Stanford at TAC KBP 2016:
Sealing Pipeline Leaks and Understanding Chinese

Yuhao Zhang,* Arun Chaganty,* Ashwin Paranjape,*
Danqi Chen,* Jason Bolton,* Peng Qi, Christopher D. Manning
Stanford University; Stanford, CA 94305
{yuhaozhang, chaganty, ashwinpp}@stanford.edu
{dangi, jebolton, penggi, manning}@stanford.edu

Abstract

We describe Stanford’s entries in the TAC
KBP 2016 Cold Start Slot Filling and Knowl-
edge Base Population challenge. Our biggest
contribution is an entirely new Chinese entity
detection and relation extraction system for
the new Chinese and cross-lingual relation ex-
traction tracks. This new system consists of
several ruled-based relation extractors and a
distantly supervised extractor. We also ana-
lyze errors produced by our existing mature
English KBP system, which leads to several
fixes, notably improvements to our patterns-
based extractor and neural network model,
support for nested mentions and inferred rela-
tions. Stanford’s 2016 English, Chinese and
cross-lingual submissions achieved an over-
all (macro-averaged LDC-MEAN) F1 of 22.0,
14.2, and 11.2 respectively on the 2016 evalu-
ation data, performing well above the median
entries, at 7.5, 13.2 and 8.3 respectively.

1 Introduction

The TAC KBP 2016 challenge introduces two new
multilingual tracks apart from English, namely Chi-
nese and Spanish, as well as a new cross-lingual
track. Consequently, we refined our existing English
KBP system, by conducting thorough error analysis
at every step of the pipeline and making incremental
improvements. We also developed a new Chinese
KBP system by combining pattern-based systems
and distantly supervised systems. We then com-
bined the output from these two systems to form our

*The first five authors all made large, roughly equal contri-
butions to the system.

submissions to the cross-lingual track.! We describe
the details of our contributions in this paper.

Our English KBP system is built on top of Stan-
ford’s 2015 KBP slot filling submission system (An-
geli et al., 2015). A thorough error analysis of our
performance on the 2015 challenge data leads to
many minor and a few major system improvements:
1) We enhance our pattern-based extractors by hill-
climbing on the dev set. 2) We use a new neural
network-based extractor that is optimized for high
recall. 3) We enhance our mention detection module
by expanding our gazetteers and adding rules to cor-
rectly capture nested entites mentions, and we add
rule-based extractors to better handle inferred rela-
tions. Our final submission system consists of 5
rule-based relation extractors, a self-trained super-
vised extractor and a supervised neural network ex-
tractor.

In addition to the English KBP system, we devel-
oped a completely new Chinese KBP system mod-
eled around the English system’s architecture. This
Chinese KBP system has the following key differ-
ences from the English system: 1) We develop a
completely new fine-grained Chinese NER system
that is optimized for KBP. This new NER system
combines a CRF model, a rule-based system and a
gazetteer-based system to support 22 NER labels.
2) We use a new gazetteer-based Wikidict entity
linker to perform entity linking. This enables fast
computation and simple integration of our Chinese
and English outputs for the cross-lingual submis-
sions. 3) We implement a completely new Chinese
relation extraction system that consists of pattern-
based and rule-based extractors and a distantly su-

'We did not develop a Spanish system.

pervised extractor. These new systems work to-
gether to form our final submissions to the Chinese
tracks.

Below, we first introduce the overall pipeline and
infrastructure of our KBP systems in Section 2.
Then we provide detailed descriptions of our multi-
lingual systems: in Section 3 for our English system
and Section 4 for our Chinese system. We present
the development results and the official evaluation
scores of our submissions in Section 5, and finally
we analyze our results and point to future directions
in Section 6.

2 System Architecture

The architecture of Stanford’s 2016 KBP system is
largely the same as Stanford’s 2015 system, and is
described in detail in Angeli et al. (2015).

In earlier years, our slot filling systems used
pipelines starting with an information retrieval (IR)
component, which takes the query entities and re-
turns relevant textual mentions and corresponding
sentences from the corpus. Then these returned
mentions and sentences were passed into down-
stream relation extractors for further processing.
While this architecture has the advantages of be-
ing lightweight and saving a lot of computation in
the preprocessing phase, it suffers from some criti-
cal drawbacks: 1) A fair amount of recall is lost at
the beginning of the pipeline, due to the limitations
of the IR system. 2) Probing the corpus becomes
difficult, as the majority of the corpus remains un-
processed. 3) In order to retrieve multiple candidate
mentions in a document, the IR system must be run
for multiple iterations.

