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Abstract

Humans are much better than computers at understandingdgeg This is, in part, be-
cause humans naturally employ holistic language procgs3iney effortlessly keep track
of many inter-related layers of low-level information, whsimultaneously integrating in
long-distance information from elsewhere in the convéssabr document. This thesis is
about joint models for natural language processing whisb aim to capture the depen-
dencies between different layers of information and betwdiferent parts of a document
when making a decision. | address three aspects of holésiguage processing.

First, | present an information extraction model that imiga long-distance links in or-
der to jointly make decisions about related words which majel away from one another
in a document. Most information extraction systems use esecgl models, such as linear-
chain conditional random fields, which only have access tmallslocal, context when
making decisions. | show how to add long-distance links ketwelated words which can
be arbitrarily far apart with the document. Experimentsvgltivat these long-distance links
can be used to improve performance on multiple tasks.

| then move to jointly modeling different layers of inforn@t. First | present a
sampling-based pipeline. In a typical linguistic annatatpipeline, different components
are run one after another, and the best output from each & asé¢he input to the next
stages. The pipeline | present is theoretically equivalemassing the entire distribution
from one stage to the next, instead of just the most likelypout Experimentally, this
pipeline did outperform the typical, greedy pipeline, bid dot outperform taking the
k-best outputs at this stage. | follow this with a full joint de of parsing and named en-
tity recognition. This joint model does not have the direntlity constraints inherent in a
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pipeline, and both levels of annotation can directly inflceeand constrain one another. Ex-
periments show that this joint model can produce significaprovements on both tasks.
| then show how to further improve the joint model using aaial data which has been
annotated with only one type of structure, unlike the jgirhnotated data needed by the
original joint model. The additional data is incorporatesing a hierarchical prior, which
links feature weights between models for the differentsask

Lastly, | address the problem of multi-domain learning, vehthe goal is to jointly
model different genres of text (annotated for the same taBkjs is once again done via
a hierarchical prior which links the feature weights betwéee models for the different
genres. Experiments show that this can technique can irepgpevformance across all
domains, though, not surprisingly, ones with smaller iragrcorpora improve more.
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Chapter 1

Introduction

1.1 Overview

Why are humans so much better than computers at understgadigguage? In part, itis be-
cause humans naturally employ holistic language procgs3iney effortlessly keep track
of many inter-related layers adw-levelinformation, while simultaneously integrating in
long-distance information from elsewhere in the convéssabr document. In contrast,
most NLP research focuses only on individual lower-levek&a like parsing, named en-
tity recognition, or part-of-speech tagging. Moreover,tfte sake of efficiency, researchers
modeling these phenomena make extremely strong indepeadssumptions, which com-
pletely decouple these tasks, and only look at local contéen making decisions. When
examining the output of these systems, it is easy to see9lalere these incorrect inde-
pendence assumptions are harming performance, and pngdincionsistent outputs. This
thesis addresses the problems caused by many of these imldewe assumptions by pre-
senting several different kinds of joint models for natleglguage processing: joint mod-
els of disparate parts of a document (long-distance maogleljaint models over multiple
datasets (domain adaptation), and joint models over nieiltypes of structure.

The language understanding tasks that people really caoeit adre high-level,
semantically-oriented ones: question answering, mactrareslation, machine reading,
speech interfaces for robots and machines, and others thaaven't even thought of yet.
To do a good job on any of these high-level tasks, it is cliticatart with a good analysis
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2 CHAPTER 1. INTRODUCTION

of the document (or sentence or utterance) of interest. ufwish to do question answer-
ing, you will need to identify all the people, locations, ardanizations mentionedémed
entity recognitiof), and to decide which refer to the same real-world entitieseference
resolutior). Uncovering the syntactic structurparsing is essential, since it provides in-
formation about how the entities interact with one anothed what actually happened.
Word senseare also important: bplant did the writer mean a living thing that grows out
of the ground, or a building where goods are manufacturedfdirt this kind of informa-
tion, a question answering system may be able to answer aif@plesquestions based on
substring matching and other heuristic tricks, but will @eelee able to integrate informa-
tion from various sources, written by different authorshwdlifferent writing styles, into a
coherent, and correct, answer.

As a field, we have reached a point where models of low-lewaedstdnave reasonably
good performance on established datasets. Parsers on th&twat Journal portion of
the PennTreebank (Marcus et al. 1993) score around 92% @Zéiaal. 2009). The best
named entity recognition systems on the popular CoNLL 2Cfi8ed entity corpus (Sang
and Meulder 2003) score above 90% (Ratinov and Roth 2009)deloof coreference
resolution and semantic role labelling have also been sByemaproving. So, given the
strides that have been made in the field in the past decadeanghwye still not very good at
the high-level tasks which use these low-level systems@ag™There are many answers
to this question, and in this thesis | address several aspéthis question.

Firstly, we have the notion afiternal consistencyWhen building a model which takes
the outputs from several low-level systems as input, it ipantant that these outputs are
coherent and consistent, both internally and in conjunctiith one another. In the case
of named entity recognition, if a name appears multiple sinand is incorrectly labelled
differently in different instances, this will likely causehigh-level system to fail. Because
most modern NLP models only look at local context when makiegjsions, long-distance
information of this sort is often ignored entirely, and itist uncommon to incorrectly label
different instances of the same word or phrase differemtlgifferent contexts. One could
apply theone-sense-per-discoursgle (Gale et al. 1992), which is common in word sense
disambiguation, to named entity recognition, but ofteenthe wrong label (or “sense”)
will be picked, making the situation even worse. Additidpathere are often legitimate
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reasons to have the same word labeled multiple ways in diftezontexts, and we do not
want to remove that option. One well-known example from tledNCL 2003 corpus is
European sports team names, which are often identical toahee of the team’s city. We
want documents to be labelled consistently and correctly.

In addition to wanting documents to be labeled consistefatiyeach indiviual type
of annotation, we also wamnter-model consistencywhere all of the different levels of
annotation are consistent with one another. For exampla,ndémed entity recognition
system labels two phrases as different entity types (eng.j®a person and the other is an
organization), but a coreference system claims that thega@neferent, this set of labellings
is inconsistent and will also probably cause a high-levstey to fail. Nonetheless, this
is the most common technique for analyzing text as input hemosystems. Researchers
assemble components built by other researchers and doseddeom the Internet. Data is
run through each component separately, and there is nathpigce to ensure consistency
of the outputs.

One solution to the problems associated with this indepetrna@proach is t@ipeline
the components together. In this case, the output of one aoemp is used as the input to
the next component in the pipeline, and each system is faccexspect the decisions made
by previous systems. This method ensures consistencyasubther potential problems.
Errors will propagate, and the odds of finding the correctliysia significantly degrades
with each new component added to the pipeline. As observesimyh et al. (2009), if
you pipeline together 6 components, each with 90% accutlaewy, the final output will be
wrong about half the time. This degradation can largely krébated to the uni-directional
flow of information. If the named entity component makes anrethere is no way for the
coference component to go back and inform the named entitypoaent that the input it
received doesn’t make sense. Instead, it will just to the ibesn with what it has, and
oftentimes the result is even more errors. One could pads-fiest outputs (instead of the
1-best output) as inputs to the next stage, and this wil@te the problem somewhat, but
usually it is not enough. In this dissertation | descrisampling pipelinewhich generates
and passes samples at each stage, and has several nicéicdhkpreperties. This model
also outperformed using a 1-best output at each stage, diat ito better than thi-best
pipeline.
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This brings us to the solution advocated here: a full, joiodel over multiple types of
annotations. Like the pipeline approach, a joint model gotes consistency between the
different annotations. It has several other strengths dis mest notably the fact that the
different types of information can influence one anothemi@wing with our named entity
and coreference example, it's not even clear what the proguar should be when using
them in a pipeline. Knowing the output from a coreferencegesyswould be immensely
helpful to a named entity recognizer, because it will knowatmel coreferent entities iden-
tically. Conversely, a coreference resolver would benedinfnamed entity knowledge, as
this can both exclude some entities from being coreferetit ane another, while also in-
creasing the likelihood of coreference for other sets oitiest If one were to build a joint
model of both of these phenomena, then they would be ablettoibiluence one another
in useful ways. This ability for the different tasks to infhee each other is in fact one of
the best avenues for improving performance on the individomponents.

Lastly, because the researchers who work on high-levektafiien use components
built by others, they may end up with serious degradationzeiiormance due tdomain
drift. As stated above, the best parser for the PennTreebankssoanend 92% when it is
evaluated on data from the same source. However, we oftehtwvavork with other data
which is not financial newswire. Itis common to run these conmgnts on data downloaded
from the Wikipedia and other webpages, blog posts, emaild,cther domains, yet they
are rarely trained on these genres of text. Indeed, recerk (McClosky et al. 2010) has
shown that such a parser can drop 10%s\en used on to transcribed speech, and 15%
when used on biomedical text. It is critical that we find wayadapting our models so
that they can perform well on many styles of text.

These are precisely the kinds of problems | have tried toesoivthis dissertation. |
have worked almost exclusively on low-level components dbways with an eye towards
the fact that we only create these components to be used atstinpigher-level systems.
No one writes a named entity recognizer (NER) just so that tta have one running
on their laptop: we can all pull out the names of entities wrearding newspaper articles
without any discernable effort. Named entity recognizees \aritten because high-level
systems often need to know what entities are being mentiondide text. One of the
models presented in this thesis adds long-distance inttwm#o a standard NER system
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which encourages, but does not force, consistent labedlirantities. | also present mod-
els over multiple types of structure — joint parsing and ndraetity recognition — and a
domain adaptation model which works on both structured amstructured outputs and
which improves performance across all domains. Additignagive an improved method
for building annotation pipelines, and a new model for amiismative, conditional random
field-based parser, which is a critical precursor for mucthefwork presented.

1.2 Contributions of this thesis

The work presented in this thesis represents a number ofilbotions to the field of natural
language procesing.

o | present the first feature-rich, CRF-based parser whicldceeale beyond toy sen-
tences. | also show how to use this parser for more than jogtlei constituency
parsing: | use it to build a model of nested named entitied tarbuild a joint parse
and named entity model.

e | present ajoint model of parse structure and named entéresexperiments demon-
strate that this joint model improves performance on botheindidivual tasks. The
joint model also produces a consistent output, which is rgererally useful than the
potentially inconsistent outputs produced by independgstiems. The joint model,
as initally presented, requires data which has been joarthotated with both types
of structure. | later show how to further improve this joinbdel using data which
has been annotated for only a parsing or only named entibgraton.

e The techniques | have chosen to use have also proved infllely work was
amongst the first in NLP to use sampling-based Baysian inéexea tool which has
now become commonplace in the community. | was also one dirgteadvocates
for using a hierarchical prior to link related models in NIBther researchers have
already begin to explore other scenarios in which a hiereattprior can fruitfully
link related models.
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1.3 Structure of this thesis

Chapter 2 This chapter contains necessary background informatiomriderstanding
the remainder of the dissertation. Specifically, it covergesal prominent NLP tasks,
along with datasets, evaluation. It also contains inforomabn prior models, stochastic
optimization, and word classes which are used through@utdtument.

Chapter 3 This chapter addresses the problem of how to incorporatg-ttistance in-
formation into modern information extraction (IE) systerBsised on a linear-chain condi-
tional random field (CRF) model, the current state-of-theapproach to many IE tasks, |
show how to add long-distance links while keeping inferetnaetable. |1 show that adding
these links improves performance on two different tasks, @ioduces a more consistent
output, where identical phrases are likely to be labeledtidally, unless there is strong
evidence to the contrary. The contents of this chapter asedan Finkel, Grenager, and
Manning (2005).

Chapter 4 This chapter presents a method for improving linguisticaaton pipelines.
Currently, most researchers who study high-level taskdalyuassemble 1-best pipelines
from components written by other researchers and downbtbadfeof the Internet. This
chapter presents a simple, sampling-based approach tdatiomopipelines, which is
equivalent to passing the entire distribution betweenedifit stages in the pipeline. |
present results on two different high-level tasks, and canapgo both greedy, 1-best
pipelines and tk-best pipelines. The contents of this chapter are basedrkek-iMan-
ning, and Ng (2006).

Chapter 5 This chapter gradually builds up to a joint model of parsing aamed entity
recognition. | first present a discriminative, featuredzhsonstituency parser, and an anal-
ogous dependency parser. | then show how to use the comstytparser to build a named
entity recognizer which can elegantly handle nested namaties. Finally, | provide the
necessary modifications to build a joint model of parsing aathed entity recognition,
including experimental results which show that the jointd@lchelps performance on both
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tasks. The contents of this chapter are based on Finkelndeegand Manning (2008),
Finkel and Manning (2009c), and Finkel and Manning (2009b).

Chapter 6 This chapter covers the use of a hierarchical prior for twiy\tifferent pur-
poses. Hierarchical priors allow the soft-tying of paraengin related tasks, and degree of
information sharing can be specified by adjusting hypeajpesters. In this chapter, | use
a hierarchical prior to do multi-domain learning (similardomain adaptation but where
performance across all domains is considered) for both dagnéty recognition and de-
pendency parsing. | also use a hierarchical prior to imptbeejoint model presented in
chapter 5 by linking it with single-task models for both o¢tindividual tasks. The contents
of this chapter are based on Finkel and Manning (2009a) amkeFand Manning (2010)

Chapter 7 In the conclusion to this thesis, | summarize the work presskrand discuss
several potential avenues for future work.



Chapter 2
Background

This chapter contains all of the background informationassary for understanding the
rest of the material in this dissertation. Specificallynitludes information on parsing and
named entity recognition, the two primary NLP tasks coverethis dissertation. It also
includes descriptions of several datasets, as well aslusefiels and algorithms, and some
information on repeatedly used word classes.

2.1 Tasks and their standard algorithms

In this section | give an overview of parsing (both constitcieand dependency) and named
entity recognition. A few other tasks appear in the docunergolated instances (seman-
tic role labelling and recognizing textual entailment, lmapter 4), but they are described
where they are used.

2.1.1 Named entity recognition

Named entity recognition (NER) is the task of identifyingdaciassifying names in text.
Here is an example sentence, along with its annotation:

[Jenny Finkel}er is a student at [Stanford Universibgs in [Palo Alto,
CA]LOC-
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There is some variability in the types of entities extracted the three from the exam-
ple, PERSON(Or PER), LOCATION (or LOC), andORGANIZATION (Or ORG), are the three
most prevalent. Other common entity types BI8MBER, DATE, TIME, PERCENT, GEO-
POLITICAL ENTITY (or GPE) (this one is very similar tooCATION), andmisc, which is
often used as a catch-all for all names which don't fall unalee of the categories for a
given dataset. It is common practice to give all non-entibrasg thebackgroundabel O,
which stands fooutsidean entity.

Another common task is biomedical NER. BioCreAtlve, one lué first bio-NER
shared tasks (Hirschman et al. 2005), had only two entitgsyENE and PROTEIN, but
the million word GENIA corpus (discussed below) has manyeraattity types. Here is an
example from GENIA:

[Kappa B-specific DNA binding proteing]oren role in the regulation of [hu-
man interleukin-2 gene expressigRja.

Historically, most NER work has assumed a flat represemtatike the examples
above. However, the nesting of entities (suchUssversity of California a LOCATION
inside anORGANIZATION or PEBP2 siteaPROTEINInside a DNA), is also covered in this
dissertation (section 5.3).

Evaluation

Named entity recognition is typically evaluated on the tgrigvel, not the token (word)
level, using precision, recall, and, Bcore. These are computed using thes positives
(the number of correct entities found by the modlse positivegthe number of incorrect
entities found by the model), aridise negative§the number of correct entities missed by
the model).Precisionconveys what percentage of the guessed entities are correct

true_positives

precision= — — (2.1)
true_positivest false positives
Recallconveys what percentage of the true entities were found:
true_positives
recall = P 2.2)

true_positivest falsenegatives



10 CHAPTER 2. BACKGROUND

TheF1 scoreis the harmonic mean of the two:

__ 2x precisionx recall
"~ precision+recall

=1 (2.3)

It is common to report these scores on the individual enyies, and to then average them
into an overall score. The background symbol does not caunha of these entity types.
Correctly guessing the background symbol for a word counttiale negativeand has no
effect on the score. They can b@cro-averagedwhere each entity is given equal weight,
or macro-averagedwhere each category is given equal weight. Micro-aveggmmore
common, but macro-averaging can be useful when some eyigg tare rare but important.
It is worth noting that there is no partial credit; an incatrentity boundary is penalized as
both a false positive and as a false negative.

Linear-chain conditional random fields (CRFs)

In this section, | will give an overview of linear-chain catidnal random fields (CRFs)
(Lafferty et al. (2001), or see Sutton and McCallum (2007%) damore recent tutorial),
which are the current state-of-the-art for many sequencgeti tasks, including named
entity recognition. A CRF is a conditional sequence modettvhepresents the probability
of a hidden state sequence given some observations (in eay te words in a sentence
or document). In named entity recognition, the possiblé&yettpes vary by dataset and
task. These entity types form the set of possible stateskeis), and there is an additional
state called O (which stands foUTSIDE an entity, or not an entity). While the original
CRF paper (Lafferty et al. 2001) describes inference in teeehin terms of matrix mul-
tiplication, subsequent work has opted to describe it in @aengeneral manner consistent
with the Markov network literature (see Pearl (1988), Cdwedl. (1999), Wainwright and
Jordan (2008) and Koller and Friedman (2009)). The origioahulation only describes
first-order CRFs, which means that labels are only conditioned on oret tabeither side.
However, it is fairly straightforward to extend the modethe higher-order case. Because |
only use first-order CRFs, for simplicity the equations legare for that case, but by simply
modifying the cliques to cover larger spans one can easityed them to be higher-order.
Formally, we have a sequence of labels, represented by arweethose individual
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elementsy; indicate the label at thigh position in the sequence. We have a corresponding
sequence of observatiorsWe also have a parameter vecébof feature weights. Repre-
sented graphically, as in figure 3.1, the label sequencedaimear chain each label is
conditionally independent of the other labels in the seqagegiven the labels of its neigh-
bors. We have pairwiseliquesover adjacent nodes, and each clique hakgae potential
function also referred to as factor table which represents the interactions between the
nodes in the cliqué.The probability of a label sequence is given by the equation:

1 ly|
Perr(ylx. 0) = 7 — _ﬂ‘P()’ifl,yi‘X; 6) (2.4)
I 1=

where@ is the vector of feature weightg(y;_1,VYi|x; 0) is the clique potential at position
i corresponding to states_; andy;,? andZ, g is thepartition function which serves as a

normalizer:
Iyl

Zyo = ;E! P(Yi-1,¥i[%; 6) (2.5)

We have a feature functidiy;_1, i, X) which computes features over adjacent labels, and
can which utilize any and all information available in thesebvation sequences. We denote
the value of featurd; by fi(y;_1,Vi,X), and we have a corresponding feature weighThe
clique potential functions take an exponential form:

@(Yi-1,Yi|x 0) = exp{f(yi-1,¥i,X) - 0} (2.6)

In practice, many features are over only one labhelg featuresand not neighboring pairs
of labels édge featurgs If g(yi,x) are the node features, ahdy;_1,V;,x) are the edge
features, thef(yi—1,¥i,x) = (i, X) +h(yi-1,¥i,X).

Training a CRF consists of finding the feature weights whieximize the conditional
probability of the data. The optimization is typically dooe the log-likelihood, instead

1A factor table is similar in spirit to an unnormalized proljap table, though it would be erroneous to
normalize it and then assume that you have the correct nardistributions for the nodes in the clique.
CRFs argylobally normalizedso information from the rest of the sequence must be takeraitccount when
computing marginal probabilities.

2To handle the start condition properly, imagine also thatiefine a distinguished start state
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of the likelihood itself, because both functions are conae® have the same maximum,
and it is much simpler to compute the partial derivativeshaf log-likelihood. It is also
common practice to put a Gaussian ptiover the feature weights (this is often referred to
asregularizatior) to encourage them to not get too large when sparse obsmrgatight
make a feature an apparently strong, or even categoricadiigior. The regularized log-
likelihood of a first-order, linear-chain, CRF is given by:

ly| ly'| 012
gCRF(y79|X Zif yl 17y|7 Zif }/ 1 |7X % (27)

whereo is the variance of the prior, and determines the degree ddljzation for feature

weights deviating from zero. The partial derivatives of ibg-likelihood, with respect to

the feature weight parameters, are the actual feature sonrthe gold data, minus the
expected feature counts in the model using the currentreataights, along with a term
for the prior over the feature weights:

0. LeRF ly| 6,
26, Zif Yi—1,Yi:X) Ee[fj\x]—ﬁ (2.8)

Once we know how to compute the function value and partialvdeves, we can use any
number of numerical optimization techniques, includin@EGS (Liu and Nocedal 1989)
and stochastic gradient descent (see section 2.3.2) tanaodtimal parameter settings.

2.1.2 Constituency parsing

Parsing is the task of finding the underlying syntactic (@ngmatical) structure of a sen-
tence. The output of a parser iparse tregalso sometimes referred to as simplparse
or atree). In this thesis | cover two different types of parse treemstituency trees, intro-
duced in this section, and dependency trees, introducdtkifotlowing section. Refer to
figure 2.1 for an example of a constituency tree.

3L, priors are also common, but | used a Gaussian prior for alkwothis dissertation.
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S
- Y
NP NP VP
T T -
DT JJ NN NN JJ NN VBD NP PP
/\ /\
CD NNS IN NP
S
DT NNP

The luxury auto maker last year sold 1,214 cars in the U.S.

Figure 2.1: An example constituency tree from the PennTaekb

Phrases The basic unit of a parse tree ispairase which has an associatesfate (or
label). For examplethe luxury auto makeis anoun phrasgor NP), andn the U.Sis a
prepositional phraséor PP). At the leaves of the tree grarts of speeclsuch azommon
noun(or NN) anddeterminer(or DT). Phrases are decomposed into smaller phrases and
parts of speech. For instanda,the U.S.contains gpreposition(or IN) and an NP. The
spanof a phrase refers to the set of wordsidminates

Lexicon Parsers will contain eexiconwhich determines what parts of speech are allowed
for a given word. There arepenandclosedclasses of words. Determiners are a closed
class — there are a small, known number of determiners, awdvoeds cannot be added
to the set. Nouns are an open class — new nouns are beingdcedhtee time. Many
parsers have elaborateknown word modelshich help determine the part of speech for a
previously unseen word. It is common for the lexicon to retnot only the set of possible
tags for a word, but also associated probabilities spewfiow likely each one is.

Grammar Parsers will contain a context fregrammar (CFG) which contains rules
which determine how phrases can decompose. For example; PIR NP, tells us that

a prepositional phrase can be made by combining a preposiib a noun phrase. When
building aprobabilistic context free grammgPCFG), each rule has an associated prob-
ability, and the probabilities of all rules with the same grarwill sum to unity. Once a
grammar has been determined, the goal of PCFG parsing igitthinmost probable parse
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for a given sentence. More broadly, the grammar and lexicorkwogether to determine
the set of parse tredisensedby the grammar (the lexicon is often considered to be part of
the grammar) for a given sentence.

Binarization Most parsing algorithms rely on dynamic programs which meguhe
grammar to bévinarized This involves converting rules with more than two childrato
multiple, related rules. For instance, NP DT JJ NP (JJ is an adjective) could be con-
verted into NP— DT @NP-DT and @NP-DT- JJ NP In this case @NP is referred to
as aractive stateas it is only part of an NP, and it is being actively constegctincluding
the -DT tells us that the previous child is a DT. The numberref/us children included
in the state is referred to as the levelladrizontal Markovizationand is determined by
the grammar designer. States can also be augmented witmiation about ancestors fur-
ther up in the tree. This is callecertical Markovizationor, if only one level is included,
grandparent annotationT hesplit refers to the point in between the two sub-phrases which
compose the phrase.

Evaluation

Parse trees are usually evaluated using precision, reedllRa score oflabeled spans
Scores for parts of speech are often reported separatelysttagging accuracy. It is also
common to report numbers for percent of trees which were d¢etaly correct; the average
number ofcrossing bracketswhich are guessed spans which overlap with a correct span,
but neither subsume it nor are subsumed by it; and the peotguiessed trees that have no
crossing brackets with the gold tree. Téealbscript is typically used to compute these
numbers, and it does some normalization of the input datamgpect to punctuation.

