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Using Evolutive Summary Counters for Efficient
Cooperative Caching in Search Engines
David Dominguez-Sal, Josep Aguilar-Saborit, Mihai Surdeanu, Josep Lluis Larriba-Pey

Abstract—We propose and analyze a distributed cooperative
caching strategy based on the Evolutive Summary Counters
(ESC), a new data structure that stores an approximated record
of the data accesses in each computing node of a search engine.
The ESC capture the frequency of accesses to the elements
of a data collection, and the evolution of the access patterns
for each node in a network of computers. The ESC can be
efficiently summarized into what we call ESC-summaries to
obtain approximate statistics of the document entries accessed
by each computing node.

We use the ESC-summaries to introduce two algorithms that
manage our distributed caching strategy, one for the distribution
of the cache contents, ESC-placement, and another one for the
search of documents in the distributed cache, ESC-search. While
the former improves the hit rate of the system and keeps a large
ratio of data accesses local, the latter reduces the networktraffic
by restricting the number of nodes queried to find a document.
We show that our cooperative caching approach outperforms
state of the art models in both hit rate, throughput, and location
recall for multiple scenarios, i.e., different query distributions
and systems with varying degrees of complexity.

Index Terms—H.3.4-b Distributed systems, Distributed
caching, Resource intensive applications, Count Filter

I. I NTRODUCTION

Emerging search engines are moving several steps beyond
the naive bag-of-words approximation predominant in today’s
information retrieval models. For example, multimedia search
requires a deep analysis of the multimedia content (e.g. music,
images, movies), instead of just matching query keywords to
the caption of the multimedia object. Or, question answering
systems perform deep syntactic and semantic analysis of the
document texts in order to provide short, exact answers to
natural language questions.

This paper focuses on such next generation engines, which
have several things in common: (a) they are all significantly
more computationally expensive than current search engines,
and (b) they all synthesize the collection of documents to a
set of data objects that are interpretable by the machine, e.g.,
textual passages with deep natural language analysis [1] or
multimedia objects with visual/audio features [2]. Since the
generation of these data structures is costly, they are good
candidates for in-memory caching when their use is frequent.
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Furthermore, changes to the datasets used by these search
engines are generally limited. They typically consist of new
document additions, e.g., when new entries of a blog are
published, but these changes do not modify previous versions
of a document. In other words, once a document is added to
the collection, it can be considered read only.

In this paper, we describe a novel cooperative caching
strategy for such distributed search engines that is fully
implemented on commodity hardware. Our approach manages
cache contents according to recent usage information. The
foundation of our architecture is a set of local caches (one per
system node) that are linked together by a cooperative proto-
col that provides system wide transparency. Our cooperative
caching strategy relies on a new data structure, which we call
Evolutive Summary Counters (ESC). The ESC keep a record of
the recent data accesses of a node. This information is stored
in count bloom filters similarly to other proposals such as [3],
[4], however, and as we detail further in this document, our
proposal applies these compact data structures to record the
frequency of access for a given time window, and at the same
time maintain its recent history. This information turns tobe
very valuable in order to improve the placement and location
of data in a cooperative cache, because it combines recency
and frequency of historical data accesses.

We use the ESC information to deal with two important
issues in the cooperative cache management: theplacement
and the search of the cached information. The placement
algorithm controls where information is cached in the network
and is driven by two principles: (a) information should be
cached in the nodes where it is most often accessed and (b)
information frequently accessed should be cached at least in
one node. We proposeESC-placement, which is an algorithm
that achieves good cache locality by sending documents to
nodes that accessed them frequently in a recent time frame,
and by avoiding the replication of documents infrequently
accessed. As a second issue for the cooperative cache manage-
ment, we study data search, i.e., how to locate the node that is
currently caching a certain data unit. We proposeESC-search,
which is a search algorithm that estimates the probability
of finding a document in a node dynamically, reducing the
number of nodes queried. All in all, a single data structure –
ESC– provides good performance for both the placement and
search of documents in a distributed search engine system.

We summarize the contributions of this paper as: (i) we
propose the ESC as a compact data structure to record the
recent history of data accesses, (ii) we propose ESC-placement
that is an algorithm to distribute the cache contents in a cluster
of computers efficiently, (iii) we propose ESC-search, which
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is a location procedure to know with high probability if a
document is available and where in the cooperative cache;
and (iv) we compare our proposals to the most recent and
significant proposals using a fully-fledged semantic search
engine based on question answering technology.

