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Abstract—We propose and analyze a distributed cooperative Furthermore, changes to the datasets used by these search
caching strategy based on the Evolutive Summary Counters engines are generally limited. They typically consist ofvne

(ESC), a new data structure that stores an approximated reatl 4y ment additions, e.g., when new entries of a blog are
of the data accesses in each computing node of a search engine blished. but th ' h ’ d t di . .
The ESC capture the frequency of accesses to the elementd’UP!IShed, but these changes do not mo ify previous vession

of a data collection, and the evolution of the access pattesn Of @ document. In other words, once a document is added to
for each node in a network of computers. The ESC can be the collection, it can be considered read only.

effici.ently summarized .int.o what we call ESC-su.mmaries to In this paper, we describe a novel cooperative caching
obtain approximate statistics of the document entries acased strategy for such distributed search engines that is fully
by each computing node. . .

We use the ESC-summaries to introduce two algorithms that implemented on comqulw hardware. Our ap.proach manages
manage our distributed caching strategy, one for the distibution ~cache contents according to recent usage information. The
of the cache contents, ESC-placement, and another one forah foundation of our architecture is a set of local caches (@re p
search of dpcuments in the distributed cache, ESC-search. hile system node) that are linked together by a Cooperative proto
the former improves the hit rate of the system and keeps ala® .| that provides system wide transparency. Our cooperativ
ratio of data accesses local, the latter reduces the networtkaffic . . .
by restricting the number of nodes queried to find a document. cachlng strategy relies on a new data structure, which we cal
We show that our cooperative caching approach outperforms Evolutive Summary Counters (ESC). The ESC keep a record of
state of the art models in both hit rate, throughput, and locaion the recent data accesses of a node. This information isdstore

recall for multiple scenarios, i.e., different query distributions jn count bloom filters similarly to other proposals such ds [3

and systems with varying degrees of complexity. [4], however, and as we detail further in this document, our

Index Terms—H.3.4-b Distributed systems, Distributed proposal applies these compact data structures to recerd th

caching, Resource intensive applications, Count Filter frequency of access for a given time window, and at the same
time maintain its recent history. This information turnske

|. INTRODUCTION very valuable in order to improve the placement and location

Emerging search engines are moving several steps bey&tldjata in a cooperative cache, because it combines recency

the naive bag-of-words approximation predominant in ttmla)fmd frequency of hlst_orlcal dz?\ta accesses.. .
information retrieval models. For example, multimediarsba . we use the ESC mf_ormatlon to deal with two important
requires a deep analysis of the multimedia content (e.gicrnuéss‘ueS in the cooperative cachg management:pthe(ement
images, movies), instead of just matching query keywords :{1+1d Fhe search of the cqched |n_forrr_1at|on. Th-e placement
the caption of the multimedia object. Or, question ansvgerir‘?‘ gorithm controls where information is cached in the nefwo

systems perform deep syntactic and semantic analysis of hlsd ‘?'“V‘;” bydtwo phrlnmple_s: (@) |nf1(3trmat|on shoduld zeb
document texts in order to provide short, exact answers {gcned I the nodes where It Is most often accessed an (_ )
natural language questions. information frequently accessed should be cached at least i
This paper focuses on such next generation engines, wh no?]t_e. we pro%oééscr:]—plia\ca”rlpnt,bwhlch (|js andalgonthm
have several things in common: (a) they are all significant‘ at achieves good cache locality by sending documents to

more computationally expensive than current search esgin odes that accessed them frequently in a recent time frame,

and (b) they all synthesize the collection of documents toazild by avoiding the replication of documents infrequently

set of data objects that are interpretable by the machige, egccessed. As a second issue for the cooperative cache manage
nt, we study data search, i.e., how to locate the nodeshat i

textual passages with deep natural language analysis [1]”6? ’ ) )
multimedia objects with visual/audio features [2]. Sinbe t currently caching a certain data unit. We prop&se-search,

generation of these data structures is costly, they are gd ich is a search algorithm that estimates the probability