In this context, from last year, we have started to
build our KBP system around a relational database,
taking inspiration from Angeli et al. (2014b). Dur-
ing development, we store all processed docu-
ments from the corpus and intermediate data in the
database. As most in-database operations are highly
optimized and done in-memory, this architecture of-
fers us a lot of benefits. 1) Since the preprocess-
ing component is completely independent from the
query entities, we can now annotate all text from
the corpus and make use of all potential candidate
mentions. 2) Evaluation now becomes optimized
database queries instead of full relation extraction

Tokenization, POS

4»‘ CoreNLP Annotators ‘ tagging, parsing, etc.

l

‘ Entity Detection & Linking ‘

i

‘ Relation Extractors ‘

NER, Coref, Entity
Linker (UIUC, Wikidict)

Statistical, patterns, rule-
based, neural networks

!
‘ Post-processors }—* g

Figure 1: The Stanford KBP system pipeline. The input
to the pipeline is a collection of documents, and the out-
put of the pipeline are relation triples stored in database.

cycles, which enables us to do fast iteration on our
algorithms. 3) SQL is a powerful data manipulation
language that allows us to calculate data statistics
and perform system diagnosis quickly.

At the core of this database-centered architecture
are two relational tables: sentence, which contains
textual information about sentences and supporting
annotations (e.g., part-of-speech tagging sequences,
dependency parsing, etc.), and mention, which con-
tains textual information about entity mentions and
supporting information of them (e.g., NER tags,
provenances, canonical links, etc.). We now de-
scribe how the system makes use of this architec-
ture to pipeline different components to produce fi-
nal output.

2.1 System Pipeline

Our full system pipeline is pictured in Figure 1.
The input to this pipeline is the original full-text
TAC KBP corpus. This corpus is directly fed into
an annotation component, where a series of Stan-
ford CoreNLP (Manning et al., 2014) annotators, in-
cluding tokenizer, part-of-speech (POS) tagger and
parsers, are run to generate structured annotations of
the text. The output of this component is used to
populate the sentence table as described above.
Subsequently, we run our named entity recogni-
tion (NER) and coreference resolution annotators to
generate NER tags for each sentence and corefer-
ence graphs for each document. Then tokens with
NER tags of interest are organized together to form
entity mentions. For each extracted entity mention,
we run an entity linker over it to generate a canon-
ical entity link used to universally describe this en-
tity. We then use the output of this entity detection

and linking component to populate the mention ta-
ble, where each mention entry is also connected to
its corresponding sentence in the sentence table.

As we now have all the annotated information
about mentions and their corresponding sentences,
we then do simple database join operations on the
mention table to form our pool of candidate mention
pairs. Note that a candidate mention pair (m1, ms)
is generated with the conditions that both m; and
mg are present in the mention table and that they
must co-occur in the same sentence in the original
corpus. Afterwards, each candidate mention pair is
passed into our relation extractors. The output of
the relation extractors are a group of scored triples
(m1,r,mg) : p where r is either one of the forward
relations as defined in the KBP slot descriptions, or a
no_relation predicate, and p is a score that mea-
sures how confident the extractor is about this pre-
diction.

Output triples from the relation extractors are then
fed into a series of postprocessors. These postpro-
cessors mainly serve three purposes: 1) Inverse re-
lations are generated from all forward relation pre-
dictions. 2) Results from different extractors are
merged according to our model ensembling policies.
3) We implement some constraints in the postpro-
cessors to filter out predictions that are obviously
wrong according to real-world knowledge, and pre-
dictions that contradict with others. A more detailed
description of this component is presented in Angeli
et al. (2014a). While the relation extractors are core
to the entire system, this postprocessor component
is also crucial, as it removes some of the salient er-
rors inevitably generated by the upstream extractors
to make sure our system has reasonable precision.

2.2 Supporting Infrastructure

We support the pipeline described above with
distributed databases, specifically Greenplum DB,
set up on two 20-core machines. Doing rapid
iterations over the entire pipeline requires intensive
large-scale database queries, which greatly benefit
from having large memories and fast disk IO
speed. Therefore, we set up our machines with
786GB RAM augmented by a 1.2TB PCI-E solid
state drive that has a read speed of approximately
2.6GB per second. During development we find
this infrastructure setup to be crucial to our quick

system testing, problem diagnosis and parameter
tuning.

We design both our English and Chinese KBP
systems following the same architecture presented
above, while the specific implementations of anno-
tators, relation extractors and postprocessors are dif-
ferent across languages. We use separate database
instances on different machines for different lan-
guages to enable fast development and evaluation.

