
Effect of Non-linear Deep Architecture in Sequence Labeling

Mengqiu Wang MENGQIU@CS.STANFORD.EDU

Christopher D. Manning MANNING@CS.STANFORD.EDU

Computer Science Department, Stanford University, Stanford, CA 94305 USA

Abstract

If we compare the widely used Conditional
Random Fields (CRF) with newly proposed
“deep architecture” sequence models (Col-
lobert et al., 2011), there are two things
changing: from linear architecture to non-
linear, and from discrete feature represen-
tation to distributional. It is unclear, how-
ever, what utility non-linearity offers in con-
ventional feature-based models. In this
study, we show the close connection be-
tween CRF and “sequence model” neural
nets, and present an empirical investiga-
tion to compare their performance on two
sequence labeling tasks – Named Entity
Recognition and Syntactic Chunking. Our
results suggest that non-linear models are
highly effective in low-dimensional distri-
butional spaces. Somewhat surprisingly, we
find that a non-linear architecture offers no
benefits in a high-dimensional discrete fea-
ture space.

1. Introduction

Sequence labeling encompasses an important class of
NLP problems that aim at annotating natural language
texts with various syntactic and semantic information,
such as part-of-speech tags and named-entity labels.
Output from such systems can facilitate downstream
applications such as Question Answering and Rela-
tion Extraction. Most methods developed so far for
sequence labeling employ generalized linear statisti-

Proceedings of ICML Workshop on Deep Learning for Audio,
Speech and Language Processing, Atlanta, Georgia, USA, 2013.
JMLR: W&CP volume 28. Copyright 2013 by the author(s).

cal models, meaning methods that describe the data as
a combination of linear basis functions, either directly
in the input variables space (e.g., SVM) or through
some transformation of the probability distributions
(e.g., “log-linear” models).

Recently, Collobert et al. (2011) proposed “deep
architecture” models for sequence labeling (named
Sentence-level Likelihood Neural Nets, abbreviated
as SLNN henceforth), and showed promising results
on a range of tasks (POS tagging, NER, Chunking,
and SRL). Two new changes were suggested: ex-
tending the model from a linear to non-linear archi-
tecture; and replacing discrete feature representations
with distributional feature representations in a contin-
uous space. It has generally been argued that non-
linearity between layers is vital to the power of neu-
ral models (Bengio, 2009). The relative contribution
of these changes, however, is unclear, as is the ques-
tion of whether gains can be made by introducing non-
linearity to conventional feature-based models.

In this paper, we illustrate the close relationship be-
tween CRF and SLNN models, and conduct an em-
pirical investigation of these questions. Experiments
on Named Entity Recognition (NER) and Syntactic
Chunking tasks suggest that non-linear models are
highly effective in low-dimensional distributed feature
space, but offer no benefits in high-dimensional dis-
crete space.

2. From CRFs To SLNNs

A CRF models the conditional probability of struc-
tured output variables y given observations x. In se-
quence modeling, the observations are typically words
in a sentence, and the output variables are some syn-
tactic or semantic tags we are trying to predict for

Effect of Non-linear Deep Architecture in Sequence Labeling

each word (e.g., POS, named-entity tags, etc.). The
most commonly used CRF model has a linear chain
structure, where prediction yi at position i is indepen-
dent of other predictions, given its neighbors yi−1 and
yi+1. It is customary to describe the model as an undi-
rected graphical model, with the following probability
definition:

P (y|x) =
1

Z(x)

|x|∏
i=1

Ψ(x, yi; Θ)

|x|∏
j=1

Φ(x, yj , yj−1; Λ)

Ψ(x, yi; Θ) = exp

{
m∑
k=1

θ(k,yi)fk(x)

}

Φ(x, yi, yi−1; Λ) = exp

{
m′∑
k=1

λ(k,yi,yi−1)gk(x)

}

Z(x) =
∑
y′

 |x|∏
i=1

Ψ(x, y′i; Θ)

|x|∏
j=1

Φ(x, y′j , y
′
j−1; Λ)


Ψ(x, yi) denotes node clique potentials in this graph,
and Φ(x, yi, yi−1) denotes edge clique potentials.
fk(x) is the set of node-level feature functions, m is
the number of node features, and θ(k,yi) is a weight pa-
rameter of feature k associated with a particular out-
put yi; similarly for edges we have gk(x), m′, and
λ(k,yi,yi−1). Z(x) is the partition function that sums
over all possible assignments of output variables in
the entire sequence.