The paper is structured as follows. In Section II, we review
the related work. Then, Section III describes the generic ar-
chitecture that we target with our cooperative cache proposals.
In Section IV, we describe the ESC data structure and the
ESC-placement and ESC-search algorithms. We report our
experiments with it in Section V. Finally, Section VI concludes
the paper.

II. RELATED WORK

Depending on the application area, the adequacy and the
cooperative caching considerations differ. For example, Wol-
man et al. discuss analytically the application of cooperative
caching for web data in WANs [5]. One of their conclusions is
that any simple cooperative caching algorithm is close enough
to an oracle cache policy for caching web data. However,
this setup is not generally valid for all the applications,
and cooperative caching has been applied in multiple areas
successfully [6]–[12]. In this work, we focus on the placement
and the search of the partial computations of a complex search
engine, stored in the main memory of the different nodes that
are interconnected by a LAN. This scenario also differs from
the assumptions by Wolman because the cost to process the
documents to solve a complex query is larger than the time
to read an HTML document and the communication costs are
lower in a LAN than in a WAN.

In one of the first studies for data placement in cooperative
caches, Dahlin et al. introduced n-chance forwarding, which
is an strategy that selects the target node for forwarding at
random, so no statistics from other nodes are used [13]. Later
proposals focused on how to improve this algorithm, taking
advantage of statistics of the cache. Feeley et al. proposed
GMS, which implements a centralized process where all the
nodes send statistics about the age of their cache contents to a
coordinating node [8]. Ramaswamy et al. proposed Expiration
Age in [10], where nodes exchange its recent cache eviction
rate and decide to replicate the data on nodes with small
contention. Dominguez-Sal et al. proposed Broadcast Petition
Recently in [14], which uses a time variable to limit duplicates
in the network but does not use global system information
such as the ESC. It is also known which is the optimal
placement if all the data access statistics are available, as
shown by Koropolu [15]. This algorithm, however, is static
and does not adapt if the distribution changes. Finally, some
placement solutions are based on hash functions [16], but the
main drawback of these approaches is that the application of
hashes does not encourage the locality to access the data.

There has been also significant effort on the location of
documents in a distributed environment. Sarkar and Hartman
implement placement and search in a distributed cache using
inaccurate information, or hints, about the state of a client-
server system [17]. The hints are distributed among the clients,
but, unlike our search mechanism, it relies ultimately on the

information in the main central server to locate the data. Rhea
and Kubiatowicz proposed attenuated bloom filters that sum-
marize the information of distant nodes for routing data [4].
Nevertheless, they do not count frequencies and attenuated
bloom filters mix the data location of several nodes in a bloom
filter, which reduces its precision. Fan et al. use a bloom
filter-based data structure to perform the search [3]. However,
they do not provide a placement scheme, nor a history of
content accesses, whereas our approach provides this with a
single data structure. In our experimental section, we confirm
that the combination of frequency and recency improves the
location recall over approaches that only store a bit indicating
if the cached entry was available at a certain moment of time,
like summary caches. Additionally, ESC are a general data
structure that may be used in different contexts. For example,
Dominguez-Sal et al. discuss load balancing algorithms for
distributed systems that are aware of the cache contents in
order to improve the throughput and the data locality [18].
Nevertheless, in [18], it is not consider the placement and
search problems, which we do in the current paper.

Besides, many algorithms have appeared from the peer
to peer community to find information in large networks
using distributed hash tables (DHT): Chord [19], Pastry [20],
etc. Although DHTs were designed to be used in WANs,
some prototypes implement them in networks with small
latencies. For example, Shark implements a cooperative cache
for distributed file systems [21], and Squirrel is a web server
cache based on cooperation too [22]. But, one limitation of
DHTs is that it needs to contact several nodes sequentially
during the location procedure, which introduces latency inthe
search. Our proposal overcomes this problem because we are
able to contact a small subset of nodes in parallel.

Finally, the aspects related to the management of the local
memory pool dedicated to caching are orthogonal to the coop-
erative caching strategies proposed in this paper. For instance,
if the document size exhibits a large variability, the largest
documents may be partitioned into sections, paragraphs, or
pages with a fixed number of characters. Also, we used an
LRU strategy in our system as the local policy, but our
distributed proposals can be abstracted away from the local
policy. Thus, we believe more advanced local cache policies
such as the proposed by Jiang et al. [9], can also benefit from
our placement and search algorithms.