3 English KBP System

Our English KBP system refines our 2015 system in
many aspects. We summarize the implementation of
this system and highlight some of the error analysis-
driven improvements that we made.

3.1 Data

We only use the TAC KBP 2015 slot filling evalua-
tion queries and assessment files to validate and test
our English system, mainly for two reasons: 1) TAC
KBP 2015 is the first year to provide multiple entry
points for each query entity, thus evaluating on this
dataset can give us unbiased estimation of system
performance. 2) We use a dataset constructed from
previous years’ KBP assessment files to train one of
our relation extractors.

We divide the 2015 query entities evenly into a
dev set and an internal test set, containing 879 and
1104 mention-slot pairs respectively.”

3.2 Relation Extractors

In total, we use 7 relation extractors that can be
broadly divided into three categories.

Rule-based We have 5 rule-based extractors in to-
tal. The first set includes a Semgrex pattern system
(Chambers et al., 2007) and a TokensRegex (Chang
and Manning, 2014) pattern system. Semgrex pat-
terns operate on the dependency graph of a sentence
and trigger a relation prediction once a specific pre-
defined dependency pattern is matched between two
entities. In contrast, TokensRegex patterns search
linearly for specific templates in the word, lemma,
POS and NER sequence of a sentence. We reuse all
patterns in our 2015 KBP system, and add a number

2The imbalance here is due to the different number of
mention-slot pairs for each query entity.

of new patterns by hill-climbing on the 2015 dev set.
The output of the two pattern extractors is expected
to be fairly precise.

Next we have three relation-specific rule-based
extractors: altnames, websites and gpe-mentions.
altnames is an extractor that infers alternate names
of organizations and people from coreference chains
of a document, and websites compares the edit
distance between an organization name and an
URL to give high-precision predictions of the
org:website relation. They are described in
more detail in Angeli et al. (2015). We explain the
gpe-mentions extractor in Section 3.3.

Self-trained Supervised We reuse the same self-
trained supervised extractor as in our last year’s
submission system (Angeli et al., 2015). In sum-
mary, at the core of this system is a traditional logis-
tic regression-based classifier (LR) with manually-
crafted features and a Long Short Term Memory net-
work (LSTM) classifier. We first run the union of
our patterns extractors and an Open IE system on the
entire corpus. Since these systems are both of high
precision, we collect their positive output predic-
tions to form a training dataset. We add this “boot-
strapped” training set along with a set of “presumed
negative” examples into a pre-collected supervised
training set, and use this entire dataset to train the
two core classifiers above (LR and LSTM). We then
take this output as the new training dataset, and re-
peat this process for another iteration. In this way,
we train our statistical models with output from our
own classifiers. We also apply other tricks to avoid
class skew and overfitting as described in Angeli et
al. (2015).

Neural Network-based Our neural network-
based extractor makes use of a Conv-LSTM archi-
tecture that combines convolutional layers with an
LSTM layer, as pictured in Figure 2. This Conv-
LSTM model takes the original sentence as input,
and generates embedding vectors for each word
through a lookup layer. Then the embedding vec-
tor sequence is fed into a convolutional module con-
sisting of three width-3 convolutional layers of 64,
128, and 256 dimension feature maps respectively, a
width-2 max-pooling layer, and a width-1 convolu-
tional layer of 128 feature maps. We use ReLU as
the nonlinearity function for all convolutional lay-

‘ Softmax ‘

T

‘ Max pooling ‘

LSTM
hl h2 Layer
Convy Convy Conv,
///v V\\\\ R Convolutional
> o AN Layers
I I T Lookup
Layer

Figure 2: The architecture of the Conv-LSTM neural net-
work relation extractor. Inputs are raw word sequences
with entity indicators inserted, while output is the prob-
ability distribution over all possible labels for the corre-
sponding subject-object pairs.

ers. Then output representations from the convolu-
tional component are sequentially fed into an LSTM
network. Finally a max-over-time pooling operation
is performed over all LSTM hidden states to gen-
erate the final sentence representation, which is then
passed into the softmax layer for the final prediction.
Empirically we find this Conv-LSTM architecture to
work better than a simple LSTM model in the KBP
setup. Our intuition is that the convolutional oper-
ations capture phrasal information that is crucial to
the classification of the relation but is not directly
captured by the LSTM model.

Our neural network model is trained on a fully
supervised dataset that is constructed from previous
years’ KBP slot filling assessment files and is la-
belled by online crowd sourcing. We plan to make
this dataset publicly available soon.