candidates for in-memory caching when their use is frequeﬂ{ finding a document_ in a n(_)de dynamically, reducing the
number of nodes queried. All in all, a single data structure —
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is a location procedure to know with high probability if ainformation in the main central server to locate the dateeakRh
document is available and where in the cooperative caclad Kubiatowicz proposed attenuated bloom filters that sum-
and (iv) we compare our proposals to the most recent andhrize the information of distant nodes for routing data [4]
significant proposals using a fully-fledged semantic searblevertheless, they do not count frequencies and attenuated
engine based on question answering technology. bloom filters mix the data location of several nodes in a bloom
The paper is structured as follows. In Section II, we reviefilter, which reduces its precision. Fan et al. use a bloom
the related work. Then, Section Il describes the generic difter-based data structure to perform the search [3]. Hewev
chitecture that we target with our cooperative cache pralgos they do not provide a placement scheme, nor a history of
In Section IV, we describe the ESC data structure and thentent accesses, whereas our approach provides this with a
ESC-placement and ESC-search algorithms. We report cimgle data structure. In our experimental section, we oonfi
experiments with it in Section V. Finally, Section VI condks that the combination of frequency and recency improves the
the paper. location recall over approaches that only store a bit irtdiga
if the cached entry was available at a certain moment of time,
like summary caches. Additionally, ESC are a general data
structure that may be used in different contexts. For exampl
Depending on the application area, the adequacy and theminguez-Sal et al. discuss load balancing algorithms for
cooperative caching considerations differ. For examplel-W distributed systems that are aware of the cache contents in
man et al. discuss analytically the application of coopegat order to improve the throughput and the data locality [18].
caching for web data in WANSs [5]. One of their conclusions islevertheless, in [18], it is not consider the placement and
that any simple cooperative caching algorithm is close ghousearch problems, which we do in the current paper.
to an oracle cache policy for caching web data. However,Besides, many algorithms have appeared from the peer
this setup is not generally valid for all the applicationgo peer community to find information in large networks
and cooperative caching has been applied in multiple araasng distributed hash tables (DHT): Chord [19], Pastry],[20
successfully [6]-[12]. In this work, we focus on the placeine etc. Although DHTs were designed to be used in WANS,
and the search of the partial computations of a complex eagome prototypes implement them in networks with small
engine, stored in the main memory of the different nodes thatencies. For example, Shark implements a cooperatieecac
are interconnected by a LAN. This scenario also differs froffor distributed file systems [21], and Squirrel is a web serve
the assumptions by Wolman because the cost to process dhehe based on cooperation too [22]. But, one limitation of
documents to solve a complex query is larger than the tindHTs is that it needs to contact several nodes sequentially
to read an HTML document and the communication costs atdaring the location procedure, which introduces latencthi
lower in a LAN than in a WAN. search. Our proposal overcomes this problem because we are
In one of the first studies for data placement in cooperatiable to contact a small subset of nodes in parallel.
caches, Dahlin et al. introduced n-chance forwarding, Wwhic Finally, the aspects related to the management of the local
is an strategy that selects the target node for forwarding memory pool dedicated to caching are orthogonal to the coop-
random, so no statistics from other nodes are used [13]r Lageative caching strategies proposed in this paper. Faariost
proposals focused on how to improve this algorithm, takin§ the document size exhibits a large variability, the latge
advantage of statistics of the cache. Feeley et al. proposkE@tuments may be partitioned into sections, paragraphs, or
GMS, which implements a centralized process where all tpages with a fixed number of characters. Also, we used an
nodes send statistics about the age of their cache conteats LRU strategy in our system as the local policy, but our
coordinating node [8]. Ramaswamy et al. proposed Expinatidistributed proposals can be abstracted away from the local
Age in [10], where nodes exchange its recent cache evictipalicy. Thus, we believe more advanced local cache policies
rate and decide to replicate the data on nodes with smsilich as the proposed by Jiang et al. [9], can also benefit from
contention. Dominguez-Sal et al. proposed Broadcasti®etitour placement and search algorithms.
Recently in [14], which uses a time variable to limit duptes
in the network but does not use global system information [Il. SYSTEM ARCHITECTURE
such as the ESC. It is also known which is the optimal We focus on search engines that are composed of a set
placement if all the data access statistics are availalsle, af computing blocks, which we treat as black boxes, and the
shown by Koropolu [15]. This algorithm, however, is stati@utput of the system is obtained as a sequence of compgation
and does not adapt if the distribution changes. Finally,esorof these blocks. Some of the computing blocks might be
placement solutions are based on hash functions [16], leut tomputationally expensive, and thus, their outputs aralide
main drawback of these approaches is that the applicationcaindidates for caching. Each computationally intensieelbl
hashes does not encourage the locality to access the datahas a pool of memory to store the data related to a document
There has been also significant effort on the location @flentified uniquely in the document collection) followirag
documents in a distributed environment. Sarkar and Hartmiaal cache policy. We select LRU as the local cache policy
implement placement and search in a distributed cache usberause its wide usage in many applications and its proven
inaccurate information, or hints, about the state of a tlieradequacy to the workload of search engines [23].
server system [17]. The hints are distributed among thatsje  In order to build the distributed system, we consider that
but, unlike our search mechanism, it relies ultimately oa thall nodes have an instance of the search engine, and can