2.1.3 Dependency parsing

A dependency grammar is an alternative representation hoasp structure (constituency)
grammar. It directly models theeadof each phrase, and the other words in the phrase are
dependentsf the head. The head of a phrase is the most important woddthenother

4Available athttp://nlp.cs.nyu.edu/evalb/.
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T TSR VA

ROOT DT JJ NN NN JJ NNVBD CD NNSIN DT NNP
The luxury auto maker last year sol®14 cars in the U.S.

Figure 2.2: An example dependency tree, created by congetiie constituency tree in
figure 2.1.

wordsmodifyit. The head of a sentence is typically the main verb. Reféigtoe 2.2 for
an example of a dependency tree.

Dependency trees can be eitli@beledor unlabeled In the unlabeled case, the tree
structure represents which words modify each other, buthnhature of the relationship.
The labels represent the type of dependency relation, aathjebes includesubject appo-
sition, andtemporal modifier All of the dependency parsing work in this dissertation is
unlabeled.

Projectivity The link structure connecting dependents to heads will fatnee, with the
primary verb as the root. However, sometimes those linkakme/ed to cross one another,
and sometimes they are not. When a treprigectiveit means that none of the links in
the tree cross one another. Mon-projectivetree has crossing links. Some models force
projectivity (e.g. Eisner (1996)), and some do not (e.g.Didiald et al. (2005b)). The En-
glish language is mostly projective; there are very fewanses where links should cross
one another. One example of non-projectivity in Englisexrapositionwhich is when a
phrase is moved from its normal position to the end of theesesd (e.g.My brother visited
who's from New York and is a professional gambhléris also common to modify depen-
dency trees to ensure projectivity, and most algorithmsctmverting constituency trees
into dependency trees (discussed in section 2.2.3) do saveyahat forces projectivity.
All of the dependency parsing results in this thesis are ggliEmdata and assume/enforce
projectivity.
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The Eisner dependency parsing algorithm

The discriminative dependency parser | will present inisech.2.3 relies heavily on the
Eisner dependency parsing algorithm (Eisner 1996), whiehl briefly review here. The
algorithm assumes that you have part-of-speech tags famatls in the sentence, and that
you already have a grammar which specifies the probabiliiefferent parts of speech
attaching to one anotheattachment probabilitigs and the probability that a word will
stop taking dependents (tlséopping probability. Given this grammar, and the parts of
speech for an input sentence, it will find the most probabitgggetive dependency tree.

At its heart, the algorithm relies on a set of three basic shapifferent pairs of shapes
can be combined to construct new shapes. Each shape haslefitarad a right version,
depending on whether it covers dependents to the right dretdeft. Left and right depen-
dents are conditionally independent of one another giverhgad word. The basic shapes
are given below.

Incomplete left/right triangles These triangles have two indices associated with them:
h, which is the index of the head word, andvhich tells us the other end of the span that
this triangle covers. The heddis still accepting dependents on the left (right) for a left
(right) triangle. 1t is a left (right) triangle if < h (h < i). Incomplete left triangles are
formed by combining a complete left triangle and a left tipd. Similarly, incomplete
right triangles are formed by combining a right trapezoidhaa complete right triangle.
The probability of the incomplete triangle is the productiad probabilities of the complete
triangle and trapezoid of which it is made. See figure 2.3afoitlustration.

Complete left/right triangles These triangles have the same two indices associated with
them as the incomplete triangles dg:which is the index of the head word, andvhich
indicates the other end of the span. The difference heratsatl know thah is no longer
accepting dependents on the left/right. Once again, it gtariangle ifi < h and a right
triangle ifh < i. A complete left (right) triangle is made out of an incomplétft (right)
triangle. The probability of an complete triangle is the guot of the probabilities of

the incomplete triangle of which is it made and a stoppingphulity which states how
likely it is for the heach to stop collecting dependents on that side. See figure 2r3mfo
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(c) Creation of left/right trapezoids

Figure 2.3: The basic shapes used in the Eisener dependarsigigpalgorithm, and how
they are combined with one another to produce other shapes.

illustration.

Left/Right trapezoids These shapes also contain two indidesindh, andh’ becomes
a dependent dfi in the formation of the trapezoid. In a left trapezoid,< h, andhis a
head word which can still take dependents on its left (thotngly must be further to the
left thanh), while h’ is no longer taking dependents on its right. (For a right éagd,
invert everything.) A left trapezoid is formed by combiniagcomplete right triangle with
an incomplete left triangle. The probability of a trapezisithe product of the probabilities
of the triangles from which it is made, and the attachmenbabdity for attachingY to h.
See figure 2.3c for an illustration.

Now that | have given an overview of the fundamental shapeanldiscuss the actual
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algorithm. This is a dynamic programming algorithm basedaarhart, much like chart-
based PCFG parsing. The chart is initialized with inconmgleft and right triangles over
each word (soh = i) We then incrementally build up the chart by increasing thenssize
that we are looking at. First we will attempt to build incora triangles and trapezoids
by iterating through each possible split point for that sfeach internal point of the span,
possibly including the span edges as well), combining thpegpiate shapes from the left
and right portions, and seeing which split point gives thghbst probability. The shapes
and their probabilities are then added to the chart for thahsWe then construct complete
triangles for that span from the incomplete triangles, add #tnhem to the chart, before
moving to the next larger span.

The algorithm as just described gives thax inside scoreslhe max inside score for an
incomplete right triangle tells you the probability of thest likely subtree structure which
spanditoi and has as the head. What if, instead, you wanted to know the totlgiiity
of all possible subtrees which sphario i and have heatd? In that case, when construct-
ing the chart, when iterating through the possible ways twstroct a shape (the possible
split points) you would add the probabilities for each optinstead of taking the one with
the highest probability. This is called tisemmed inside scar&Vhy would you want the
summed inside score? Because when combined witlsuhemed outside scoy®u can
get the overall probability thatattaches tdn, conditioned on the other words and parts of
speech in the sentence. This probability will come in hanthervl cover discriminative
dependency parsing (section 5.2.3), because we will needrtgpute partial derivatives
which require this number. Outside scores are computediafigle scores, and are done
top down instead of bottom up. The outside score for a shagieeinhart is constructed by
looking at each shape it can be a child of (so, each shapet thelpis to form by (poten-
tially) combining with another shape). The outside scorthefparent is multiplied by the
inside score of the sibling (if one exists), along with thiaehment/stopping probability (if
one was used when constructing the parent during the insigdg) p This is done for each
possible parent (and sibling) and the probabilities areragethto get the outside score for
the chart entry. PCFGs have an analogous inside/outsidétalg, which is discussed in
more depth in Manning and Schitze (1999).
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Evaluation

Dependency parsing is scored using attachment accuraeyy Bord has a parent in both
the correct and guessed tréeand so the accuracy is simply the percent of predicted par-
ents that are correct. In labeled dependency parsing, aneepart both labeled and unla-
beled attach accuracy, which (respectively) do and do tetttae label into consideration
when determining if an attachment is correct. Because ligisi$ only includes unlabeled
dependency parsing, | only present unlabeled accuracy ersnb

2.2 Data

2.2.1 Named entity recognition

Because named entity recognition has been around for a lorgg it is a well-supported
task with a lot of available datasets. Many of them are uséui$rdissertation, and | briefly
describe them below. Please see table 2.1 for some sumnaéisties on them.

CoNLL This dataset originates from the shared task at the 2003mgestthe Confer-
ence on Computational Natural Language Learning (CoNltlcphtains British newswire,
annotated WitlPERSON LOCATION, ORGANIZATION, andMIsc. This is probably the most
popular NER dataset. For more information, please see Sahiylaulder (2003).

MUC-6 This dataset originated from the 1995 meeting of the Messagkerstanding
Conference (MUC-6). It contains American newswire, and lbgesn annotated withER-

SON, LOCATION, ORGANIZATION, DATE, TIME, PERCENT andNUMBER. Historically,

this shared task jump-started research on named entitgméam (prior MUCs did not
have NER shared tasks). For more information, please segh®im (1996).

MUC-7 This dataset originated from the 1998 meeting of the Messaggerstanding
Conference (MUC-7). Like its predecessor, it contains Ao@r newswire, and is anno-
tated with the same entity types as MUC-6. For more inforomgtplease see Chinchor

5The root verb has a “fake” parent that is ROOT.
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(1998).

GENIA This biomedical named entity dataset is part of the largeN{@Eproject, which
also contains resources for parsing, coreference resalupart-of-speech tagging, and
other types of annotations for biomedical data. There ie als associated ontology of
terms and events. The data comes from 2000 Medline abstexdshas been annotated
with 36 different entity types. The data does contain nestédies, and is also annotated
with parts of speech. The corpus does not have an official/ttav/test split, though the
GENIA part-of-speech tagger (Tsuruoka et al. 2005) has bealuated using the first 90%
of the data for training, and the final 10% for testing. Durdeyelopment | further subdi-
vided the training set into a devtrain and devtest set, il t2.1 only contains information
for this semi-official split. For more information, pleaseesOhta et al. (2002) and Kim
et al. (2003).

AnCora This corpus contains Spanish and Catalan newspaper tekf anbset of the
data was used in the SemEval 2007 Task 9 (Marquez et al. 200te data contains
nested entities, and is also annotated with part-of-sptgs) parse trees, semantic roles
and word senses. The corpus annotators made a distinctiwedr@strongandweakenti-
ties. They definstrongnamed entities as “a word, a number, a date, or a string ofsvord
that refer to a single individual entity in the real worldf d strong entity contains mul-
tiple words, it is collapsed into a single tokekVeaknamed entities, “consist of a noun
phrase, being it simple or complex” and must contastrangentity® Figure 2.4 shows
an example from the corpus with both strong and weak entifié® entity types present
arePERSON LOCATION, ORGANIZATION, DATE, NUMBER, andOTHER. Weak entities are
very prevalent; 47.% of entities are embedded. This corpus was also not sghittiain
and test sections, so | did so myself, and these are the namdgmorted in table 2.1. For
Spanish, files starting with 7—9 were the test set, 5—-6 werdévwelopment test set, and the
remainder were the development train set. For Catalan difgting with 8—9 were the test
set, 67 were the development test set, and the remaindertivedevelopment train set.

8Arguably, this represents a misunderstanding of the teramfecentity”, and weak named entities should
just be termecentitiesor referential expressions



2.2. DATA 21

ROOT
SP AQ NC FC ORGANIZATION VSDA AQ FEFC VM PERSON FP
/\ /\
DA ORGANIZATION PERSON PERSON
\ \ _—— N
NP NP FC NC SPORGANIZATION
\
NP
\
A doble partido el Barca es el favorito ” , afirma Makaay , delanterodel Deportivo
At double match , the Barca is the favorite " , states Makaay , attacker of Deportivo

Figure 2.4: A named entity annotated sentence from the AaCorpus, along with its

English translation.

# Entity # Train

# Dev

# Test

Corpus Genre Types Tokens Tokens Tokens
CoNLL 2003 British newswire 4 203K 51K 46K
MUC-6 American newswire 7 165K 14K 15K
MUC-7 American newswire 7 90K 104K 65K
GENIA biomedical abstracts 36 450K — 50K
AnCora Spanish Spansh newspapel 6 459K - 57K
AnCora Catalan Catalan newspaper 6 432K — 49K

Table 2.1: Summary statistics for the named entity datasegd in this dissertation.

For both, the development train and test sets were combariedrh the final train set. Due
to the sub-splitting of the training set for development &mieg there is no additional data
purely for development), | only report the train and testseés. For more information,
please see Marti et al. (2007).

2.2.2 Constituency parsing

The most common constituency parsing dataset, by far, i®&mnTreebank. It contains
approximately one million words (forty thousand sentehcéparsed data from the Wall

Street Journal. It is divided into sections, and sectiors22 are used for training, 22 is

used for development, and 23 is used for testing. For moggnmdtion, please see Marcus
et al. (1993).
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2.2.3 Dependency parsing

Data for dependency parsing comes from two sources: depepndree datasets and con-
version of constituency trees. In recent years the CoNLleshtask has focused on de-
pendency parsing (Buchholz and Marsi 2006, Nivre et al. 20807d several datasets have
been created as a result. Alternatively, dependency treeastructed out of constituency
trees via a set dfiead percolation rulesin this case, when looking at a one level subtree
within a tree (a parent and its children), the rules will detge which child is the head of
the phrase, and will then percolate that child’s head up égplrent. For instance, if you
have S— NP VP (a sentence composed of a noun phrase a verb phraséh¢éher will

be the head of the phrase, and its head will be percolatedfupatlVP was constructed
by a VP — VB NP (a verb phrase composed of a verb and a noun phrase)thbarB
would have been the head of the VP, and would be percolatenlthe S. The head of both
NPs (the one under the S and the one under the VP) would botbgendents of the VB.
The two commonly used sets of head percolation rules arenlS¢R003) and Yamada and
Matsumoto (2003). The two are quite similar, and in thiselitgtion | used Collins’ rules.

2.2.4 OntoNotes

Many of the joint modeling experiments in this dissertatitifize the recently developed
OntoNotes Corpus (Hovy et al. 2006). Its creation has beavira ¢ffort by between
BBN Technologies, the University of Colorado, the Universif Pennsylvania, and the
University of Southern California’s Information Sciencestitute, and the project lead-
ers describe it as “a large, multilingual richly-annotatedpus constructed at 90% inter-
annotator agreement.” The project is a work-in-progressams to fill many important
gaps in the currently available set of annotated corporaoiitains data of a wide vari-
ety of genres in English, Chinese and Arabic, with a final gidadne million words each
for English and Chinese and a half million words of Arabidhe most exciting aspect
of the corpus, in my opinion, is the fact that it has been aaeot with multiple layers
of information, including constituency trees, predicatecture, word senses, coreference,
and named entities. Given the quantity and variety of datalined with the many levels

"Most of this data isiotin the form of parallel corpora, though a small portion is.
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Training Testing
Range # Sent. Range # Sent.
ABC 0-55 1195 5669 199
MNB 0-17 509 18-25 245
NBC 0-29 589 30-39 149
PRI 0-89 1704 90-112 394

VOA 0-198 1508 199-264 385

Table 2.2: Training and test set sizes for the five OntoNo&taseets in sentences. The file
ranges refer to the numbers within the names of the origimdbRotes files.

of annotation, OntoNotes really has the potential to hawwgelimpact on NLP research.
The PennTreebank catalyzed research in parsing technaagyOntoNotes gives us the
ability to build high-quality models, trained on large qgtiias of data, over many of the
key semantic structures necessary for high-level undsistg.

The experiments in this dissertation use Release 3.0 of dke (@vith the exception
of the dependency parsing work, which uses Release 2.Q)gkhib is worth noting that
Release 4.0 is now available. | also limited experimentiéoEnglish portion of the data,
and used the ABC, CNN, MNB, NBC, PRI, and VOA sections, whigpresent a mix
of speech and newswire data. Table 2.2 gives the numberiofrigaand test sentences
in each of the sections. | used the parse and named entityadioms, and discarded the
remaining levels, though | would like to include them in frtgmmodels. While OntoNotes is
an excellent and much-needed resource, it is not perfeet different levels of annotation
were done by different parties, and occasionally incoasiges were found. In appendix A,
| outline the modifications | made to the data before using it.

Named entity types

The data has been annotated with eighteen types of enMisy of these entity types do
not occur very often, and coupled with the relatively smaiaint of data, make it difficult
to learn accurate entity models. Examples\®8@RK_OF_ART, PRODUCT, andLAW. Early
experiments showed that it was difficult for even a standarded entity recognizer, based
on a state-of-the-art CRF, to learn these types of enfitiés.a result, | decided to merge

8The difficulties were compounded by somewnhat inconsistediecasionally questionable annotations.
For example, the wortbdaywas usually labeled astaTE, but about 10% of the time it was not labeled as
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all but the three most dominant entity types into into oneegahentity type callediisc.
The result was four distinct entity type®ERSON ORGANIZATION, GPE (geo-political
entity, such as a city or a country, and similaLtoCATION in other corpora), angiisc.

2.3 Optimization

Many of the models in this thesis, and in NLP in general, regdoing an optimization in
order to estimate parameters (usually feature weights).

2.3.1 Deterministic optimization methods

Many models for NLP tasks have convex objective functiorm. &long time researchers
used generalized iterative scaling (Darroch and Ratc8i2) (e.g., Ratnaparkhi (1997))
and conjugate gradient methods to do the optimization,(d@utanova et al. (2003)).
Nowadays it is common to use L-BFGS (Liu and Nocedal 1989madd-memory quasi-
newton method. A lot of the experiments in this dissertatisa L-BFGS, but this usually
requires repeatedly doing inference on an entire corptsndfundreds of times. For some
models, inference is fast enough that iterating over thpuwthis many times is not a prob-
lem. But for other models in this dissertation, doing infeze hundreds of times is just not
computationally feasible. In those cases, | turned to ststot optimization techniques,
described in the next section, since they require many f@aeses through the data, and
can even find fairly decent parameter settings after passnoggh the data only once.

2.3.2 Stochastic optimization methods

Stochastic optimization methods have proven to be extrerfficient for the training

of models involving computationally expensive objectivadtions (Vishwanathan et al.
2006), like several we will encounter in this dissertatibmfact, the on-line backpropaga-
tion learning used in the neural network parser of Hende(@604) is a form of stochastic
gradient descent. Standard deterministic optimizatiaines such as L-BFGS make little

anything. | also found several strang@®RK OF ARTS, including theStanley Cuand theU.S.S. Cole
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Figure 2.5: WSJ15 objective value for L-BFGS and SGD verasses through the data.
SGD ultimately converges to a lower objective value, butsdegually well on test data.

progress in the initial iterations, often requiring sevg@asses through the data in order to
satisfy sufficient descent conditions placed on line sesschin our experiments stochas-
tic gradient descent (SGD) converged to a worse objectinetion value than L-BFGS,
however it required far fewer iterations (see figure 2.5) anddieved comparable test set
performance to L-BFGS in a fraction of the time. One earlyakpent on WSJ15 showed
a seven times speed up.

Stochastic function evaluation

Utilization of stochastic optimization routines requitbe implementation of a stochastic
objective function. This function? is designed to approximate the true functighbased
off a small subset of the training data represente@pyHereb, the batch size, means that
9y is created by drawing training examples, with replacement, from the training get
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With this notation we can express the stochastic evaluatidhe function asZ (%, 6).
This stochastic function must be designed to ensure that:

E {zw@g”; eﬂ = 2(2:0)

Note that this property is satisfied, without scaling, fojemive functions that sum over
the training data, asitis in our case, but any priors oveptrameters must be scaled down
by a factor ofb/ |Z|. The stochastic gradierﬂ].i”(@éi); 0), is then simply the derivative
of the stochastic function value.

Stochastic gradient descent

SGD was implemented using the standard update:
61 = 0~ DL (2 8)

And employed a gain schedule in the form

B T
Nk = '”Io—H_k

where parameter was adjusted such that the gain is halved after five passasgiithe
data.

2.4 \Word classes

Most of the models in this thesis use discriminative paramestimation and make ex-
tensive use of features. When creating these featuresn atigmented the words in the
data with two additional pieces of information: a distrilomial similarity cluster, and a

word shapewhich encodes orthographic information. These two tygegond classes are

discussed in this section.
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2.4.1 Distributional similarity clusters

Many of the models discussed in this dissertation make usdistfibutional similarity
clusters. There are many popular methods for clusteringdsver the Brown algorithm
(Brown et al. 1992) has been used extensively (Liang 2005, &tal. 2008, Turian et al.
2010), and clusters based on deep-learning (Collobert aaslaff 2008) are also beginning
to gain popularity (Turian et al. 2010). | chose to use clssteitput from Alexander Clark’s
software which he distributes on his webp&gd which is based on Clark (2003). | chose
his model because the code is easy to use, and the defaulgsefive good results.

The exact same clusters were used whenever | discuss thédisgibutional similarity
clusters, except where explicitly notéd They were trained on approximately 275 million
words. This included the 100 million word British Nationab@us (BNC 2007), a random
subset of the EnglishGigaword corpus (Graff et al. 2007],the words in the CoNLL 2003
(Sang and Meulder 2003), MUC-6 (Sundheim 1996), and MUCHIr(€hor 1998) named
entity corpora and the PennTreebank (PTB) (Marcus et aBL3hen | first experimented
with the clustering software, | initially trained the cless using approximately 40 million
words, and found the cluster quality to be much worse. | aigd both 40 clusters (since
this is roughly the number of part-of-speech tags in the Paig) 200 clusters, and found
that using 200 clusters resulted in more useful clusterseWladded cluster-based features
to the state-of-the-art Stanford named entity recognigerkgl et al. 2005), | found that,
depending on the dataset, there was a 10%—25% reductiorom €his is comparable to
the results in Miller et al. (2004), the first paper to my knedge to leverage features based
on distributional similarity tags.

| used these clusters for two very different purposes. Tl fise was the creation
of cluster-based features, usually modeled after featwhesh use part-of-speech tags as
input. The second use was to restrict possible labels fovengiord. Further details are
given in the appropriate sections.

%http://www.cs.rhul.ac.uk/home/alexc/
ONew clusters were needed for experiments using biomedatalahd non-English data.
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word word shape
Jenny = XXXX
beta-carotene = g-XXX

McDonald = XXXXXX
CD28-responsive =  XXdd-xxx

Table 2.3: Examples of words and their corresponding woegshk..

2.4.2 Word shapes

Theword shapeeduces a word to a summary of its orthographic informatinaluding
information on letters, numbers, punctuation, etc. To eona word into its word shape,
the following rules are applied:

1. Spelled out versions of Greek letters are replaces with ‘g
2. Digits are replaced with ‘d.

3. Uppercase letters are replaced with *X.

4. Lowercase letters are replaced with ‘x.’

5. Punctuation remains.

6. Instances where the same character (g/d/x/X) is repeateed than three times in a
row are truncated to only include the first three instances.

For several examples of words and their corresponding sh@bease see table 2.3.



Chapter 3

Using long-distance information
efficiently

3.1 Introduction

Named entity recognition (introduced in section 2.1.1jismmodeled using a linear-chain
CRF, which makes decisions using only a small window of le@caitext. When deciding
if a particular word is the name of an person, the model canlitiom on the labels of the
surrounding words, but not other, potentially more infotive, instances of that word (or
related words) elsewhere in the document. Oftentimes sh&fficient; the neighboring
words and labels contain enough information to properiyidyg the entity class for that
word. Sometimes, however, words appear in locally ambigwmntexts. If you look at the
example in figure 3.1, you will see that the waoranjugappears twice. In the first case it
is modified by the phraseews agencywhich should be sufficient to confidently conclude
that it is an organization. In the second case, it is followgdhe wordsaid which is
ambiguous, because both people and organizations caniegg.tihe second occurrence
of the tokenTanjugis in fact mislabeled by my CRF-based NER system, becausaeeo
are more likely to say things than organizations are to sagth However, the probability
distribution on the label for that token is not peaked; thedglas much less certain about
this decision than it is about the decision to label the firstance a@WRGANIZATION. This
error should be correctable if we can incorporate infororatbout the previous decision

29
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Figure 3.1: An example of the label consistency problem gtee from a document in the
CoNLL 2003 English dataset. Correct named entity tags ave/slabove the wordsorRG
indicates organization and O indicates a non-entity.

made in the less ambiguous context.

