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Abstract semantic role of each dependent (Gildea and Juraf-

h d . sed tech sky, 2002; Pradhan et al., 2005; Punyakanok et al.,
is paper demonstrates how unsupervised tech- . .

niques can be used to learn models of deep linguis- 2005)'_ A drawback _Of this approach_ IS_ that e‘{en
tic structure. Determining theemantic roleof a a relatively large training corpus exhibits consid-
verb's dependents is an important step in natural  erable sparsity of evidence. The two main hand-
language understanding. We present a method for t d P Bank (Pal tal. 2003
learning models of verb argument patterns directly agged corpora are PropBank (Palmer et al., )
from unannotated text. The learned models are sim-  and FrameNet (Baker et al., 1998), the former of

ilar to existing verb lexicons such as VerbNet and which currently has broader coverage. However
PropBank, but additionally include statistics about L '
the linkings used by each verb. The method is even PropBank, which is based on the 1M word

based on a structured probabilistic model of the do- ~ WSJ section of the Penn Treebank, is insufficient

main, and unsupervised learning is performed with ; ; ihi ;
the EM algorithm. The learned models can also in quantity and genre to exhibit many things. A

be used discriminatively as semantic role labelers, perfectly common verb liklap occurs only twice,
and when evaluated relative to the PropBank anno-  across all morphological forms. The first example

tation, the best learned model reduces 28% of the . . - . . _
error between an informed baseline and an oracle IS an adJeCtlvaI useﬂepplng Wlng$, and the sec

upper bound. ond is a rare intransitive use with an agent argu-
ment and a pattd{ucks flapping over Washington
1 Introduction From this data, one cannot learn the basic alterna-
tion pattern forflap: the bird flapped its wingss.

An important source of ambiguity that must bethe wings flapped

resolved by any natural language understanding
system is the mapping between syntactic depen- We propose to address the challenge of data

dents of a predicate and tlsemantic rolek that sparsity by learning models of verb behavior di-
they each express. The ambiguity stems from théectly from rayv unannotated text, of which there
fact that each predicate can allow several alternat$ PI€NtYy. This has the added advantage of be-
mappings, ofinkings? between its semantic roles ing easily extendible to novel text genres and lan-

and their syntactic realization. For example, thedu@9es, and the possibility of shedding light on
verbincreasecan be used in two ways: the question of human Ianguagg acquisition. The
models learned by our unsupervised approach pro-

(1) The Fed increased interest rates. vide a new broad-coverage lexical resource which
(2) Interest rates increased yesterday. gives statistics about verb behavior, information
that may prove useful in other language process-
The instances have apparently similar surface syring tasks, such as parsing. Moreover, they may be
tax: they both have a subject and a noun phrasgsed discriminatively to label novel verb instances
directly following the verb. However, while the for semantic role. Thus we evaluate them both in
subject ofincreaseexpresses the agent role in theterms of the verb alternations that they learn and
first, itinstead expresses the patient role in the segheir accuracy as semantic role labelers.
o_nd. Pairs. of linkings such as this a}llowed by a This work bears some similarity to the sub-
single predicate are often callehthesis alterna- i, ia) Jiterature on automatic subcategorization
tions (Levin, 1993). frame acquisition (see, e.g., Manning (1993),
The current state-of-the-art approach to resolvgiscoe and Carroll (1997), and Korhonen
ing this ambiguity is to use discriminative classi- 5002)). However, that research is focused on ac-
fiers, trained on hand-tagged data, to classify thﬁuiring verbs' syntactic behavior, and we are fo-
*Also calledthematic rolestheta roles or deep cases cused on the acquisition of verbs’ linking behav-
“Sometimes callettames ior. More relevant is the work of McCarthy and