Il. RELATED WORK
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The Evolutive Summary Counters (ESC) are a data structure
deployed in each computing node, which records a window of
Fig. 1. QA system composed of three sequential blocks QPFRIR\E. PR the re_cent hl_story of the local accesses. The ESC is cor_nposed
and AE can request and store data into the cache using the camhager. DY a linked list ofk Count Bloom Filters (CBF) [29]. During

a certain period of timer, the CBF at the head of the list

) ) ) ) is active, i.e., it counts the occurrences of the element in
access the document collection and its associated 'nde)éet?eamed data set. After time units, a sliding operation is

This design follows previous proposals for complex Sear%{bplied so that a new CBF is used during the nestme
engines [24], where each node is able to compute querigsis On reuse, the CBF at the back of the list is reset (all
autonomously. We illustrate an adaptation of the previousl,nters are set to 0) and it becomes the head of the list, that
described architecture to a question answering (QA) SystefMihe active CBF.

with three computing blocks (question processing, passagg=ach access to a document is recorded into the active CBF
retrieval, and answer extraction) and its correspondimgllo locally. Thus, each computing node keeps an ESC wietBF
caching pools in Figure 1. , ~which monitor the lastr - k time units. Afterr time units,

On top of the search engine, we implement a distributgghen, 5 sliding operation is triggered, each node computes a
cooperative cache with no centralized processes, whieh ik mmary of the ESC that is broadcasted to the nodes in the
itively works like a peer to peer network (with no central edd network, the ESC-summary. Therefore, each node receiees th
where all nodes can directly contact the rest of nodes of th&-_summaries from the rest of nodes. and the distributed
network. The comm.umc.atlon between nodes is facilitated Byyqrithms check the summaries to obtain a descriptionef th
the following operations: ) ) system state in order to dynamically update its decisions.

» Request/Response: these operations obtain a cached entry The ESC-summary is computed as the aggregation of the
from a remote node. Once a node has a local misscount filters of the ESC (see [30] for a detailed description
it requests the document through a multicast operatigf how to aggregate structures based on bloom filters). We
(operation (a) in Figure 1). The request includes the docgga|uate two possible summary implementations:

ment identifier and a parameter to identify the computing . Plain summary: A simple addition of all the CBFs

block that r_equests the Qata. The regeiverg of th_e requ_ess Linear summary: A weighted addition where the most
respond with the data if the entry is available in their

recent CBF is multiplied by, the second most recent
caches (operation (b)). P ¥

) ; CBF is multiplied byk — 1, and so on, up to thé-th
« Forward: this operation transfers the least recently used CBF, which is multiplied by 1

cache entry from a layer to the same layer of anotherWe depict a diagram of an ESC in Figure 2 with— 3.

node in the network (operation (c)). . .
( p (©) - The figure compares how we combine the three CBFs of the
The access to the collection content can be optimized E%c ; . . :
in a plain and a linear summary. The counters in the

using shared disks [25], [26], a distributed file system optllE .
. . . S SC-summary take the weighted sum, by rows, of the CBFs.
mized for read operations [27], [28] or simply replicatirgpt The ESC-sunz/mary generatgd is also a gBF.

collection if the dataset fits in a computer. This architezttan The operations related to the ESC have low complexity.