Despite the potential usefulness of this long-distanaarmétion, most statistical mod-
els currently used in natural language processing repres#n local structure, because
this allows them to be evaluated using exact inference tqaks. Although this constraint
is critical in enabling tractable model inference, it is & kenitation in many tasks, since
natural language contains a great deal of non-local streicAigeneral method for solving
this problem is to relax the requirement of exact inferescdstituting approximate infer-
ence algorithms instead, thereby permitting tractablergrice in models with non-local
structure. One such technique@bbs samplinga simple Markov chain Monte Carlo
(MCMC) algorithm that can be used for appropriate infereimcany factored probabilistic
model, including sequence models (Geman and Geman 1984)siByg Gibbs sampling,
itis possible to add non-local structure to factored si@aémodels of language. Although
Gibbs sampling is widely used elsewhere, until recentlydlias been extremely little use
of it in natural language processing. The only uses in NLirpo the publication of the
work described in this chapter, of which | am aware, are Kinale{1995), Della Pietra
et al. (1997) and Abney (1997). In this chapter, | use it féeiance after adding non-local
dependencies to conditional random field (CRF)-based seguaodels for two different
information extraction tasks: named entity recognitiofe@® and a template filling task.

The two different tasks benefited from modeling differentey of non-local structure.
For named entity recognition, | included a model of labelsistency, illustrated in fig-
ure 3.1, and discussed above. The basic idea is that idewteds and phrases should be
labeled consistently. We do not necessarily want to enftitiseas a hard constraint, since
there are occasionally good reasons for the same word tdb&edin multiple ways within
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the same document, but we would like to encourage it as a spfitaint. | also used the
same technique, but with a different type of long-distanoeleh, to improve performance
in a template filling task. Here, the input is a seminar anigeurent, and the goal is to
extract the name of the speaker, and the location, starteaddimes of the seminar. It
is common to use a sequence model for this type of task, byprildem that arises is
that the model will often label multiple, different namesiathappear in the document as
the speaker. For instance, it may also label the personrigpdte speaker as the speaker,
because the model primarily learns what peoples’ hamesli@ek In this instance, we
want to add long-distance links which encourage (or eveoefpothe model to pick only
one answer for each of the slots. We can additionally add-thatance links which encode
the fact that the start time should be before the end timetlaatdf only one time is listed
itis likely to be the start time and not the end time.

Linear-chain CRFs (introduced in section 2.1.1) are a pnemti approach to these types
of information extraction tasks. These models (and the#dpcessors, hidden Markov
models (HMMs) (Leek 1997, Freitag and McCallum 1999) andimaxn entropy Markov
models (MEMMSs) (Borthwick 1999, McCallum et al. 2000)) ededhe Markov property:
decisions about the state at a particular position in thaesece can depend only on a small
local window. It is this property which allows tractable cpuatation, as both the Viterbi
and forward-backward algorithms necessary for inferenu taaining critically rely on
this property.

In this chapter, | show how to efficiently incorporate coasits of these forms into
a CRF model by using Gibbs sampling instead of the Viterbosdigm as the inference
procedure. At training time | build two separate models, firs is a linear-chain CRF,
trained in the standard manner, and the second is a taskispeeg-distance model. At
test time the two models are combined as a product-of-exgelihton 2000). This is
where | use Gibbs sampling for inference, as the combinedelied linear-chain with
added long-distance links. | present experiments on battsiand demonstrate that this
technique yields significant improvements.
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3.2 Related work

Several authors have successfully incorporated a labalistemcy constraint into proba-
bilistic named entity recognition systems. Mikheev et 8899), Finkel et al. (2004) and,
more recently, Krishnan and Manning (2006) incorporatelabnsistency information by
using ad-hoc multi-stage labeling procedures that aret@febut special-purpose. Curran
and Clark (1999) and Malouf (2002) use a different techniwui@corporate label consis-
tency into an MEMM. They condition the label of a token at atigatar position on the
label of the most recent previous instance of that same takenprior sentence of the
same document. Note that this violates the Markov propéhty:decision at a position is
conditioned on a state that is arbitrarily far back in theusage. To allow this, the au-
thors slightly relax the requirement of exact inferencestdéad of finding the maximum
likelihood sequence over the entire document, they chassié sentence at a time, allow-
ing them to condition on the maximum likelihood sequencereljpus sentences. This
approach is quite effective for enforcing label consisyeimcmany NLP tasks, precisely
because entities are generally most carefully describezhwithey are first introduced in a
text. Nevertheless, it permits a forward flow of informatmly, which is not sufficient for
all cases of interest. Chieu and Ng (2002) and, more recafitym et al. (2009) propose a
solution to this problem. Though they use different basees@h multi-class logistic clas-
sifier which does not model sequence information, and atiokain CRF, respectively),
the basic idea is the same for both. For each token, they defidéional features taken
from other occurrences of the same token in the document dpproach has the added
advantage of allowing the training procedure to automigidaarn good weightings for
these “global” features relative to the local ones. Howgetles approach cannot easily
be extended to incorporate other types of non-local straciuch as the case of template
consistency that we discuss below.

Another highly relevant piece of prior work is that of Bunasand Mooney (2004).
They use aelational Markov networkKkRMN) (Taskar et al. 2002) to explicitly model
long-distance dependencies, though they do not represguoesce information as in a
linear-chain CRF. Unfortunately these dependencies naudéebined in the model structure
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before doing any inference, and so the authors are forcetetggnerate all possible can-
didate entities by using crude heuristic part-of-speedtepss, and then add dependencies
between these text spans uscliglue templatesThis generates a extremely large number
of overlapping candidate entities, and dependencies legtitem, which then necessitates
additional templates to enforce the constraint that tekssquences cannot both be dif-
ferent entities, something that is more naturally modeled ICRF. The authors also used
loopy belief propagatiorand a voted perceptron for approximate learning and inferen
and noted that this led to problems with convergence.

Sutton and McCallum (2004) have the most similar prior wankang-distance depen-
dencies. They introducskip-chain CRFswhich maintain the underlying CRF sequence
model (which Bunescu and Mooney (2004) lack) while addikip edgedbetween distant
nodes, and use it to represent relations between entitias information extraction task.
The dependency arcs which they add to the CRF allow the lestgriie flow of informa-
tion. The decision of which nodes to connect is also madeistaaily, and because the
authors chose to connect all pairs of identical capitalizedds. They also utilize loopy
belief propagation for approximate learning and inference

While the technique | used is similar mathematically andpiristo the above ap-
proaches, it differs in some important ways. Like Sutton MaCallum (2004), but un-
like Bunescu and Mooney (2004), my method maintains a seguaodel structure, while
adding long-distance conditioning influences, and henes dot need to pre-generate can-
didates and then enforce no-overlap constraints. The medapblemented by adding ad-
ditional constraints into the model at test time, and dodsewuire the preprocessing step
necessary in the two previously mentioned works. This aléov a broader class of long-
distance dependencies, because one does not need to maké&iahgssumptions about
which nodes should be connected, and is helpful when you teishodel relationships
between nodes which are the same class, but may not be siméary other way. For
instance, in the CMU seminar announcements dataset, o délbels iSSTART_TIME.
However, the announcement may also mention multiple tirffesekample, times when
the speaker is available to meet with students) and thesstinay also be labeled by the
CRF as asTART_TIME. With the proposed technique, we can penalize the model Is mu
tiple, inconsistent times are all labeled as®RT_TIME. This type of constraint cannot
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easily be modeled in an RMN or a skip-chain CRF, because utiregjthe knowledge that
both entities are given the same class label. But, by addimgdnstraint that all start times
should be coreferent, it may be possible to fix this error.

My model also allows dependencies between multi-word @®aand not just single
words. Additionally, the model can be applied on top of a gxesting trained sequence
model. As such, it does not require complex training procesluand can instead leverage
all of the established methods for training high accuracusace models. It can indeed
be used in conjunction with any statistical hidden stateisege model: HMMs, MEMMs,
CRFs, or even heuristic models. Third, my technique emplabs sampling for approx-
imate inference, a simple and probabilistically well-fded algorithm. Gibbs sampling
is generally better suited to estimating a probability sttion than to finding the most
likely label sequence. However, through the use of simdlateealing, | did not find this
to be a problem for our simple linear chain. As a consequend¢kese differences, my
approach is easier to understand, implement, and adapitamgications.

3.3 Approach

The model is a product of experts, where the two experts aneeartchain CRF, which
does not include any long-distance component, and a censisimodel, which explicitly
models long-distance relationships. CRFs were introdueeskction 2.1.1. The CRFs
used in this chapter were trained in the completely standaadner, as discussed when
they were introduced. The CRF features that | used are edtimtable 3.1.

In this section, | will first discuss the general form of theadpdistance consistency
model. I will then discuss the use of Gibbs sampling for iafere in a sequence model,
and then how to apply the technique to our product-of-espaddel.

3.3.1 Models of non-local structure

Our models of non-local structure are themselves just segumodels, defining a proba-
bility distribution over all possible state sequencess paossible to flexibly model various
forms of constraints in a way that is sensitive to the lingaistructure of the data (e.g., one
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Feature NER TF
Current Word v v
Previous Word v v
Next Word v v
Current Word Character n-gram all | length<6
Current POS Tag v
Surrounding POS Tag Sequence| v

Current Word Shape v v
Surrounding Word Shape Sequerice v v
Presence of Word in Left Window| size 4| size 9
Presence of Word in Right Windowsize 4| size 9

Table 3.1: Features used by the CRF for the two tasks: namtégl mcognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions)lusiirate this by modeling two
forms of non-local structuretabel consistencyn the named entity recognition task, and
template consistendy the template filling task. One could imagine many ways diieg
such models; for simplicity | use the form

Pu(y[x) O [] grA ) (3.1)
AeN

where the product is over a set of violation typesand for each violation typad we
specify a penalty parametéy. The exponent s, o) is the count of the number of times
that the violatiom occurs in the state sequerswith respect to the observation sequence
0. This has the effect of assigning sequences with more Vaolata lower probability.
The particular violation types are defined specifically faclke task, and are described in
sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and cleianguld be expensive to do
so. As we will see in the discussion of Gibbs sampling, thiswat actually be a problem
for us.
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3.3.2 Gibbs sampling for inference in sequence models

In hidden state sequence models such as CRFs (and HMMS andWEM is standard
to use the Viterbi algorithm, a dynamic programming aldorit to infer the most likely
hidden state sequence given the input and the (parametenzedel (see, e.g., Rabiner
(1989)). Although this is the only tractable method for ex@mmputation, there are other
methods for computing an approximate solution. Monte Cawdthods are a simple and ef-
fective class of methods for approximate inference baseshopling. As an illustration of
such methods, consider the following (extremely) naivehmoétfor performing inference.
Imagine we have a hidden state sequence model which definedbabdity distribution
over state sequences conditioned on any given input. With aumodeM we should be
able to compute the conditional probability B/|x) of any state sequenge= {yo,...,Yn}
given some observed input sequence {Xg,...,Xn}. To then find the sequence with the
maximum conditional probability, we could sample a largenbver of random sequences
from the uniform distribution, score them all with the dibtrtion given by the model, and
output the sequence with the highest score as our most ktatg sequence. The obvious
drawback of this approach is that the space of possible staigences is large (exponential
in the sequence length) and so one is unlikely to happen upagq@ence anywhere near
the optimal one. Alternatively, one can sample sequenoes fhe conditional distribution
defined by the model. These samples are likely to be in highgintity areas, increasing
our chances of finding the maximum. The challenge is how tq$aesequences efficiently
from the conditional distribution defined by the model.

Gibbs samplingrovides a solution (Geman and Geman 1984). Gibbs sampdifirges
a Markov chain in the space of possible variable assignm@nthis case, hidden state
sequences) such that the stationary distribution of thekMachainis the joint distribution
over the variables. Thus it is called a Markov chain Montel C@viCMC) method; see
Andrieu et al. (2003) for a good MCMC tutorial. In practicakms, this means that we
can walk the Markov chain, occasionally outputting sampdesl that these samples are
guaranteed to be drawn from the target distribution. Funtioge, the chain is defined in
very simple terms: from each state sequepewe can only transition to a new state
sequencg ) obtained by changing the state at any one positi@md the distribution
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over these possible transitions is just
Po(y !y ) = Pu(y Iy Y ). (3.2)

wherey_; is all states except. In other words, the transition probability of the Markov
chain is the conditional distribution of the label at the igos, given the rest of the se-
guence. This quantity is easy to compute in any Markov sezpierodel. One easy way
to walk the Markov chain is to randomly initialize the labalseach point, and then loop
through the positionsfrom 1 toN, and for each one, to resample the hidden state at that
position from the distribution given in equation 3.By outputting complete sequences at
regular intervals (such as after resamplinghfbositions), we can sample sequences from
the conditional distribution defined by the model. Howewsfore we begin to regularly
output samples, we can allow the chaimitx. Because we started from an arbitrary point,
the first samples will be of particularly bad quality. If we n@drying to estimate the shape
of the probability distribution, this would be problematidowever, because we can com-
pute the model likelihood of each sample, and pick the samikethe highest probability
(this is discussed in the following paragraph), there ise@ harm in including these early
samples. They are unlikely to have high likelihood, andegpondingly, they are unlikely
to be the sample that gets selected, but if one of them doesbeing the most likely
sample, then there is no reason to not use it.

The process just described is still gravely inefficient. &m sampling may be a good
way to estimate the shape of a probability distribution, ibig not an efficient way to do
what we want: find the maximum. However, we cannot just ttaorsigreedily to higher
probability sequences at each step, because the spaceeselt non-convex. We can,
however, borrow a technique from the study of non-convexaigation and ussimulated
annealing(Kirkpatrick et al. 1983). Geman and Geman (1984) show that easy to
modify a Gibbs Markov chain to do annealing; at timee replace the distribution in
equation 3.2 with

) Pu (v y"; Y x) /e
PA()/(t)‘y(t 1)) _ i i

_ (3.3)
-1
5Py Iy x) e

linstead of looping through the positions, one could alseaégdly randomly sample positions.
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Inference | CoNLL | Seminars
Viterbi 85.51 91.85
Gibbs 85.54 91.85
Sampling 85.51 91.85
85.49 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.86
Mean 85.51 91.85
Std. Dev. 0.01 0.004

Table 3.2: Anillustration of the effectiveness of Gibbs gding, compared to Viterbi infer-
ence, for the CoNLL named entity recognition task, and thd.Cminar announcements
information extraction task. This table shows 10 runs oflfSibampling in the same CRF
model that was used for Viterbi. For each run the sampler wamlized to a random
sequence, and used a linear annealing schedule that satheledmplete sequence 1000
times. CoNLL performance is measured as per-entitydhd CMU seminar announce-
ments performance is measured as per-token F

wherec = {cy, ..., cr} defines aooling scheduleAt each step, we raise each value in the
conditional distribution to an exponent and renormaliz®tesampling from it. Note that
whenc = 1 the distribution is unchanged, and@as- 0 the distribution becomes sharper,
and wherc = 0 the distribution places all of its mass on the maximal omtephaving the
effect that the Markov chain always climbs uphill. Thus if gladually decreasefrom 1

to 0, the Markov chain increasingly tends to go uphill. Tms&i@aling technique has been
shown to be an effective technique for stochastic optinongLaarhoven and Arts 1987).

To verify the effectiveness of Gibbs sampling and simulatedealing as an inference
technique for hidden state sequence models, | compared@iabViterbi inference meth-
ods for a basic CRF, without the addition of any non-local eloBor each of the ten trials,
| generated 1000 samples, and used the one with the higkelgtdiod. The results, given
in table 3.2, show that if the Gibbs sampler is run long engitghaccuracy is the same
as a Viterbi decoder. Keep in mind that this is exactly theavedr that was expected, but
it is useful to see how many samples were necessary to get, thed it is comforting to
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observe the low variance between each of the ten runs.

3.3.3 Gibbs sampling for inference in the product-of-expetis model

We've now covered how to to Gibbs sampling in a CRF, and exignitito the product of
experts model is trivial. Our overall model is specified bg fbllowing equation:

ly|
x;6) 0 I_l(P(Yiflayib(; 0) = [ 6" (3.4)
i= AEN

Ppog(y

Like the equation for the long-distance model (equation),3His equation is unnor-
malized. The patrtition function from the CRF portion of thguation (the first term) has
also been removed, since it only serves as a normalizerjenelfuation is already unnor-
malized due to the fact that we are multiplying two probayiiistributions together (plus,
one of them is already unnormalized).

Thankfully this doesn’t matter, because we only use the ifod&ibbs sampling, and
so only need to compute the conditional distribution at glsipositioni (as defined in
equation 3.2). One (inefficient) way to compute this qugnsitto enumerate all possible
sequences differing only at positiofso, conditioned on the labels at all points other than
i), compute the score assigned to each by the model, and ralhpemAlthough it seems
expensive, this computation can be made very efficient witineaghtforward memoization
technique: at all times the model maintains data structtepsesenting the relationship
between entity labels and token sequences, from which anguakly compute counts of
different types of violations.

3.4 The CoNLL NER task

| tested the effectiveness of the technique on two estaddislatasets: the CoNLL 2003
English named entity recognition dataset, discussed ssction, and the CMU seminar
announcements information extraction dataset, whichlldiscuss in the next section.
The CoNLL NER corpus was discussed in section 2.2.1, butlltwiéfly review its
most salient features. It is composed of British newswingl, ia annotated with four entity
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PER| LOC | ORG | MISC
PER | 3141 4 5 0

LOC 6436| 188 3
ORG 2975 0
MISC 2030

Table 3.3: Counts of the number of times multiple occurrencka token sequence is
labeled as different entity types in the same document.maken the CoNLL training set.

PER| LOC | ORG | MISC
PER | 1941 5 2 3
LOC 0| 167 6 63
ORG 22| 328| 819| 191
MISC 14| 224 7| 365

Table 3.4: Counts of the number of times an entity sequentab&ed differently from
an occurrence of a subsequence of it elsewhere in the dod¢iRogrs correspond to se-
guences, and columns to subsequences. Taken from the Caalhlng set.

types:PER LOC, ORG, andMISC. The data is separated into a training set, a development
set (testa), and a test set (testb). The training set can®ib documents, and approxi-
mately 203,000 tokens. The development set has 216 docsmeethapproximately 51,000
tokens, and the test set has 231 documents and approxird&télyo tokens.

3.4.1 Consistency model

Label consistency structure derives from the fact that withparticular document, differ-
ent occurrences of a particular token sequence are unli@ddg labeled as different entity
types. A named entity recognition system modeling thiscstme would try to assign all
the occurrences of the token sequence to the same entityttygreby sharing evidence
among them. Although any one occurrence may be ambiguoissuitlikely that all in-
stances are unclear when taken together. Thus, modelisgtiicture should (and does)
lead to accuracy improvements.

The CoNLL training data empirically supports the strengthte label consistency
constraint. Table 3.3 shows the counts of entity labels &mhepair of identical token se-
guences within a document, where both are labeled as ary.ehldte that inconsistent
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labelings are very rar.In addition, we also want to model subsequence constrdiats:

ing seerGeoff Woodgarlier in a document as a person is a good indicator thatsesuient
occurrence ofMoodsshould also be labeled as a person. However, if we examinasds

of the labelings of other occurrences of subsequences dfedeld entity, we find that the
consistency constraint does not hold nearly so strictihin¢ase. As an example, one doc-
ument contains references to bdthe China Daily a newspaper, an@hing, the country.
The first should be labeled as aRrGANIZATION, and second as1a0CATION. Counts of
subsequence labelings within a document are listed in GBleNote that there are many
off-diagonal entries: th€hina Dailycase is the most common, occurring 328 times in the
dataset.

The penalties used in the long distance constraint modeléddLL are the empirical
Bayes estimates taken directly from the data (tables 3.33a4)] except that | changed
counts of 0 to be 1, so that the distribution remains positi8e the estimate of aER
also being aroRrRG is %51; there were 5 instances of an entity being labeled as lr&R,
appeared 3150 times in the data, and we add 1 to this for singotiecaus®ErRMISC
never occurred. However, when we have a phrase labeledattfg in two different places,
continuing with thePER-ORG example, it is unclear if we should penalize itrsRr that is
also anoRG or anoORG that is also @ER To deal with this, we multiply the square roots
of each estimate (BER mislabeled as anRrG, and anoRG mislabeled as &ER) together
to form the penalty term. The penalty term is then multiplieé number of times equal
to the length of the offending entity; this is meant to “eneme” the entity to shrink.For
example, say we have a document with three entiResor Volgogradwice, once labeled
asPERand once a®RG, andRotor, labeled as awRG. The likelihood of aPERalso being
anoRGIs %51 and of anoRG also being @ERIs %69, so the penalty for this violation is
(\/;51 X \/%)2. The likelihood of anoRG being a subphrase ofRER is &2. So the

total penalty would bgos; X moeg X gas-

2A notable exception is the labeling of the same text as bajarzation and location within the same
document. This is a consequence of the large portion of EBaoegports news in the CoNLL dataset, so that
city names are often also team names.

SWhile there is no theoretical justification for this, | fouitdo work well in practice.
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| CoNLL |
Approach LOC | ORG | MISC | PER | ALL
B&M LT-RMN - - - - 80.09
B&M GLT-RMN - - - - 82.30

Local+Viterbi 88.16| 80.83| 78.51| 90.36| 85.51
NonLoc+Gibbs | 88.51| 81.72| 80.43| 92.29| 86.86

Table 3.5: k scores of the local CRF and non-local models on the CoNLL 2t¥8ed
entity recognition dataset. | also provide the results fBumescu and Mooney (2004) for
comparison.

3.4.2 Experiments

In the experiments | compared the impact of adding the noatlsmodels with Gibbs
sampling to a baseline CRF implementation, and to prior vayrlBunescu and Mooney
(2004). |1 evaluated using entity-level, micro-averageggcision, recall and fscore (see
section 2.1.1), which was the same evaluation metric usédeirshared task from which
the data originated. The results are found in table 3.5. Fexperiments involving Gibbs
sampling, | used a linear cooling schedule. | initializee thain to the Viterbi output from
the baseline CRF, and then collected 200 samples per tndlyeport the average of all
trials. The trials had a low standard deviation 888% — and a high minimum:Fscore
— 86.72% — demonstrating the stability of the method. Improveimane significant with
greater than 95% confidence using a standard t-test.

The non-local model increased the $core by about 1.3% compared to the baseline
CRF. Although such gains may appear modest, | was only faggene particular type
of error: consistency errors. Often, words mislabeled by llaseline system would be
corrected by the addition of long-distance links, but otwaally the incorrectly labeled
word would “win,” and words labeled correctly by the baseligystem would become
wrong in the new model. Other classes of errors remaine@hatgnchanged. Also, note
that these gains are achieved relative to a near stateeedfthNER system: the winner
of the CoNLL English task reported an Bcore of 8876%. In contrast, the increases
published by Bunescu and Mooney (2004) are relative to alibasgystem which scores
only 80.9% on the same task.

The biggest drawback to the model is the computational cdaking 200 samples
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dramatically increases test time. Averaged over 3 runs din Ysiberbi and Gibbs, CoNLL
testing time increased from 55 to 1738 seconds. Howeves,itizrease in time is due
largely to computing the long-distance penalties and rettnditional probabilities in the
CRF. The 1000 sample runs (in table 3.2) which did not use bagimodel, averaged 328
seconds, indicating that with simpler, better optimizeldpgl models, test time could be
dramatically reduced.

3.5 The CMU seminar announcements task

3.5.1 Task description

This dataset was developed as part of Dayne Freitag’s tisiserresearch (Freitag 1998).
It consists of 485 emails containing seminar announcenagi@arnegie Mellon University.
It is annotated for four fieldSSPEAKER LOCATION, START_TIME, andEND_TIME. Sutton
and McCallum (2004) used 5-fold cross validation on therergorpus when evaluating
on this dataset, so | obtained and used their data splitfhegareésults can be properly
compared. Because the entire dataset is used for testerg,itno development set, and so
| did all of my development using the CoNLL NER data. | alsodigeeir evaluation metric,
which is slightly different from the method for the CoNLL @dat Instead of evaluating
precision and recall on a per-entity basis, they are evatuah a per-token basis, and
the overall score is computed by macro-averaging (as opptsenicro-averaging) the
individual types.