Let us focus our discussion on the node clique poten-
tials Ψ for now. We call the operand of the exponen-
tiation operator in Ψ a potential function ψ. In a CRF,
this can be expressed in matrix notation as:

ψ(x, yi; Θ) = |Θᵀf(x)|ŷi1

We use the notation ŷi to denote the ordinal index of
the value assigned to yi. This linear potential function
ψ can be visualized using a neural network diagram,
shown in the left plot in Figure 1. Each edge in the
graph represents a parameter weight θ(k,ŷi), for fea-
ture fk(x) and a variable assignment of yi. In neu-
ral network terminology, this architecture is called a
single-layer Input-Output Neural Network (IONN). 1

1The bias parameter “b” commonly seen in Neural Network
convention can be encoded as a “always on” feature in the input
layer.

Normalizing locally in a logistic regression is equiv-
alent to adding a softmax layer to the output layer of
the IONN, which was commonly done in neural net-
works, such as in Collobert et al. (2011).

We can add a hidden linear layer to this architecture to
formulate a two-layer Linear Neural Network (LNN),
as shown in the middle diagram of Figure 1. The
value of the node zj in the hidden layer is computed
as zj =

∑
k

ω(k,j)fk(x). The value yi for nodes in

the output layer is computed as: yi =
∑
j

δ(j,i)zj =∑
j

δ(j,i)
∑
k

ω(k,j)fk(x). where ω(k,j) and δ(j,i) are

new parameters introduced in the model. In matrix
form, it can be written as y = ∆ᵀz = ∆ᵀΩᵀf(x).
The node potential function now becomes:

ψ′(x, yi; Ω,∆) = |∆ᵀΩᵀf(x)|ŷi1

This two-layer network is actually no more powerful
than the previous model, since we can always compile
it down to a single-layer IONN by making Θ = Ω∆.
In the next step, we take the output of the hidden layer
in the LNN, and send it through a non-linear activation
function, such as a sigmoid or tanh, then we arrive at
a two-layer Deep Neural Network (DNN) model. Un-
like the previous two models, the DNN is non-linear,
and thus capable of representing a more complex de-
cision surface.

So far we have extended the potential function used
in node cliques of a CRF to a non-linear DNN. And
if we keep the potential function for edge cliques the
same as before, then in fact we have arrived at an iden-
tical model to the SLNN in Collobert et al. (Collobert
et al., 2011). The difference between a SLNN and
an ordinary DNN model is that we need to take into
consideration the influence of edge cliques, and there-
fore we can no longer normalize the clique factors at
each position to calculate the local marginals, as we
would do in a logistic regression. The cardinality of
the output variable vector y grows exponentially with
respect to input sequence length. Fortunately, we can
use forward-backward style dynamic programming to
compute the marginal probabilities efficiently.

It is also worth pointing out that this model has in
fact been introduced a few times in prior literature. It

Effect of Non-linear Deep Architecture in Sequence Labeling

f1(x)

f2(x)

f3(x)

f4(x)

yi = v1

yi = v2

yi = v3

θ(1,v1)

Input
layer

Output
layer ω(1,1) δ(1,v1)

Hidden
layer

Input
layer

Output
layer

tanh

ω(1,1) δ(1,v1)

Nonlinear
Hidden
layers

Input
layer

Output
layer

Figure 1. Potential function illustrated as a neural network architecture. In this diagram, we assume the random variable yi has three
possible value assignments (v1, v2, v3). On the left side is the linear potential function ψ in CRF, illustrated as a single-layer Input-
Output Neural Network. In the middle is a potential function as a two-layer Linear Neural Network; on the right side is a two-layer Deep
Neural Network.

was termed Conditional Neural Fields by Peng et al.
(2009), and later Neural Conditional Random Fields
by Do and Artieres (2010). Unfortunately, the con-
nection to Collobert et al. (2008) was not recognized
in either of these two studies; vice versa, neither of the
above were referenced in Collobert et al. (2011). This
model also appeared previously in the speech recog-
nition literature in Prabhavalkar and Fosler-Lussier
(2010).

3. Parameter Learning

Supervised conditional training of the SLNN model
amounts to maximizing the objective function L,
which is given by the sum of log-probabilities over
training examples:

L(Y∗|X) =

|X|∑
l=1

(|xl|∑
i=1

ψ′(xl,yl∗
i)

+

|xl|∑
j=1

φ(xl,yl∗
j ,y

l∗
j−1)

)
−
|X|∑
l=1

logZ(x)

The change in node potential function from ψ to ψ′

does not affect the inference procedure, and thus we
can employ the same dynamic programming algo-
rithm as in a CRF to calculate the log sum over Z(x)
and the expectation of feature parameters.