3.3 Error Analysis-driven Improvements

The independence of different components and
the infrastructure built around use of a relational
database enables us to do detailed analysis at every
step of the pipeline. We find this analysis to be very
helpful at understanding the F; score loss at each
component, which drives us to make some key im-
provements in this year’s system. In practice, we
also monitor the effect on the final evaluation met-

rics, calculated over the development test set.

Improved Fine-grained NER Our analysis
shows that the system is missing coverage of many
job title and GPE mentions: The recall loss is 1.5%
from incomplete job title coverage alone. Therefore,
we made three improvements accordingly: 1) We
wrote rules to capture nested job title mentions and
added them into our gazetteers. For example, pre-
viously our system is only able to extract “Officer”
as a job title when “Chief Executive Officer” was
present in the sentence. We now extract both of
them as entity mentions. 2) We further expand our
gazetteers with all known job titles from previous
years’ KBP assessment files. 3) We add hyphenated
location expressions, such as “Seattle-born” or
“London-headquartered”, that were previously
missing from our systems. As it turns out, this
improvement on the NER component alone can
offer us about a 1.2 F; score boost on our hop-0 dev
set queries.

Capture of Hierarchical Mentions Here we de-
fine ‘“hierarchical mentions” as GPE mentions
within an organization mention. For example,
“Texas” in “University of Texas, Austin” is a GPE
mention nested in an organization mention. We ex-
tract all mentions of this type by having a special
gazetteer for GPEs and looking for GPE mentions
within all organization mentions during the annota-
tion phase. Then we implement a special rule-based
gpe-mentions extrator that handles relations relevant
to these entities. This extractor offers us about 1.3
F; score boost on the dev set.

Inferred GPE Relations One key drawback in
our general pipeline is that extraction is only done
at the sentence level,’ and each mention pair will
only be examined by our extractor once. As a result,
if a third relation can only be inferred from two rela-
tion predictions, it will not be captured by any of our
previous extractors. An example here is that in the
sentence “despite efforts by Nashville Mayor Karl
Dean and the leaders of other Tennessee cities to de-
rail the legislation”, if our system correctly predicts
that “Karl Dean” is a resident of “Nashville” and we

3The use of coreference resolution systems in our pipeline
introduces “cross-sentence” interactions that partially mitigate
this restriction.

know from world knowledge that “Nashville” is a
city in “Tennessee”, we can infer that “Karl Dean”
is also a resident of “Tennessee”. An obvious danger
of this type of inference is that it can easily bring up
our total number of predictions and potentially harm
our precision. Therefore, we only apply this infer-
ence to GPE-relevant relations where we believe the
inference can be made fairly accurately through the
incorporation of geographical knowledge.

3.4 Model Ensembling

Model ensembling in our system is done by train-
ing an SVM classifier over multiple relation extrac-
tors as described in Section 3.2. The classifier takes
as input a positive predicted relation produced by at
least one of the extractors, and outputs a binary label
of whether to keep this relation or not. The features
we use fall into five categories:

1. An integer represents the count of the extrac-
tors that generates this prediction.

2. A one-hot vector that encodes the relation type.

3. A binary vector that encodes the systems that
produce this candidate relation.

4. A one-hot vector that encodes the relation-
system pair.

5. A vector that has scores at each index rep-
resenting the confidence score corresponds to
that relation-system pair. If a specific index
corresponds to a different relation or a system
that does not predict this candidate relation,
that index will have a score of 0.

For the training objective we experimented with
F; score, precision at K score (P@K), recall at
K score (R@K) and Area Under the ROC Curve
(AUC). We find that model ensembling with R@K
as objective produces the highest final F; score on
our dev set, and also performs better than simply
taking the union of all the predictions.

4 Chinese KBP System

In addition to an English KBP system, for the 2016
challenge we developed from scratch a Chinese KBP
system. Although the two systems largely share the
same architectural design, the implementation of the
Chinese system is largely limited by the scarcity of
available datasets.

4.1 Data

During development we use the TAC KBP 2014
Chinese Pilot Regular Slot Filling task evaluation
queries and assessment results to evaluate our sys-
tem. This dataset contains 103 Chinese query enti-
ties. Therefore, we sample 50 entities as the dev set,
and use the remaining 53 entities as the internal test
set to avoid overfitting.

It is worth noting that the dataset described above
has a different structure compared to the 2016 offi-
cial evaluation. Specifically, in the regular slot fill-
ing task, no specific hop-O and hop-1 slot will be
provided at the evaluation time. Instead a system
needs to extract all 41 slots for a given query entity.
Therefore, during development time we are equiva-
lently evaluating our system only on hop-0 queries
by definition.