III. SYSTEM ARCHITECTURE

We focus on search engines that are composed of a set
of computing blocks, which we treat as black boxes, and the
output of the system is obtained as a sequence of computations
of these blocks. Some of the computing blocks might be
computationally expensive, and thus, their outputs are ideal
candidates for caching. Each computationally intensive block
has a pool of memory to store the data related to a document
(identified uniquely in the document collection) followinga
local cache policy. We select LRU as the local cache policy
because its wide usage in many applications and its proven
adequacy to the workload of search engines [23].

In order to build the distributed system, we consider that
all nodes have an instance of the search engine, and can
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Fig. 1. QA system composed of three sequential blocks QP, PR and AE. PR
and AE can request and store data into the cache using the cache manager.

access the document collection and its associated indexes.
This design follows previous proposals for complex search
engines [24], where each node is able to compute queries
autonomously. We illustrate an adaptation of the previously
described architecture to a question answering (QA) system
with three computing blocks (question processing, passage
retrieval, and answer extraction) and its corresponding local
caching pools in Figure 1.

On top of the search engine, we implement a distributed
cooperative cache with no centralized processes, which intu-
itively works like a peer to peer network (with no central node)
where all nodes can directly contact the rest of nodes of the
network. The communication between nodes is facilitated by
the following operations:

• Request/Response: these operations obtain a cached entry
from a remote node. Once a node has a local miss,
it requests the document through a multicast operation
(operation (a) in Figure 1). The request includes the docu-
ment identifier and a parameter to identify the computing
block that requests the data. The receivers of the request
respond with the data if the entry is available in their
caches (operation (b)).

• Forward: this operation transfers the least recently used
cache entry from a layer to the same layer of another
node in the network (operation (c)).

The access to the collection content can be optimized by
using shared disks [25], [26], a distributed file system opti-
mized for read operations [27], [28] or simply replicating the
collection if the dataset fits in a computer. This architecture can
be easily extended to very-large-scale settings. For example,
one can envision a setup where a very large collection is
partitioned and each different partition is replicated among a
group of nodes, where each group implements our architecture.

IV. COOPERATIVE CACHING ALGORITHMS

This section describes the new distributed cooperative
caching algorithms proposed in this paper. We first describethe
data structure that we propose in this paper and is shared by all
our cooperative caching algorithms, the Evolutive Summary
Counters (ESC). Then, we explain how to apply the ESC-
summaries to the placement (ESC-placement) and the location
of data (ESC-search).

(a) Plain Summary (b) Linear Summary

Fig. 2. Summarization example of an ESC (counters are in binary).

A. Evolutive Summary Counters

The Evolutive Summary Counters (ESC) are a data structure
deployed in each computing node, which records a window of
the recent history of the local accesses. The ESC is composed
by a linked list ofk Count Bloom Filters (CBF) [29]. During
a certain period of time,τ , the CBF at the head of the list
is active, i.e., it counts the occurrences of the elements ina
streamed data set. Afterτ time units, a sliding operation is
applied, so that a new CBF is used during the nextτ time
units. On reuse, the CBF at the back of the list is reset (all
counters are set to 0) and it becomes the head of the list, that
is, the active CBF.

Each access to a document is recorded into the active CBF
locally. Thus, each computing node keeps an ESC withk CBF,
which monitor the lastτ · k time units. Afterτ time units,
when a sliding operation is triggered, each node computes a
summary of the ESC that is broadcasted to the nodes in the
network, the ESC-summary. Therefore, each node receives the
ESC-summaries from the rest of nodes, and the distributed
algorithms check the summaries to obtain a description of the
system state in order to dynamically update its decisions.

The ESC-summary is computed as the aggregation of the
k count filters of the ESC (see [30] for a detailed description
of how to aggregate structures based on bloom filters). We
evaluate two possible summary implementations:

• Plain summary: A simple addition of all the CBFs.
• Linear summary: A weighted addition where the most

recent CBF is multiplied byk, the second most recent
CBF is multiplied byk − 1, and so on, up to thek-th
CBF, which is multiplied by 1.

We depict a diagram of an ESC in Figure 2 withk = 3.
The figure compares how we combine the three CBFs of the
ESC in a plain and a linear summary. The counters in the
ESC-summary take the weighted sum, by rows, of the CBFs.
The ESC-summary generated is also a CBF.

The operations related to the ESC have low complexity.
The recording of an access to a document in the ESC has
constant complexity. The summary and slide process take
linear time with respect to the CBF size, and the look-up of the
frequency in a ESC-summary has also constant complexity.
In the supplementary material, we show that the network
overhead introduced by the ESC is small enough to permit
systems with throughput of thousands of queries per second.