Relation | Description | Sentence: A deeper market plunge today could

subj NP preceding verb give them their first test.
np#n NP in thenth position following verb —
np NP that is not the subject and ; Verb: give
not immediately following verb Syntactic | Semantic Head
clin Complement clause Relation Role Word
in thenth position following verb subj ARGO | plunge/NN
cl Complement clause np ARGM | today/NN
not immediately following verb np#l ARG2 | they/PRP
xchn Complement clause without subject np#2 ARG1 test/NN
in thenth position following verb
xcl Complement clause without subject v = give
not immediately following verb ¢ = {ARGO — subj, ARG1 — np#2
acomp# | Adjectival complement ARG2 — np#1}
in the nth position following verb o = [(ARGO, subj), (ARGM,?),
acomp | Adjectival complement (ARG2,np#1), (ARG1, np+#2)]
not immediately following verb (91,71, w1) = (subj, ARGO, plunge/NN)
prepz Prepositional modifier (92,72, w2) = (np, ARGO, today/NN)
with prepositionz (g3, 73, ws) = (np#1, ARG2,they/PRP)
advmod | Adverbial modifier (94,74, wa) = (np#2, ARG1, test/NN)
advcl Adverbial clause

Figure 1: An example sentence taken from the Penn Treebank
(wsj_2417), the verb instance extracted from it, and the values
of the model variables for this instance. The semantic roles
listed are taken from the PropBank annotation, but are not

Korhonen (1998), which used a statistical modepbserved in the unsupervised training method.
to identify verb alternations, relying on an existing
taxonomy of possible alternations, as well as Latax. We define a small set syntactic relations
pata (1999), which searched a large corpus to fintisted in Table 1, each of which describes a possi-
evidence of two particular verb alternations. Thereble syntactic relationship between the verb and a
has also been some work on both clustering andependent. Our goal was to choose a set that pro-
supervised classification of verbs based on theivides sufficient syntactic information for the se-
alternation behavior (Stevenson and Merlo, 1999mantic role decision, while remaining accurately
Schulte im Walde, 2000; Merlo and Stevensoncomputable from any reasonable parse tree using
2001). Finally, Swier and Stevenson (2004) persimple deterministic rules. Our set does not in-
form unsupervised semantic role labeling by usingclude the relationslirect objector indirect object
hand-crafted verb lexicons to replace supervisegince this distinction can not be made determin-
semantic role training data. However, we believestically on the basis of syntactic structure alone;
this is the first system to simultaneously discoverinstead, we opted to number the noun phrag, (
verb roles and verb linking patterns from unsupercomplement clausecl, xcl), and adjectival com-
vised data using a unified probabilistic model.  plements gcomp appearing in an unbroken se-
quence directly after the verb, since this is suffi-
2 Learning Setting cient to capture the necessary syntactic informa-

Our goal is to learn a model which relates a verbn- The syntactic r?Iatlon; used in our experi-
its semantic roles, and their possible syntactic reMeNts are computed from the typed dependencies

alizations. As is the case with most semantic rold€turned by the Stanford Parser (Klein and Man-

labeling research, we do not attempt to model th&"N9, 2003).
syntax itself, and instead assume the existence of a We also must choose a representation for se-
syntactic parse of the sentence. The parse may beantic roles. We allow each verb a small fixed
from a human annotator, where available, or frornumber of roles, in the manner similar to Prop-
an automatic parser. We can easily run our systerBank’'s ARG0... ARG5. We also designate a
on completely unannotated text by first runningsingle adjunct role which is shared by all verbs,
an automatic tokenizer, part-of-speech tagger, ansimilar to PropBank’sA RG M role. We say “sim-
parser to turn the text into tokenized, tagged sendar” because our system never observes the Prop-
tences with associated parse trees. Bank roles (or any human annotated semantic
In order to keep the model simple, and indepen+oles) and so cannot possibly use the same names.
dent of any particular choice of syntactic represenOur system assigns arbitrary integer names to the
tation, we use an abstract representation of syrroles it discovers, just as clustering systems give

Table 1: The set of syntactic relations we use, where
{1, 2,3} andz is a preposition.