be easily extended to very-large-scale settings. For ebﬂamprhe recording of an access to a document in the ESC has
one can envision a setup where a very large collection |

. . e ] dBnstant complexity. The summary and slide process take
partitioned and each different partition is replicated ame plexty Y P

roup of nodes. where each aroun imolements our archict Iirnear time with respect to the CBF size, and the look-up ef th
group ' groupimp L1‘requency in a ESC-summary has also constant complexity.
IV. COOPERATIVE CACHING ALGORITHMS In the supplementary material, we show that the network

This section describes the new distributed cooperatiot\a/erhead introduced by the ESC is small enough to permit

caching algorithms proposed in this paper. We first desgribe ¥ystems with throughput of thousands of queries per second.
data structure that we propose in this paper and is sharelll by a

our cooperative caching algorithms, the Evolutive SummalRy ESC-Placement

Counters (ESC). Then, we explain how to apply the ESC-Our proposal performs the distributed placement when a
summaries to the placement (ESC-placement) and the locatiocal cache is full and a document is evicted from memory:
of data (ESC-search). the document is forwarded to another node if the algorithm

Computer 1 Computer 2 Computer N



decides that this document is valuable enough to be keptSwtic: h is set to a constant value which is decided at the

some node of the network, otherwise it is simply discardethitialization of the system.

Our objective is to keep the documents in the node where ) i i i

they are accessed, and to encourage the availability ofiéretg Dynamic: h is calculated every time a document is searched

documents in some node of the network. in order to keep the probability of an avoidable miss below a
The target node for forwarding the evicted entry is decide%f'neq threshol_d. The dy“a”_“c ESC-search policy (_j|V|des th

according to the ESC-summaries that have been sent 'l des into two lists: the candidate nodes to be queried and th

the remote nodes. The algorithm selects the node whd&at Initially, the candidate node list is empty, and E®@rsh

ESC-summary contains the highest value for the entry beiff "T‘aées the prObab'“_% of aflnllavqldable mlsds it no n(;)de 'S
processed and transfers the entry to that node. If the e gried Paviiss(0,d)). Then, following a greedy procedure,

is already present in the receiving node, our algorithm mar C-search includes the node which is most likely to contain

in the candidate node list until the probability of an avoid-
the entry as the most recently used entry for the local L L .
y y y % le miss is below a threshold ESC-search estimates the
r

policy. Also, if more than one node has the same large bability of idable mi ith the following f I
value, a random selection among these nodes is perform% apiiity ot an avoldable miss Wi € toflowing Tormiria

The pseudocode of ESC-placement is summarized in W, ich assumes that the probability of finding a document in
supplementary material one node is independent among nodes:

We have an additional counter for each entry in the cache,

which accounts for the number of forwarding actions since Pauvniss(s,d) = prob(d is not in nodes (n1..ns]) -

the last access for each document. Each time a document is prob(d is in any of the nodes (ns..ny|)
forwarded, its respective counter is incremented. If a doant i=s

is accessed while staying in a cache, its counter is reset. - {1:[1 “‘Pfreq(ESCS(i»d)))} ’

The objective of this counter is to limit the number of i
forwarding actions to avoid excessive network traffic. Vit [1 - II - pf,,eq(ESCS(i,d)))} ,
this number to 2 in accordance to the results obtained in [13] i=s+1

ESC-placement automatically evicts from the cache en-

tries scarcely accessed, i.e., documents not read aftermevwhereESCS(z‘, d), is the value in the ESC-summary received

forwarding operations. If an entry is evicted from the Ioca}lrom the " node for document: s is the number of nodes

cache we are not deleting it but trying to reduce the number : .
of copies: the destination node is the one with the highetsf’j1t are queried to locate documantand Py;cq() 1S the

probability of holding a copy. If the destination node hold robability that a document with frequenayis available in

L e memory of the remote nodk.is selected as the smallest
a copy of the entry it is not necessary to remove any other
. A mber of nodes such th@s,ass(s,d) < e. In the worst

entry, and hence the forwarding procedure is finished. . . X :

S case (which is unlikely), the algorithm will query all nodéesit
the destination node does not hold a copy, ESC-placemen . ) )

. . oo will query one or even none if the document is very unlikely to
repeats the forwarding procedure until (a) it finds a documen . .
. o e in cache. We show the pseudocode for this search procedure

that can be discarded because it is not frequently accesse . .

an example in the supplementary material.