B. ESC-Placement

Our proposal performs the distributed placement when a
local cache is full and a document is evicted from memory:
the document is forwarded to another node if the algorithm
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decides that this document is valuable enough to be kept in
some node of the network, otherwise it is simply discarded.
Our objective is to keep the documents in the node where
they are accessed, and to encourage the availability of frequent
documents in some node of the network.

The target node for forwarding the evicted entry is decided
according to the ESC-summaries that have been sent by
the remote nodes. The algorithm selects the node whose
ESC-summary contains the highest value for the entry being
processed and transfers the entry to that node. If the entry
is already present in the receiving node, our algorithm marks
the entry as the most recently used entry for the local LRU
policy. Also, if more than one node has the same largest
value, a random selection among these nodes is performed.
The pseudocode of ESC-placement is summarized in the
supplementary material.

We have an additional counter for each entry in the cache,
which accounts for the number of forwarding actions since
the last access for each document. Each time a document is
forwarded, its respective counter is incremented. If a document
is accessed while staying in a cache, its counter is reset.
The objective of this counter is to limit the number of
forwarding actions to avoid excessive network traffic. We limit
this number to 2 in accordance to the results obtained in [13].

ESC-placement automatically evicts from the cache en-
tries scarcely accessed, i.e., documents not read after several
forwarding operations. If an entry is evicted from the local
cache we are not deleting it but trying to reduce the number
of copies: the destination node is the one with the highest
probability of holding a copy. If the destination node holds
a copy of the entry it is not necessary to remove any other
entry, and hence the forwarding procedure is finished. If
the destination node does not hold a copy, ESC-placement
repeats the forwarding procedure until (a) it finds a document
that can be discarded because it is not frequently accessed
(with a forwarding counter exceeding the threshold), or (b)a
document with multiple copies in the network.

C. ESC-Search

The search algorithm is in charge of locating the node where
a document is stored. The objective is to reduce the number
of avoidable misses in the system: an avoidable miss is a
remote cache miss for a document that is cached somewhere
in the network, but it is not found because the system did not
query the proper nodes. Although the broadcast of the requests
reduces the number of avoidable misses to zero, the number
of messages may become a bottleneck.

The ESC-search procedure is called whenever an entryd is
not found in the local cache. First, ESC-search builds a list
(L=n1, ..., nN ) with all the nodes in the system. The nodes
in L are sorted in decreasing order of access frequency tod,
according to the ESC-summaries locally available. Then, ESC-
search selects the firsth nodes from L, and requests the entry
from all of them in parallel (note that the selection processis
computed without network communication). We compare two
methods to selecth:

Static: h is set to a constant value which is decided at the
initialization of the system.

Dynamic: h is calculated every time a document is searched
in order to keep the probability of an avoidable miss below a
defined threshold. The dynamic ESC-search policy divides the
nodes into two lists: the candidate nodes to be queried and the
rest. Initially, the candidate node list is empty, and ESC-search
estimates the probability of an avoidable miss if no node is
queried (PAvMiss(0, d)). Then, following a greedy procedure,
ESC-search includes the node which is most likely to contain
d in the candidate node list until the probability of an avoid-
able miss is below a thresholdǫ. ESC-search estimates the
probability of an avoidable miss with the following formula,
which assumes that the probability of finding a document in
one node is independent among nodes:

PAvMiss(s, d) = prob(d is not in nodes (n1..ns]) ·

prob(d is in any of the nodes (ns..nN ])

=

[

i=s
∏

i=1

(

1− Pfreq(ESCS(i,d))

)

]

·



1−
i=n
∏

i=s+1

(

1− Pfreq(ESCS(i,d))

)



 ,

whereESCS(i, d), is the value in the ESC-summary received
from the ith node for documentd; s is the number of nodes
that are queried to locate documentd; and Pfreq(x) is the
probability that a document with frequencyx is available in
the memory of the remote node.h is selected as the smallest
number of nodes such thatPAvMiss(s, d) < ǫ. In the worst
case (which is unlikely), the algorithm will query all nodes, but
will query one or even none if the document is very unlikely to
be in cache. We show the pseudocode for this search procedure
with an example in the supplementary material.

In order to evaluatePAvMiss(s, d), each node keeps an array
with a local estimation ofPfreq(x), for each possible value of
the counters in the ESC-summaries. This probability is updated
dynamically according to the results of the search history.For
example, in a system that had requested 5 times documents
with frequency 2 and they were only found once, then the
current value ofPfreq(2) would be 1

5 . After each search, this
value is updated. For instance, if the document was found in
the node whose ESC-summary indicated a frequency of two
thenPfreq(2) becomes26 .