choice of verbgive we next generate a linking
@ ¢, which defines both the set of core semantic
roles to be expressed, as well as the syntactic re-
lations that express them. In our example, we
sample the ditransitive linking = {ARG0O —
subj, ARG1 — np#2, ARG2 — np#1}. Con-
<€> ditioned on this choice of linking, we next gen-
erate arorderedlinking o, giving a final position
in the dependent list for each role and relation in
the linking ¢, while also optionally inserting one
0 or more adjunct roles. In our example, we gener-
ate the vecton = [(ARGO, subj),(ARGM,?),
\ (ARG2,np#1), (ARG1,np#2)]. In doing so

/ we've specified positions fad RG0, ARG1, and
ARG?2 and added one adjunct raleRG M in the
second position. Note that the length of the or-

l=j=M dered linkingo is equal to the total number of de-
Figure 2: A graphical representation of the verb linking pendents\/ of the verb instance. NOW we iterate
model, with example values for each variable. The rectangldhrough each of the dependents< j < M, gen-
is aplate indicating that the model contains multiple copies erating each in turn. For the core arguments, the
of the variables shown within it: in this case, one for each ; ) ; P _
dependeny. Variables observed during learning are shaded.semantIC rOIQJ_ and syntactic relatlogﬂ a_‘re Com
_ _ pletely determined by the ordered linking so it
arbitrary names to the clusters they discover.  remains only to sample the syntactic relation for
Given these definitions, we convert our parsedne adjunct role: here we sampje = np. We
corpora into a simple format: a set @érb in- finish by sampling the head word of each depen-
stances each of which represents an occurrencgjent, conditioned on the semantic role of that de-

of averb in a sentence. A verb instance consists giendent. In this example, we generate the head
the base form (lemma) of the observed verb, angyords w, = plunge/NN, wy = today/NN,

for each dependent of the verb, the dependent§,, — 56y /NN, andw, = test/NN.
syntactic relation and head word (represented as
the base form with part of speech information). An
example Penn Treebank sentence, and the verb i
stances extracted from it, are given in Figure 1.

Before defining the model more formally, we
pause to justify some of the choices made in de-
Ié',l'gning the model. First, we chose to distinguish
between a verb’sore argumentsind itsadjuncts
3 Probabilistic Model While core argume_nts must bg_associated with a
semantic role that is verb specific (such as the pa-
Our learning method is based on a structured proktient role ofincrease the ratesin our example),
abilistic model of the domain. A graphical repre- adjuncts are generated by a role that is verb inde-
sentation of the model is shown in Figure 2. Thependent (such as the time of a generic evéamt
model encodes a joint probability distribution overmonthin our example). Linkings include map-
the elements of a single verb instance, includingpings only for the core semantic roles, resulting in
the verb type, the particular linking, and for eacha small, focused set of possible linkings for each
dependent of the verb, its syntactic relation to theverb. A consequence of this choice is that we in-
verb, semantic role, and head word. troduce uncertainty between the choice of linking
We begin by describing the generative procesand its realization in the dependent list, which we
to which our model corresponds, using as our runsepresent with ordered linking variake*

hing example the instance of the vegive shown We now present the model formally as a fac-
in Figure 1. We begin by generating the verbtored joint probability distribution. We factor the
lemmauv, in this casegive. Conditioned on the joint probability distribution into a product of the

3In practice, while our system is not guaranteed tochoose____
role names that are consistent with PropBank, it often does “An alternative modeling choice would have been to add a
anyway, which is a consequence of the constrained form ostate variable to each dependent, indicating which of thesro
the linking model. in the linking have been “used up” by previous dependents.



probabilities of each instance: [ Role ] Linking Operations
ARGO | Add ARGO to subj

N ARG1 | No operation
_ i i 4 Add ARG1 to np#l
P(D)—HP(”’E’O’g’r’W) Add ARG1 to cl#1
i=1 Add ARG1 to xcl#1l
. Add ARG1 to acomp#1
where we assume there aklé instances, and we Add ARG1 to subj, replacingd RGO

have used the vector notatigrio indicate the vec- | ARG2 | No operation

tor of variablegy; for all values ofj (and similarly ﬁgg ﬁggg Eg g;%x’sz?ftingARGl to np#2

for r andw). We then factor the probability of Add ARG?2 to np#1, shiftingA RG1 to prepwith
each instance using the independencies shown JrARG3 | No operation

. . Add ARG3 to prepz, Vz
Figure 2 as follows: Add ARG3to clén, 1 < n < 3

ARG4 | No operation

P(’U, 67 07 g7 r7 W) — Add ARG4 to prep.x, Vx
Table 2: The set of linking construction operations. To con-
P(v)P(4|v)P(0]f) H P(gjlo)P(rjlo)P(w;|r;) struct a linking, select one operation from each list.