(with a forwarding counter exceeding the threshold), ore(b)WIt
document with multiple copies in the network. In order to evaluat® 4,55 (8, d), each node keeps an array

with a local estimation of’s,.,(), for each possible value of
the counters in the ESC-summaries. This probability is tgutla
dynamically according to the results of the search histéoy.
example, in a system that had requested 5 times documents
The search algorithm is in charge of locating the node whendth frequency 2 and they were only found once, then the
a document is stored. The objective is to reduce the numlgerrent value ofPy,..,2) would be%. After each search, this
of avoidable misses in the system: an avoidable miss is aalue is updated. For instance, if the document was found in
remote cache miss for a document that is cached somewthits& node whose ESC-summary indicated a frequency of two
in the network, but it is not found because the system did niten Py,.,2) becomesz.
query the proper nodes. Although the broadcast of the résjues The algorithm is able to adapt to a query distribution
reduces the number of avoidable misses to zero, the numbecausePy,..,,) is computed on the fly. The computational
of messages may become a bottleneck. cost of this procedure i®(N) in the worst case because
The ESC-search procedure is called whenever an dnisy the algorithm checks the summaries from all nodes for a
not found in the local cache. First, ESC-search builds a ligiven document. NeverthelesB4, asiss (s, d) is @ monotonic
(L=n1, ...,ny) with all the nodes in the system. The nodedecreasing function, so as soon as it reaches a value leelow
in L are sorted in decreasing order of access frequeney tothis becomes the final result, and there is no need to further
according to the ESC-summaries locally available. Thei§-EScompute it for a larger set of nodes.
search selects the firestnodes from L, and requests the entry In the supplementary material, we model the overhead of
from all of them in parallel (note that the selection procisss the communication generated by the search algorithm. This
computed without network communication). We compare twanalysis shows that the additional cost to transmit the ESC-
methods to seledt: summaries yields a significant reduction of nodes queried an

C. ESC-Search



the overhead of the algorithm is thus significantly smakamt os

18

that of the broadcast protocol. ol s
V. EXPERIMENTS ! ) B
A. Experimental setup s [
In this section, we take question answering (QA) as an Z:Z ™o 0; al
example of a complex information retrieval system, which 0SS i
demands special attention from caching because of its gsece (a) Hit rate (b) Throughput

ing complexity. QA systems are search engines that Process 5.
natural language queries and search for named entitiesasuch
person or location names. Since our QA system is modular,

it allows us to reconfigure its processing pipeline to test oy

proposals for a wide variety of configurations with differen ollowing algorithms. (a) A local policy where we disabld al

: the remote operations of the cache manager. (b) Broadcast
CPU and I/O requirements. We report the most relevant ESL{Betition Recently (BPR), which replicates only the eleraent

in this slect_lont,hand Wel mclu?e a brotad_elr e_:_/ﬁluanzn of ?Hnrat have been accessed multiple times in a fixed window of
proposais ‘in Ih€ suppiementary material. e QA sys Fhhe [14]. (c) Expiration Age (EA) calculates an estimator,

implementeq ir_1 this paper (Figure .1) uses a tradi_tional iard&alled expiration age, which is the average time that cache
tecture consisting of three blocks linked sequentially. [2) victims have spent in the cache since their last hit. When
Question Processing (QP) that parses and analyzes the natural . _
language query given by the user, @ssage Retrieval (PR) & node retrieves a document from another computer in the

. . network, they exchange their expiration ages and a copy is
that retrieves from the document collection the most releva y 9 P 9 py

. . only replicated if the requester has a larger expiration[20p
documents from the collection, and swer Extraction ; : .
(AE) that analyzes the retrieved docunfgsts in PR with nhtu%d) Random server selection (RSS) picks the forwarding node
f

ESC-placement performance for different queryritistions.

