our feature representation, if we have
many more examples than we need for our system, we can
get high precision by reducing the recall. Furthermore, it
suggests that there are some examples of most tags that
our classifiers are much more certain about, rather than a
relatively uniform distribution of certainty.

Which page information is best for predicting tags?

According to all evaluation metrics, we found a strict order-
ing among our feature types. Page text was strictly more
informative than anchor text which was strictly more infor-
mative than surrounding hosts. For example, for PRBEP,

ated tag) and “fic” (which is common in the full dataset but
uncommon for top URLs and was removed as an outlier).
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Figure 3: When the rarity of a tag is controlled in
200/200, entropy and occurrence rate are negatively
correlated with predicability (first/second graphs).
However, in Full/Full, additional examples are more
important than the vagueness of a tag, and more
common tags are more predictable (third graph).

the ordering is (60, 58, 51), for Prec@10% it is (92.5, 90, 90),
for accuracy on the 200/200 split, it is (75,73,66). Usu-
ally, page text was incrementally better than anchor text,
while both were much better than surrounding hosts. This
may have been due to our representation or usage of our
surrounding hosts, or it could simply be that text is a par-
ticularly strong predictor of the topic of a page.

Is anchor text particularly predictive of tags?

One common complaint about tags is that they should be
highly predictable based on anchor text, because both serve
as commentary on a particular URL. While both page text
and anchor text are predictive of tags, we did not find anchor
text to be more predictive on average than page text for any
of our split/evaluation metric combinations.

What makes a tag predictable?

A more general question than those above is what makes
a tag predictable. Predictability may give clues as to the
“information content” of a tag, but it may also be practi-
cally useful for tasks like deciding which tags to suggest to
users. In order to try to quantify this, we defined an entropy
measure to try to mirror the “generality” of a tag. Specif-
ically, we call the distribution of tag co-occurrence events
with a given tag t;, P(T'|t;). Given this number, we define

the entropy of a tag t; to be:

> Pltslt) log P(t;t:)

t; €T t;#t;

H(t;) = —

For example, if the tag tcqr co-occurs with tguto 3 times,
with tyenicie 1 time, and with tgutomobite 1 time, we would
say its entropy was equal to:
3 3 1 1 1 1
H(tear) = 5 log £ E log ETE log g~ 1.37

Because the relative rarity of a tag heavily impacts its
predictability, we used the 200/200 split to try to evaluate
predictability of tags in the abstract. For this split, we found
a significant correlation between our entropy measure H (t;)
and accuracy of a classifier on 200/200 (see Figure 3 for the
plot of accuracy versus entropy and accuracy versus occur-
rence rate which follows). For page text, we had a Pearson
product-moment correlation coefficient of r = —0.46, for an-
chor text » = —0.51, and for surrounding hosts r = —0.54.
All p-values were less than 10755 However, for the same
split, we also found that the popularity of a tag was highly
negatively correlated with our accuracy. Specifically, for
page text, we had r = —0.53, for anchor text r = —0.51, and
for domains r = —0.27. In other words, the popularity of a
tag seems to be as good a proxy for “generality” as a more
complex entropy measure. The two are not exclusive—a lin-
ear model fit to accuracy based on both popularity and en-
tropy does better than a model trained on either one alone.

For the Full/Full split, we found that the commonality
of a tag (and hence the commonality of positive examples)
was highly positively correlated with high PRBEP. How-
ever, perhaps because the recall was relatively low, we found
no correlation between the commonality of a tag and our
performance on Prec@10% (though we did find some low
but significant correlation between PRBEP and Prec@10%).
The entropy measure was uncorrelated with PRBEP or
Prec@10% for the Full/Full split.