=1 variables, distributed according to a Dirichlet dis-

where we have assumed that there &fedepen-  tribution.”
dents of this instance. The vetbis always ob- o
served in our data, so we don’'t need to define®1 Linking Model
P(v). The probability of generating the linking The most straightforward choice of a distribution
given the verbP(¢|v) is a multinomial over pos- for P(¢|v) would be a multinomial over all pos-
sible linkings® Next, the probability of a partic- sible linkings. There are two problems with this
ular ordering of the linkingP(o|¢) is determined simple implementation, both stemming from the
only by the number of adjunct dependents that aréact that the space of possible linkings is large
added too. One pays a constant penalty for each(there areD(|G + 1|I*1), whereg is the set of syn-
adjunct that is added to the dependent list, but othtactic relations an® is the set of semantic roles).
erwise all orderings of the roles are equally likely. First, most learning algorithms become intractable
Formally, the ordering is distributed according when they are required to represent uncertainty
to the geometric distribution of the difference be-over such a large space. Second, the large space
tween its length and the length 6fwith constant of linkings yields a large space of possible mod-
parameten.® Next, P(g;|o) andP(r;|o) are com- els, making learning more difficult.
pletely deterministic for core roles: the syntactic As aconsequence, we have two objectives when
relation and semantic role for positigrare speci- designingP (¢|v): (1) constrain the set of linkings
fied in the ordering. For adjunct roles, we gener- for each verb to a set of tractable size which are
ateg; from a multinomial over syntactic relations. linguistically plausible, and (2) facilitate the con-
Finally, the word given the rol®(w;|r;) is dis-  struction of a structured prior distribution over this
tributed as a multinomial over words. set, which gives higher weight to linkings that are
To allow for labeling elements of verb instancesknown to be more common. Our solution is to
(verb types, syntactic relations, and head words) anodel thederivationof each linking as a sequence
test time that were unobserved in the training setpf construction operationsan idea which is sim-
we must smooth our learned distributions. We usdlar in spirit to that used by Eisner (2001). Each
Bayesian smoothing: all of the learned distribu-operation adds a new role to the linking, possibly
tions are multinomials, so we agduedocountsa  replacing or displacing one of the existing roles.
generalization of the well-knowadd-one smooth- The complete list of linking operations is given in
ing technique. Formally, this corresponds to aTable 2. To build a linking we select one opera-
Bayesian maodel in which the parameters of theséion from each list; the presence of a no-operation
multinomial distributions are themselves randomfor each role means that a linking doesn’t have to
" 5The way in which we estimate this multinomial from include all roles. Note that this linking derivation

data is more complex, and is described in the next section. process is not shown in Figure 2, since it is possi-
®While this may seem simplistic, recall that all of theim- —

portant ordering information is captured by the syntaatic r "For a more detailed presentation of Bayesian methods,

lations. see Gelman et al. (2003).



ble to compile the resulting distribution over link- our learning problem as
ings into the simpler multinomid? (¢|v).

More formally, we factorP(¢|v) as follows, N ‘
wherec is the vector of construction operations " = argmax P(6|D) = argmax | [ P(d';6)
used to build: 0 o =

N
= argmaxHP(vi,Ei,oi,gi,ri,wi;H)
P(flv) = > P(lc)P(clv) |
Cc
IR| Because of the factorization of the joint distri-
= Y Pl bution, this learning task would be trivial, com-
c i=1 putable in closed form from relative frequency

counts. Unfortunately, in our training set the vari-
Note that in the second step we drop the ternmablest, o andr are hidden (not observed), leaving
P(¢|c) since it is always 1 (a sequence of opera-us with a much harder optimization problem:
tions leads deterministically to a linking).