language tools. and returns the most adequate answers to random, with the restriction that each entry can only be
guag ! [retrns ¢ equ W Warded a limited number of times since its last accesis Th
user. We detail the internal implementation of the system |n

the supplementary material policy is similar to the n-chance protocol described in [13]
For our test we run the fuI.Iy fledged QA system on a cluster For a fair comparison of the placement algorithms explained

of 16 nodes connected with a gigabit Ethernet. Each node'l this section, we implement the same search algorithm for
the system is equipped with an Intel dual core CPU at 2.4Gft _the placement methods used. We use a simple protocol,
and 2GB of RAM. An additional computer, in the same local |cr_1 _sends a_bro_adc_as_t message with the requested document
area network, is used as a client that issues queries to she L%entlflers, which is S|m||ar. to ICP [34]. If any remote node

of nodes following a round robin policy. as the needed contents, it sends them back to the requester.

The question sets in our experiments consist of five thousa-Hae b_roadc«’_:lst guarantees that a document will be found i it
queries following typical search engine distributions.eTh!S available in any node_ of the network. We gnalyzg the more
queries were selected from the question sets that were &ﬂ{nplex §earch str{;\tegles propo.sed. above in Sectlcl)n.IV-C.
of former TREC-QA evaluations (700 different queries). We 'Neplainand thelinear summarization performed similarly
generate our query sets following typical distributionsnfr [N the placement experiments. In this section, we only repor
real web search engines [23], [31], [32]: Zipf distribution the results that come from thigear summary implementation.
with varying parameter in the range [0.59,1.4], and typically Experiment 1 (Query distribution): In this experiment, we
below 1.0. In a Zipf distribution, the probability to acceksc- test the performance of the question answering system for a
umenti from the collection is proportional to~. Therefore, Variety of query distributions. According to the previotsds
the largera the more skewed is the distribution. ies mentioned, the query logs follow Zipf distributions gary

We set round robin as a baseline to compare all tfi@m a = 0.59 to o = 1.4, with « typically betweer).59 and
algorithms under study with a neutral load balancing policy-0 - So, we generated three query sets following different
Our load balancing policy resembles multiple clients segdi Zipf distributions with varying parametrization: Zipf 59,
queries to a server applying round robin DNS [33]. We keefPfa=1.0, and Zipf,—1 4.
the system under heavy load with an average of six queriedrigure 3(a) shows the hit ratio for the different algorithms
per node, issuing a new query every time a query is answertghted. The bars are grouped by distribution: the most skewe
Since the objective of this work is to analyze placement amnlistribution corresponds to the rightmost group of bars. Fo
search using ESC, we do not emphasize the parametrizatio@ cooperative caching algorithms, we indicate the loodl a
of ESC. In the experiments we setandr to the best possible remote hit rates. The local hit rate is the lowest part of the
values among a set of experiments that we have performbdr painted with light color. The remote hit rate correspond
In the supplementary material, we detail the experimerits the darker part of each bar. The full bar accounts for the

performed to estimate these parameters empirically. addition of the local plus the remote hit rate.
. We observe that the query distribution affects signifigantl
B. Placement analysis the total hit rate for all the algorithms, as well as the pmtipa

We perform an analysis of the placement method that veé remote hits. For the less skewed distribution the total hi
introduced in Section IV-B. We compared our proposal to thate is smaller because the system accesses a wider giarsit



documents. Moreover, we observe that the local cache policy
has poor results compared to the cooperative policies lsecau

the available memory in one node is small with respect to
the number of documents accessed. Only if the total availabl
memory dedicated to caching in the network is combined using e :
the cooperative caching algorithms, the hit rate is over 40% 09 s S o Gt e
We see that the use of the cooperative caching algorithms . . o
yields a three-fold improvement on the number of total h(f[(')?ﬁSéxityczrzni:)%“fdo)throughp“t of search engines with differdegree of
rates, hence most hits in a cooperative caching algorithmeco X_'

from the access to remote caches. When looking at more

skewed distributions, the ratio between local and remd hj,ery close to the optimal, which is 0.9%or this distribution.
changes. In the case of the Zipf, , distribution, we observe we gbserve that RSS achieves a good balance between local
that most data can be retrieved from the local cache, thoughy remote hits. However, its performance is not as good as
the cooperative cache still contributes to improving thedte. for other algorithms because RSS contacts many nodes, and
hence the forwarding policy is slower because of the adulio

_In Figure 3(b), we show the throughput of the different alggyetwork connections. All in all, ESC-placement obtains the
rithms normalized to the local policy. The hit rate has adirepggt throughput of all placement algorithms analyzed due to
influence on the performance: cooperative caching algusth the good hit rate obtained with minimal network overhead.
are much faster than local caching. This huge difference ¥$js is evident especially for real-world setups, where the

a strong recommendation for the use of cooperative cachigery distribution is not too skewed and the local cache is
algorithms in QA. not sufficient.