4.2 Using Tags

Between about 30 and 50 percent of URLs posted to
del.icio.us have only been bookmarked once or twice. Given
that the average bookmark has about 2.5 tags, the odds
that a query for a particular tag will return a bookmark
only posted once or twice are low. In other words, our recall
for single tag queries is heavily limited by the high number of
rare URLs with few tags. For example, a user labeling a new
software tool for Apple’s Mac OS X operating system might
annotate it with “software,” “tool,” and “osx.” A second
user looking for this content with the single tag query (or
feed) “mac” would miss this content, even though a human
might easily realize that “osx” implies “mac.” The question
in this section is given a small number of tags, how much
can we expand this set of tags in a high precision manner?
The better we do at this task, the less likely we are to have
situations like the “osx” /“mac” case because we will be able
to expand tags like “osx” into implied tags like “mac.”

A natural approach to this problem is market-basket data
mining. In the market-basket model, there are a large set
of items and a large set of baskets each of which contains a
small set of items. The goal is to find correlations between

SThough we do not quote them here, we also computed
Kendall’s 7 and Spearman’s p values which gave similarly
strong p-values.



Int. | Conf. | Supp. Rule
0.59 | 0.994 | 634
0.69 | 0.992 644
0.56 | 0.992 | 654
0.89 | 0.990 | 605
0.44 | 0.990 | 1780
0.44 | 0.990 | 786
0.58 | 0.989 | 2144
0.85 | 0.987 | 669
0.44 | 0.987 | 1891
0.85 | 0.986 | 872
0.58 | 0.986 | 1092
0.56 | 0.986 | 707
0.85 | 0.985 | 1146
0.61 | 0.985 539
0.58 | 0.985 | 597
0.44 | 0.985 | 1794
0.44 | 0.985 | 3366
0.68 | 0.984 | 730
0.87 | 0.983 648

graphic-design — design
00p — programming
macsoftware — software
photographer — photography
webstandards — web
w3c — web
designer — design
windowsxp — windows
dhtml — web
debian — linux
illustrator — design
sourceforge — software
gnu/linux — linux
bloggers — blog
ilustracion — design
web-development — web
xhtml — web
disenoweb — webdesign

macsoftware — mac

Table 2: Association Rules: A selection of the top
30 tag pair association rules. All of the top 30 rules
appear to be valid, these rules are representative.

sets of items in the baskets. Market-basket data mining
produces association rules of the form X — Y. Association
rules commonly have three values associated with them:
Support The number of baskets containing both X and Y.
Confidence P(Y|X). (How likely is Y given X7?)
Interest P(Y|X)—P(Y), alternatively PS&,};). (How much
more common is X&Y than expected by chance?)

Given a minimum support, Agrawal et al. [1] provide an
algorithm for computing association rules from a dataset.

In our case, the baskets are URLSs, and the items are tags.
Specifically, for each o, € m,(Rp), we construct a basket
7t (00,, (Rp)). We constructed three sets of rules: rules with
support > 500 and length 2, rules with support > 1000 and
length 3, and rules with support > 2000 of any length. We
merged these three rule sets into a single association rule set
for our experiments.

Found Association Rules

We found a surprising number of high quality association
rules in our data. Table 2 shows some of the top associ-
ation rules of length two. The rules capture a number of
different relationships between tags in the data. Some rules
correspond to a “type-of” style of relationship, for exam-
ple, “graphic-design” is a type of “design.” Others corre-
spond to different word forms, for example, “photographer”
and “photography.” Some association rules correspond to
translations of a tag, for example, “disenoweb” is Spanish
for “webdesign.” Some of the relationships are surprisingly
deep, for example, the “w3c” is a consortium that develops
“web” standards. Arguably, one might suggest that if both
t; — t; and t; — t; with high confidence and high interest,
t; and t; are probably synonymous.