3.5.2 Consistency model

Due to the lack of a development set, my consistency modethi®ICMU seminar an-
nouncements is much simpler than the CoNLL model; the nusnvkere selected accord-
ing to my intuitions, and | did not spend much time hand optinmg the model. Specifi-
cally, | had three constraints. The first is that all entiteseled assTART_TIME are nor-
malized (e.g.3:00 pmand3pmare both turned int®300, and are penalized if they are

4Available athttp://nip.shef.ac.uk/dot.kom/resources.html
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\ CMU Seminar Announcements \

Approach STIME | ETIME | SPEAK | LOC | ALL
S&M CRF 97.5 97.5 88.3 77.3 | 90.2
S&M Skip-CRF | 96.7 97.2 88.1 80.4 | 90.6
Local+Viterbi 96.67 | 97.36 | 83.39 | 89.98| 91.85
NonLoc+Gibbs | 97.11 | 97.89 | 84.16 | 90.00| 92.29

Table 3.6: i scores of the local CRF and non-local models on the CMU saram@ounce-
ments dataset. | also provide the results from Sutton andadiiie@ (2004) for comparison.

inconsistent. The second is a corresponding constrairgNor TIME. The last constraint
attempts to consistently label tis®EAKER If a phrase is labeled assPEAKER we as-
sume that the last word is the speaker’s last name, and wdizeefa each occurrence of
that word which is not also labelesPEAKER ForSTART_TIME andeEND_TIME the penalty
is multiplied in based on how many words are in the entity. S®EAKER the penalty is
only multiplied in once. | used a hand selected penalty of exp0}.

3.5.3 Experiments

My experiments on the CMU seminar announcements datasstgd@inose on the CoNLL
data. | once again compared the impact of adding the non+hcdels with Gibbs sam-
pling to a baseline CRF implementation, and to prior work bité& and McCallum (2004).
The results are found in table 3.6. For all experiments viwngl Gibbs sampling, | used a
linear cooling schedule, and report the average over 1@&1riThe trials once again had
low standard deviation —.007% — and a high minimum;Fscore — 928%. Compared
with prior work, my model had larger improvements compa@d stronger baseline. Im-
provements are significant with greater than 95% confidesogyla standard t-test.

3.6 Summary

In this chapter, | presented a method for efficiently addomgtdistance information into a
linear-chain CRF. This is done by training two separate rteodbe linear-chain CRF and
a long-distance model. At test time, the two models are mpligtl together, and instead
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of the standard Viterbi decoding algorithm we use Gibbs demgpo perform inference
and find (an approximation to) the most likely labeling in doned model. While Gibbs
sampling is designed more for estimating a distributiomtfaa finding its max, | did not
have any difficulties with this, as evidenced by the expenitakresults. | demonstrated
the effectiveness of this technique on two separate taskisnaboth cases achieved larger
improvements to stronger baselines when compared to prewiork on the same data.

There are many other potential applications for the tealmigresented here. | com-
bined a trained (sequence) model with a hand-tuned (losigiaice) model, but clearly one
could combine any number of trained and/or hand-tuned nsod®he could also try to
learn the parameters for the long-distance model througtrmmergin (Taskar et al. 2003,
Tsochantaridis et al. 2005) or perceptron (Freund and S&hap98, Collins 2002) learn-
ing. Because both of these techniques require only the argamal not partial derivatives,
the sampling procedure could be used during training timntbthe argmax. A similar
technique could also be used to learn how to weight the diftemodels; the model in this
chapter gave them equal weight. Moving beyond sequencels)alles technique can be
applied to nearly any model for which it is known how to do MCM&ampling. Currently,
for PCFG parsing there is no known MCMC procedure (though krniown how to gener-
ate samples from the correct distribution (Finkel et al. 20Ibhnson and Griffiths 2007)),
but if one were developed then long-distance links coulduliyebe added in a number of
places. They would be helpful for deciding prepositionalgsie attachment, since in that
case local information is often insufficient. Long-distarimks would also be useful in
places where there is likely to be parallelism, such as ttexnal structure of two phrases
joined by a conjunction.



Chapter 4

Bayes-optimal inference to improve NLP
pipelines

4.1 Introduction

In the last chapter we considered incorporating long-distanformation at one level of
linguistic analysis. In this chapter we turn our attentiotite links between different levels
of analysis. Almost any high-level system for natural laage understanding must recover
hidden linguistic structure at many different levels: pafrspeech tags, syntactic depen-
dencies, named entities, etc. Consider the case of semaletiabeling (SRL). In this task
(described more fully in section 4.5), the goal is to idgnsémantic roles, such asbject
direct object andtemporal modifiefor a particular predicate, or verb. Modern semantic
role labeling systems use the syntactic parse tree of thtersem Question answering sys-
tems require question type classification, parsing, nhamétyeecognition, semantic role
labeling, and often other tasks, many of which are depenaiephe another and are often
pipelined together. Pipelined systems are ubiquitous i?Nh addition to the above ex-
amples, commonly parsers and named entity recognizersansefgspeech and chunking
information, and also word segmentation for languages ssdBhinese. Almost no NLP
task is truly standalone.

Most current systems for higher-level, aggregate NLP taskploy a simple 1-best
feed forward architecture: they greedily take the best wuf each stage in the pipeline

46
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and pass it on to the next stage. This is the simplest arthreeto build (particularly if
reusing existing component systems), but errors are frgtpuenade during this pipeline
of annotations, and when a system is given incorrectly &belput it is much harder for
that system to do its task correctly. For example, when dsimgantic role labeling, if
no syntactic constituent of the parse actually correspaods given semantic role, then
that semantic role will almost certainly be misidentifiecb, hile it is not surprising, it
is disappointing that F-measures on SRL drop more than 10&smwstitching from gold
parses to automatic parses (for instance, from 91.2 to 8010¢ joint model of (Toutanova
et al. 2005)).

A common improvement on this architecture is to plefeest lists between processing
stages, for example Sutton and McCallum (2005) and Wellhat. €2004). Passing on a
k-best list gives useful improvements (e.g., in Koomen ef24105)), but efficiently enu-
meratingk-best lists often requires very substantial cognitive angirgeering effort, e.g.,
in Huang and Chiang (2005) and Toutanova et al. (2005).

At the other extreme, one can maintain the entire space oéseptations (and their
probabilities) at each level, and use this full distribatio calculate the full distribution
at the next level. If restricting oneself to weighted finitate transducers (WFSTS), a
framework applicable to a number of NLP applications (asimed in Karttunen (2000)), a
pipeline can be compressed down into a single WFST, givirtiguds equivalent to propa-
gating the entire distribution through the pipeline. In harst case there is an exponential
space cost, but in many relevant cases composition is irtipgaguite practical. Out-
side of WFSTs, maintaining entire probability distributgis usually infeasible in NLP,
because for most intermediate tasks, such as parsing aneldnamtity recognition, there
is an exponential number of possible labelings. Nevertsl®or some models, such as
most parsing models, these exponential labelings can bpactiy represented in a packed
form (e.g., Maxwell and Kaplan (1995) and Crouch (2005)) smbisequent stages can be
re-engineered to work over these packed representati@mé6 and Johnson 2002). How-
ever, doing this normally also involves a very high cogmitand engineering effort, and in
practice this solution is infrequently adopted. Moreowesome cases, a subsequent mod-
ule is incompatible with the packed representation of aiptesymodule and an exponential
amount of work is nevertheless required within this ardtitee.
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In this chapter, | explore an attractive middle ground bemvéhe standard, greedy
linguistic pipelines and the full joint models discusseditbsequent chapters. Rather than
only using the 1 ok most likely labelings at each stage, we would indeed likeateet
into account all possible labelings and their probabditieike the long-distance models of
the previous chapter, this is achieved by use of sampling@roximate inference. The
form of approximate inference | use is very simple: at eaaggein the pipeline, we draw a
sample from the distribution of labels, conditioned on thmples drawn at previous stages.
We repeat this many times, and then use the samples fromstiredage, which corresponds
to the final, higher-level task, to form a majority vote ciéiss As the number of samples
increases, this method will approximate the complete ibistion. Use of the method is
normally a simple modification to an existing piece of code] the method is general. It
can be applied not only to all pipelines, but to any directeythc graph (DAG) structured
multi-stage algorithms as well.

While both this chapter and the previous focus on the usermpbag for inference,
there are some important conceptual differences. In theiqure chapter, | used MCMC
to walk around the probability space for a single (highlgustured, joint) distribution, be-
cause we were unable to do exact inference. In this chaptesygvgenerating independent
samples instead of doing MCMC. Here, the samples are gedksst a means of doing
Bayesian inference — we only care about the output from thedtage in the pipeline,
but instead of taking point estimates at each prior stage addMike to take the entire
distribution into account, and this technique provides amsego do that.

| applied the method to two problems: semantic role labeding recognizing textual

entailment. For semantic role labeling | used a two stagelipip which parses the input
sentence and then performs semantic role labeling usingdbse tree from the previous
stage. For recognizing textual entailment | used a thregegtgeline which tags the sen-
tence with named entities, and then parses it (forcing ittept named entity boundaries)
before passing it to the entailment decider, which uses tt@mamed entity and parse
information. The sampling pipeline performed better thaa greedy 1-best pipeline, and
performed comparably tolabest pipeline.
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4.2 Related work

While sampling pipelines have not been tried before, thepior work which useg-best
lists. Sutton and McCallum (2005) used the output kflsest list from a parser as input to
a semantic role labelling system, but unfortunately they daegative result and found the
1-best parser output to perform better. More recently, Zétaal. (2009) used#-best parse
information as input to their semantic role labelling systand performed quite well in the
2009 CoNLL shared task on joint parsing and SRL. The top perifoy system however
still completely decoupled the tasks.

Hollingshead and Roark (2007) also explore an alternatv&andard pipelines, and
present something callgapeline iteration One way to view pipelines, is that the outputs
from earlier stages constrain the possible output spacéaftar stages. In their work,
they make multiple passes through the pipeline, and all@mtitputs from later stages to
constrain the earlier stages during the next iteration.ydav improvements when using
pipeline iteration in a reranking parser.

The work in this chapter also makes extensive use of Ng arthdd2001). That paper
focuses on thevoting Gibbs classifierand analyzes its use as an approximation to the
Bayes optimal classifier. They were interested in the ca8agésian classification, where
the hyper-parameters for the prior are unknown. In the Baymsnal classifier, these
hyper-parameters would be integrated out, effectivellizinig the entire distribution of
possible hyper-parameter values. The voted Gibbs classifiead samples a value for the
hyper-parameters, and then using that value, generates@esiom the classifier. This is
repeated multiple times, and the outputs from the classifieused to construct a majority
vote classifier, the output of which is the final output. WHileave a different problem
setting, the fundamental idea is still the same. In our ctse=Bayes optimal classifier
is what you would get if you passed the entire distributiorotigh at each stage in the
pipeline (instead of just a point estimate, which is whatlze$t list passes). My sampling
pipeline is a voting Gibbs classifier, because it passeslissmafwng at each stage, and then
uses them to form a majority-vote classifier in the last stage
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4.3 Approach

4.3.1 Overview

In order to do approximate inference, we model the entirelpip as a Bayesian network.
Each stage in the pipeline corresponds to a variable in ttveank. For example, the parser
stage corresponds to a variable whose possible valued pasaible parses of the sentence.
The probabilities of the parse trees are conditioned on énernt variables, which may just
be the words of the sentence, or may be the part-of-speestotdgut by a part-of-speech
tagger.

The simple linear structure of a typical linguistic annaiatnetwork permits exact
inference that is quadratic in the number of possible labetach stage, but unfortunately
our annotation variables have a very large domain. Additignsome networks may not
even be linear; frequently one stage may require the outpat multiple previous stages,
or multiple earlier stages may be completely independermtnaf another. For example,
a typical question answering system will do question ty@essification on the question,
and from that extract keywords which are passed to the irdtion retrieval part of the
system. Meanwhile, the retrieved documents are parsechggdd with named entities; the
network rejoins those outputs with the question type cl@sdion to decide on the correct
answer. My approach addresses these issues by using apptexinference instead of
exact inference. The structure of the nodes in the netwonkipe direct sampling based
on a topological sort of the nodes. Samples are drawn froradhditional distributions of
each node, conditioned on the samples drawn at earlier nodes topological sort.

4.3.2 Probability of a complete labeling

Before we can discuss how to sample from these Bayes netsilM@malize how to move
from an annotation pipeline to a Bayes net. Rebe the set oh annotatord\;, Ay, ..., Ay
(e.g., part-of-speech tagger, named entity recognizesepga These are the variables in the
network. For annotatof;, we denote the set of other annotators whose input is dyrectl
needed a®arentgA;) C A and a particular assignment to those variablegaeentsA).
The possible values for a particular annotakpareg; (i.e., a particular parse tree or named
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entity tagging). We can now formulate the probability of ammete annotation (over all
annotators) in the standard way for Bayes nets:

n

Pen(a1,ap,...,an) = r! P(aj|parentgA;)) (4.1)

4.3.3 Approximate inference in Bayesian networks

This factorization of the joint probability distributiomé€ilitates inference. However, exact
inference is intractable because of the number of posséileeg for our variables. Parsing,
part-of-speech tagging, and named entity tagging (to nafesvaall have a number of
possible labels that is exponential in the length of theeses®, so we use approximate in-
ference. | chose Monte Carlo inference, in which samplesdfeom the joint distribution
are used to approximate a marginal distribution for a subisedriables in the distribution.
First, the nodes are sorted in topological order. Then, $asrgre drawn for each variable,
conditioned on the samples which have already been drawny BEmples are drawn, and
are used to estimate the joint distribution.

Importantly, for many language processing tasks our agiio only needs to provide
the most likely value for a high-level linguistic annotati(e.g., the guessed semantic roles,
or answer to a question), and other annotations such astpaeseare only present to assist
in performing that task. The probability of the final annaiatis given by:

Pen(an)= )  Pen(a,az....an) (4.2)

Q,8,.--,8n-1

Because we are summing out all variables other than the fimglwe effectively use
only the samples drawn from the final stage, ignoring theltabgthe internal variables,
to estimate the marginal distribution over that variable then return the label which had
the highest number of samples. For example, when tryingdogmize textual entailment
(RTE) (explained in section 4.6), we count how many timesave@ed “yes, it is entailed”
and how many times we sampled “no, it is not entailed” andrretiie answer with more
samples.
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When the outcome you are trying to predict is binary (as iscidme with RTE) on-
ary for smalln, the number of samples needed to obtain a good estimate pbsterior
probability is very small. Somewhat counter-intuitivetis is true even if the spaces
being sampled from during intermediate stages are expi@tigriarge (such as the space
of all parse trees). Ng and Jordan (2001) show that under asgdimptions, with onlj
samples the relative classification error will be at m@%) higher than the error of the
Bayes optimal classifier (in our case, the classifier whiaksdexact inference). Even if the
outcome space is not small, the sampling technique | presertill be very useful, as we
will see later for the case of SRL.

4.4 Generating samples

The method | have outlined requires the ability to samplenftbe conditional distributions
in the factored distribution of equation 4.1: in our cases hobability of a particular
linguistic annotation, conditioned on other linguisticnatations. Note that this differs
from the usual annotation task: taking the argmax. But fostnadgorithms the change is
small and easy. | will now discuss how to obtain samples efiity from a few different
annotation models: probabilistic context free grammaHB8s), and linear-chain CRFs.

4.4.1 Sampling parses

In this section, | will show how to generate parse tree samfitem a PCFG for a given
sentence. Early work which used parse sampling (Bod 199%&] adifferent formalism:
tree substitution grammars. That work presented a bottpmlgorithm for sampling parse
derivations The derivation is the binarized initial tree output from ager, which often
includes other, additional annotations on the nodes. Tdnsation is then debinarized, and
the additional mark-up is removed, before the real pargei$reeturned. One example of an
additional annotation is augmenting NPs (noun phrasesytade information stating that
they are temporal or locative. In this case, in the derivatibe state would be NP-TMP or
NP-LOC. You could have two derivations which are identicatept for one node which
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is labeled NP-TMP in one, and NP-LOC in the other. The finasparees would be iden-
tical, because the LOC/TMP would be removed. So, as you amsétiple derivations
can correspond to the same final parse tree. When finding tkebV{(most likely) parse,
the algorithm actually finds the most likely derivation, ahdre is some chance that this
will not correspond to the most likely parse. However, th@ghbing procedure presented in
Bod (1995) samples derivations, and sampling from the sphderivations is equivalent
to sampling in the space of final parse trees. Goodman (19@8)gresented a top-down
version of this algorithm. Although | used a PCFG for pargiimgtead of a tree substitu-
tion grammar, like the just described work), it is the gramofalein and Manning (2003),
which uses extensive state-splitting, which results initamlthl mark-ups on the nodes in
the tree. Once again there is again a many-to-one correspoadetween derivations and
parses, and | use an algorithm similar to Goodman'’s, desg iielow.

PCFGs put probabilities on each rule, such as>NP VP and NN— ‘dog’. The
probability of a complete parse tree is the product of théphilities of the rules used to
construct the parse tree. A dynamic programing algorithm,inside algorithm can be
used to find the probability of a sentence. Thgide probabilityBy(p, q) is the probability
that wordsp throughq, inclusive, were produced by the non-termikaBo the probability
of the sentenc@he boy pet the dogs equal to the inside probabilit§s(1,6), where the
first word, w; is Theand the sixth wordwsg, is [period]. This quantity is the sum of the
probabilities of all parses of the sentence which haas the root symbol. The probability
can be defined recursively (Manning and Schitze 1999) ass]

PNk —wp) if p=g

Be(p,q) = ot _ (4.3)
S 5 P(N*— N'N®)B (p,d)Bs(d+1,q) otherwise
rsd=p

whereNK, N" and NS are non-terminal symbols amwt, is the word at positiorp. These
probabilities can be efficiently computed using a dynamaogpam, or memoization of each
value as it is calculated.
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function DRAWSAMPLE(NK,r,s)
ifr=s
treelabel = NX
treechild = word(r)
return (tree)
for eachrul e me {n' : headn') = NX}
N' < IChild(m)
NI — rChild(m)
forg—rtos—1
scoresm,q) < P(m)Si(r, q)BJ (a+1,s)
(m,q) <— SAMPLEFROM(score$
treelabel = head m)
treelChild = DRAWSAMPLE (IChild(m), r,q)
treerChild = bDrRAwSAMPLE(rChild(m),q+ 1,s)
return (tree)

Figure 4.1: Pseudo-code for sampling parse trees from a PCTHR(S is a recursive al-
gorithm which starts at the root of the tree and expands eade by sampling from the
distribution of possible rules and ways to split the span ofds. Its arguments are a
non-terminal and two integers corresponding to word insliead it is initially called with
argumentsS 1, and the length of the sentence. There is a cabhtopleFromwhich takes
an (unnormalized) probability distribution, normalizésdraws a sample and then returns
that sample.
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Once all of the inside probabilities have been computedy tam be used to gener-
ate parses from the distribution of all parses of the semtensing the algorithm in fig-
ure 4.1.This algorithm is called after all of the inside pabbities have been calculated and
stored, and takes as paramet8rd, andlength(sentence It works by building the tree,
starting from the root, and recursively generating chitdbased on the posterior proba-
bilities of applying each rule and each possible positiorwich to split the sentences.
Intuitively, the algorithm is given a non-terminal symbstch asS or NP, and a span of
words and has to decide (a) what rule to apply to expand theerominal, and (b) where
to split the span of words, so that each non-terminal resyiftom applying the rule has an
associated word span, and the process can repeat. The jomelakbilities are calculated
just once, and we can then generate many samples very guiidwSampless linear in
the number of words and rules.

4.4.2 Sampling named entity taggings

To do named entity recognition, | used the same linear-chamditional random field
(CRF) model as presented earlier in section 2.1.1. Preljiouse used Markov chain
Monte Carlo (MCMC) as a means of dealing with the additionalldistance dependen-
cies. Here, because we do not have these long-distance diapées, and because we
want samples from the distribution and not the most likebeléing, we can use a simpler
sampling technique which repeatedly generates indepésdemples. To review briefly,
when building a CRF we create a linear chainctifjues each of which represents the
probabilistic relationship between an adjacent pair destasing dactor tablecontaining
|SJ2 values. These factor tables are defined in terms of expaientidels conditioned on
features of the observation sequence, and must be ingahfiar each new observation
sequence. As stated earlier, these factor tables@mennormalized probability tables. We
need to first execute the forward-backward algorithm, aispease of a process called
clique tree calibrationwhich involves passingiessagebetween the cliques (see Koller
and Friedman (2009) for a full treatment of this topic). Thiscess propagates informa-
tion throughout the entire sequence, and after it has cdeghl¢he factor tables can be
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viewed as unnormalized probabilities, which can be usedtopute conditional proba-
bilities, Pcre(YilYi—n---VYi—1,X). Once these probabilities have been calculated, gengratin
samples is very simple. First, we draw a sample for the latilesfirst position and then,
for each subsequent position, we draw a sample from theldisin for that position, con-
ditioned on the label sampled at the previous position. Pphixess results in a sample
of a complete labeling of the sequence, drawn from the piostéistribution of complete
named entity taggings.

Similarly to generating sample parses, the expensive pardlculating the probabili-
ties; once we have them we can generate new samples venhquick

4.4.3 k-Bestlists

At first glance,k-best lists may seem like they should outperform samplirgabse in
effect they are thé& best samples. However, there are several important reagonsne
might prefer sampling. One reason is that keest paths through a word lattice, or the
k best derivations in parse forest do not necessarily coore$po thek best sentences or
parse trees. In fact, there are no known sub-exponentiafitigns for the best outputs in
these models, when there are multiple ways to derive the satpeit (this was discussed
in section 4.4.1). This is not just a theoretical concerne-$tanford parser (Klein and
Manning 2003) uses such a grammar, and | found that when ggemgea 50-best derivation
list that on average these derivations corresponded ta &latftas many unique parse trees.
My approach circumvents this issue entirely, because thgks are generated from the
actual output distribution.

Intuition also suggests that sampling should give morerdityeat each stage, reducing
the likelihood of not even considering the correct outputsing the Brown portion of the
SRL test set (discussed in section 4.5), and 50-samplé®$01 found that on average the
50-samples system considered approximately 25% more jat&RL labelings than the
50-best system.

When pipelines have more than two stages, it is customarg tolteam search, with a

LConditioned on the distinguished start states.
2Thei-best answer will differ in only one position from one of tidsest answers, whefje< i.
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beam size ok. This means that at each stage in the pipeline, more and nmdine prob-
ability mass gets “thrown away.” Practically, this meanattas pipeline length increases,
there will be increasingly less diversity of labels from #alier stages. In a degenerate
10-stagek-best pipeline, where the last stage depends mainly on #tesfage, it is prob-
able that all but a few labelings from the first stage will hénezn pruned away, leaving
something much smaller tharkébest sample, possibly even a 1-best sample, as input to the
final stage. Using approximate inference to estimate thgimardistribution over the last
stage in the pipeline, such as this sampling approach, getipé length does not have this
negative impact or affect the number of samples needed. Alikik-best beam searches,
there is an entire research community, along with a largey lwdditerature, which stud-
ies how to do approximate inference in Bayesian networkscamdprovide performance
bounds based on the method and the number of samples geherate

One final issue with th&-best method arises when instead of a linear chain pipeline,
one is using a general directed acyclic graph, where a nadéa&ae multiple parents. In
this situation, doing th&-best calculation actually becomes exponential in the cizbe
largest in-degree of a node — for a node witiparents, you must try akP combinations
of the values for the parent nodes. With sampling this is nasaue; each sample can be
generated based on a topological sort of the graph.

4.5 Semantic role labeling

4.5.1 Task description

Given a sentence and a target verb (also calledptkdicatg the goal of semantic role
labeling is to identify and label syntactic constituentsha parse tree with semantic roles
of the predicate. Common roles agent which is the thing performing the actiopatient
which is the thing on which the action is being performed, arsfrument which is the
thing with which the action is being done. Additionally, taeare modifier arguments
which can specify the location, time, manner, etc. The foilhg sentence provides an
example of a predicate and its arguments:

[The luxury auto makeghent[last yearjemp[sold]pred [1,214 carS)atient in [the



58 CHAPTER 4. BAYES-OPTIMAL PIPELINES

Figure 4.2: The pipeline for semantic role labeling.

U -S]Iocation-

Semantic role labeling is a key component for systems thafukstion answering,
summarization, and any other task which directly uses a sematerpretation.