We adopted the simple L-BFGS algorithm for train-

ing weights in this model (Liu & Nocedal, 1989). Al-
though L-BFGS is in general slower than mini-batch
SGD – another common optimization algorithm used
to train neural networks (Bengio et al., 2006, inter
alia), it has been found to be quite stable and suitable
for learning neural networks (Socher et al., 2011). The
gradient of a parameter ω(k,j) is calculated as the fol-
lowing:

∂L

∂ω(k,j)
=

|X|∑
l=1

|xl|∑
i=1

(
∂ψ′(xl,yl

i)

∂ω(k,j)

− EP (yl|xl)

[
∂ψ′(xl,yl

i)

∂ω(k,j)

])
The partial derivative of the potential function
∂ψ′(xl,yl

i)

∂ω(k,j)
can be calculated using the back-

propagation procedure, identical to how gradients of
a standard Multilayer Perceptron are calculated. The
gradient calculation for output layer parameters ∆ and
edge parameters Λ follow the same form. We apply
`2-regularization to prevent overfitting.

4. Empirical Evaluation

We evaluate the CRF and SLNN models on two stan-
dard sequence labeling tasks: Syntactic Chunking and
Named Entity Recognition (NER). In both experi-
ments, we use the publicly available Stanford CRF

Effect of Non-linear Deep Architecture in Sequence Labeling

Toolkit (Finkel et al., 2005). We extend this standard
CRF toolkit to include the ability to use non-linear po-
tential functions, and release it publicly. 2

4.1. Named Entity Recognition

We train all models on the standard CoNLL-2003
shared task benchmark dataset (Sang & Meulder,
2003), which is a collection of documents from
Reuters newswire articles, annotated with four entity
types: Person, Location, Organization, and Miscella-
neous. We adopt the BIO2 annotation standard. Be-
ginning and intermediate positions of an entity are
marked with B- and I- tags, and non-entities with
O tag. The training set contains 204K words (14K
sentences), the development set contains 51K words
(3.3K sentences), and the test set contains 46K words
(3.5K sentences).

To evaluate out-of-domain performance, we run the
models trained on CoNLL-03 training data on two ad-
ditional test datasets. The first dataset (ACE) is taken
from the ACE Phase 2 (2001-02) and ACE-2003 data.
Although the ACE dataset also consists of newswire
text and thus is not strictly out-of-domain, there is a
genre or dialect difference in that it is drawn from
mostly American news sources, whereas CoNLL is
mostly English. The test portion of this dataset con-
tains 63K words, and is annotated with 5 original en-
tity types: Person, Location, Organization, Fact, and
GPE. We remove all entities of type Fact and GPE by
relabeling them as O during preprocessing, and dis-
card entities tags of type Miscellaneous in the output
of the models. The second dataset is the MUC7 For-
mal Run test set, which contains 59K words. It is also
missing the Miscellaneous entity type, but includes 4
additional entity types that do not occur in CoNLL-
2003: Date, Time, Money, and Percent. We converted
the data to CoNLL-2003 type format using the same
method applied to the ACE data.

We used a comprehensive set of features that comes
with the standard distribution of Stanford NER model
(Finkel et al., 2005). A total number of 437905 fea-
tures were generated for the CoNLL-2003 training
dataset.

2http://nlp.stanford.edu/software/
CRF-NER.shtml

4.2. Syntactic Chunking

In Syntactic Chunking, each word is assigned a tag of
the type of syntactic phrase it belongs to. For example,
a word marked with tag B-NP indicates this is the be-
ginning of a noun phrase, and a word marked as I-PP
is an intermediate part of a prepositional phrase. We
test the models on the standard CoNLL-2000 shared
task evaluation set (Sang & Buchholz, 2000). This
dataset comes from the Penn Treebank. The training
set contains 211K words (8.9K sentences), and the test
set contains 47K words (2K sentences). The set of
features used for this task is:

• Current word and tag
• Word pairs: wi ∧ wi+1 for i ∈ {−1, 0}
• Tags: (ti ∧ ti+1) for i ∈ −1, 0; (t−1, t0, ti+1);
• The Disjunctive word set of the previous and next 4

positions

A total number of 317794 features were generated on
this dataset.