Depending on computational resources, numbers of asso-
ciation rules in the millions or billions can be generated with
reasonable support. However, in practice, the most intuitive
rules seem to be rules of length four or less. In order to give
an idea of the rules in general, rather than picking the top
rules, we give a random sampling of the top 8000 rules of

Int. | Conf. | Supp. Rule

0.81 | 0.989 | 1097 open_source & source — opensource
0.55 | 0.979 | 1003 downloads & os — software

0.42 | 0.967 | 1686
0.73 | 0.964 | 1134
0.84 | 0.952 | 1305
0.40 | 0.950 | 2162
0.47 | 0.947 | 2269
0.40 | 0.945 | 1662
0.63 | 0.937 | 2754
0.50 | 0.934 | 1914
0.45 | 0.928 | 1332
0.62 | 0.919 | 1513
0.61 | 0.915 | 1165
0.61 | 0.912 | 2231
0.35 | 0.900 | 6337
0.69 | 0.897 | 1010
0.33 | 0.895 | 1723

free & webservice — web
accessibility & css — webdev
app & osx — mac
webdesign & websites — web
technology & webtools — tools
php & resources — web
html & tips — webdesign
xp — software
freeware & system — tools
cool & socialsoftware — web2.0
business & css — webdesign
tips & webdevelopment — development
toread & web2.0 — web
fotografia & inspiration — art
help & useful — reference

Table 3: Association Rules: A random sample of
association rules of length < 3 and support > 1000.

length three or less. This information is shown in Table 3.
There is sometimes redundancy in longer rules, for example,
one might suggest that rather than “webdesign & websites
— web” we should instead have “webdesign — web” and
“websites — web”. This is a minor issue however, and it is
relatively rare for a rule with high confidence to be outright
incorrect. Furthermore, given their ease of interpretation, it
would not be unreasonable to have human moderators look
over low length, high support and high confidence rules.

Tag Application Simulation

For our evaluation, we simulate rare URLs with few book-
marks. We separated m,(Ry) into a training set of about
50,000 URLs and a test set of about 10,000 URLs. We
generated our three sets of association rules based only on
baskets from the training set. We then sampled n book-
marks from each of the the URLSs in the test set, pretending
these were the only bookmarks available. Given this set
of sampled bookmarks, we attempted to apply association
rules in decreasing order of confidence to expand the set of
known tags. We stopped applying association rules once we
had reached a particular minimum confidence c.

For example, suppose we have a URL which has a recipe
for oven-cooked pizza bagels with three bookmarks corre-
sponding to three sets of tags:

{(food, recipe), (food, recipes), (pizza, bagels) }

For n = 1, we might sample the bookmark (pizza, bagels).
Assuming we had two association rules:

e pizza — food (confidence = 0.9)

e bagels — bagel (confidence = 0.8)
We would first apply the confidence 0.9 rule and then the
confidence 0.8 rule. Applying both rules (i.e., two applica-
tions), would result in (pizza, bagels, food, bagel).

Number and Precision of Tag Expansions

We ran a simulation as described above for each number of
sampled bookmarks n € {1,2,3,5} and for each minimum
confidence ¢ € {0.5,0.75,0.9}. Our results are shown in Ta-
ble 4. Each row represents one setting of n and c¢. We asked
two initial questions: “How many tags were added?” and



# Min. # Tag Expansions Exp. Precision || Mean Recall (T100) || New Precision (T%o0)
B-marks || Conf. 0 l 1 l 2 l 3 l 4 l 54 Est. l Actual || Orig. l Expd. Mean l Median
1 0.50 || 2096 | 100 | 153 | 435 | 486 | 7667 | 0.650 | 0.633 | 0.099 0.271 0.629 0.677
1 0.75 || 4015 | 1717 | 1422 | 1263 | 866 | 1654 | 0.844 | 0.854 | 0.099 0.153 0.929 0.963
1 0.90 || 7898 | 1845 | 709 | 291 | 116 78 0.941 | 0.954 || 0.100 0.113 0.993 1.000
2 0.50 545 78 115 283 300 9616 | 0.652 | 0.590 0.160 0.386 0.585 0.626
2 0.75 || 2067 | 1630 | 1582 | 1664 | 1145 | 2849 | 0.844 | 0.811 || 0.164 0.237 0.909 0.949
2 0.90 || 6520 | 2491 | 1113 | 473 | 208 132 | 0.942 | 0.931 | 0.161 0.180 0.989 1.000
3 0.50 216 61 62 172 | 164 | 10262 || 0.653 | 0.559 || 0.205 0.451 0.550 0.577
3 0.75 1397 | 1415 | 1545 | 1558 | 1363 | 3659 || 0.844 | 0.779 0.207 0.289 0.900 0.942
3 0.90 || 5913 | 2746 | 1265 | 596 | 249 168 || 0.943 | 0.917 | 0.204 0.226 0.988 1.000
5 0.50 71 31 29 101 80 | 10625 || 0.654 | 0.509 || 0.265 0.524 0.497 0.496
5 0.75 810 | 1070 | 1360 | 1507 | 1485 | 4705 | 0.842 | 0.732 || 0.268 0.358 0.881 0.931
5 0.90 5145 | 3065 | 1427 | 692 366 242 0.943 | 0.873 0.271 0.294 0.983 0.996