The algorithm is able to adapt to a query distribution
becausePfreq(x) is computed on the fly. The computational
cost of this procedure isO(N) in the worst case because
the algorithm checks the summaries from all nodes for a
given document. Nevertheless,PAvMiss(s, d) is a monotonic
decreasing function, so as soon as it reaches a value belowǫ,
this becomes the final result, and there is no need to further
compute it for a larger set of nodes.

In the supplementary material, we model the overhead of
the communication generated by the search algorithm. This
analysis shows that the additional cost to transmit the ESC-
summaries yields a significant reduction of nodes queried and
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the overhead of the algorithm is thus significantly smaller than
that of the broadcast protocol.

V. EXPERIMENTS

A. Experimental setup

In this section, we take question answering (QA) as an
example of a complex information retrieval system, which
demands special attention from caching because of its process-
ing complexity. QA systems are search engines that process
natural language queries and search for named entities suchas
person or location names. Since our QA system is modular,
it allows us to reconfigure its processing pipeline to test our
proposals for a wide variety of configurations with different
CPU and I/O requirements. We report the most relevant results
in this section, and we include a broader evaluation of our
proposals in the supplementary material. The QA system
implemented in this paper (Figure 1) uses a traditional archi-
tecture consisting of three blocks linked sequentially [1]: (a)
Question Processing (QP) that parses and analyzes the natural
language query given by the user, (b)Passage Retrieval (PR)
that retrieves from the document collection the most relevant
documents from the collection, and (c)Answer Extraction
(AE) that analyzes the retrieved documents in PR with natural
language tools, and returns the most adequate answers to the
user. We detail the internal implementation of the system in
the supplementary material.

For our test we run the fully fledged QA system on a cluster
of 16 nodes connected with a gigabit Ethernet. Each node in
the system is equipped with an Intel dual core CPU at 2.4Ghz
and 2GB of RAM. An additional computer, in the same local
area network, is used as a client that issues queries to the rest
of nodes following a round robin policy.

The question sets in our experiments consist of five thousand
queries following typical search engine distributions. The
queries were selected from the question sets that were part
of former TREC-QA evaluations (700 different queries). We
generate our query sets following typical distributions from
real web search engines [23], [31], [32]: Zipf distributions
with varying parameterα in the range [0.59,1.4], and typically
below 1.0. In a Zipf distribution, the probability to accessdoc-
umenti from the collection is proportional toi−α. Therefore,
the largerα the more skewed is the distribution.

We set round robin as a baseline to compare all the
algorithms under study with a neutral load balancing policy.
Our load balancing policy resembles multiple clients sending
queries to a server applying round robin DNS [33]. We keep
the system under heavy load with an average of six queries
per node, issuing a new query every time a query is answered.
Since the objective of this work is to analyze placement and
search using ESC, we do not emphasize the parametrization
of ESC. In the experiments we setk andτ to the best possible
values among a set of experiments that we have performed.
In the supplementary material, we detail the experiments
performed to estimate these parameters empirically.

B. Placement analysis

We perform an analysis of the placement method that we
introduced in Section IV-B. We compared our proposal to the
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Fig. 3. ESC-placement performance for different query distributions.

following algorithms. (a) A local policy where we disable all
the remote operations of the cache manager. (b) Broadcast
Petition Recently (BPR), which replicates only the elements
that have been accessed multiple times in a fixed window of
time [14]. (c) Expiration Age (EA) calculates an estimator,
called expiration age, which is the average time that cache
victims have spent in the cache since their last hit. When
a node retrieves a document from another computer in the
network, they exchange their expiration ages and a copy is
only replicated if the requester has a larger expiration age[10].
(d) Random server selection (RSS) picks the forwarding node
at random, with the restriction that each entry can only be
forwarded a limited number of times since its last access. This
policy is similar to the n-chance protocol described in [13].

For a fair comparison of the placement algorithms explained
in this section, we implement the same search algorithm for
all the placement methods used. We use a simple protocol,
which sends a broadcast message with the requested document
identifiers, which is similar to ICP [34]. If any remote node
has the needed contents, it sends them back to the requester.
The broadcast guarantees that a document will be found if it
is available in any node of the network. We analyze the more
complex search strategies proposed above in Section IV-C.