4.2 Improved Chinese NER System

As the original Stanford CRF-based Chinese NER
tagger (Che et al., 2013) only supports 5 NER la-
bels, we need to expand it to accommodate the KBP
slot filling task. Our efforts can be categorized as
follows:

Enhanced CRF-based NER We retrain our CRF-
based NER tagger on the entire Chinese OntoNotes
5 dataset. In addition, we empirically find that the
resulting NER tagger does not generalize well to
rare Chinese names (e.g., names of monks). There-
fore, we apply a simple data augmentation trick by
manually curating a list of 450 Chinese names and
randomly replacing PERSON entities in a copy of
the original dataset with names in this list. We then
append this augmented dataset to the original train-
ing set and retrain the model. This simple trick gives
over 1 F; score boost on the dev set. The resulting
CRF-based NER tagger supports 7 labels: PERSON,
ORGANIZATION, LOCATION, GPE, FACILITY,
DEMONYM and MISC.

Rule-based Numeric NER We also implement a
rule-based NER tagger for numeric entities. This
rule-based tagger examines the word and POS se-
quence of a sentence, and assigns labels to words
deterministically. Thereafter, a numeric value nor-
malizer is applied to all extracted numeric entities
to normalize the original value into corresponding

Arabic numerals, which are then used as canonical
entity links. This rule-based tagger supports 6 la-
bels: NUMBER, DATE, TIME, MONEY, PERCENT
and ORDINAL.

Gazetteer-based Fine-grained NER Addition-
ally, we curate a gazetteer of common Chinese en-
tities and construct TokensRegex patterns (Chang
and Manning, 2014) from this gazetteer to label
entities. All entities in this gazetteer are orig-
inally crawled from the Web and manually fil-
tered by one of the authors. This gazetteer-based
tagger adds another 9 NER labels into our sys-
tem: COUNTRY, CITY, STATE_OR_PROVINCE,
TITLE, NATIONALITY, IDEOLOGY, RELIGION,
CRIMINAL_CHARGE and CAUSE_OF _DEATH.

4.3 Chinese Entity Linking

Unlike the English system, we apply a gazetteer-
based entity linker in our Chinese system. Specif-
ically, we use Wikidict as introduced in Spitkovsky
and Chang (2012). We observe the original Wikidict
contains noisy entries, therefore we apply heuris-
tic rules to clean up and expand it. This results in
the entire gazetteer having around 4.2 million en-
tries. Moreover, a desirable property of Wikidict is
that it uses English Wikipedia page URLs as canon-
ical entity links. This largely enables us to naively
merge the output from English and Chinese system
and submit to the cross-lingual track.

4.4 Relation Extractors

The lack of a clean supervised dataset limited our
use of statistical models during the development of
Chinese relation extractors. Therefore we follow
the following steps: We start with implementing a
distantly supervised extractor optimized for recall.
Next we add pattern-based extractors that achieve
high precision, as well as compensate for missing re-
lations in the distantly supervised training data. Fi-
nally, we implement several other relation-specific
ruled-based extractors by hill-climbing on the dev
set. We present detailed information of each extrac-
tor here:

Patterns The development of Chinese Token-
sRegex and Semgrex patterns is largely the same as in
the English system. We manually add patterns to the

extractors that boost the dev set scores, while moni-
toring the test set scores to avoid overfitting. The fi-
nal extractors contain 166 TokensRegex patterns and
470 Semgrex patterns respectively. This develop-
ment expended approximately 30 person-hours of
work writing patterns over the course of one week. It
is also worth noting that we have implemented a new
Chinese Universal Dependency (Nivre et al., 2016)
converter and empirically find that Semgrex patterns
on this Universal Dependency scheme work better
than the original Stanford Dependency scheme.*

Distantly Supervised Extractor We build our
distantly supervised extractor based around the
Mintz system as described in Mintz et al. (2009).
In a distantly supervised extractor, training instances
are generated by applying a knowledge base to a
corpus and labelling each sentence that contains co-
occurrence of relation pairs in the knowledge base
as a positive instance for the corresponding relation
type. In our system, we acquire a knowledge base by
using a combination of Freebase relation tuples and
relation tuples extracted from previous KBP assess-
ment results. We apply deterministic heuristic rules
to convert the Freebase relation types to the KBP slot
types. Applying this knowledge base to the Chinese
KBP corpus gives us about 530K positive examples
for 34 out of the 41 slot types. To balance training
data across relation types, we apply a hard threshold
of 5K to limit the number of training examples used
for each relation type. This finally gives us around
80K training examples in total. Note that unlike the
standard setup, we do not use any negative training
examples in our distantly supervised extractor, as we
empirically find that gradually adding negative train-
ing examples will slightly increase precision but de-
creases recall substantially. We plan to gain a better
understanding of this in our future KBP work.