4.3. Experimental Setup

In all experiments, we used the development portion
of the CoNLL-2003 data to tune the `2-regularization
parameter σ (variance in Gaussian prior), and found
20 to be a stable value, which was then used in
all models. We terminate L-BFGS training when
the average improvement is less than 1e-3. All
model parameters are initialized to a random value in
[−0.1, 0.1] in order to break symmetry. We did not ex-
plicitly tune the features used in CRF to optimize for
performance, since feature engineering is not the fo-
cus of this study. However, overall we found that the
feature set we used is competitive with CRF results
from earlier literature (Turian et al., 2010; Collobert
et al., 2011). For models that embed hidden layers,
we set the number of hidden nodes to 300. 3 Results
are reported on the standard evaluation metrics of en-
tity/chunk precision, recall and F1 measure.

For experiments with continuous space feature rep-
resentations (a.k.a., word embeddings), we took the
word embeddings (130K words, 50 dimensions) used
in Collobert et al. (2011), which were trained for

3We tried varying the number of hidden units in the range from
50 to 500, and the main qualitative results remain the same.

Effect of Non-linear Deep Architecture in Sequence Labeling

2 months over Wikipedia text. 4 All sequences of
numbers are replaced with num (e.g., “PS1” would
become “PSnum”), sentence boundaries are padded
with token PAD, and unknown words are grouped
into UNKNOWN. We attempt to replicate the model
described in Collobert et al. (2011) without task-
specific fine-tuning, with a few exceptions: 1) we
used the soft tanh activation function instead of hard
tanh; 2) we use the BIO2 tagging scheme instead of
BIOES; 3) we use L-BFGS optimization algorithm in-
stead of stochastic gradient descent; 4) we did not use
Gazetteer features; 5) Collobert et al. (2011) men-
tioned 5 binary features that look at the capitalization
pattern of words to append to the embedding as ad-
ditional dimensions, but only 4 were described in the
paper, which we implemented accordingly.

5. Results and Discussion

For both the CRF and SLNN models, we experiment
with both the discrete binary valued feature represen-
tation used in a regular CRF, and the word embed-
dings described. Unless otherwise stated, the set of
edge features is limited to pairs of predicted labels at
the current and previous positions, i.e., (yi, yi−1). The
same edge features were used in Collobert et al. (Col-
lobert et al., 2011) and were called “transition scores”
([A]i,j).

5.1. Results of Discrete Representation

CRF SLNN
P R F1 P R F1

CoNLLd 90.9 90.4 90.7 89.3 89.7 89.5
CoNLLt 85.4 84.7 85.0 83.3 83.9 83.6
ACE 81.0 74.2 77.4 80.9 74.0 77.3
MUC 72.5 74.5 73.5 71.1 74.1 72.6
Chunk 93.7 93.5 93.6 93.3 93.3 93.3

Table 1. Results of CRF versus SLNN, over discrete feature
space. CoNLLd stands for the CoNLL development set, and
CoNLLt is the test set. Best F1 score on each dataset is high-
lighted in bold.

The first question we address is the following: in the
high-dimensional discrete feature space, would the
non-linear architecture in SLNN model help it to out-
perform CRF?

Results from Table 1 suggest that SLNN does not
4Available at http://ml.nec-labs.com/senna/.

seem to benefit from the non-linear architecture on ei-
ther the NER or Syntactic Chunking tasks. In particu-
lar, on the CoNLL and MUC dataset, SLNN resulted
in a 1% performance drop, which is significant for
NER. The specific statistical properties of this dataset
that lead to the performance drop are hard to deter-
mine, but we believe it is partially because the SLNN
has a much harder non-convex optimization problem
to solve – on this small dataset, the SLNN with 300
hidden units generates a shocking number of 100 mil-
lion parameters (437905 features times 300 hidden di-
mensions), due to the high dimensionality of the input
feature space.

To further illustrate this point, we also compared the
CRF model with its Linear Neural Network (LNN) ex-
tension, which has exactly the same number of param-
eters as the SLNN but does not include the non-linear
activation layer. Although this model is identical in
representational power to the CRF as we discussed in
Section 2, the optimization problem here is no longer
convex (Ando & Zhang, 2005). To see why, consider
applying a linear scaling transformation to the input
layer parameter matrix Ω, and apply the inverse scal-
ing to output layer ∆ matrix. The resulting model has
exactly the same function values. We can see from
Table 2 that there is indeed a performance drop with
the LNN model as well, likely due to difficulty with
optimization. By comparing the results of LNN and
SLNN, we see that the addition of a non-linear acti-
vation layer in SLNN does not seem to help, but in
fact further decreases performance in all cases except
Syntactic Chunking.