_ ) ) ) Experiment 2: (Impact of componentswith different compu-
The difference among the cooperative caching algorithmigional costs): Depending on the search task and the quality

is smaller than between the cooperative cache and the logfthe output, the modules that process the results of atsearc
policy, because all the cooperative caching algorithme takngine have a different degree of complexity. For example, a
advantage of the cache in the remote nodes. We see {agditional keyword based search engine needs fewer camput
ESC-placement is the algorithm with the best global hit,ratgonal resources than a question answering system suchras ou
and accordingly, with th_e best performance. It achlevestéasting system. However, some users may be willing to accept
throughput above 1.84 times a locally managed system {ghger computational times to retrieve information for qoex
Zipf,—1 4 distributions, and it is significantly better than Otheﬁueries, or might want to include analysis of multimediaadat

the local hit rate of ESC is above other cooperative cachiggpensive than text processing.

algorithms, such as EA or BPR, because ESC does not only this experiment, we target the performance of the co-
encourage global hits but also cares about locality. Asadire operative cache for such systems with varying computationa
mentioned, ESC limits the number of copies available in thﬁ)mplexity, i.e., we test the impact of our cooperative each
cooperative cache: it keeps multiple copies of the docusnegy, difrerent types of QA systems. In order to simulate the
that are very frequently accessed, and reduces the numbeg@fiplexity of different search engines, we use two differen
copies if they are not so frequent. Therefore, if a documegternatives for our answer extraction component. The, first
is very frequer_n there will be_geveral copies_of it in differe \ynich we call Standard QA, uses a simple maximum entropy
nodes, improving the probability of a local hit. with a limited feature set for candidate answer extraction.
) ] ] This component was used in all previous experiments as
We also notice that BPR is a very good algorithm fromye||. The second approach —Complex QA— performs candidate
the hit rate perspective: it obtains the second best hit rafgswer extraction using support vector machines and arriche
close to ESC-placement. However, the BPR policy performsayyre set. The processing overhead of the latter compaen
more remote accesses than other algorithms such as EAgBproximately three times larger than our initial syster§][3
ESC-placement, because BPR gives very low priority to theyis system is not adequate for interactive question arisger
replication of documents. Due to the additional networKita p,t simulates a system in which the user might sacrifice
of remote hits, we see in Figure 3(b) that BPR throughppsponse time for a better answer quality. As a third testing
is significantly smaller than for ESC-pIacement, specifdiy system, we remove the AE module entirely. This system
small skews. In our tests, EA obtained better performanggnerates as output a collection of text snippets, which is
than BPR for the less skewed configuration because its ry similar to the functionality of current keyword-based

cal hit rate is better than for BPR, but it has a smallefearch engines. The execution time of the light system is
throughput than ESC because the global hit rate is not asproximately one fourth of our initial QA system.

good. Although the lowest values af are more common,

we notice that for the most skewed distributions, Zipf 4, 1We computed this optimal hit rate running a modified versibmur QA

all the algorithms have a very gOOd performance. For lar§gstem that does not remove any cache entry once insertédet not store

. . . . e full document but only a dummy entry for each identifiemd running
values of alpha, we detect tiny differences in the hit ra a single computer with a cold cache. We observed that thienalphit

of cooperative caching algorithms because all of them atges were 0.86, 0.92, 0.95 for=0.59, 1.0 and 1.4, respectively.
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Fig. 5. Location recall for the ESC-search algorithms.