Given this derivation process, it is easy to cre- N S
ated a structured prior: we just plagseudocounts 0 = argmax [ [ P(v', g, w'; 0)
on the operations that are likely priori across o N =0
all verbs. We place high pseudocounts on the o
no-operations (which preserve simple intransitive — argznaxH Z 'P(vz,ﬁl,ol,gl, r',w'0)
and transitive structure) and low pseudocounts on 1=0 7,07t
all the rest. Note that the use of this structured )
prior has another desired side effect: it breaks thd Other words, we want model parameters which
symmetry of the role names (because some linkmaximize the expected likelihood of the observed

ings more likely than others) which encourages th&@t@, where the expectation is taken over the

model to adhere to canonical role naming convenhidden variables for each instance. Although

tions, at least for commonly occurring roles like it is intractable to find exact solutions to opti-
ARGO and ARG1 mization problems of this form, the Expectation-
: o , Maximization (EM) algorithm is a greedy search
tT he d esil(gn Olf tge Ilnlglngt EOde,I[ dotes mcl?rpo'bprocedure over the parameter space which is guar-
r.ae. prior novye ge. abou PT structure of ver anteed to increase the expected likelihood, and
linkings and diathesis alternations.

o : Indeeq, thqhus find a local maximum of the function.
linking model provides a weak form of Univer- While the M-step is clearly trivial, the E-step

I ing the ki f linki - e .
sal Grammar, encoding the kinds of linking pat at first looks more complex: there are three hid-

terns that are known to occur in human languages . .
. den variables for each instan@ep, andr, each of
While not fully developed as a model of cross-

o . ._which can take an exponential number of values.
linguistic verb argument realization, the model is .

. e : Note however, that conditioned on the observed
not very English specific. It provides a not-very-

constrained theory of alternations that capturesset of syntactic relations, the variables’ and o

0 . are completely determined by a choice of rotes
common cross-linguistic patterns. Finally, though :
. for each dependent. So to represent uncertainty
we do encode knowledge in the form of the model .
. . o over these variables, we need only to represent a
structure and associated prior distributions, note,. ~ .~ .
: . distribution over possible role vectors Though
that we do not provide any verb-specific knowl- . : .
e . . in the worst case the set of possible role vectors is
edge; this is left to the learning algorithm. i :
still exponential, we only need role vectors that are
consistent with both the observed list of syntactic
4 Learning relations and a linking that can be generated by
the construction operations. Empirically the num-
Our goal in learning is to find parameter settings ofoer of linkings is small (less than 50) for each of
our model which are likely given the data. Usingthe observed instances in our data sets.
0 to represent the vector of all model parameters, Then for each instance we construct a condi-

if our data were fully observed, we could expresgtional probability distribution over this set, which



is computable in terms of the model parameters: | | CoarseRoles | CoreRoles |
Sec. 23 P R|FL|P ]| R FL

ID Only 957 | .802| .873| .944 | .843 | .891
P(I’,Er,Or, |U,g,W) X CL Only
Baseline| .856 | .856 | .856 | .975 | .820 | .886

M
PTBTr. | .889 | .889 | .889 | .928 | .898 | .911
P(le|v)P(or|tr) H P(gjloe)P(rjloe)P(wjlr;) 1000 Tr. | .897 | .897 | .897 | .947 | .898 | .920
j=1 ID+CL
Baseline| .819 | .686 | .747 | .920 | .691 | .789
We have denoted & ando, the values of and PTBTr. | .851| .712 | .776 | .876 | .757 | .812

o that are determined by each choicerof 1000 Tr. | .859 | .719 | .783 | .894 | .757 | .820
Sec. 24 P R F1 P R F1