4.5.2 System description

| modified the system described in Haghighi et al. (2005) amgtdnova et al. (2005) to

test my method. The system uses two kinds of models: locaklepdhich score subtrees
of the entire parse tree independently of the labels of atlbéeles not in that subtree, and
joint models, which score the entire labeling of a tree wegmantic roles (for a particular

predicate).

First, the task is separated into two stages, and local madellearned for each. At the
first stage, thedentification stagea classifier labels each node in the tree as eiltiRG
meaning that it is an argument (either core or modifier) tqoeelicate, ONONE meaning
that it is not an argument. At the second stagecthssification stagehe classifier is given
a set of arguments for a predicate and must label each wispésific semantic role.

Next, a Viterbi-like dynamic algorithm is used to generatésa of the k-best joint
(identification and classification) labelings accordinghe local models. The algorithm
enforces the constraint that the roles should be non-quairlg. Finally, a joint model is
constructed which scores a completely labeled tree, asdiged to re-rank thiebest list.
The separation into local and joint models is necessaryusecthere is an exponential num-
ber of ways to label the entire tree, and using the joint mattgle would be intractable. |
retained the&k-best structure here, but ideally one would want to use aqpiate inference
instead of &-best list here as well. Importance sampling would be paldity well suited
— instances could be sampled from the local model and theveighted using the joint
model.
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Because the SRL system outputk-best list, we already know exactly how likely it
thinks each of thé outputs is, for a particular parse sample input. If we drem@as
here, we would lose valuable information which we have easgss to. So, for each parse
sample, thé outputs become weighted votes, where their weight is tieglihood in the
k-best list. Multiple samples are passed through, and in iideveting is done with these
weighted samples. The complete pipeline is shown graphicefigure 4.3.

4.5.3 Experiments

In 2004 and 2005 CoNLL had shared tasks on SRL (Carreras aardudz (2004) and
Carreras and Marquez (2005)). | used the CoNLL 2005 dateesalliation script. When
evaluating semantic role labeling results, itis commonraspnt numbers on both the core
arguments (i.e., excluding the modifying arguments) ahdrguments. | follow this con-
vention and present both sets of numbers. | give precisemalrand F1 (see section 2.1.1),
which are based on the number of arguments correctly idedtifiFror an argument to be
correct both the span and the classification must be cottese is no partial credit.

To generate sampled parses, | used the Stanford parsen @idiManning 2003). The
CoNLL data comes with parses from Charniak’s parser (Cla&r2000), so | re-parsed
the data and retrained the SRL system on these new parsekinges a lower baseline
than previously presented work. | choose to use Stanfoat'sqy because of the ease with
which it could be modified to generate samples. Unfortugaies performance is slightly
below that of the other parsers.

The CoNLL data has two separate test sets; the first is se2Z8af the PennTreebank
(PTB) (Marcus et al. 1993), and the second is “fresh senggneg&en from the Brown
corpus. For full results, please see table 4.1. On the PTiopocompared to the standard
greedy pipeline, | saw an absolute F-score improvement @0on both core and all
arguments. On the Brown portion of the test set | saw an imgar@nt of 1.25% on core
and 1.16% on all arguments. In this context, a gain of overd #uite large: for instance,
the scores for the top 4 systems on the Brown data at CoNLL 2@®pé within 1% of each
other. For both portions, | generated 50 samples, and didittimes, averaging the results.
The better performance on the Brown portion compared to T portion is likely to be
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SRL Results — Penn Treebank Portion

Core Args | Precision Recall F-measure
Greedy | 79.31% 77.7% 78.50%
K-Best 80.05% 78.45%  79.24%

Sampling | 80.13% 78.25%  79.18%
All Args | Precision Recall F-measure
Greedy | 78.49% 74.77%  76.58%
K-Best 79.58% 74.90%  77.16%

Sampling | 79.81% 74.85%  77.31%
SRL Results — Brown Portion

Core Args | Precision Recall F-measure
Greedy | 68.28% 67.72% 68.0%
K-Best 69.25% 69.02%  69.13%

Sampling | 69.35% 68.93%  69.16%

All Args | Precision Recall F-measure
Greedy 66.6% 60.45%  63.38%
K-Best 68.82% 61.03%  64.69%

Sampling | 68.6% 61.11%  64.64%

Table 4.1: Results for semantic role labeling task. The sadpumbers are averaged over
several runs, as discussed.

because the parser was trained on the PennTreebank trdetimgso the most likely parses
will be of higher quality for the PTB portion of the test dakeh for the Brown portion. |
also ran the pipeline using a 50-best list, and found the @sgalts to be comparable.

4.6 Recognizing textual entailment

4.6.1 Task description

In the task of recognizing textual entailment (RTE), alssmowonly referred to as robust
textual inference, you are provided with two passagdsxtand ahypothesisand must
decide whether the hypothesis can be inferred from the {Exé termrobustis used be-
cause the task is not meant to be domain specific. The iidierenceis used because
this is not meant to be logical entailment, but rather whaingéglligent, informed human
would infer. Many NLP applications would benefit from the lapito do robust textual
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Figure 4.3: The pipeline for recognizing textual entailmen

entailment, including question answering, informatiotriexal and multi-document sum-
marization. Starting in 2005, there has been an annualssefiRTE workshops with an

associated shared challenge (Dagan et al. 2005, Ido et@, Zdampiccolo et al. 2007;

2008, Bentivogli et al. 2009). | used the data from the 20052006 workshops. In 2005
there were 576 text-hypothesis pairs in the developmentset 800 pairs in the test set
(there is no training set). In 2006 there were 800 pairs irhllbé development and test
sets. Here is an example from the development set from the first &iallenge:

Text: Researchers at the Harvard School of Public Health say teapgte who drink coffee
may be doing a lot more than keeping themselves awake — tidkiconsumption
apparently also can help reduce the risk of diseases.

Hypothesis: Coffee drinking has health benefits.

The positive and negative examples are balanced, so thengagskguessing either all
yesor all nowould score 50%. This is a hard task — at the first challengeyses scored
over 60%.

4.6.2 System description

MacCartney et al. (2006) describe a system for doing rolexstial inference. They divide
the task into three stages — linguistic analysis, grapmalignt, and entailment determina-
tion. The first of these stagdmguistic analysisis itself a pipeline of parsing and named
entity recognition. They use the syntactic parse to (ddtastically) produce a typed de-
pendency graph for each sentence. This pipeline is the gulacer). The second stage,
graph alignmentconsists of trying to find good alignments between the tygeguendency

3The datasets and further information from the challengesbeadownloaded frorhttp://www.pascal-
network.org/Challenges/RTE2/Datasets/
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graphs for the text and hypothesis. Each possible alignheena score, and the alignment
with the best score is propagated forward. The final stag&ilment determinatigns
where the decision is actually made. Using the score fronaligament, as well as other
features, a logistic model is created to predict entailm@iiie parameters for this model
are learned from development d4tsVhile it would be preferable to sample possible align-
ments, their system for generating alignment scores is radigbilistic, and it is unclear
how one could convert between alignment scores and protiebih a meaningful way.

Our modified linguistic analysis pipeline (see figure 4.33slblER tagging and parsing
(in their system, the parse is dependent on the NER taggicauise some types of entities
are pre-chunked before parsing) and treats the remainiagéctions of their pipeline, the
alignment and determination stages, as one final stage uBethe entailment determina-
tion stage is based on a logistic model, a probability ofimtnt is given and sampling is
straightforward.

4.6.3 Experiments

For the second PASCAL RTE challenge, two different typesssfggmance measures were
used to evaluate labels and confidence of the labels for ttidnygothesis pairs. The first
measure is accuracy — the percentage of correct judgmemessdcond measureaserage
precision Responses are sorted based on entailment confidence ara/grage precision
is calculated by the following equation:

12 # correct up to pair

averageprecision= ﬁi; E(i) | (4.4)

wheren s the size of the test sd®is the number of positive (entailed) examplgsi) is an
indicator function whose value is 1 if thth pair is entailed, and this are sorted based on
the entailment confidence. The intention of this measure évaluate how well calibrated
a system is. Systems which are more confident in their coaresivers and less confident
in their incorrect answers will perform better on this maasu

4They report their results on the first PASCAL dataset, andardg the development set from the first
challenge for learning weights. When | tested on the data ftfte second challenge, | used all data from the
first challenge and the development data from the secontkcigal to learn these weights.
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RTE Results
Accuracy Average Precision
Greedy | 59.13% 59.91%
Sampling| 60.88% 61.99%

Table 4.2: Results for recognizing textual entailment.
The sampled numbers are averaged over several runs, assscu

Experimental results are presented in table 4.2. | gergti2Besamples for each run,
and repeated the process 7 times, averaging over runs. @gcwas improved by 1.5%
and average precision by 2%, when compared with the oridifast pipeline. It does
not come as a surprise that the average precision improvensnlarger than the accu-
racy improvement, because our model explicitly estimateswn degree of confidence by
estimating the posterior probability of the class label.

4.7 Summary

In this chapter, | have presented an attractive middle+gidaetween the standard greedy
pipeline, and the fully joint models covered in subsequématpters. Specifically, | have
presented a method for handling language processing pgseln which later stages of
processing are conditioned on the results of earlier stajes still common practice to
take the best labeling at each point in a linguistic analygieline, but this method ignores
information about alternate labelings and their likelideo My approach uses all of the
information available, and has the added advantage of leitrgmely simple to imple-
ment. By modifying your subtasks to generate samples idsiEthe most likely labeling,
the method can be used with very little additional overheand, as | have shown, such
modifications are usually simple to make; further, with oal{small” (polynomial) num-
ber of sampleg, under mild assumptions the classification error obtainethb sampling
approximation approaches that of exact inference (Ng andado2001). In contrast, an
algorithm that keeps track only of thebest list enjoys no such theoretical guarantee, and
can require an exponentially large value foto approach comparable error. However, |
found that experimentally, the two performed comparabtywaduld be interesting to see
how they compare on longer pipelines, or DAG-structured naun-linear, pipelines.
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There are many possible future directions for this work. @reavback of the model
| have presented is that information only flows forward. Imeorespects, that makes the
model similar to an MEMM (Borthwick 1999, McCallum et al. 20 and it may suffer
from similar problems related to the direction of infornmati It would be preferable to
instead model this type of pipeline after a linear-chain QRé&fferty et al. 2001), and
allow information to flow in both directions. This could patelly be done by particle
filtering (Gordon et al. 1993, Arulampalam et al. 2002), sitice weight of each particle
would be based on its likelihood at each stage in the pipeAnether approach is to move
to a full, joint model, which is what | do in the next chaptémtgh the joint model is over
fewer tasks than the pipelines presented in this chapter.

The papers on which this chapter and the previous chaptdyaemed helped begin the
trend in the NLP community of using sampling-based methad<Bayesian inference,
and since their publication there has been extensive worthersubject. MCMC-based
Bayesian inference has been used for both unsuperviseafespeech tagging (Gold-
water and Griffiths 2007, Snyder et al. 2008; 2009) and sempessised part-of-speech
tagging (Toutanova and Johnson 2008); for unsupervisesfe@nce resolution (Haghighi
and Klein 2007); for a wide variety of parsing models (Johmaind Griffiths 2007, Johnson
et al. 2007, Finkel et al. 2007, Post and Gildea 2009, Cohh 2089, Cohn and Blunsom
2010); and for several machine translation models (DeNeat 2008, Cohn and Blunsom
2009, Blunsom et al. 2009, Blunsom and Cohn 2010).



Chapter 5

Joint discriminative learning: parsing
and named entity recognition

5.1 Introduction

As discussed in the previous chapter, no NLP task is trulydgtbone. In order to build high
quality systems for complex NLP tasks, such as questionamsgvand textual entailment,
it is essential to first have high quality systems for lowaeldasks. A good (deep anal-
ysis) question answering system requires the data to firanbetated with several types
of information: parse trees, named entities, word senssnthigyuation, etc. When build-
ing such a system, researchers typically follow one of twdee. The simplest, and most
common, is to cobble together independent systems, oftétewby many other indepen-
dent researchers, for the various types of annotation. &\thi simplicity is appealing,
no information is shared between the different levels ofcaation, there is no guarantee
that their outputs will be consistent, and often suboptih@alristic fixes are required. The
next most common approach is to pipeline different systamshie different components
together. Usually just the 1-best kbest outputs are propagated at each stage, though
more elaborate options are possible, such as the one cawdtesiprevious chapter. While
pipelining does guarantee consistency, it is not a compgieligion. Errors propagate, and
components further down the pipeline will get progressivebrse quality inputs, and they
have no way of communicating this information back to thdieastages. Moreover, it's

65
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not always clear what the correct ordering of componentsishae; ideally they should all
be able to influence one another. This calls for a full joind@lpwhich is the topic of this
chapter.

In this chapter, | gradually build up to a full joint model obtth parsing and named
entity recognition. Joint modeling of multiple phenomeras Ibeen tried before, but often
with limited success. For instance, it has proven very diffito build a joint model of pars-
ing and semantic role labeling, either with PCFG trees (@Budihd McCallum 2005) or with
dependency trees. The CoNLL 2008 shared task (Surdeanu2€0dl) was intended to be
about joint dependency parsing and semantic role labdbunigthe top performing systems
decoupled the tasks and outperformed the systems whiah@ed to learn them jointly.
Despite these earlier results, | found that combining paraind named entity recognition
modestly improved performance on both tasks, due to thélityato both constrain and
influence one another, and in the next chapter | will show rolevterage singly-annotated
data to further improve the joint model.

First, I will cover two feature-rich, discriminative, CRbased parsers, one for con-
stituency trees and one for dependency trees, as they atsthkdone for much of the
remaining work in this dissertation, including the jointrpa and NER model which ap-
pears later in the chapter. Then I will show how to convertdiseriminative constituency
parsing model into a model for nested named entity recagmitWith only a handful of
exceptions, all NER work to date has focused on a flat stractihen entities are nested
inside one another (e.gniversity of Californig, common practice is to ignore all but the
outermost entity. This strategy throws away a lot of peljeaseful information — infor-
mation which is both valuable to the user and which shouldddpftl in identifying and
classifying the outermost entities. By utilizing the paydeexplicitly model this nesting
structure and the result is a much more useful NER system.n€beed NER model also
provides a nice segue to the full joint parse and NER modeé jdéimt model operates by
augmenting the parse tree with named entity informatiod, ®mit also views NER as a
parsing problem. The data used for those experiments dae®ntain nested named enti-
ties (such data is difficult to come by), but could very natyrae set up to include nested
entities. The full joint model produces an output which hassistent parse structure and
named entity spans, and does a better job at both tasks tharasemodels with the same
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features and training data.

5.2 Discriminative parsing

Over the past decade, feature-based discriminative mbdeks become the tool of choice
for many natural language processing tasks. Although talks much longer to train than

generative models, they typically produce higher perfoigrsystems, in large part due to
the ability to incorporate arbitrary, potentially overf@pg features. However, constituency
parsing remains an area dominated by generative method$pdhe computational com-

plexity of the problem. A generative constituency parsar ba trained nearly instanta-

neously, because training only requires taking countsfadftoeebank. In contrast, training

a discriminative parser typically requires re-parsing tileebank multiple times. Parsing
a treebank can be computationally expensive, becaus®itn®) in sentence length, and

there is a large grammar constant.

The work in this section provides a framework for trainingeature-rich discrimina-
tive parser. | mostly focus on constituency parsing, buttédohinique can also be applied
to dependency parsing, which is covered in section 5.2.3ik&prior work, experiments
are not restricted to short sentences, but | do provide teboith for training and testing
on sentences of lengtd 15 (WSJ15) and for training and testing on sentences of trengt
< 40, allowing previous WSJ15 results to be put in context wétspect to most modern
parsing literature. The model is a conditional random fiedded model. For a rule ap-
plication, arbitrary features can be defined over the rutegaries, span and split point
indices, and the words of the sentence. It is well known tbhastituent length influences
parse probability, but PCFGs cannot easily take this in&drom into account. My parser
allows features over span length and placement, which carsée to model the strong
right-branching tendency of English sentences. Anotheefieof the feature-based model
is that it effortlessly allows smoothing over previouslyseen rules. While the rule may be
novel, it will likely contain features which have been seeevipusly. Practicality comes
from three sources. | made use of stochastic optimizatioods which allow us to find
optimal model parameters with very few passes through tke dan WSJ15, | found no
difference in parser performance between using stochgittient descent (SGD), and the
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s Phrasal rules
—— ri=Sy5— NP2 VP, 5| Factory payrolls fell in September
NP VP rs=VPy5— VBD23 PR 5| Factory payrolls fell in September

/\/\

NN NNS VBD PP
| | | Lexicon rules

/\ .
Factory payrolls fell IN NN rs = NNp 1 — Factory| Factory payrolls fell in September

| | re = NNS; » — payrolls| Factory payrolls fell in September
in September

(a) PCFG Structure (b) Rules

Figure 5.1: A parse tree and the corresponding rules ovectwpotentials and features are
defined.

more common, but significantly slower, L-BFGS (L-BFGS expents were too slow to
be performed on WSJ40). | also used limited parallelizateord pre-filtering of the chart
to avoid the expensive feature computation for rules wharmot tile into complete parses
of the sentence. This speed-up does not come with a perfearast; indeed this simpler,
faster model attains an F-score of 90.9%, a 14% relativectemuin errors over previous
discriminative parsing work evaluated on WSJ15.

5.2.1 A conditional random field context free grammar (CRF-G-G)

My parsing model is based on a conditional random field mdua®&ever, unlike previ-
ous TreeCRF work (e.g., Cohn and Blunsom (2005), Jousse 0416)) (but like other
discriminative CFG work), we do not assume a particular stecture, and instead find
the most likely structurandlabeling. This is different from most work in graphical mod-
els, where the model structure is pre-defidethis is similar to conventional probabilistic
context-free grammar (PCFG) parsing, with two exceptigay we maximizeconditional
likelihood of the parse tree, given the sentencejaiat likelihood of the tree and sentence;
and (b) probabilities are normalizegbobally instead ofiocally — the graphical models de-
piction of our trees is undirected.

Formally, we have a context-free grammar (CH&)which consists of (Manning and

1This also differs from most structure-finding work, becaimseur case the structure is part of the label for
a particular instance, and in the typical case the point diffig the structure is to determine the dependencies
between the random variables in the model. It is possibleetaup our model as a single structure with
additional variables which encode the tree constraintssboh a structure would be more difficult to work
with, less intuitively easy to understand, and would noépfhany benefits.
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Schitze 1999):
(i) asetof terminal§w}, k=1,...,V
(i) a setof nonterminal§N¥}, k=1,....n
(iif) a designated start symb&0OOT
(iv) asetofrules{p =N'— I}, wherel! is a sequence of terminals and nonterminals

A PCFG additionally assigns probabilities to each ralsuch thatvi 3 ; P(N' — {J) = 1.
The conditional random field CFG (CRF-CFG) instead definesllelique potentials
@(r|s; 8), wheres is the sentence, andcontains a one-level subtree of a tieecorre-
sponding to a rulep, along with relevant information about the span of wordschhit
encompasses, and, if applicable, the split position (seegfi§.1). These potentials are rel-
ative to the sentence, unlike a PCFG where rule scores doavetdccess to words at the
leaves of the tree, or even how many words they dominate. rlloduemphasize this point:
in a PCFG, the score for a rule is always the same, regardlésontext, but in a CRF-
CFG, the score for the rule is context-dependéfie then define a conditional probability
distribution over entire trees, using the standard CRFRiigion, shown in equation 5.1.
There is, however, an important subtlety lurking in how wértethe partition function.
The partition functiorZs g, which makes the probability of all possible parses sum ttyun
is defined over alstructuresas well as all labelings of those structures. We defifs to
be the set of all possible parse trees for the given senteereskd by the gramma&.

P(t

z [1ic@(rls6) (5.1)

where

Zter I_lret’(p |S 6)

The above model is not well-defined over all CFGs. Unary rofeie formN' — N!
can form cycles, leading to infinite unary chains with infnhass. However, it is standard
in the parsing literature to transform grammars into a ret&td class of CFGs so as to
permit efficient parsing. Binarization of rules (Earley D97s necessary to obtain cubic
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parsing time, and closure of unary chains is required forifigdotal probability mass
(rather than just best parses) (Stolcke 1995). To addresssue, | define our model over
a restricted class of CFGs which limits unary chains haveepeated states. This was
done by collapsing all allowed unary chains to single unatgg, and disallowing multiple
unary rule applications over the same spangive the details of my binarization scheme
in section 5.2.2.

Computing the objective function

Our clique potentials take an exponential form. We have mfedunction, represented by
f(r,s), which returns a vector with the value for each feature. laderthe value of feature
featii by fi(r,s) and the model has a corresponding paramétdor each feature. The
clique potential function is then:

@(r|s, 8) = exp(f(r,s)- 6} (5.2)

Note that this function is not normalized, and can return@oy-negative real number.
The log-likelihood of the training daté&, with an additional, regularization term, is
then:
Z(2;0) (tge@ (;(f(r, S)-0)— |ogz&9> Z 202 (5.3)
And the partial derivatives of the log-likelihood, with pect to the model weights are, as
usual, the difference between the empirical counts and thekehexpectations:

0¥ 6
96 tse@(Zfrs Eg[f.|s]> 52 (5.4)

The partition functiorZs g and the partial derivatives can be efficiently computed whth
help of the inside-outside algorith?nzsﬁ is equal to the inside score &OOT over the
span of the entire sentence. To compute the partial derestiwve walk through each

2In my implementation of the inside-outside algorithm, wertmeed to keep two inside and outside scores
for each span: one from before and one from after the apicaf unary rules.

3In our case the values in the chart are the clique potentiaishware non-negative numbers, but not
probabilities.
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rule, and span/split, and multiply the outside score of taept, the inside score(s) of the
child(ren), and the score for that rule and span/split. Taisie is divided byZs ¢ to get
the normalized probability of that rule in that position. iklg the probabilities of each
rule application, over each span/split, we can compute ¥peaed feature values (the
second term in equation 5.4), by multiplying this probapiby the value of the feature
corresponding to the weight for which we are computing thiigladerivative. The process
is analogous to the computation of partial derivativesnedir chain CRFs. The complexity
of the algorithm is cubic in sentence length, since we loogr @l possible start, end, and
split points for phrases in the tree.

Features

As discussed in section 5.2.2, | performed experiments boteentences of lengtd 15
and length< 40. All feature development was done on the length 15 corpus,to the
substantially faster train and test times. This has the ntunfate effect that the features
are optimized for shorter sentences and less training datd,found development on the
longer sentences to be infeasible. Features are dividedwd types:lexicon features
which are over words and tags, agchmmar featuresvhich are over the local subtrees
and corresponding span/split (both have access to theeesgintence). | ran two kinds
of experiments: a discriminatively trained model, whickedi®nly the rules and no other
grammar features, and a feature-based model which did mekefugrammar features.
Both models had access to the lexicon features. | viewedathisquivalent to the more
elaborate, smoothed unknown word models that are commomnyCFG parsers, such
as Klein and Manning (2003).

| preprocessed the words in the sentences to obtain twogeitas of information: dis-
tributional similarity clusters (described in section 2)and an orthographic word shape
(described in section 2.4.2). The full set of features, @haith an explanation of notation,
is listed in table 5.1.
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Lexicon Features Grammar Features
t Binary-specific features

b(t) p
(t.w) (b(p(rp)), ds(w)) (b(p(rp)), ds(Ws_1,dsv))
(t,lc(w)) (b(p(rp)),ds(we)) PP feature:
(b(t),w) unary? if right child is a PP therr, ws)
(b(t),lc(w)) simplified rule: VP features:
(t,ds(w)) base labels of states if some child is a verb tag, then rule,
(t,dgw_1)) dist sim bigrams: with that child replaced by the wordl
(t,ds(w;q)) all dist. sim. bigrams below
(b(t),ds(w)) rule, and base parent state Unaries which span one word:
(b(t),ds(w_1)) | dist sim bigrams:
(b(t),ds(w;1)) same as above, but trigrams | (r,w)
(p(t),w) heavy feature: (r,ds(w))
(t,unk(w)) whether the constituent is “bigl" (b(p(r)), w)
(b(t),unk(w)) as described in Johnson (2001)(b(p(r)),ds(w))

Table 5.1: Lexicon and grammar features for the CRF-CkGEs the word and the tag.

r represents a particular rule along with span/split infdiorg p is the rule itselfrp is
the parent of the rulew,, ws, andw, are the first, first after the split (for binary rules)
and last word that a rule spans in a particular context. Allest, including the POS tags,
are annotated with parent informatids(s) represents the base label for a stasd p(s)
represents the parent annotation on sgatds(w) represents the distributional similarity
cluster, andc(w) the lower cased version of the word, andk(w) the unknown word
class.