CRF LLN
P R F1 P R F1

CoNLLd 90.9 90.4 90.7 89.5 90.6 90.0
CoNLLt 85.4 84.7 85.0 83.1 84.7 83.9
ACE 81.0 74.2 77.4 80.7 74.3 77.3
MUC 72.5 74.5 73.5 72.3 75.2 73.7
Chunk 93.7 93.5 93.6 93.1 93.2 93.2

Table 2. Results of CRF versus LNN, over discrete feature space.

One distinct characteristic of NLP problems is their
high dimensionality. The vocabulary size of a decent
sized text corpus is already in the tens of thousands,
and bigram statistics are usually a few orders of mag-
nitude larger. These basic information units are typi-
cally very informative, and there is not much structure
to be explored in them. Although some studies argue

Effect of Non-linear Deep Architecture in Sequence Labeling

that non-linear neural nets actually suffer less from the
curse of dimensionality (Attali & Pagés, 1997; Bengio
& Bengio, 2000; Pitkow, 2012), counter arguments
have also been offered (Camastra, 2003; Verleysen
et al., 2003). The empirical results from this exper-
iment seems to support the latter. Similar results have
also been found in other NLP applications such as
Text Classification. For example, Joachims concluded
in his seminal work: “non-linear SVMs do not provide
any advantage for text classification using the stan-
dard kernels” (Joachims, 2004, p. 115). If we com-
pare the learning curve of CRF and SLNN (Figure 2),
where we vary the amount of binary features available
in the model by random sub-sampling, we can further
observe that SLNNs enjoy a small performance ad-
vantage in lower dimensional space (when less than
30% of features are used), but are quickly outpaced
by CRFs in higher dimensional space as more features
become available.

0.2 0.4 0.6 0.8 1

70

80

90

SLNN
CRF

Figure 2. The learning curve of SLNN vs. CRF on CoNLL-03
dev set, with respect to the percentage of discrete features used
(i.e., size of input dimension). Y-axis is the F1 score (out of 100),
and X-axis is the percentage of features used.

Another point of consideration is whether there is ac-
tually much non-linearity to be captured in sequence
labeling. While in some NLP applications like gram-
mar induction and semantic parsing, the data is com-
plex and rich in statistical structures, the structure
of data in sequence labeling is considerably simpler.
This contrast is more salient if we compare with data
in Computer Vision tasks such as object recognition
and image segmentation. The interactions among lo-
cal variables there are much stronger and more likely
to be non-linear. Lastly, models like CRF actually

already capture some of the non-linearity in the in-
put space through the interactions of latent variables
(Liang et al., 2008), and it is unclear how much ad-
ditional gain we would get by explicitly modeling the
non-linearity in local inputs.

5.2. Results of Distributional Representation

For the next set of experiments, we replace the dis-
crete input features with a continuous space represen-
tation by looking up the embedding of each word, and
concatenate the embeddings of a 5 word window cen-
tered around the current position. Four binary features
are also appended to each word embedding to capture
capitalization patterns, as described in Collobert et al.
(2011). Results of the CRF and SLNN under this set-
ting for the NER task is show in Table 3.

CRF SLNN
P R F1 P R F1

CoNLLd 80.7 78.7 79.7 86.1 87.1 86.6
CoNLLt 76.4 75.5 76.0 79.8 81.7 80.7
ACE 71.5 71.1 71.3 75.8 74.1 75.0
MUC 65.3 74.0 69.4 65.7 76.8 70.8

Table 3. Results of CRF versus SLNN, over continuous space fea-
ture representations.

Here we see that with a continuous space representa-
tion, the SLNN model works significantly better than
a CRF, by as much as 7% on the CoNLL develop-
ment set, and 3.7% on ACE dataset. This suggests
that there exist statistical dependencies within this
low-dimensional (300) data that cannot be effectively
captured by linear transformations, but can be mod-
eled in the non-linear neural nets. This perhaps co-
incides with the large performance improvements ob-
served from neural nets in handwritten digit recogni-
tion datasets as well (Peng et al., 2009; Do & Artieres,
2010), where dimensionality is also relatively low.