Theplain and thelinear summarization performed similarly
in the placement experiments. In this section, we only report
the results that come from thelinear summary implementation.

Experiment 1 (Query distribution): In this experiment, we
test the performance of the question answering system for a
variety of query distributions. According to the previous stud-
ies mentioned, the query logs follow Zipf distributions ranging
from α = 0.59 to α = 1.4, with α typically between0.59 and
1.0 . So, we generated three query sets following different
Zipf distributions with varying parametrization: Zipfα=0.59,
Zipfα=1.0, and Zipfα=1.4.

Figure 3(a) shows the hit ratio for the different algorithms
tested. The bars are grouped by distribution: the most skewed
distribution corresponds to the rightmost group of bars. For
the cooperative caching algorithms, we indicate the local and
remote hit rates. The local hit rate is the lowest part of the
bar painted with light color. The remote hit rate corresponds
to the darker part of each bar. The full bar accounts for the
addition of the local plus the remote hit rate.

We observe that the query distribution affects significantly
the total hit rate for all the algorithms, as well as the proportion
of remote hits. For the less skewed distribution the total hit
rate is smaller because the system accesses a wider diversity of
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documents. Moreover, we observe that the local cache policy
has poor results compared to the cooperative policies because
the available memory in one node is small with respect to
the number of documents accessed. Only if the total available
memory dedicated to caching in the network is combined using
the cooperative caching algorithms, the hit rate is over 40%.
We see that the use of the cooperative caching algorithms
yields a three-fold improvement on the number of total hit
rates, hence most hits in a cooperative caching algorithm come
from the access to remote caches. When looking at more
skewed distributions, the ratio between local and remote hits
changes. In the case of the Zipfα=1.4 distribution, we observe
that most data can be retrieved from the local cache, though
the cooperative cache still contributes to improving the hit rate.

In Figure 3(b), we show the throughput of the different algo-
rithms normalized to the local policy. The hit rate has a direct
influence on the performance: cooperative caching algorithms
are much faster than local caching. This huge difference is
a strong recommendation for the use of cooperative caching
algorithms in QA.

The difference among the cooperative caching algorithms
is smaller than between the cooperative cache and the local
policy, because all the cooperative caching algorithms take
advantage of the cache in the remote nodes. We see that
ESC-placement is the algorithm with the best global hit rate,
and accordingly, with the best performance. It achieves a
throughput above 1.84 times a locally managed system for
Zipfα=1.4 distributions, and it is significantly better than other
alternatives for the rest of distributions. We also observethat
the local hit rate of ESC is above other cooperative caching
algorithms, such as EA or BPR, because ESC does not only
encourage global hits but also cares about locality. As already
mentioned, ESC limits the number of copies available in the
cooperative cache: it keeps multiple copies of the documents
that are very frequently accessed, and reduces the number of
copies if they are not so frequent. Therefore, if a document
is very frequent there will be several copies of it in different
nodes, improving the probability of a local hit.

We also notice that BPR is a very good algorithm from
the hit rate perspective: it obtains the second best hit rate,
close to ESC-placement. However, the BPR policy performs
more remote accesses than other algorithms such as EA or
ESC-placement, because BPR gives very low priority to the
replication of documents. Due to the additional network traffic
of remote hits, we see in Figure 3(b) that BPR throughput
is significantly smaller than for ESC-placement, speciallyfor
small skews. In our tests, EA obtained better performance
than BPR for the less skewed configuration because its lo-
cal hit rate is better than for BPR, but it has a smaller
throughput than ESC because the global hit rate is not as
good. Although the lowest values ofα are more common,
we notice that for the most skewed distributions, Zipfα=1.4,
all the algorithms have a very good performance. For large
values of alpha, we detect tiny differences in the hit rate
of cooperative caching algorithms because all of them are
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very close to the optimal, which is 0.951 for this distribution.
We observe that RSS achieves a good balance between local
and remote hits. However, its performance is not as good as
for other algorithms because RSS contacts many nodes, and
hence the forwarding policy is slower because of the additional
network connections. All in all, ESC-placement obtains the
best throughput of all placement algorithms analyzed due to
the good hit rate obtained with minimal network overhead.
This is evident especially for real-world setups, where the
query distribution is not too skewed and the local cache is
not sufficient.

Experiment 2: (Impact of components with different compu-
tational costs): Depending on the search task and the quality
of the output, the modules that process the results of a search
engine have a different degree of complexity. For example, a
traditional keyword based search engine needs fewer computa-
tional resources than a question answering system such as our
testing system. However, some users may be willing to accept
longer computational times to retrieve information for complex
queries, or might want to include analysis of multimedia data
associated to text, which is typically more computationally
expensive than text processing.