Parallelization

Unlike Taskar et al. (2004), this algorithm has the advamtaigbeing easily parallelized
(see footnote 7 in their paper). Because the computationtbfthe log-likelihood and the
partial derivatives involves summing over each tree irdinally, the computation can be
parallelized by having many clients which each do the cowrpart for one tree, and one
central server which aggregates the information to comfhaaelevant information for a
set of trees. Because | used a stochastic optimization medisadiscussed in section 2.3.2,
we compute the objective for only a small portion of the tiagndata at a time, typically
between 15 and 30 sentences. In this case the gains frongeattfiitional clients decrease
rapidly, because the computation time is dominated by thgdet sentences in the batch.
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Chart pre-filtering

Training is also sped up by pre-filtering the chart. On théd@pass of the algorithm one
will see many rules which cannot actually be tiled into coet@lparses. In standard PCFG
parsing it is not worth figuring out which rules are viable giaaticular chart position and
which are not. In our case however this can make a big difftaxdor several reasons.
Firstly, we are not just looking up a score for the rule, butstnecompute all the features
(which often requires computationally expensive stringhipalations), and dot product
them with the feature weights, which is far more time consygniWe also have to do an
outside pass as well as an inside one, which is sped up coaligdy not considering
impossible rule applications. Lastly, we iterate througl tlata multiple times, so if we
can compute this information just once, we will save time bs@Esequent iterations on
that sentence. | do this by doing an inside-outside passhviggimply boolean valued (and
requires no feature computation) to determine which rutegpassible at which positions
in the chart. | simultaneously compute the features for the&sjble rules and then save the
entire data structure to disk. For all but the shortest ofesmres, the disk I/O was easily
worth the time compared to re-computation. The first time @@ & sentence this method
is still about one third faster than if we did not do the préefing, and on subsequent
iterations the improvement is closer to tenfold.

5.2.2 Experiments
Data

For all experiments, | trained and tested on the PennTrdée{dahB) (see section 2.2.2).

| used the standard splits, training on sections 2 to 21ingpsin section 23 and doing
development on section 22. Previous work on (non-rerankiigcriminative parsing has
given results on sentences of lengthi5, but most parsing literature gives results on either
sentences of lengtk 40, or all sentences. To properly situate this work with ez$fo
both sets of literature | trained models on both lengthl5 (WSJ15) and lengtkl 40
(WSJ40), and we also tested on all sentences using the WS3ddeélsn These results
also provide a context for interpreting previous work whiged WSJ15 and not WSJ40.
WSJ15 has 9,753 training sentences, 421 development sestand 603 test sentences.
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Binary Unary

Model States Rules Rules
WSJ15 1,428 | 5,818 | 423
WSJ15 relaxed 1,428 | 22,376 613
WSJ40 7,613 | 28,240 823

Table 5.2: Grammatr size for the CRF-CFG models.

WSJ40 has 36,765 training sentences and 2,245 test senf@tiaevelopment was done
on the length 15 models, due to significantly faster trainimg). The WSJ40 models were
also evaluated on all 2,416 sentences in section 23, witemgth restrictions.

Grammar

| used a relatively simple grammar with few additional amtioins. Starting with the gram-
mar read off of the training set, | added parent annotatiorie each state, including the
POS tags, resulting in rules such as S-RO©STNP-S VP-S. | also added head tag anno-
tations toVPs, in the same manner as Klein and Manning (2003). LastlythewWSJ40
runs | used a simple, right branching binarization wherénesative state is annotated with
its previous sibling and first child. This is equivalent taldren of a state being produced
by a second order Markov process. For the WSJ15 runs, eaole atate was annotated
with only its first child, which is equivalent to a first orderdvkov process. See table 5.2
for the number of states and rules produced.

Grammar relaxation

| ran additionagrammar relaxatiorexperiments, where | added unseen rules to the gram-
mar. One advantage of my model is that smoothing over unagdea m the grammar
happens automatically. For each potential rule applioatioe clique potential is a func-
tion of the dot product of the features and the weights. Ifeaidires are present, this equals
e’ = 1. The actual probability will depend on the parameters efrttodel, and the rest of
the sentence, but it will not be zero. Moreover, due to howdsehto relax the grammar
(discussed below) it will never be the case that an unseerhag no previously seen fea-
tures. This is because new rules are only constructed fraviqusly seen states, and we
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have features for the states contained in the rule. My mibbirdor relaxing the grammar
was twofold. Adding new rules could make sentences that wereiously unparseable
become parseable (cf. Petrov et al. (2006)). Our early exgeits showed that increasing
the number of rules to discriminate between generally impdoperformance of the final
model. To get a sense of what kinds of gains could be hopeddor felaxing the gram-
mar, | did an oracle experiment where | trained the featageld model, but additionally
included in the grammar all the rules present in the devetagraet. | then compared the
performance of this model on the development data with tmopeance of the regular,
non-relaxed, feature-based model. The relaxed modelaserkin performance by.3%.
Motivated by this gain | set out to find ways to relax the gramthat would produce useful
rules without expanding the grammar so much as to make migusnd testing intolerably
slow.

To relax the grammar, | went through each state, and couheedumber of rules in
which it was present. Then | went through each state in thengrar, and looked at its
parent annotation. | tried replacing it with every possiplgent annotation, and if the
created state was present in more tiamles, | would find all rules for which the original
state was the parent, and create identical copies, regldhm original parent with this
alternate state. | experimented with several valuas,@&nd while the performance on the
development set did not vary greatly for values between 51&nd ultimately found 5 to
have the best performance.

Experimental results

For both WSJ15 and WSJ40, | trained a generative model; aimisative model, which
used lexicon features, but no grammar features other thamulles themselves; and a
feature-based model which had access to all features. Edetigth 15 data | also did ex-
periments with the relaxed grammar. | used stochastic gradiescent (see section 2.3.2)
for these experiments. Using development data, | foundahabnitial gain ofng = 0.1
worked well for our setting. The length 15 models had a baizé sf 15 and | allowed
twenty passes through the d4t@he length 40 models had a batch size of 30 and | allowed

4Technically we did not make passes through the data, besazisampled with replacement to get our
batches. By this | mean having seen as many sentences aglaealata, despite having seen some sentences
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ten passes through the data. | used performance on the gewehb data to decide when
the models had converged. Additionally, | provide gengeatiumbers for training on the
entire PTB using the same grammar to give a sense of how muébrpance suffered

from the reduced training datgénerative-alin table 5.4).

The full results for WSJ15 are shown in table 5.3 and for WSal4Gshown in table 5.4.
The evaluation metrics are explained in section 2.CB; stands for crossing brackets.
The WSJ15 models were each trained on a single Dual-Core Aj2ron ™ using three
gigabytes of RAM and no parallelization. The discriminatywtrained generative model
(discriminativein table 5.3) took approximately 12 minutes per pass throinghdata,
while the feature-based modé&&ture-baseth table 5.3) took 35 minutes per pass through
the data. The feature-based model with the relaxed grammlaxédin table 5.3) took
about four times as long as the regular feature-based matiel.discriminatively trained
generative WSJ40 modalliécriminativein table 5.4) was trained using two of the same
machines, with 16 gigabytes of RAM each for the cliehtstook about one day per pass
through the data. The feature-based WSJ40 mddatre-basedh table 5.4) was trained
using four of these machines, also with 16 gigabytes of RAbhdar the clients. It took
about three days per pass through the data.

The results clearly show that gains came from both the svittoih generative to dis-
criminative training, and from the extensive use of feagurén figure 5.2 | show for an
example from section 22 the parse trees produced by theafereemodel and the feature-
based discriminative model, and the correct parse. Thepas the feature-based model
better exhibits the right branching tendencies of Englishis is likely due to the heavy
feature (see table 5.1), which encourages long constiuwrhe end of the sentence. It is
difficult for a standard PCFG to learn this aspect of the Eiglanguage, because the score
it assigns to a rule does not take its span into account.

multiple times and some not at all.
5The server does almost no computation.
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S
-
S NP VP
NP VP DT VBZ RB NP
| n | | | T
PRP VBZ This is n't NP VP
| | | i
He adds CD VBN

| |
1987 revisited

(a) generative output

S
N WP
PRP VBZ s
I—‘e ac‘ids NP//\VP
DT VBZ RB NP VP
Ths s nt CD VBN

| |
1987 revisited

(b) feature-based discriminative output

S
/\
NP VP
| _
PRP VBZ S
| | .
He adds NP VP
| .
DT VBZ RB NP
| | | T
This is n't NP VP
| n
CD VBN

| |
1987 revisited

(c) gold parse

Figure 5.2: Example output from our generative and feabaged discriminative models,
along with the correct parse.
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Model P R F1 Exact AvgCB O0CB
development set — length 15
Taskar 2004 | 89.7 90.2 90.0 -
generative 86.9 85.8 86.4 46.2 0.34 81.2
discriminative|| 89.1 88.6 88.9 55.5 0.26 85.5
feature-based| 90.4 89.3 89.9 59.5 0.24 88.3
relaxed 91.2 90.3 90.7 62.1 0.24 88.1
relaxed-oraclg| 92.2 90.5 91.3 63.1 0.19 89.5
test set — lengtk< 15

Taskar 2004 | 89.1 89.1 89.1 - - -
Turian 2007 | 89.6 89.3 894 - - -
generative 87.6 85.8 86.7 49.2 0.33 81.9
discriminative|| 88.9 88.0 88.5 56.6 0.32 85.0
feature-based| 91.1 90.2 90. 61.3 0.24 86.8
relaxed 91.4 90.4 90.9 62.0 0.22 87.9

Table 5.3: Development and test set results, training astthteon sentences of length
< 15 from the PennTreebank (WSJ15).

5.2.3 CRF-based dependency parsing

In addition to the constituency parser just described,d alslt a CRF-based dependency
parsing model, optimizing the likelihood of the parse, dtinded on the words and part-of-
speech tags of the sentence. At the heart of the model is fmeEilependency grammar
chart-parsing algorithm (Eisner 1996), which allows foficéént computation of inside
and outside scores, and is described in section 2.1.3. TéreErlgorithm, originally
designed for generative parsing, decomposes the protyaifih dependency parse into the
probabilities of each attachment of a dependent to its paaeid the probabilities of each
parent stopping taking dependents. These probabilitiedbeaconditioned on the child,
parent, and direction of the dependency. | used a slightficaton of the algorithm which
allows each probability to also be conditioned on whetherdhs a previous dependent.
While the unmodified version of the algorithm includes stoggprobabilities, conditioned
on the parent and direction, they have no impact on whichepfanrsa particular sentence
is most likely, because all words must eventually stop tgkiapendents. However, in the
modified version, the stopping probability is also condigd on whether or not there is a
previous dependent, so this probability does make a differe
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Model P R F1 Exact AvfgCB O0CB
test set — lengtk< 40
Petrov 2007 - — 88.8 - -

generative 83.5 82.0 82.8 255 1.57 53.4
generative-all|| 83.6 82.1 82.8§ 25.2 1.56 53.3
discriminative|| 85.1 84.5 84.8§ 29.7 1.41 55.8
feature-based| 89.2 88.8 89.0 37.3 0.92 65.1
test set — all sentences

Petrov 2007 - - 883 -
generative 82.8 81.2 82.0 23.8 1.83 50.4
discriminative|| 84.2 83.7 83.9 27.8 1.67 52.8
feature-based| 88.2 87.8 88.0 35.1 1.15 62.3

Table 5.4: Test set results, training on sentences of leagtB from the PennTreebank.
Thegenerative-alkesults were trained on all sentences regardless of length

While the original Eisner algorithm computes locally notioed probabilities for each
attachment decision, our model computes unnormalizedgescéirom a graphical models
perspective, our parsing model is undirected, while thgioal model is directe. The
score for a particular tree decomposes the same way in ouelrasdn the original Eisner
model, but it is globally normalized instead of locally naized. Using the inside and
outside scores we can compute partial derivatives for taufe weights, as well as the
value of the normalizing constant needed to determine thlegtility of a particular parse.
This is done in a manner completely analogous to the coesiifyparser just described.
Partial derivatives and the function value are all that isdeal to find the optimal feature
weights using L-BFGS.

Features are computed over each attachment and stoppiisgpdeand can be condi-
tioned on the parent, dependent (or none, if it is a stoppauystbn), direction of attach-
ment, whether there is a previous dependent in that direcéind the words and parts of
speech of the sentence. | used the same features as McDor&ld2005b), augmented
with information about whether or not a dependent is the diegtendent (information they
did not have). The unsupervised dependency parsing workehkand Manning (2004)

5The dependencies themselves are diitctedin both cases, it is just the underlying graphical model
used to compute the likelihood of a parse which changes frdireated model to an undirected model.

/It was computationally feasible to use L-BFGS in this casegise untyped dependency parsing is much
faster than CRF-based parsing.
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Dependency Parsing

Training Testing

Range # Sent Range #Sent CAURACY
ABC 0-55 1195 56—-69 199 83.32%
CNN 0-375 5092 376-437 1521 85.53%
MNB 0-17 509 18-25 245 77.06%
NBC 0-29 552 30-39 149 76.21%
PRI 0-89 1707 90-112 394 87.65%
VOA 0-198 1512 199-264 383 89.17%

Table 5.5: CRF-based dependency parsing results. Penfioaria measured as unlabeled
attachment accuracy.

similarly conditioned on the presence or absence of a pusvilependent.

Experimental results

For the dependency parsing experiments, | used OntoNotded&e 2.0), as described in
section 2.2.4. | converted the PCFG trees into dependerey tising the Collins head
rules (Collins 2003). For each of the six domains (ABC, CNNNBl NBC, PRI, and
VOA), | aimed for an 75/25 data split, but because | divideg diata using the provided
sections, this split was fairly rough. The number of traghend test sentences for each
domain are specified in the table 5.5, along with the results.

5.2.4 Related work

Previous work on discriminative constituency parsingsfalhder one of three approaches.
One approach does discriminative reranking of kHeest list of a generative parser, still
usually depending highly on the generative parser scorefeatare (Collins 2000, Char-
niak and Johnson 2005). A second group of papers does pdrgiagsequence of inde-
pendent, discriminative decisions, either greedily ohwise of a small beam (Ratnaparkhi
1997, Henderson 2004).

The present work falls under the third thread of work, wheretjinference via dynamic
programming algorithms is used to train models and to attamfind the globally best
parse. Prior to 2008, work in this context had mainly beentéchto use of artificially
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short sentences due to exorbitant training and inferemesti The most similar prior
work in this category is the discriminative constituencysea of Johnson (2001), who did
discriminative training of a generative PCFG. The model wage similar to this one,
except that it did not incorporate any features and it regfuithe parameters (which were
just scores for rules) to be locally normalized, as with aggatively trained model. Due to
training time, they used the ATIS treebank corpus of airgtagservations, which is much
smaller than even WSJ15, with only 1,088 training senterZ®stesting sentences, and an
average sentence length of around 11. They found no signifiifierence in performance
between their generatively and discriminatively trainedsers. There are two probable
reasons for this result. The training set is very small, amsla known fact that generative
models tend to work better for small datasets and discritiveanodels tend to work better
for larger datasets (Ng and Jordan 2002). Additionallyy thade no use of features, one
of the primary benefits of discriminative learning.

Taskar et al. (2004) took a large margin approach to discatnre learning. They only
reported results on short sentences — they used the Pelahieebut restricted the cor-
pus to sentences of length 15 and less (WSJ15). More recém iwork of Turian and
Melamed (2006) and Turian et al. (2007), who also only regmbresults on WSJ15, and
which improved both the accuracy of Taskar et al. (2004). yTiefine a simple linear
model, use boosted decision trees to select feature cduecand a line search to op-
timize the parameters. They use an agenda parser, and definatomic features, from
which the decision trees are constructed, over the entite being considered. While they
make extensive use of features, their setup is much moreleartiran mine and takes sub-
stantially longer to train — up to 5 days on WSJ15 — while aghigonly small gains over
Taskar et al. (2004).

There are two recent exceptions to the trend of only repgdiscriminative parsing re-
sults on artificially short sentences. These were both deeel at the same time as the work
presented here. The first example is the work of Petrov anohK&08), who discrimina-
tively train parameters for a grammar with latent variabbasd do not restrict themselves
to short sentences. Following up on their previous work cengnar splitting (Petrov
et al. 2006), they do discriminative parsing with latentigales, which requires them to
optimize a non-convex function. They iteratively refineitigrammar, but when judging
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refinements they train the intermediate models discrimiebtinstead of generatively. In-
stead of using a stochastic optimization technique, theyLluBFGS, but do coarse-to-fine
pruning to approximate their gradients and log-likelihoB&cause they were focusing on
grammar splitting they did not employ any features, and @nhall gains from switching
from generative to discriminative training. It has beenwsghon other NLP tasks that mod-
eling improvements, such as the switch from generativeitrgito discriminative training,
usually provide much smaller performance gains than thesgaossible from good feature
engineering. For example, in Lafferty et al. (2001), wheritgiwng from a generatively
trained hidden Markov model (HMM) to a discriminatively ittad, linear-chain, condi-
tional random field (CRF) for part-of-speech tagging, tiegor drops only slightly from
5.7% to 56%. When they add in only a small set of orthographic featuresr CRF error
rate drops considerably more td346, and their out-of-vocabulary error rate drops by more
than half. This is further supported by Johnson (2001), wdwe BO parsing gains when
switching from generative to discriminative training, amyglPetrov and Klein (2008) who
saw only small gains of around@xb for their final model when switching training meth-
ods. The second piece of work, presented in Carreras et@08J2is also a CRF-based
discriminative parser, but with several crucial differeac The authors use a different for-
malism, a tree adjoining grammar (TAG), meaning that theyodgpose trees in a different
manner, and this decomposition determines what piecedstsicture the features are de-
fined over. They also use a dependency parsing model to etficigrune down the search
space to make training and inference computationally basi

There are several other high performing dependency pars&Bonald et al. (2005b)
used the MIRA algorithm to train a dependency parser usingmam spanning trees. The
MALT parser (Nivre et al. 2006) is a history-based inductiependency parser which has
been shown to perform well on a variety of languages.

5.3 Nested named entity recognition

Named entity recognition, introduced in section 2.1.1his task of finding entities, such
as people and organizations, in text. Frequently, entitiesiested within each other, such
as Bank of Chinaand University of Washingtgnboth orRGs with nested.ocs. Nested
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entities are also common in biomedical data, where diffebériogical entities of interest
are often composed of one another. In the GENIA corpus (Ohtd 2002, Kim et al.
2003), which is labeled with entity types such m8OTEIN and DNA, roughly 17% of
entities are embedded within another entity. In the AnCorpas of Spanish and Catalan
newspaper text (Marti et al. 2007), nearly half of the ézxdiare embedded. However, work
on named entity recognition (NER) has almost entirely igaanested entities and instead
chosen to focus on the outermost entities.

This omission of nested entities has largely been for pral;thot ideological, reasons.
Most corpus designers have chosen to skirt the issue gntaetl have annotated only
the outermost entities. The widely used CoNLL 2003 (SangMadlder 2003), MUC-6
(Sundheim 1996), and MUC-7 (Chinchor 1998) NER corpora, pased of British and
American newswire, are all flatly annotated. The GENIA carpontains nested entities,
but the INLPBA 2004 shared task (Collier et al. 2004), whittlized the corpus, removed
all embedded entities for the evaluation. To my knowledge anly shared task which has
included nested entities is the SemEval 2007 Task 9 (Margti@l. 2007b), which used
a subset of the AnCora corpus. However, in that task, altieatcorresponded to a pre-
determined set of part-of-speech tags or noun phrases iprtveded syntactic structure,
and no participant directly addressed the nested natureeatdta.

Another reason for the lack of focus on nested NER is teclgicdd. The NER task
arose in the context of the MUC workshops, as small chunksiwtould be identified by
finite state models or gazetteers. This then led to the widasluse of sequence models,
first hidden Markov models, then maximum entropy Markov med8orthwick 1999,
McCallum et al. 2000), and, more recently, linear chain CRdferty et al. 2001). All of
these models suffer from an inability to easily model nestetities.

This section presents a novel solution to the problem ofetesamed entity recog-
nition, which directly utilizes the discriminative consiency parser just described. The
model explicitly represents the nested structure, allgvéntities to be influenced not just
by the labels of the words surrounding them, as in a CRF, lsotla} the entities contained
in them, and in which they are contained. Each sentence iegepted as a parse tree,
with the words as leaves, and with phrases correspondiractoentity (and a ROOT node
which joins the entire sentence). The trees look just liketagtic constituency trees, such
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as those in the PennTreebank (Marcus et al. 1993), but thelyttebe much flatter. Part-
of-speech tags can be included in the tree, and be jointlyaheddvith the named entities.
Once sentences are converted into parse trees, they arasusgulit to train the discrimina-
tive constituency parser described in the previous sectifiund that on top-level entities,
the nested NER model does just as well as more conventiortabei® When evaluating
on all entities the model does very well, with F-scores rangingnfielightly worse than
performance on top-level only, to substantially bettentt@p-level only.

5.3.1 Related work on nested named entity recognition

There is a large body of work on named entity recognition,Jary little of it addresses
nested entities. Early work on the GENIA corpus (Kazama.&@)2, Tsuruoka and Tsujii
2003) only worked on the innermost entities. This was sodloi@d by several attempts
at nested NER in GENIA which built hidden Markov models odse tnnermost named
entities, and then used a rule-based post-processing ateleritify the named entities
containing the innermost entities (Shen et al. 2003, Zharay. 004, Zhou et al. 2004).
Zhou (2006) used a more elaborate model for the innermogiesytbut then used the
same rule-based post-processing method on the outputritfideon-innermost entities.
Gu (2006) focused only on proteins and DNA, by building safg@binary SVM classifiers
for innermost and outermost entities for those two classes.

Several techniques for nested NER in GENIA were presentedler et al. (2007).
Their first approach was to layer CRFs, using the output ofaméhe input to the next.
For inside-out layering, the first CRF would identify the @mmost entities, the next layer
would be over the words and the innermost entities to idgs@tond-level entities, etc. For
outside-in layering, the first CRF would identify outermesittities, and then successive
CRFs would identify increasingly nested entities. Theyaled a cascaded approach,
with separate CRFs for each entity type. The CRFs would bkempim a specified order,
and then each CRF could utilize features derived from th@uwudf previously applied
CRFs. This technique has the problem that it cannot idengfsted entities of the same
type; this happens frequently in the data, such as the nest®deINs at the beginning of
the sentence in figure 5.3. They also tried a joint labelingragch, where they trained a
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ROOT
PROT , PROT , CC PROT VBD DT DNA IN DT DNA .
PROT PROT NN NN NN NN NNS PROT NN NN  PROT NN
\ N \
NN NN NN NN

\

NN

\ \ \ \ \
PEBP2alpha Al , alpha B1 , and alpha B2 proteinsbound the PEBP2site within the mouseGM-CSF promoter.

Figure 5.3: An example of a tree representation over nesdaeted entities. The sentence
is from the GENIA corpusPROTis short forPROTEIN

single CRF, but the label set was significantly expandedaicetkingle label would include
all of the entities for a particular word. Their best resultre from the cascaded approach.

Byrne (2007) took a different approach, which she used aitiésl archive text. She
modified the data by concatenating adjacent tokens (up tftHesix) into potential entities,
and then labeled each concatenated string using the C&@it&ggrran and Clark 1999).
When labeling a string, the “previous” string was the onleeteshorter string containing
all but the last token of the current string. For single takéme “previous” token was the
longest concatenation starting one token earlier.