Table 4: Association Rules: Tradeoffs between number of original bookmarks, minimum confidence, resulting

tag expansions, recall, and precision.

“How accurate were our applications of tags?” The column
labeled “# Tag Expansions” shows, for each simulation, the
number of URLs to which we were able to add 0, 1, 2, 3, 4
or 5+ tags. The column labeled “Actual Precision” shows
the percentage of tag applications which were correct (given
the other information we had about each URL in R,). For
each simulation, we also compute our estimate (“Estimated
Precision”) of what our precision should have been based on
the confidence values of applied rules. Our estimate is the
average of the confidence of all applied rules. For example,
in our oven-cooked pizza bagel example above (assuming the
URL was the only URL in our simulation), we would have an
actual precision of 0.5 because “food” is a tag which appears
in other bookmarks annotating the URL, whereas “bagel” is
not. Our estimate of our precision would be 0'9;& = 0.85.
We would also increment the “2” column of “# Tag Expan-
sions” because the URL was expanded twice.

Thus, the first ten columns of the first row of Table 4 say
that we ran a simulation with n = 1, ¢ = 0.5 and 10, 937
URLs. In 2,096 cases, we were not able to add any tags
(anecdotally, this usually happens when a bookmark only
has one tag). In 7,667 cases, we were able to add five or
more tags. Our estimate of our precision was 0.650 while
our actual precision was a little lower, 0.633.

The results in the first ten columns of Table 4 show that
with only a single bookmark, we can expand anywhere from
10 to 80 percent of our URLs by at least one tag depend-
ing on our desired precision. With larger numbers of book-
marks, we can do better, though the most pertinent tags for
a URL are applied quickly. Also, as the number of book-
marks increases, the difference between estimated and actual
precision increases. This means that as a URL receives more
and more annotations, we become increasingly unsure of the
effectiveness of association rules for unapplied tags.

How Useful are Predicted Tags?

As we argued in Section 1, predicted tags can be used by
a system in many ways. Here we briefly explore one such
use: increasing recall for single tag queries. For instance,
if the user searches for “food,” the system can return ob-
jects annotated with “food” as well as objects which we
predict “food” annotates. Using term co-occurrence to ex-
pand query results is a well known IR technique; here we
want to know how well it works for tags.

For evaluation, we consider each tag t; € Tigo to be a

query gq¢,. For each query g:,, the result set s contains the
URLSs annotated with the tag, and the result set s’ contains
the URLs annotated with the tag plus URLs which we pre-
dict are annotated with the tag using association rules. We
then compare the recall and precision achieved by s and s’.
For example, suppose five objects are positively described
by “food.” In our simulation suppose only two of the ob-
jects are known to have “food.” Suppose that we correctly
predict that one of the remaining three objects is labeled
“food” (perhaps using our “bagels” — “food” rule above),
and we incorrectly predict that two other objects are labeled
“food.” Without expansion, query ¢ retrieves s which has
two known bagel objects, so recall is 2/5. With expansion,
s’ returns three additional objects, one of which was correct,
for a recall of 2%)1 and a precision of %