In this experiment, we target the performance of the co-
operative cache for such systems with varying computational
complexity, i.e., we test the impact of our cooperative cache
for different types of QA systems. In order to simulate the
complexity of different search engines, we use two different
alternatives for our answer extraction component. The first,
which we call Standard QA, uses a simple maximum entropy
with a limited feature set for candidate answer extraction.
This component was used in all previous experiments as
well. The second approach –Complex QA– performs candidate
answer extraction using support vector machines and a richer
feature set. The processing overhead of the latter component is
approximately three times larger than our initial system [35].
This system is not adequate for interactive question answering,
but simulates a system in which the user might sacrifice
response time for a better answer quality. As a third testing
system, we remove the AE module entirely. This system
generates as output a collection of text snippets, which is
very similar to the functionality of current keyword-based
search engines. The execution time of the light system is
approximately one fourth of our initial QA system.

1We computed this optimal hit rate running a modified version of our QA
system that does not remove any cache entry once inserted (itdoes not store
the full document but only a dummy entry for each identifier),and running
on a single computer with a cold cache. We observed that the optimal hit
rates were 0.86, 0.92, 0.95 forα=0.59, 1.0 and 1.4, respectively.
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Fig. 5. Location recall for the ESC-search algorithms.

Figure 4 shows the normalized throughput for all the
systems described previously for Zipfα=1.0. The standard QA
system corresponds to the system we have used in the previous
experiments. We see that in a light system the benefit of
cooperative caching is not as large as the improvements found
in previous experiments, because the network communication
time is closer to the cache miss penalty.

ESC-placement performs the best out of the algorithms
tested, because it obtains the highest hit rate with a
low network overhead. Since each cache hit bypasses the
computational overhead corresponding to that cache block,
computationally-intensive systems benefit the most from coop-
erative cache policies such as ESC. The experiment shown in
Figure 4 highlights this observation. Furthermore, the differ-
ence between ESC-placement and the local cache increases as
the complexity of the underlying QA system increases, which
indicates that the benefit of using ESC-placement increases
with the complexity of the retrieval engine.

C. Search Analysis

In this section, we analyze the cache search algorithms
proposed in Section IV-C. We use the same setup as in Ex-
periment 1, with the addition of the ESC-placement algorithm
described in Section IV-B, which was shown to perform the
best in the previous section. The network bandwidth is 1
Gbps, and does not constitute a bottleneck for the number of
nodes tested. In the experiments, we compare the two possible
summary methods, i.e.,plain and linear (see Section IV-A)
because they behave significantly different for search. We also
combine the two search variants described in Section IV-C,
static anddynamic.

Experiment 3 (Location recall analysis): Intuitively, a
good search algorithm must obtain a compromise between
the number of nodes requested, and thelocation recall of the
system, where the location recall of a search algorithm is
defined as the fraction of documents found remotely divided
by the documents found if all the nodes were queried. In
this first experiment we analyze the different configurations
for ESC-search and compare them to the summary caches,
proposed by Cao et al [3].

Figure 5 shows the location recall for the two different
summary procedures as a function of the number of nodes
queried (plain and linear ESC-summary, see Section IV-A)
combined with the static and the dynamic location algorithms.
The horizontal axis is the percentage of nodes requested: for
example, in our cluster, 25% means that, on average, four

nodes are requested out of the 16 available. For static policies,
each point in the plot corresponds to a configuration that fixes
the number of nodes to a constant. For dynamic policies, each
point in the plot corresponds to the average number of nodes
queried whenǫ is set to a certain value.

In contrast to the results for placement, the search is
very sensitive to the summary method: the linear summary
achieves results comparable to querying all the nodes, when
accessing only 10% of these nodes on average. On the other
hand, the plain summary needs to query significantly more
nodes to avoid a big number of avoidable misses. This shows
that temporal information is crucial for efficient search ina
distributed cache. From the point of view of the selection
of the proper number of nodes to query,h, the dynamic
approach converges to the maximum hit rate faster than the
static. The reason is that the adaptability of the dynamic
algorithm helps the system query only a few nodes when
a document is popular and find rare documents when more
nodes are queried. The trends of the algorithms are similar
for both distributions investigated. We attribute the slightly
slower location recall for the Zipfα=1.0 query set to the long
tail of rare elements in the distribution, which are the hardest
documents to find because they are not replicated in the
network and only remain in the global cache for a short time.
In our experiments, the combination linear+dynamic achieves
the best location recall for almost all percentages of nodes
queried. For both distributions, linear+dynamic achieves99%
location recall with only 40% nodes queried. The plot shows
that, if the network becomes the bottleneck of the system,
we can increaseǫ and then ESC-search queries only 1.75
nodes on average (approximately 10% of the nodes) because
linear+dynamic obtains a location recall only 2.1% lower than
broadcasting. This is remarkable, because the traffic in the
network may be a significant bottleneck in some cases, and
this location recall is usually enough for practical purposes.