Other Rule-based Extractors Additionally,
we implement an altnames extractor and an org-
subsidiaries extractor. The Chinese altnames
extractor performs inference over the coreference
graph to extract per:alternate_names and
org:altername_names relations. Our org-
subsidiaries extractor is based on a key observation

“The new converter is made publicly available in the latest
Stanford CoreNLP release.

that Chinese organization names are often structured
in a clearly nested way. For example, in the case
of the entity “F BE/F X th & k547, «F BAF
K W4 is a parent organization of the former and
is nested inside the entity. Therefore, the extractor
starts with a training phase where it accumulates a
gazetteer of possible organizations by going through
all extracted organization entities in the corpus.
Then during the extraction phase, it examines the
surface string of each extracted organization entity,
and if a previously seen entity appears as a substring
and this substring satisfies a set of lexical constraints
(e.g., the suffix falls inside a lexicon), the extractor
generates an org:subsidiaries relation for
the entity pair of this substring and its full string.
We optimize these two rule-based extractors to
boost recall while preserving the precision.

Model ensembling in the Chinese system is done
by taking a union of predictions from all extractors
and using a hard per-query prediction count cutoff
to select the most confident predictions. To make
sure that our system achieves a reasonable precision
by having all predictions from our rule-based extrac-
tors included in the final output, we manually set the
confidence scores of all rule-based extractor predic-
tions to be the maximum value 1. We tune the value
of the cutoff using the dev set.

In addition, when optimizing our system for the
Slot Filling task, we add a StringMatch module at
the annotation phase. This module is essentially a
simplified version of an IR system. During anno-
tation, this module “peeks” at the evaluation query
entities, and searches for words or phrases that can
match the surface form of the query entities and
makes them mentions. The output of this module is
then combined with the output from the original en-
tity detection module to populate the Chinese men-
tion table. This component is not applicable to the
Cold Start Knowledge Base Population setting.

5 Results

We report dev scores of our systems, as well as
the evaluation results on the official 2016 evalua-
tion set. We focus on submissions to the slot filling
tracks. For the official evaluation we mainly report
on macro-averaged LDC-MEAN scores.

5.1 Development Scores

A summary of development scores of our English
systems is shown in Table 1. We want to highlight
that by having an ensembled system that is explicitly
trained to optimize system recall, we acquire a sys-
tem that achieves the highest overall recall and F; on
the dev set.

A summary of development scores of our Chinese
systems is shown in Table 2. Note that the ensem-
bled system has the highest recall, while the high-
est Fy is achieved by the pattern-based system. We
expect the ensembled system to perform better in a
recall-bound environment.

5.2 Official Scores

For KBP 2016, Stanford made 5 submissions to the
English slot filling track. These submissions were
generated by different combinations of extractors
and were meant to have different balances between
precision and recall. A summary of official scores
is shown in Table 3. All scores are reported using
the macro-averaged LDC-MEAN calculation. Our
submissions were:

Stanford_ ENG_1 A model ensemble of all extrac-
tors that is expected to have balanced precision and
recall on hop-0 queries and medium precision on
hop-1 queries.

Stanford ENG 2 A model ensemble that is op-
timized for medium precision on hop-0 and hop-1
queries.

Stanford_ENG_3 A model ensemble of all extrac-
tors that is expected to have high recall.

Stanford_ ENG_4 A model ensemble of patterns,
altnames and websites that is expected to have high
precision.

Stanford ENG_5 A model ensemble of all ex-
tractors that is balanced for both hop-0 and hop-1.

For the Chinese slot filling track, Stanford made
4 submissions. A summary of official scores is
shown in Table 4. Again all scores are reported
using the macro-averaged LDC-MEAN calculation.
These submissions were:

Stanford_ CMN_1 A high-precision model en-
semble of all patterns and rule-based extractors. The
StringMatch module is applied for higher recall of
query entities.

Stanford CMN_2 A model ensemble of all ex-
tractors with the StringMatch module applied. This
is expected to have balanced precision and recall.

Stanford CMN_3 A high-precision model en-
semble of all pattern extractors with the StringMatch
module turned off. This is our most conservative
submission.

Stanford CMN_4 Same as Stanford CMN_1
except that the StringMatch module is turned off.