achieves results comparable to querying all the nodes, when
accessing only 10% of these nodes on average. On the other
hand, the plain summary needs to query significantly more

nodes to avoid a big number of avoidable misses. This shows

Figure 4 shows the normalized throughput for all thihat temporal information is crucial for efficient searchan
systems described previously for ZigfL.0. The standard QA distributed cache. From the point of view of the sele(_:tion
system corresponds to the system we have used in the previgidh® proper number of nodes to quedy, the dynamic
experiments. We see that in a light system the benefit @Proach converges to the maximum hit rate faster than the
cooperative caching is not as large as the improvementsifofi{atic: The reason is that the adaptability of the dynamic
in previous experiments, because the network communicatf90rithm helps the system query only a few nodes when
time is closer to the cache miss penalty. a document is popular and find rare documents when more

ESC-placement performs the best out of the algorithnﬁ‘gdes are.qu_erie:\d. The tre_nds of the algqrithms are similar
tested, because it obtains the highest hit rate with fgr both d|sFr|but|ons mvestlga_ted. We attribute the Istig
low network overhead. Since each cache hit bypasses fwer location recall for the Zipt., o query set to the long
computational overhead corresponding to that cache blo&R!l Of rare elements in the distribution, which are the lestd
computationally-intensive systems benefit the most froopeo documents to find because they are not replicated in the
erative cache policies such as ESC. The experiment showr'ffwork and only remain in the global cache for a short time.
Figure 4 highlights this observation. Furthermore, thdeif In our experiments, the combination linear+dynamic acksev
ence between ESC-placement and the local cache increasdf@d?est location recall for almost all percentages of nodes
the complexity of the underlying QA system increases, whidiHeried. For both distributions, linear+dynamic achie®8%o

indicates that the benefit of using ESC-placement incread®gation recall with only 40% nodes queried. The plot shows
with the complexity of the retrieval engine. that, if the network becomes the bottleneck of the system,

we can increase and then ESC-search queries only 1.75
_ nodes on average (approximately 10% of the nodes) because
C. Search Analysis linear+dynamic obtains a location recall only 2.1% lowearth
In this section, we analyze the cache search algorithfaadcasting. This is remarkable, because the traffic in the
proposed in Section IV-C. We use the same setup as in Eetwork may be a significant bottleneck in some cases, and
periment 1, with the addition of the ESC-placement algariththis location recall is usually enough for practical pumgms
described in Section I1V-B, which was shown to perform the We also compare our proposal to summary caches, config-
best in the previous section. The network bandwidth is dred with the same parametrization as our ESC-summary. Note
Gbps, and does not constitute a bottleneck for the numbertbét even though the summary cache sends smaller updates
nodes tested. In the experiments, we compare the two pesshicause it does not count frequencies but existence, the ESC
summary methods, i.eplain and linear (see Section IV-A) search uses the same information as ESC-placement. Hence, a
because they behave significantly different for search. Mé& asystem that implements ESC-placement can implement ESC-
combine the two search variants described in Section IV-&arch with no additional summary communication.
static and dynamic. Figure 5 shows that ESC-search achieves better recall than
Experiment 3 (Location recall analysis): Intuitively, a summary caches. In our configuration, summary cache queries
good search algorithm must obtain a compromise betweapproximately 1.5 nodes on average to reach a location re-
the number of nodes requested, and ltteation recall of the call of about 0.86 for both query distributions. ESC-search
system, where the location recall of a search algorithm improves the score to 0.95 querying the same number of
defined as the fraction of documents found remotely dividewdes. ESC-search improves the recall of summary caches
by the documents found if all the nodes were queried. because: (i) it is able to detect the nodes that potentiédises
this first experiment we analyze the different configuratiora document even though in the last update the data was not
for ESC-search and compare them to the summary cachea;hed; (i) if a document is very popular then ESC-search

proposed by Cao et al [3]. gueries a reduced set of nodes.
Figure 5 shows the location recall for the two different
summary procedures as a function of the number of nodes VI. CONCLUSIONS

gueried (plain and linear ESC-summary, see Section IV-A) Next generation search engines will not only have to handle
combined with the static and the dynamic location algorghmlarge amounts of data but also invest more computationaiteff
The horizontal axis is the percentage of nodes requested: ifounderstanding the underlying content, e.g., multimedial-
example, in our cluster, 25% means that, on average, fowsis of embedded video and sound, semantic understanding
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