We also compare our proposal to summary caches, config-
ured with the same parametrization as our ESC-summary. Note
that even though the summary cache sends smaller updates
because it does not count frequencies but existence, the ESC-
search uses the same information as ESC-placement. Hence, a
system that implements ESC-placement can implement ESC-
search with no additional summary communication.

Figure 5 shows that ESC-search achieves better recall than
summary caches. In our configuration, summary cache queries
approximately 1.5 nodes on average to reach a location re-
call of about 0.86 for both query distributions. ESC-search
improves the score to 0.95 querying the same number of
nodes. ESC-search improves the recall of summary caches
because: (i) it is able to detect the nodes that potentially store
a document even though in the last update the data was not
cached; (ii) if a document is very popular then ESC-search
queries a reduced set of nodes.

VI. CONCLUSIONS

Next generation search engines will not only have to handle
large amounts of data but also invest more computational effort
in understanding the underlying content, e.g., multimediaanal-
ysis of embedded video and sound, semantic understanding
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of natural language. This paper introduced a new cooperative
caching policy that focuses on this scenario. We used a state-
of-the-art distributed question answering as our use case.

The core of our distributed cache environment is the ESC,
which is an efficient data structure that captures the frequency
of accesses to the documents from big text collections and
generate summaries efficiently. To our knowledge, ESC is the
first proposal for a data structure that captures the recent access
frequency to data collections in distributed systems.

For computational-intensive systems such as QA, our place-
ment approach provides significantly better throughput for
a broad variety of scenarios, including different query sets,
query distributions and system configurations. Overall, ESC-
placement provides a speedup up to 1.81, compared to locally
managed caches. Our tests have also shown that ESC is
valuable for variants of our basic architecture: the system
improves the speedup for systems that compute more complex
analysis than ours, and for systems that are able to store
preprocessed data on disk, and thus are I/O bound.

Additionally, our search strategy achieves better location
recall than other state-of-the-art approaches such as summary
cache. Our proposal, ESC-search, obtained a location recall
of more than 0.95 compared to 0.86 achieved by summary
caches with a similar amount of communication. Compared
to a broadcast protocol, the average number of nodes queried
by ESC-search was reduced by 90% with respect to the
broadcast protocol, while still finding the documents with a
probability higher than 97.5%. Furthermore, ESC-search isa
flexible algorithm, which is able to adjust the location recall for
each document request individually, if desired. For example,
in a system where some documents require more computation
than others, it is possible to adjust ESC-search dynamically
to virtually achieve a perfect recall for the most expensive
computing cache entries.

Our tests have been performed on a cluster of computers
running a question answering system. However, we believe
that the algorithms described in this paper can be applied
generally to other configurations and different applications.
For example, we can envision their application to image search
engines that in the first step filter out a set of candidate
images and videos, and then use image analysis to obtain high
quality answers, which is a similar architecture to ours. Inour
paper, we have modified our testing system to resemble these
different scenarios, and we found that our ESC based proposals
can have an even more important impact on the performance
of such complex search engines than on simpler ones.
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in 2006. He is at present working at Microsoft Corp.
in the SQL Server Parallel DataWarehouse Edition.
His research interests are in the area of Database sys-
tem design, performance and implementation among
others.

Mihai Surdeanu is a Senior Research Associate
in the Computer Science Department at Stanford
University. Dr. Surdeanu also serves as the Chief
Technical Officer of Lex Machina (lexmachina.com),
a company that focuses on information extraction
and risk analysis in the legal domain. Mihai Sur-
deanu earned a PhD degree in Computer Science
from Southern Methodist University, Dallas, TX, in
2001. From early 2000 to 2004 he was employed
by Language Computer Corporation as a Research
Scientist. Since August 2001 he also served as the

company’s Vice-President of Engineering. In 2004 he moved to Barcelona
Spain, where he held Senior Research Scientist positions atUniversitat
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