In addition to the slot filling tracks, Stanford also
made 3, 2 and 4 submissions to the English, Chinese
and cross-lingual KB tracks respectively. In Table 5
we show our best scoring system for each KB track.
The best-performing English system is a high-recall
ensemble of all extractors, and the best-performing
Chinese system is an ensemble of pattern extractors
and a distantly supervised extractor. A combination
of a balanced English system and a high-recall Chi-
nese system gives us the best cross-lingual scores.

6 Discussion

For both the English slot filling and KB tracks, our
highest scoring systems are the high-recall system
(Stanford ENG_3) on the macro-averaged LDC-
MEAN metric and the balanced precision-recall sys-
tem (Stanford ENG_1, with an F1 score of 18.5)
on the micro-averaged LDC-MAX metric. We note
that the LDC-MEAN metric equally weights every
query, favoring systems that on average do well,
even if there are a few queries for which it produces
spurious results. By this reasoning, our high-recall
system is probably our best system on this highly
recall-bound task. We are encouraged to see that in
the slot filling track our model ensembling of all ex-
tractors did the best amongst our submissions on the
LDC-MEAN metric, which it was explicitly trained
to maximize.

For the Chinese tracks, on the micro-averaged
LDC-MAX metric our highest scoring system is the
model ensemble of all rule-based extractors com-
bined the StringMatch module (Stanford CMN_1,

Hop-0 Hop-1 All
System P R, F, P R, F, P R, K
Rule-based 609 180 278|460 67 117|568 12.6 20.6
Self-trained Supervised 28.6 2251252 | 126 1321129 | 19.7 18.1 1 189
Neural Network-based 30.7 27.7,29.1 | 9.0 135,108 | 170 20.8 19.0
Ensembling with Recall@K - - = - - —]375 263 ' 310

Table 1: Performance of our English systems on the dev set (constructed from the 2015 slot filling assessment files).

System P R ‘ Fy
Patterns 424 263 : 324
Distantly Supervised 21.8 29.8 252
Ensembling (Distantly Supervised + Patterns + Others) | 24.0 34.4 ' 28.3

Table 2: Performance of our Chinese systems on the dev set (constructed from the 2014 Regular Slot Filling assessment
files). Note that all scores are equivalent to hop-0 scores by definition.

Hop-0 Hop-1 All

System P R, F P R, F P R, F
Stanford ENG_1 | 21.0 199 | 185 | 74 85, 74| 157 154142
Stanford ENG2 | 26.7 23.1'22.8 | 103 11.8 '10.3 | 20.3 187 ' 17.9
Stanford ENG_3 | 26.5 30.2126.0 | 151 19.5 159 | 22.0 26.0 | 22.0
Stanford ENG 4 | 19.9 164 166 | 64 59 59| 146 123 124
Stanford ENG.5 | 21.0 199 1 185 | 3.2 441 32140 138125

Table 3: Official scores (macro-averaged LDC-MEAN) of submissions to the KBP 2016 English slot filling track.

Hop-0 Hop-1 All

System P R, Fi| P R F P R K
Stanford. CMN_1 [153 132 1 133 [46 55 49[105 97 95
Stanford. CMN_2 | 169 21.6 1162 | 67 109177 | 123 16.8 « 12.4
Stanford CMN 3 | 142 11.8 | 12.1 |46 55,49 | 99 89, 88
Stanford. CMN_4 | 14.6 12.5 1126 |46 5549|101 931 9.1

Table 4: Official scores (macro-averaged LDC-MEAN) of submissions to the KBP 2016 Chinese slot filling track.

Hop-0 Hop-1 All
Track P R, F| P R, FF| P R, F
English 254 3021252 [17.1 192170 [221 259220
Chinese 133 222,145 | 121 182,137 | 127 204 , 142

Cross-lingual | 129 162 '13.0| 89 115" 93109 139 '11.2

Table 5: Official scores (micro-averaged LDC-MEAN) of submissions to the KBP 2016 KB tracks.

with an F1 score of 16.1). We find that this sys- trick gives us about 1 F1 boost, by improving the
tem achieved the highest hop-O and hop-1 preci- hop-0 recall of the system. On the macro-averaged
sion among all slot filling systems, while preserv- LDC-MEAN metric, our highest scoring slot filling
ing a medium recall. Additionally, compared to the system is the model ensemble of all rule-based ex-
same system without the StringMatch module (Stan- tractors and the distantly supervised extractor (Stan-
ford_ CMN _4, with an F1 score of 15.1), this simple ford CMN_2). This consolidates our belief that in

a recall-bound environment, the system benefits by
having a high-recall extractor (i.e., the distantly su-
pervised extractor).