To make EM work, there are a few additional \—5rr——os7 785 863 | 941 825 879
subtleties. First, because EM is a hill-climbing al- | cL only
gorithm, we must initialize it to a point in parame- | Baseline| .844 | .844 | .844 | .980 | .810 -g%
ter space with slope (and without symmetries). We EggoTTr} 'ggg 'ggg :ggg :ggg :ggg 925
do so by adding a small amount of noise: for each ID+cL
dependent of each verb, we add a fractional count Baseline| .804 | .665 | .729 | .922 | .668 | .775

_6 o . PTBTr. | .852| .704 | .771| .885 | .745 | .809
of 107" to the word distribution of a semantic role | 19001 | 858 | 709 | 776 | 900 | 741 | 813
selected at random. Second, we must choose when

to stop EM: we run until the relative change in dataacle 3: Summary of results on labeling verb instances
in PropBank Section 23 and Section 24 for semantic role.

. . . —4
log likelihood is Ies_s than0~*". ) ) Learned results are averaged over 5 runs.
A separate but important question is how well

EM works for finding “good” models in the space we specify a set of target verb types (e.g., the ones
of possible parameter settings. “Good” models arén the test set), and build a training set by adding a
ones which list linkings for each verb that corre-fixed number of instances of each verb type from
spond to linguists’ judgments about verb linking the PTB, BLLIP, and GW data sets, in that order.
behavior. Recall that EM is guaranteed only to For the semantic role labeling evaluation, we
find a local maximum of the data likelihood func- use our system to label the dependents of unseen
tion. There are two reasons why a particular maxiverb instances for semantic role. We use the sen-
mum might not be a “good” model. First, becausetences in PTB section 23 for testing, and PTB sec-
it is a greedy procedure, EM might get stuck in lo-tion 24 for development. The development set
cal maxima, and be unable to find other points inconsists of 2507 verb instances and 833 different
the space that have much higher data likelihoodverb types, and the test set consists of 4269 verb
We take the traditional approach to this problem,nstances and 1099 different verb types. Free pa-
which is to use random restarts; however empirrameters were tuned on the development set, and
ically there is very little variance over runs. A the test set was only used for final experiments.

deeper problem is that data likelihood may not cor- Because we do not observe the gold standard
respond well to a linguist's assessment of modesemantic roles at training time, we must choose
quality. As evidence that this is not the case, wean alignment between the guessed labels and the
have observed a strong correlation between datgold labels. We do so optimistically, by choos-
log likelihood and labeling accuracy. ing the gold label for each guessed label which

. maximizes the number of correct guesses. This is
5 Datasetsand Evaluation a well known approach to evaluation in unsuper-

We train our models with verb instances ex-Vised learning: when it is used to compute accu-
tracted from three parsed corpora: (1) the Wallacy, the resulting metric is sometimes caltdais-
Street Journal section of the Penn Treebank (PTBJer purity. While this amounts to “peeking” at the
which was parsed by human annotators (Marcus etnswers before evaluation, the amount of human
al., 1993), (2) the Brown Laboratory for Linguis- knowledge that is given to the system is small: it
tic Information Processing corpus of Wall Streetcorresponds to the effort required to hand assign a
Journal text (BLLIP), which was parsed automat-‘name” to each label that the system proposes.
ically by the Charniak parser (Charniak, 2000), As is customary, we divide the problem into
and (3) the Gigaword corpus of raw newswire texttwo subtasks:identification (ID) and classifica-
(GW), which we parsed ourselves with the Stantion (CL). In the identification task, we identify
ford parser. In all cases, when training a modelthe set of constituents which fill some role for a