6. Conclusion

We carefully compared and analyzed the non-linear
neural networks used in Collobert et al. (2011) and
the widely adopted CRF, and revealed their close rela-
tionship. Through extensive experiments on NER and
Syntactic Chunking, we have shown that non-linear
architectures are effective in low dimensional continu-
ous input spaces, but that they are not better suited for
conventional high-dimensional discrete input spaces.

Effect of Non-linear Deep Architecture in Sequence Labeling

Acknowledgments

The authors would like to thank Rob Voigt and the
two anonymous reviewers for their valuable com-
ments and suggestions. We gratefully acknowledge
the support of the U.S. Defense Advanced Research
Projects Agency (DARPA) Broad Operational Lan-
guage Translation (BOLT) program through IBM.
Any opinions, findings, and conclusion or recommen-
dations expressed in this material are those of the
authors and do not necessarily reflect the view of
DARPA, or the US government.

References

Ando, Rie K. and Zhang, Tong. A framework for
learning predictive structures from multiple tasks
and unlabeled data. JMLR, 6:1817–1853, 2005.

Attali, Jean-Gabriel and Pagés, Gilles. Approxima-
tions of functions by a multilayer perceptron: a new
approach. Neural Networks, 10:1069–1081, 1997.

Bengio, Yoshua. Learning deep architectures for AI.
Found. Trends Mach. Learn., 2(1):1–127, January
2009. ISSN 1935-8237.

Bengio, Yoshua and Bengio, Samy. Modeling high-
dimensional discrete data with multi-layer neural
networks. In Proceedings of NIPS 12, 2000.

Camastra, Francesco. Data dimensionality estimation
methods: A survey. Pattern Recognition, 36:2945–
2954, 2003.

Collobert, Ronan and Weston, Jason. A unified archi-
tecture for natural language processing: Deep neu-
ral networks with multitask learning. In Proceed-
ings of ICML, 2008.

Collobert, Ronan, Weston, Jason, Bottou, Leon,
Karlen, Michael, Kavukcuoglu, Koray, and Kuksa,
Pavel. Natural language processing (almost) from
scratch. JMLR, 12:2461–2505, 2011.

Do, Trinh-Minh-Tri and Artieres, Thierry. Neural
conditional random fields. In Proceedings of AIS-
TATS, 2010.

Finkel, Jenny R., Grenager, Trond, and Manning,
Christopher D. Incorporating non-local informa-

tion into information extraction systems by Gibbs
sampling. In Proceedings of ACL, 2005.

Joachims, Thorsten. Learning to Classify Text Using
Support Vector Machines: Methods, Theory, and
Algorithms. Kluwer Academic Publishers, 2004.

Liang, Percy, Daume, Hal, and Klein, Dan. Structure
compilation: Trading structure for features. In Pro-
ceedings of ICML, 2008.

Liu, Dong C. and Nocedal, Jorge. On the limited
memory BFGS method for large scale optimization.
Math. Programming, 45:503–528, 1989.

Peng, Jian, Bo, Liefeng, and Xu, Jinbo. Conditional
neural fields. In Proceedings of NIPS 22, 2009.

Pitkow, Xaq. Compressive neural representation of
sparse, high-dimensional probabilities. In Proceed-
ings of NIPS 25, 2012.

Prabhavalkar, Rohit and Fosler-Lussier, Eric. Back-
propagation training for multilayer conditional ran-
dom field based phone recognition. In Proceedings
of ICASSP, 2010.

Sang, Erik F. Tjong Kim and Buchholz, Sabine. Intro-
duction to the CoNLL-2000 shared task: Chunking.
In Proceedings of CoNLL, 2000.

Sang, Erik F. Tjong Kim and Meulder, Fien De. Intro-
duction to the CoNLL-2003 shared task: language-
independent named entity recognition. In Proceed-
ings of CoNLL, 2003.

Socher, Richard, Pennington, Jeffrey, Huang, Eric H.,
Ng, Andrew Y., and Manning, Christopher D.
Semi-supervised recursive autoencoders for pre-
dicting sentiment distributions. In Proceedings of
EMNLP, 2011.

Turian, Joseph, Ratinov, Lev, and Bengio, Yoshua.
Word representations: A simple and general
method for semi-supervised learning. In Proceed-
ings of ACL, 2010.

Verleysen, Michel, Francois, Damien, Simon, Ge-
offroy, and Wertz, Vincent. On the effects of
dimensionality on data analysis with neural net-
works. In Proceedings of the 7th International
Work-Conference on Artificial and Natural Neural
Networks: Part II, 2003.