We highlight a few directions for future work.
For the English system, we believe that further per-
formance gains can be obtained by exploring better
neural architectures for both entity detection and re-
lation classification. For the Chinese system, we be-
lieve that: 1) Improving the entity linking module by
making use of more data and a context-aware model
can greatly improve the system performance. 2) In-
corporating an Open IE relation extractor can poten-
tially boost the recall of the existing system. 3) We
observe that “zero anaphora” is a much more com-
mon grammatical phenomenon in Chinese. Specifi-
cally, we find that the subject entity of a sentence is
sometimes missing, especially in the newswire con-
text. Therefore having an annotation module that
can automatically infer missing subject entities in
Chinese can potentially lead to substantial perfor-
mance gains.

7 Conclusion

In this paper we have presented the design and im-
plementation of Stanford’s TAC KBP 2016 multi-
lingual slot filling and knowledge base population
systems. The central messages that we want to high-
light are: 1) Easy incremental gains at each step help
improve the overall performance of our relatively
mature English KBP system more effectively than
focussing on just one aspect of the pipeline. 2) A
Chinese relation extraction system can be created in
a relatively short period of time by doing fast iter-
ations on patterns combined with training statistical
models on distantly supervised data.

Acknowledgments

The Stanford KBP 2016 team would like to ac-
knowledge Gabor Angeli and Victor Zhong for their
useful discussions about the 2016 system and great
efforts in the development of Stanford’s previous
KBP systems.

References

Gabor Angeli, Arun Chaganty, Angel Chang, Kevin
Reschke, Julie Tibshirani, Jean Y Wu, Osbert Bastani,

Keith Siilats, and Christopher D Manning. 2014a.
Stanford’s 2013 KBP system.

Gabor Angeli, Sonal Gupta, Melvin Jose, Christopher D
Manning, Christopher Ré, Julie Tibshirani, Jean Y Wu,
Sen Wu, and Ce Zhang. 2014b. Stanford’s 2014 slot
filling systems. In Proceedings of the Seventh Text
Analysis Conference (TAC 2014).

Gabor Angeli, Victor Zhong, Dangi Chen, Arun Cha-
ganty, Jason Bolton, Melvin Johnson Premkumar,
Panupong Pasupat, Sonal Gupta, and Christopher D
Manning. 2015. Bootstrapped self training for knowl-
edge base population. In Proceedings of the Eighth
Text Analysis Conference (TAC2015).

Nathanael Chambers, Daniel Cer, Trond Grenager,
David Hall, Chloe Kiddon, Bill MacCartney, Marie-
Catherine De Marneffe, Daniel Ramage, Eric Yeh, and
Christopher D Manning. 2007. Learning alignments
and leveraging natural logic. In Proceedings of the
ACL-PASCAL Workshop on Textual Entailment and
Paraphrasing, pages 165-170.

Angel X. Chang and Christopher D. Manning. 2014.
TokensRegex: Defining cascaded regular expressions
over tokens. Technical Report CSTR 2014-02, Depart-
ment of Computer Science, Stanford University.

Wanxiang Che, Mengqiu Wang, Christopher D. Man-
ning, and Ting Liu. 2013. Named entity recognition
with bilingual constraints. In Proceedings of the 2013
Conference of the North American Chapter of the As-
sociation for Computational Linguistics: Human Lan-
guage Technologies, pages 52-62.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven J Bethard, and David McClosky.
2014. The Stanford CoreNLP natural language pro-
cessing toolkit. In Proceedings of 52nd Annual Meet-
ing of the Association for Computational Linguistics:
System Demonstrations.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the Joint
Conference of the 47th Annual Meeting of the ACL
and the 4th International Joint Conference on Natural
Language Processing of the AFNLP: Volume 2, pages
1003-1011.

Joakim Nivre, Marie-Catherine de Marneffe, Filip Ginter,
Yoav Goldberg, Jan Haji¢, Christopher D. Manning,
Ryan McDonald, Slav Petrov, Sampo Pyysalo, Na-
talia Silveira, Reut Tsarfaty, and Daniel Zeman. 2016.
Universal dependencies v1: A multilingual treebank
collection. In Proceedings of the Tenth International
Conference on Language Resources and Evaluation
(LREC 2016).

Valentin I Spitkovsky and Angel X Chang. 2012. A
cross-lingual dictionary for English Wikipedia con-
cepts. In LREC, pages 3168-3175.