0.79 - Verb Learned Linkings
. D (A F1)
0-78 1 » M give 57 | {0=subj,1=np#2,2=npA1L
0.77 1 (+.436) | .24 | {O=subj,1=np#}
0.76 1 .13 | {0=subj,1=np#1,2=tp
— 075 | work .45 | {O=sub}
S Mmoo m mm o m e e e (+.206) | .09 | {0=subj,2=with}
0.74 4 .09 | {O=subj,2=fo}
073 | e .09 | {0=subj,2=o0n
J§ = = = -Baseline pay 47 | {0O=subj,1=np#}
0.72 (+.178) | .21 | {0=subj1=np#1,2=fdr
0.71 ; ; ; | .10 | {O=sub}
0 250 500 750 1000 .07 | {O=subj,1=np#2,2=np#l
Training Examples look 28 | {0=sub
g p (+.170) | .18 | {0=subj,2=a}
Figure 3: Test set F1 as a function of training set size. , 16 | {O=subj,2=fo}
rise .25 | {O=subj,1=np#1,2=tp
target verb: in our system we use simple rules (+.160) | .17 }Ozsugj,lznqp#l
: .14 | {o=subj,2=t
to extract dependents of the target verb and their 12 | {0=subj 1=np#1,2=t0 3=froin

grammatical relations. In the classification task,
the identified constituents are labeled for their seTable 4: Learned linking models for the most improved verbs.
mantic role by the learned probabilistic model. We 0 conserve spacel RG:0 is abbreviated a8, andpreptois
) . . “abbreviated ato.
report results on two variants of the basic classifi-
cation task:coarse rolesin which all of the ad- the test set (or 0.783 on the combined identifica-
junct roles are collapsed to a singleRGM role  tion and classification task), compared with an F1
(Toutanova, 2005), andore roles in which we of 0.856 for the baseline (or 0.747 on the com-
evaluate performance on the core semantic rolegined task), thus reducing 28.5% of the relative
only (thus collapsing thedARGM and unlabeled error. Similarly, this system reduces 35% of the
categories). We do not report results on #ie  error on the coarse roles task on development set.
rolestask, since our current model does not distin- To get a better sense of what is and is not be-
guish between different types of adjunct roles. Foiing learned by the model, we compare the perfor-
each task we report precision, recall, and F1. mance of individual verbs in both the baseline sys-
tem and our best learned system. For this analysis,
6 Results we have restricted focus to verbs for which there
The semantic role labeling results are summarize@'e at least 10 evaluation examples, to yield a re-
in Table 3. Our performance on the identificationliable estimate of performance. Of these, 27 verbs
task is high precision but low recall, as one wouldhave increased F1 measure, 17 are unchanged, and
expect from a rule-based system. The recall er3 verbs have decreased F1. We show learned link-

rors stem from constituents which are consideredds for the 5 verbs which are most and least im-
to fill roles by PropBank, but which are not identi- Proved in Tables 4 and 5.
fied as dependents by the extraction rules (such as The improvement in the vergive comes from
those external to the verb phrase). The precisiothe model's learning the ditransitive alternation.
errors stem from dependents which are found byrhe improvements iwork, pay, andlook stem
the rules, but are not marked by PropBank (suctirom the model’s recognition that the oblique de-
as the expletive “it"). pendents are generated by a core semantic role.

In the classification task, we compare our sysUnfortunately, in some cases it lumps different
tem to an informed baseline, which is computedroles together, so the gains are not as large as they
by labeling each dependent with a role that is a decould be. The reason for this conservatism is the
terministic function of its syntactic relation. The high level of smoothing, set to optimize perfor-
syntactic relationsubjis assumed to belRG0, mance on the development set. The improvement
and the syntactic relationsp#1, cl#1, xcl#1, and in the verbrise stems from the model correctly as-
acomp#lare mapped to rold RG1, and all other  Signing separate roles each for the amount risen,
dependents are mappedA®RG M. the source, and the destination.

Our best system, trained with 1000 verb in- The poor performance on the veclbsestems
stances per verb type (where available), gets an Ftom its idiosyncratic usage in the WSJ corpus;
of 0.897 on the coarse roles classification task om typical use idn national trading, SFE shares



2’2’21) Learned Linkings refer totaskg. It seems plausible that measures to
combat word sparsity might help to differentiate

help .52 | {O=subj,1=cl#} .
(—.039) | .25 | {0=subj,1=xcl#} these roles: backing-off to word classes, or even
-16 | {O=subj,1=np#} just training with much more data.

follow 81 0=subj,1=np#}
(—.056) | .13 | {O=subj,1=cl#}
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