SemEval 2007 Task 9 (Marquez et al. 2007b) included a néd$keRl component, as
well as noun sense disambiguation and semantic role lapdtiowever, the parts of speech
and syntactic tree were given as part of the input, and namgties were specified as
corresponding to noun phrases in the tree, or particulaspdrspeech. This restriction
substantially changes the task. Two groups participatetiérshared task, but only one
Marquez et al. (2007a) worked on the named entity comporiEmy used a multi-label
AdaBoost.MH algorithm, over phrases in the parse tree whiaked on their labels, could
potentially be entities.

Finally, McDonald et al. (2005a) presented a techniquedbeling potentially overlap-
ping segments of text, based on a large margin, multi-lalaskdication algorithm. Their
method could be used for nested named entity recognitianthieuexperiments they per-
formed were on joint (flat) NER and noun phrase chunking.
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DNAparent=ROOT

/\

NN parent=DNA,grandparent=ROOT @ D NAparent:ROOT,prev:N N,first=PROT

A

I:’ROTparent=DNA,grandparent=ROOT N Nparent=DNA,grandparent=ROOT
\

NN parent=PROT,grandparent=DNA
I

mouse GM-CSF promoter

Figure 5.4: An example of a subtree after it has been anrtbgatd binarized. Features are
computed over this representation. An @ indicates a chasepactive state (incomplete
constituent).

5.3.2 Nested named entity recognition as parsing

My model for nested NER is quite simple — | represent eacleseetas a constituency tree,
with each named entity corresponding to a phrase in thedterg with a root node which
connects the entire sentence. No additional syntactictsirel is represented. | also model
the parts of speech as preterminals, and the words therssadvibe leaves. See figure 5.3
for an example of a hamed entity tree. Each node is then amadotéth both its parent
and grandparent labels, which allows the model to learn hatities nest. | binarize the
trees in a right-branching manner, and then build featuves the labels, unary rules, and
binary rules. | also use first-order horizontal Markovipatiwhich allows us to retain some
information about the previous node in the binarized rulse fgure 5.4 for an example of
an annotated and binarized subtree. Once each sentencedmasdnverted into a tree, the
trees are used to train a discriminative constituency parse

It is worth noting that if you use the model on data that dogé$iave any nested entities,
then it is precisely equivalent to a semi-CRF (Sarawagi aokde@ 2004, Andrew 2006),
but with no length restriction on entities. Like a semi-CRIg are able to define features
over entire entities of arbitrary length, instead of juseoa small, fixed window of words
like a regular linear chain CRF.

Part-of-speech tags are modeled jointly with the namediestithough the model also
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works without them. Possible part-of-speech tags are uhéted based on distributional
similarity clusters (described in section 2.4.1; clustairting data for the individual ex-
periments are given in the appropriate sections). | alloa&ch word to be labeled with
any part-of-speech tag seen in the data with any other wotldersame cluster. Because
the part-of-speech tags are annotated with the parent (@mdigarent) labels, they restrict
what, if any, entity types a word can be labeled with. Manydsggisuch as verbs, cannot
be labeled with any entities. | also limited the grammar Hase the rules observed in
the data. The rules whose children include part-of-speag$ testrict the possible pairs of
adjacent tags. Interestingly, the restrictions imposethis/joint modeling (both observed
word/tag pairs and observed rules) actually results in niaster inference (and therefore
faster train and test times) than a model over named enét@®e, because the space of
possible parse trees has been significantly reduced. Thiffesent from most work on
joint modeling of multiple levels of annotation (includinige work later in this chapter),
which usually results in significantly slower inference.

The biggest drawback to this model is runtime. The algoriier®(n®) in sentence
length. Training on all of GENIA took approximately 23 hodes the nested model and
16 hours for the semi-CRF. A semi-CR¥#th an entity length restriction, or a regular CRF,
would both have been faster. At runtime, the nested modeGiBNIA tagged about 38
words per second, while the semi-CRF tagged 45 words pendedeéor comparison, a
first-order linear-chain CRF trained with similar featu@s the same data can tag about
4,000 words per second.

5.3.3 Features

When designing features, | first made ones similar to theufeattypically designed for a
first-order CRF, and then added features which are not pessila CRF, but are possible
in the enhanced representation. This includes featurasemige entities, features which
directly model nested entities, and joint features oveitiestand parts of speech. When
features are computed over each label, unary rule, andybins, the feature function is
aware of the rule span and spilit.

Each word is labeled with its distributional similarity cker @istsin), and a string
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Local Features

Pairwise Features

label

word; + labe|
word;_1 + labe|
word ; + labe|
distsim + labe|
distsim_1 + labe|
distsim_; + labe]

distsim + distsim_; + labe|
shape+ shape, 1 + labe|
shape_; + shape+ labe|
word _; + shape+ labe|
shape+ word 1 + labe|
words in a 5 word window
prefixes up to length 6

labe|_1 + labe]|

word + labe|_; + labe|
word_1 + labe|_; + labe|
word 1 + labe|_1 + labe|
distsim + labe|_1 + labe|
distsim_1 + labe|_; + labe|
distsim_ 1 + labe|_1 + labe|

distsim_1 + distsim + labe|_1 + labe|
shape+ label_1 + labe|

shape_; + labe|_; + labe|

shape,.; + labe|_1 + labe|

shape_; + shape+ labe|_; + labe|
shape 1 + shape 1 + labe|_; + labe]

shape+ labe| suffixes up to length 6
shape 1 + labe|

shape, ;1 + labe|

Table 5.6: The local and pairwise NER features used in alloeaperiments. Consult the
text for a full description of all features, which includesature classes not in this table.

indicating orthographic informatiorsbiap@ (see section 2.4). Subscripts represent word
position in the sentence. In addition to those below, weuitelfeatures for each fully
annotated label and rule.

Local named entity features. Local named entity features are over the label for a single
word. They are equivalent to the local features in a lineairclCRF. However, unlike

in a linear chain CRF, if a word belongs to multiple entitiesg(, a word which is both

a LOCATION and ORGANIZATION) then the local features are computed for each entity.
Local features are also computed for words not containedyreatity. Local features are

in table 5.6.

Pairwise named entity features. Pairwise features are over the labels for adjacent words,
and are equivalent to the edge features in a linear chain Ti¥y. can occur when pairs of
words have the same label, or over entity boundaries whereitinds have different labels.
Like with the local features, if a pair of words are containedor straddle the border of,
multiple entities, then the features are repeated for edtte pairwise features | use are
shown in table 5.6.
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Embedded named entity features. Embedded named entity features occur in binary
rules where one entity is the child of another entity. For emnbedded features, we repli-
cated the pairwise features, except that the embedded nantiég was treated as one of
the words, where the “word” (and other annotations) indisdhe type of entity, and not the
actual string that is the entity. For instance, in the subinefigure 5.4, we would compute
word +label;_;+label; asPROT-DNA-DNAfor i = 18 (the index of the wordsM-CSH.
The normal pairwise feature at the same position woul@Glhe CSF-DNA-DNA

Whole entity features. | created four whole entity features: the entire phrase;pitee
ceding and following word; the preceding and following dlmtional similarity tags; and
the preceding distributional similarity tag with the foNong word.

Local part of speech features. | used the same part-of-speech features as in the discrim-
inative constituency parser (skicon featuresn table 5.1).

Joint named entity and part of speech features. For the joint features | replicated the
part-of-speech features, but included the parent of theqiaspeech, which either is the
innermost entity type, or would indicate that the word is imciny entities.

5.3.4 GENIA experiments

| performed two sets of experiments to validate my model. fits¢ set, covered in this
section, is over biomedical data, and the second set, abweréne following section, is
over Spanish and Catalan newspaper text. | designed theimegoes to show that my
model works just as well as standard models on outermogtemntihe typical NER task,
and also works well on nested entities.

Data

| performed experiments on the GENIA corpus, introducedeatisn 2.2.1. This cor-
pus contains 2000 Medline abstract$50Q0k words), annotated with 36 different kinds of
biological entities, and with part-of-speech tags. PresidlER work using this corpus
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has employed 10-fold cross-validation for evaluation. htea to explore different model
variations (e.g., level of Markovization, and differentsef distributional similarity clus-
terings) and feature sets, so | needed to set aside a devahoet. | split the data by
putting the first 90% of sentences into the training set, &evdéeémaining 10% into the test
set. This is the exact same split used to evaluate partedetptagging in Tsuruoka et al.
(2005). For development | used the first half of the data tmtrand the next quarter of
the data to test. | made the same modifications to the label set as the organidehe
JNLPBA 2004 shared task (Collier et al. 2004). They collapaik DNA subtypes into
DNA; all RNA subtypes into RNA; alPROTEIN subtypes int®ROTEIN kKeptCELL_LINE
andCELL_TYPE; and removed all other entities. However, they also remafeginbedded
entities, while | kept them.

As discussed in section 5.3.2, | annotated each word witrs@ilalitional similarity
cluster. 1 used 200 clusters, trained using 200 million vedrdm PubMed abstracts. Dur-
ing development, | found that fewer clusters resulted imsloinference with no improve-
ment in performance.

Experimental setup

| ran several sets of experiments, varying between alliestior just top-level entities, for
training and testing. As discussed in section 5.3.2, if vaénton just top-level entities

then the model is equivalent to a semi-CRF. Semi-CRFs are-stahe-art and provide a
good baseline for performance on just the top-level estitgemi-CRFs are (theoretically)
strictly better than regular, linear chain CRFs, becausy tan use all of the features
and structure of a linear chain CRF, but also utilize whalétg features (Andrew 2006). |

also evaluated the semi-CRF model on all entities. This raaydike an unfair evaluation,
because the semi-CRF has no way of recovering the nestéiégiut | wanted to illustrate

just how much information is lost when using a flat repres@ma

8This split may seem strange: | had originally intended @&2%)25 train/devi/test split, until | found the
previously used 9010 split.
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GENIA - Testing on All Entities

Nested NER Model Semi-CRF Model
# Test (train on all entities) (train on top-level entities)
Entities Prec Recall F Prec Recall I
Protein 3034 79.04 69.22 73.80 78.63 64.04 70.59
DNA 1222 69.61 61.29 65.19 71.62 57.61 63.85
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27

Cell Line 444 73.82 56.53 64.03 76.59 59.68 67.09
Cell Type 599 68.77 65.44 67.07 72.12 59.60 65.27
Overall 5402  75.39 65.90 70.33 76.17 61.72 68.19

Table 5.7: Named entity results on GENIA, evaluating on afitees.

GENIA — Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model

# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F Precision Recall F
Protein 2592 78.24 72.42 75.22 76.16 7261 74.34
DNA 1129 70.40 64.66 67.41 71.21 62.00 66.29
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 420 75.54 58.81 66.13 76.59 63.10 69.19
Cell Type 537 69.36 70.39 69.87 71.11 65.55 68.22

Overall 4781 75.22 69.02 71.99 74.57 68.27 71.28

Table 5.8: Named entity results on GENIA, evaluating on dofylevel entities.

Results

Named entity results when evaluating on all entities arewshia table 5.7 and when eval-
uating on only top-level entities are shown in table 5.8. masted model outperforms the
flat semi-CRF on both top-level entities and all entities.

While not my main focus, | also evaluated the models on pdrspeech. The model
trained on just top level entities achieved POS accuracyy @0, and the one trained on
all entities achieved 925% accuracy. The GENIA tagger (Tsuruoka et al. 2005) aelsiev
98.49% accuracy using the same train/test spilit.
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Additional INLPBA 2004 experiments

Because | could not directly compare my results on the NERgoof the GENIA corpus
with any other work, | also evaluated on the JNLPBA corpusis Torpus was used in a
shared task for the BioNLP workshop at Coling in 2004 (Colieal. 2004). They used the
entire GENIA corpus for training, and modified the label setlsscussed in section 5.3.4.
They also removed all embedded entities, and kept only thdeteel ones. They then
annotated new data for the test set. This dataset has nalrediges, but because the
training data is GENIA | can still train my model on the datamatated with nested entities,
and then evaluate on their test data by ignoring all embeddé&ties found by my named
entity recognizer. This experiment allows me to show thatmayned entity recognizer
works well on top-level entities, by comparing it with prieork. The model also produces
part-of-speech tags, but the test data is not annotatedpaitrof-speech tags, so | cannot
give part-of-speech tagging results on this dataset.

One difficulty I had with the INLPBA experiments was with takaation. The version
of GENIA distributed for the shared task is tokenized diiatty from the original GENIA
corpus, but | needed to train on the original corpus as it ésahly version with nested
entities. | tried my best to retokenize the original corpusnatch the distributed data, but
did not have complete success. It is worth noting that tha daactually tokenized in a
manner which allows a small amount of “cheating.” Normalyphenated words, such
asLPS-inducedare tokenized as one word. However, if the portion of thedaoefore
the hyphen is in an entity, and the part after is not, sucB@R-inducedthen the word
is split into two tokensBCRand-induced Therefore, when a word starts with a hyphen
it is a very strong indicator that the prior word is the lastrd/of an entity. Because the
train and test data for the shared task do not contain nestéits, fewer words are splitin
this manner than in the original data. | did not intentiopa&ploit this fact in my feature
design, but it is probable that some of the orthographiafest“learned” this fact anyway.
This anomaly probably harmed our results overall, becaosesyphenated words, which
straddled boundaries in nested entities, and would have el in the original corpus
(and were split in our training data), were not split in thsttéata, prohibiting our model
from properly identifying them.



5.3. NESTED NAMED ENTITY RECOGNITION 93

JNLPBA 2004 — Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model Zhou & Su (2004)
# Test  (train on all entities) (train top-level entities)

Entites Prec Recall F£ Prec Recall F Prec Recall F
Protein 4944 | 67.0 746 70.6 68.2 62.7 65.3 | 69.0 79.2 738
DNA 1030 | 63.0 66.5 64.7 655 522 58.1|66.8 73.1 69.8
RNA 115 | 63.1 609 62.0646 61.7 63.1 | 64.7 63.6 64.1

Cell line 487 | 499 60.8 54.8 496 52.2 509|539 658 59.2
Celltype| 1858 | 75.1 65.3 69.9 73.3 55.8 634|781 724 751
Overall 8434 | 66.8 706 68.67.5 59.3 63.1| 694 760 726

Table 5.9: Named entity results on the INLPBA 2004 shardddais. Zhou and Su (2004)
was the best system at the shared task, and is still stateeedrt on the dataset.

For this experiment, | retrained my model on the entire, ketozed, GENIA corpus.
| also retrained the distributional similarity model on tletokenized data. Once again, |
trained one model on the nested data, and one on just thewepdntities, so that | can
compare performance of both models on the top-level estiteall results are shown in ta-
ble 5.9, along with the current state-of-the-art (Zhou an@@04). Besides the tokenization
issues harming our performance, Zhou and Su (2004) alscoyexgbtlever post-processing
to improve their results.

5.3.5 AnCora experiments
Data

| performed experiments on the NER portion of AnCora (Mattal. 2007), introduced in
section 2.2.1. Recall that this corpus has Spanish andaPgpairtions, and | evaluated on
both. The data is also annotated with part-of-speech tagseprees, semantic roles and
word senses. The corpus annotators made a distinction eestil®engandweakentities.
They definestrongnamed entities as “a word, a number, a date, or a string of svibrat
refer to a single individual entity in the real world.” If ashg NE contains multiple words,

it is collapsed into a single tokekVeaknamed entities, “consist of a noun phrase, being it
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simple or complex” and must contairs&rongentity? Figure 2.4 shows an example from
the corpus with both strong and weak entities. The entitgsypresent areERSON LO-
CATION, ORGANIZATION, DATE, NUMBER, andOTHER. Weak entities are very prevalent;
47.1% of entities are embedded.

Experimental setup

The part-of-speech tags provided in the data include @etailorphological information,
using a similar annotation scheme to the Prague TreeBanka(bliad Hanova 2002). There
are around 250 possible tags, and experiments on the devetamlata with the full tagset
where unsuccessful. | removed all but the first two charaatéeach POS tag, resulting
in a set of 57 tags which more closely resembles that of th@Reebank (Marcus et al.
1993). All reported results use this modified version of tk¥SRag set.

The model took only the words as input, none of the extra atiots. For both lan-
guages | trained a 200 cluster distributional similaritydebover the words in the corpus.
| performed the same set of experiments on AnCora as | did oNIGE

Results and discussion

The full results for Spanish when testing on all entitiessdrewn in table 5.10, and for only
top-level entities are shown in table 5.11. For part-ofegpetagging, the nested model
achieved 983% accuracy, compared with 8% for the flatly trained model. The full
results for Catalan when testing on all entities are showtalite 5.12, and for only top-
level entities are shown in table 5.13. Part-of-speechitagesults were even closer on
Catalan: 9652% for the nested model, and.86% for the flat model.

It is not surprising that the models trained on all entitiessignificantly better than
the flatly trained models when testing on all entities. Tloysis a little less clear when
testing on just top-level entities. In this case, the nestedel does 88% better than
the flat model on the Spanish data, but3% worse on the Catalan data. But, the overall
picture is the same as for GENIA: modeling the nested estitaes not, on average, reduce

9Arguably, this represents a misunderstanding of the teramecentity”, and weak named entities should
just be termecentitiesor referential expressions
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AnCora Spanish — Testing on All Entities

Nested NER Model Semi-CRF Model

# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F Precision Recall F
Person 1778 65.29 78.91 71.45 75.10 32.73 45.59
Organization 2137 86.43 56.90 68.62 47.02 26.20 33.65
Location 1050 78.66 46.00 58.05 84.94 13.43 23.19
Date 568 87.13 83.45 85.25 79.43 29.23 42.73
Number 991 81.51 80.52 81.02 66.27 28.15 39.52
Other 512 17.90 64.65 28.04 10.77 16.60 13.07
Overall 7036 62.38 66.87 64.55 51.06 25.77 34.25

Table 5.10: Named entity results on the Spanish portion &@dwa, evaluating on all enti-
ties.

AnCora Spanish — Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model

# Test (train on all entities) (train on top-level entities)

Entities Precision Recall F Precision Recall F
Person 1050 57.42 66.67 61.70 71.23 52.57 60.49
Organization 1060 77.38 40.66 53.31 44.33 49.81 46.91
Location 279 72.49 36.04 48.15 79.52 24.40 37.34
Date 290 72.29 57.59 64.11 71.77 51.72 60.12
Number 519 57.17 49.90 53.29 54.87 4451 49.15
Other 541 11.30 38.35 17.46 9.51 26.88 14.04
Overall 3739 50.57 49.72 50.14 46.07 44.61 45.76

Table 5.11: Named entity results on the Spanish portion d€@m, evaluating on only
top-level entities.
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AnCora Catalan — Testing on All Entities
Nested NER Model Semi-CRF Model

# Test (train all entities) (train top-level entities only)

Entities Precision Recall F Precision Recall F
Person 1303 89.01 50.35 64.31 70.08 46.20 55.69
Organization 1781 68.95 83.77 75.64 65.32 41.77 50.96
Location 1282 76.78 72.46 74.56 75.49 36.04  48.79
Date 606 84.27 81.35 82.79 70.87 38.94  50.27
Number 1128 86.55 83.87 85.19 75.74 38.74 51.26
Other 596 85.48 8.89 16.11 64.91 6.21 11.33
Overall 6696 78.09 68.23 72.83 70.39 37.60  49.02

Table 5.12: Named entity results on the Catalan portion d@éua, evaluating on all enti-

ties.
AnCora Catalan — Testing on Top-level Entities Only
Nested NER Model Semi-CRF Model

# Test (train all entities) (train top-level entities only)

Entities Precision Recall F Precision Recall F
Person 801 67.44 47.32 55.61 62.63 67.17 64.82
Organization 899 52.21 74.86 61.52 57.68 73.08 64.47
Location 659 54.86 67.68 60.60 62.42 57.97 60.11
Date 296 62.54 66.55 64.48 59.46 66.89 62.96
Number 528 62.35 70.27 66.07 63.08 68.94 65.88
Other 342 49.12 8.19 14.04 45.61 7.60 13.03
Overall 3525 57.67 59.40 58.52 60.53 61.42 60.97

Table 5.13: Named entity results on the Catalan portion ofdua, evaluating on only

top-level entities.
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performance on the top-level entities, but a nested entagehdoes substantially better
when evaluated on all entities.

5.4 Joint parsing and named entity recognition

In this section, | will present a joint model of syntax and rahentities. It will be based on
the discriminative constituency parser earlier in thisptkg and will use the same named-
entity-as-parsing representation from the previous sacths the field moves progressively
towards higher-level tasks, like machine translation amektjon answering, joint modeling
will become increasingly important, due to the need for ctatg consistent, and coherent
analysis of texts.

When constructing a joint model of parsing and named endtpgnition, it makes
sense to think about how the two distinct levels of annotatiay help one another. Ideally,
a hamed entity should correspond to a phrase in the constijueee. However, parse trees
will occasionally lack some explicit structure, such ashwight branching noun phrases.
In these cases, a hamed entity may correspond to a contigebus children within a
subtree of the entire parse. The one thing that should neygwdn is for a named entity
span to have crossing brackets with any spans in the paese tre

For named entities, the joint model should help with bouregarThe internal structure
of the named entity, and the structural context in which pegrs, can also help with
determining the type of entity. Finding the best parse foemtence can be helped by the
named entity information in similar ways. Because namediestshouldcorrespond to
phrases, information about them should lead to better etagk Also, knowing that a
phrase is a named entity, and the type of entity, may helptitingethe structural context,
and internal structure, of that entity correct.

5.4.1 Joint representation

After modifying the OntoNotes dataset to ensure consigtemiich was discussed in sec-
tion 2.2.4 and appendix A, | augment the parse tree with naeméitly information, for
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NP NP
T -
DT NP PP DT NamedEntity-GPE*
NNP- N NP NP-GPE PP-GPE
NNP e —

\
| NNP-GPE IN-GPE NP-GPE

the [District of Columbialgpg NNP‘GPE
\

the District of Columbia

(a) before (b) after

Figure 5.5: An example of a (sub)tree which is modified foutgo our learning algorithm.
Starting from the normalized tree (a) (discussed in se@i@"), a new MMEDENTITY
node (b) is added, so that the named entity corresponds g ke gihrasal node. That node,
and its descendents, have their labels augmented with pleeafynamed entity. Th& on
the NAMEDENTITY node indicates that it is the root of the named entity.

input to the learning algorithm. In the cases where a namétyerorresponds to multi-
ple contiguous children of a subtree, | add a nemMEDENTITY node, which is the new
parent to those children. Now, all named entities corredpona single phrasal node in
the entire tree. The labels of the phrasal node and its ddaognare then augmented with
the type of named entity. | also distinguish between the noote of an entity, and the de-
scendant nodes. See figure 5.5 for an illustration. Thisessrtation has several benefits,
outlined below.

Nested entities

The OntoNotes data does not contain any nested entitiessidssrthe named entity por-
tions of the rules seen in the training data. These will Idok,instance, likeNONE —
NONE PERSON and ORGANIZATION — ORGANIZATION ORGANIZATION. Because we
only allow named entity derivations which we have seen inddi&, and the data does not
contain any nested entities, nested entities are impesskHbwever, as discussed in sec-
tion 5.3, there is clear benefit in a representation allowiagted entities. For example, it
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would be beneficial to recognize that tbaited States Supreme Cousta anORGANIZA-
TION, but that it also contains a nestedo-POLITICAL ENTITY (GPE). Fortunately, if we
encounter data which has been annotated with nested enthis representation will be
able to handle them in a natural way. In the given exampledéraation would include
ORGANIZATION — GPE ORGANIZATION. This information will be helpful for correctly
labeling previously unseen nested entities sucNes Jersey Supreme Coubpecause the
model will learn how nested entities tend to decompose. fSbeidata were further aug-
mented to include nested entity information, this represtgon would already work with
it and be able to take advantage of this additional inforomati

Feature representation for named entities

As discussed in chapter 3, named entity recognizers ardlyisoastructed using sequence
models, with linear-chain CRFs being the most common. Whikepossible for CRFs to
have links that are longer distance than just between aaljagards, most of the benefit is
from local features, over the words and labels themselvesfram features over adjacent
pairs of words and labels. My joint representation allowsaiport both types of features
from such a named entity recognizer. In the nested NER wortthenprevious section,
it is fairly straightforward to see how these features camdpgesented, since the named
entity trees only contain nodes for named entities, andethee not syntax-based nodes
to potentially complicate things. Fortunately, with onenori exception, the joint model
can still represent all linear-chain CRF-style feature$ie Tocal features can simply be
computed at the same time as the features over parts of speeclomputed. These are
the leaves of the tree, when only the named entity for theeotiword is known® The
pairwise features, over adjacent labels, are computedeasdme time as features over
binary rules. Binarization of the tree is necessary for gffit computation, so the trees
consist solely of unary and binary productions. Becauséigf for all pairs of adjacent
words within an entity, there will be a binary rule appliedeve one word will be under
the left child and the other word will be under the right chikthd so we will know if
those two words have the same entity type, or if they strattiidboundary of an entity.