The rightmost 4 columns of Table 4 show the results for
the experiment. For each simulation (row), we give (a) the
mean recall before expansion (macro average over all tags
in Ti00); (b) the mean recall after expansion; and (c) the
mean and median of the precision after expansion. (Note
that without expansion precision is always 1.) For instance,
if we sample one bookmark per URL (n = 1) and use 50%
confidence (¢ = 0.5), we see that tag expansion improves
mean recall from 0.099 to 0.271, a factor of 3 improvement!
Of course, our average precision drops from 1 to 0.629. For
both the one and two tag cases (i.e., n = 1 and n = 2) with
confidence ¢ = 0.75 we can increase recall by 50% while
keeping precision above 90%.

S. RELATED WORK

Previous work has looked at the nature of tags chosen by
users [6, 16]. We do not know of any work explicitly looking
at how to construct a reasonable dataset for prediction in
tagging systems as we do in Section 3. While our hypertext
classification task in Section 4.1 is inspired by a long line of
work, usefully surveyed by Yang et al. [20], we believe the
application to tags is new. Chakrabarti et al. [3] suggest a
different way to use local link information for classification
that might prove more effective than our domain features,
however, we do not evaluate this possibility here. Our use of
an entropy measure for tagging systems is inspired by Chi
and Mytkowicz [4]. Other work has looked at tag suggestion,
usually from a collaborative filtering and Ul perspective, for
example with URLs [18] and blog posts [13, 17].



Our work in Section 4.2 is similar to work by Schmitz
et al. [14]. However, Schmitz et al. is primarily concerned
with theoretical properties of mining association rules in tri-
partite graphs. Schwarzkopf et al. [15] extend Schmitz’s
association rules work to build full ontologies. However,
neither Schmitz et al. nor Schwarzkopf et al. appear to
evaluate the quality of the rules themselves aside from gen-
erating ontologies. Lastly, there is also much previous work
in IR studying query expansion and relevance feedback try-
ing to address similar questions of cross-language and cross-
vocabulary queries (see for example a general reference such
as Manning et al. [12]). However, we believe that association
rules may be the most natural approach to these problems
in tagging systems due to user interface issues (for example,
feeds, browsing).

6. DISCUSSION

We are in the midst of a large scale experiment to de-
termine what kind of metadata scales to millions of users,
what kind gives the most information for IR, and how to
maximally leverage that metadata for IR. In this paper, we
looked at tags, which make several tradeoffs to try to scale
the web. Our tag prediction results suggest three insights.

First, many tags on the web do not contribute substantial
additional information beyond page text, anchor text, and
surrounding hosts. All three types of data can be quite pre-
dictive of different tags in our dataset, and if we only want a
small recall (e.g., 10%) we can have a precision above 90%.
The predictability of social bookmarking tags may influence
web search (by suggesting ways to use tagging information
or whether to use it at all), as well as to system designers
who might bootstrap tagging systems with initial quality
data (by making it possible to predict such initial data).

Second, the predictability of a tag when our classifiers are
given balanced training data is negatively correlated with
its occurrence rate and with its entropy. More popular tags
are harder to predict and higher entropy tags are harder to
predict. When considering tags in their natural (skewed)
distributions, data sparsity issues tend to dominate, so each
further example of a tag improves classifier performance.
To the extent to which predictability is correlated with the
“generality” of a tag, these measures may serve as build-
ing blocks for tagging system designers to produce new fea-
tures that rely upon understanding the specificity of tags
(for example, system suggestion and tag browsing). Both of
our measures of tag predictability are object type indepen-
dent. This suggests that they may be applicable to tagging
systems based on photos or video rather than only social
bookmarking systems.

Third, association rules can increase recall on the single
tag queries and feeds which are common in tagging systems
today. This suggests that they may serve as a way to link
disparate vocabularies among users. We found association
rules linking languages, super/subconcepts, and other rela-
tionships. These rules may also indicate synonymy and pol-
ysemy, two issues that have plagued tagging systems since
Golder and Huberman’s seminal work [6].
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