10Note that features can include information about otherds because the entire sentence is observed.
The featuresannotinclude information about the labels of those words.
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Therefore, we compute features over adjacent words/lafde¢ésn computing the features
for the binary rule which joins them. The one exception isaadpt non-entity words.
When evaluating a binary rule application, where neitheidds an entity, this does not
necessarily mean that the rightmost descendant of thehigdk (©r the leftmost descendant
of the right child) is not part of an entity. Thankfully, most the beneficial pairwise
features are over entity boundaries, and, to a lesser exdjaicent words within an entity.
From a practical perspective, losing boundary features agg@cent non-entities is not a
problem.

5.4.2 Grammar smoothing

When building my discriminative constituency parser, thangmar (recall that this is the
set of allowed rules) was determined by reading off the rulesd in the training data,
as is common practice. However, because of the addition mkdaentity annotations to
grammar rules, if we use the grammar as read off the treebankilvencounter problems
with sparseness which severely degrade performance. €gigdation occurs because of
CFG rules which only occur in the training data augmentett wadmed entity information,
and because of rules which only occur without the namedyemibormation. To combat
this problem, | added extra rules, unseen in the training.dat

Augmenting the grammar

For every rule encountered in the training data which has leeggmented with named
entity information, extra copies of that rule are added toghammar. | add one copy with
all of the named entity information stripped away, and aaottopy for each other entity
type, where the named entity augmentation has been changeel dther entity type.

These additions help, but they are not sufficient. Most iestitorrespond to noun
phrases, so | took all rules which had an NP as a child, and m@ales of that rule where
the NP was augmented with each possible entity type. Thesergar additions sufficed
to improve overall performance.
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Augmenting the lexicon

The lexicon is augmented in a similar manner to the rules. évery part-of-speech tag
seen with a named entity annotation, | also add that tag vathamed entity information,
and a version which has been augmented with each type of nantitg

It would be computationally infeasible to allow any word tavie any part-of-speech
tag. This is because the grammar and lexicon together digtertime set of possible parse
trees for a given sentence. Allowing a word to have more bsgiarts of speech, means
that more grammar rules can cover that word, which then messisnore parse trees are
possible over that sentence. Pruning the lexicon and grawemehave significant effects of
parsing time. | therefore limit the allowed part-of-spe¢atys for common words based on
the tags they have been observed with in the training dataolaaigment each word with
a distributional similarity tag, which | discuss in greatlpth in section 2.4.1, and allow
tags seen with other words which belong to the same distoibaksimilarity cluster. When
deciding what tags are allowed for each word, | initially agga named entity information.
Once allowed base tags are determined for a word, we alse #ilat tag, augmented with
any type of named entity, if the augmented tag is presentmetkicon.

5.4.3 Features

Features are defined over both the parse rules and the nartitgeseMost of the features
are over one or the other aspects of the structure, but nbt bot

Both the named entity and parsing features utilize the wofdise sentence, as well as
an orthographievord shapeand a distributional similarity cluster, which were debexd in
section 2.4.

For the named entity features, | used a fairly standard feagat, the same as those
used in section 5.3 (see table 5.6). For parse featuresdl theeexact same features as
those in section 5.2 (see table 5.1). When computing thaderes, all of the named entity
information was removed from the rules, so that these featwrere just over the parse
information and not at all over the named entity information

Lastly, we have the joint features. | included as featuret @agmented rule and each
augmented label. This allowed the model to learn that cetygues of phrasal nodes, such
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Parse Labeled Bracketing Named Entities Training
Precision Recall F Precision Recall F Time
ABC  Just Parse 70.2% 70.1%70.2% - 25m
Just NER - 76.8% 72.3% 74.5%
Joint Model 69.8% 70.2% 70.0% 77.7%  72.39%4.9% 45m
CNN  Just Parse 76.9% 77.1% 77.0% - 16.5h
Just NER - 75.6% 76.0% 75.8%
Joint Model 77.4%  78.0% 77.7% 78.7%  78.7% 78.7% 31.7h
MNB  Just Parse 64.0% 67.1% 65.5% - 12m
Just NER - 72.3% 54.6% 62.2%
Joint Model 63.8% 67.5% 65.6% 71.4% 62.2% 66.5% 19m
NBC  Just Parse 59.7% 63.7% 61.6% - 10m
Just NER - 67.5% 60.7% 63.9%
Joint Model 60.7%  65.4% 62.9% 71.4%  64.8% 68.0% 17m
PRI Just Parse 76.2% 76.5% 76.4% - 2.4h
Just NER - 82.1% 84.9% 83.4%
Joint Model 76.9%  78.0% 77.4% 86.1%  86.6% 86.4% 4.2h
VOA  Just Parse 76.6% 75.7% 76.2% - 2.3h
Just NER - 82.8% 76.0% 79.2%
Joint Model 776%  77.5% 77.5% 88.4%  88.0% 88.2% 4.4h

Table 5.14: Full parse and NER results for the six datasesssePtrees were evaluated
using evalB, and named entities were scored using macragee F-measure (conlleval).

as NPs are more likely to be named entities, and that certdities were more likely to

occur in certain contexts and have particular types of imgkstructure.

5.4.4 Experiments

| ran the joint model on the six OntoNotes datasets desciibsdction 2.2.4, using sen-

tences of length 40 and under (approximately 200 annotated English words, consider-

ably smaller than the PennTreebank).

For comparison, | also trained the parser without the namnmeitlyenformation (and

omitted the MMEDENTITY nodes), and a linear chain CRF using just the named entity in-

formation. Both the baseline parser and CRF were traingtjubie exact same features as

the joint model, and all were optimized using stochastidgnat descent (see section 2.3.2).

The full results can be found in table 5.14. Parse trees waeed usingevalB (the ex-

tra NAMEDENTITY nodes were ignored when computing evalB for the joint mqdaijl
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named entities were scored using entity F-measure (sderséct.1)!1

While the main benefit of the joint model is the ability to getansistent output over
both types of annotations, | also found that modeling thegand named entities jointly
resulted in improved performance on both. When looking es¢éhnumbers, it is important
to keep in mind that the sizes of the training and test setsigréficantly smaller than the
PennTreebank. The largest of the six datasets, CNN, hag abheuseventh the amount
of training data as the PennTreebank, and the smallest, Niid8around 500 sentences
from which to train. Parse performance was improved by thet jmodel for five of the
six datasets, by up t0.8% F;. Looking at the parsing improvements on a per-label basis,
the largest gains came from improved identification of NMioifinal used to represent
left-branching noun phrases) constituents, from an Fesob#59% to 570% (on all the
data combined, for a total of 420 NML constituents). Thiselalvas added in the new
treebank annotation conventions, so as to identify intdefebranching structure inside
previously flat NPsrfoun phrases To my surprise, performance on NPs only increased
by 1%, though over 1349 constituents, for the largest improvement in absoletns.
The second largest gain was on Pprepositional phrasgswhich improved by 17% over
3,775 constituents. | tested the significance of our resufisa(lthe data combined) using
Dan Bikel's randomized parsing evaluation comparstand found that both the precision
and recall gains were significantp 0.01.

Much greater improvements in performance were seen on namidy recognition,
where most of the domains saw improvements in the range-o4%, with performance
on theVOAdata improving by nearly 9%, which is a 43% reduction in erfidrere was no
clear trend in terms of precision versus recall, or the déife entity types. The first place
to look for improvements is with the boundaries for namedtiexst Once again looking at
all of the data combined, in the baseline model there weree2@i@ies where part of the

11Sometimes the parser would be unable to parse a senterns&@as2% of sentences), due to restrictions
in part of speech tags. Because the underlying grammarrfigmthe additional named entity information)
was the same for both the joint and baseline parsers, it isabe that whenever a sentence is unparseable by
either the baseline or joint parser, it is in fact unparsedyl both of them, and would affect the parse scores
of both models equally. However, the CRF is able to namedyetaty any sentence, so these unparseable
sentences had an effect on the named entity score. To cohigdtfell back on the baseline CRF model to
get named entity tags for unparseable sentences.

pvailable athttp://www.cis.upenn.edu/ dbikel/software.html
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entity was found, but one or both boundaries were incowyadtntified. The joint model
corrected 72 of those entities, while incorrectly identify the boundaries of 37 entities
which had previously been correctly identified. In the beseeNER model, there were
243 entities for which the boundaries were correctly id&di but the type of entity was
incorrect. The joint model corrected 80 of them, while chagghe labels of 39 entities
which had previously been correctly identified. Additidgal90 entities were found that
the baseline model had missed entirely, and 68 entities loste | tested the statistical
significance of the gains (of all the data combined) usingtirae sentence-level, stratified
shuffling technique as Bikel's parse comparator and fouradl bloth precision and recall
gains were significant gi < 104,

An example from the data where the joint model helped implmth parse structure
and named entity recognition is shown in figure 5.6. The autpu the individual models
is shown in part (a), with the output from the named entitypgggzer shown in brackets on
the words at leaves of the parse. The output from the jointehisdshown in part (b), with
the named entity information encoded within the parse. imeékample, the named entity
Egyptian Islamic Jihadhelped the parser to get its surrounding context correctause
it is improbable to attach a PP headedvaish to anorganization At the same time, the
surrounding context helped the joint model correctly idfgriEgyptian Islamic Jihacs an
organizationand not aperson The baseline parser also incorrectly added an extra level
of structure to the person narmsama Bin Ladenwhile the joint model found the correct
structure.

One significant limitation of this method is the training &nThe training times for the
individual corpora are also given in table 5.14, and you @atkat training the joint model
took approximately twice as long as training the parse-ambglel, which was already quite
expensive. While | would have liked to evaluate the full jaimodel on all of OntoNotes
combined, it would have taken several months and so was alby feasible. Hopefully as
computers get faster, this drawback will be mediated.
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(a) Output from the single-task model
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members of the Egyptian Islamic Jihadwith ties to Osama Bin Laden

(b) Output from the joint parse and named entity model

Figure 5.6: An example for which the joint model helped withttb parse structure and
named entity recognition. The individual models (a) ineatly attach the PP, labElgyp-
tian Islamic Jihadas aperson and incorrectly add extra internal structure@sama Bin
Laden The joint model (b) gets both the structure and the nameatyeatrrect.
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5.4.5 Related work on joint modeling

A pioneering antecedent for this work is Miller et al. (200@ho trained a Collins-style
generative parser (Collins 1997) over a syntactic strecaugmented with theemplate
entity andtemplate relation@nnotations for the MUC-7 shared task. Their sentence aug-
mentations were similar to ours, but they did not make useatiires due to the generative
nature of their model. This approach was not followed up ootlver work, presumably be-
cause around this time nearly all the activity in named giaititd relation extraction moved
to the use of discriminative sequence models, which allothedlexible specification of
feature templates that are very useful for these tasks. Tésept model is able to bring
together both these lines of work, by integrating the sttiesgf both approaches. The task
was also a bit different, as template entity extraction ®82f filling in a template, as
opposed to named entity recognition, which requires magridie entities within the text.

There have been other attempts in NLP to jointly model midtlpvels of structure,
with varying degrees of success. Most work on joint parsing semantic role labeling
(SRL) has been disappointing, despite obvious connechetween the two tasks. Sutton
and McCallum (2005) attempted to jointly model PCFG parsind SRL for the CoNLL
2005 shared task, but were unable to improve performancatbergask. The CoNLL
2008 shared task (Surdeanu et al. 2008) was joint depengersing and SRL, but the
top performing systems decoupled the tasks, rather thddibgijoint models. Zhang and
Clark (2008) successfully built a joint model of Chinese svgegmentation and parts of
speech using a single perceptron.

5.5 Summary

In this chapter, | presented two discriminative parserd,taen used them to build models
of nested named entities and a joint model of parsing and dan#ty recognition. The
discriminative constituency parser is a feature-rich GiSed parser, and was the first
such parser to scale up to non-toy sentences. | showed stibstenprovements over a
generative baseline, and found that about a third of thesgaémne a result of switching from
generative to discriminative training, and two thirds wimn the inclusion of features.
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This discriminative constituency parser was then used ild umodel of nested named
entities. It is very natural to model nested entities usipaise tree, since once a root node
is added, the nested structure is in fact a parse tree. Tisempaakes it easy to utilize all
of the linear-chain CRF features which have been developedER over the past decade.
| performed experiments on biomedical data, and on SpamdiCatalan newspaper text.
The experiments showed that the nested model did not (ormgegmcrease or decrease
performance on the top-level entities (the standard NER ) taghile still doing quite well
on the nested entities, which most prior work has ignorece @ifficulty here is the lack of
available data for nested NER; it would be nice to see soméigbngewswire or web data
which has been annotated to include nested entities andstdhg top level ones.

Finally, |1 presented a full joint model of parsing and namatitg recognition. This
model also used the parse as its backbone, and represemed eatities as nodes in the
tree. | showed that by modeling these different types ofrimftion together, we can get
modest parsing gains and large NER improvements.



Chapter 6

Hierarchical joint learning

6.1 Introduction

The previous chapter culminated in a joint model of parsimg) mamed entity recognition,
and the model presented required data which had been jaimtigtated with both kinds of
structure. However, it is common to have multiple, relatsks, each of which have their
own separate annotated corpora. This setup is calldt-task learningand in this chapter

| show how to use a hierarchical prior to do multi-task leaghfor two very different use
cases.

In the experimental results on joint modelling in the presd@hapter, | showed that the
resulting models produce more consistent outputs, andogr&rmance improves across
all aspects of the joint structure. However, one signifidamitation for many joint models
is the lack of jointly annotated data. The previously ddsamli joint model of parsing and
named entity recognition had small gains on parse perfocenamd moderate gains on
named entity performance, when compared with single-tagéats trained on the same
data. However, the performance of this model, trained u#iiegOntoNotes corpus, fell
short of separate parsing and named entity models trainddrgar corpora, annotated
with only one type of information. By using a hierarchicaigprto link the feature weights
for related tasks, we can learn high-quality joint modelghwemaller quantities of jointly-
annotated data that has been augmented with larger amdisitgte-task annotated data.
To my knowledge this work is the first attempt at such a tasle fierarchical prior links

108
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a joint model trained on jointly-annotated data with othieigke-task models trained on
single-task annotated data. The key to making this work righfe joint model to share
some features with each of the single-task models. Thersitigly-annotated data can be
used to influence the feature weights for the shared feainr® joint model. This is an
important contribution, because it provides all the besetfftjoint modeling, but without
the high cost of jointly annotating large corpora. | applieé hierarchical joint model
to parsing and named entity recognition, and it reducedrgirg over 20% on both tasks
when compared to a joint model trained on only the jointly@ated data.

The second use case for hierarchical multi-task learningusti-domain learning,
which is very similar to domain adaptation, an important NaBBk. The only difference is
that in multi-domain learning the focus is on improving penhance acrosall domains,
while in domain adaptation there is a distinction betwseuarcedata andargetdata, and
the goal is to improve performance on the target data. The @omainis used here some-
what loosely: it may refer to a topical domain or to distincis that linguists might term
mode (speech versus writing) or register (formal writtenger versus SMS communica-
tions). For example, one may have a large amount of parsedwiesy and want to use it
to augment a much smaller amount of parsed e-mail, to builgjlaeh quality parser for
e-mail data. | also consider the extension to the task winer@mnnotation is not the same,
but is consistent across domains (that is, some domains mayfotated with more in-
formation than others). With named entity recognitionsihbt uncommon to successfully
identify an entity, but mislabel the type of entity. Usingal&rom another domain that has
been labeled with additional entity types not present inaitiginal data may help prevent
misidentifying entities in the original data which are ofygé only labeled in the other
datasets.

This problem is important because it is omnipresent in néalnatural language pro-
cessing tasks. Annotated data is expensive to produce raiteédiin quantity. Typically,
one may begin with a considerable amount of annotated neeslata, some annotated
speech data, and a little annotated e-mail data. It woulddxst desirable if the aggregated
training data could be used to improve the performance ofséegy on each of these do-
mains. | apply this model to two previously discussed tasksyed entity recognition and
dependency parsing, and in both cases found significanoweprents when compared to
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strong baselines.

In this chapter | will first cover the fundamentals of mulisk learning with a hierarchi-
cal prior. 1 will then ground the technique with respect tateadividual task, and provide
experimental results for both.

6.2 Related work

My domain adaptation model is a generalization of the modesgnted in (Daumé llI
2007), which is discussed in more detail in section 6.3.4otAar similar piece of domain
adaptation work is Chelba and Acero (2004), who also modi&rtprior. Their work is
limited to two domains, a source and a target, and their dlgurhas a two stage pro-
cess: First, train a classifier on the source data, and thethedearned weights from that
classifier as the mean for a Gaussian prior when training amedel on just the target
data.

Daumé Il and Marcu (2006) also took a Bayesian approaclotoain adaptation, but
structured their model in a very different way. In their mhdeis assumed that each
datum within a domain is either a domain-specific datum, oeaegal datum, and then
domain-specific and general weights were learned. Whe#wr @atum is domain-specific
or general is not known, so they developed an EM-based #igorior determining this
information, while simultaneously learning the featureigi®s. Their model had good
performance, but came with a 10 to 15 times slowdown at mgitime. My slowest de-
pendency parser took four days to train, making this modaecto infeasible for learning
on that data.

Both tasks addressed in this chapter can be viewed as iestaftulti-task learning
a machine learning paradigm in which the objective is to siameously solve multiple,
related tasks for which you have separate labeled traingttg. dThere has not been much
work on multi-task learning in the NLP community; in additito the domain adaptation
work of Daumé 11l (2007), described above, Ando and Zharip8) utilized a multi-task
learner within their semi-supervised algorithm to learatfee representations which were
useful across a large number of related tasks. Outside dfitfeecommunity, Elidan et al.
(2008) used an undirected Bayesian transfer hierarchyueraletasks, including jointly
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modeling the shapes of multiple mammal species and a tessifitation task. Like the
work presented here, they also used pointwise estimatidineparameters. Evgeniou et al.
(2005) applied a hierarchical prior to modeling exam scofegudents. Other instances of
multi-task learning include (Baxter 1997, Caruana 1997¢lal. 2005, Xue et al. 2007).
For a more general discussion of hierarchical models, wectithe reader to Chapter 5 of
Gelman et al. (2003) and Chapter 12 of Gelman and Hill (2006).

6.3 Hierarchical priors for multi-task learning

In this section | will cover the general technique behindbaitmy hierarchical joint learn-
ing models, as the underlying technology is identical imbaases. The only requirement
for using this technique is that you have multiple base nmeodélich share some subset of
features with one another. In the first case, those base madeh joint parsing and NER
model, and then single-task models for both parsing and NEfhe second case, those
base models are identical named entity (or dependencyngansiodels where each base
model is trained on data from a different domain. | will dissuhe details of both of these
cases in subsequent sections. At times when it helps to maggaample | will concretize
the general model using the case of joint parsing and NER.

6.3.1 Intuitive overview

As discussed, we have multiple related base models (andctbreesponding training data
sets). The key to the hierarchical model is that each of tlse bzodels have some features
in common with some of the other base models, though they lsarhave some features
which are only present in one of the base models. Each moddisawn set of parameters
(feature weights). However, parameters for the featureghwhre shared between the
different base models are able to influence one another vi@rarbhical prior. This prior
encourages the learned weights for the different modelg tairbilar to one another. After
training has been completed, we can retain only the parasab®ut which we care — in
the joint parsing and and NER case this is the joint modelmpaters, whereas in the
multi-domain learning case this corresponds to the pammmédr all of the domains.
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Figure 6.1: A graphical representation of my hierarchicahj model. There are separate
base models for just parsing, just NER, and joint parsing l[d&&R. The parameters for
these models are linked via a hierarchical prior.

6.3.2 Formal model

We have a set# of base models which have corresponding log-likelihoodcfioms
Zm(Pm; Bm) for eachm € .7, where %y, is the model-specific training data afgl is the
model-specific parameter (feature weight) vectors for rhadd hese likelihood functions
do notinclude priors over thés. For representational simplicity, we assume that each of
these vectors is the same size and corresponds to the saeragrdf features. Features
which don't apply to a particular model type (e.g., parséudess in the named entity model)
will always be zero, so their weights have no impact on thadletis likelihood function.
Conversely, allowing the presence of those features in tlsddewhich they do not apply
will not influence their weights in the other models becabrszd will be no evidence about
them in the data. These base models are linked by a hieratgrior, and their feature
weight vectors are all drawn from this prior. The paramegrfr this prior have the same
dimensionality as the model-specific parametgsand are drawn from another, top-level
prior. In our case, this top-level prior is a zero-mean Gauss

The graphical representation of a hierarchical model witle¢ base models is shown

Though | used a zero-mean Gaussian prior, this top-levet pould take many forms, including an
prior, or another hierarchical prior.



6.3. HIERARCHICAL PRIORS FOR MULTI-TASK LEARNING 113

in figure 6.1. The log-likelihood of this model is

Omi — 0..;)? 0. — Hi)?
Depn(7360)= 5 (zm@m; o)~ 3 %) R e CE!

The first summation in this equation computes the log-lh@did of each model, using
the data and parameters which correspond to that model,henglrior likelihood of that
model’'s parameters, based on a Gaussian prior centereddatbe top-level, non-model-
specific parameter8,, and with model-specific varianag,. The final summation in the
equation computes the prior likelihood of the top-levelgmaeters, according to a Gaus-
sian prior with varianceg, and meanu (typically zero). This formulation encourages
each base model to have feature weights similar to the tog-fgmrameters (and hence
one another). | use pointwise estimation (Elidan et al. 20@en learning the feature
weights. By this | mean that | directly estimate the top-lgy@ametersp,, instead of
being Bayesian and integrating them out.

The effects of the variances, ando, warrant some discussion, has the familiar in-
terpretation of dictating how much the model “cares” abeatfire weights diverging from
zero (oru). The model-specific variancesy,, have an entirely different interpretation.
They dictate how strong the penalty is for the domain-spepéirameters to diverge from
one another (via their similarity t6.). Whenay, are very low, then the feature weights
are encouraged to be very similar, and taken to the extreiméstaquivalent to completely
tying the parameters between the tasks. Wograre very high, then there is less encour-
agement for the parameters to be similar, and taken to tlreregtthis is equivalent to
completely decoupling the tasks.

We need to compute partial derivatives in order to optimieerhodel parameters. The
partial derivatives for the parameters for each base modek given by:

dghier<9; 9) _ a-iﬂm(@m, em) . 6m7i - 9*7i
aemj 09m7i 0d2

(6.2)

where the first term is the partial derivative according te lase model, and the second
term is the prior centered around the top-level parameténg partial derivatives for the



114 CHAPTER 6. HIERARCHICAL JOINT LEARNING

top level parameter8, are:

0Lher(2,0) Oii —Omi | Bui— i (6.3)
90.; mezﬁ 02 o2 '

*

where the first term relates to how far each model-specifigkterector is from the top-
level parameter values, and the second term relates hovwatdr ®p-level parameter is
from zero.

When a model has strong evidence for a feature, effectivetWwappens is that it pulls
the value of the top-level parameter for that feature clése¢he model-specific value for
it. When it has little or no evidence for a feature then it viadl pulled in the direction of
the top-level parameter for that feature, whose value wiiseinced by the models which
have evidence for that feature.

6.3.3 Optimization with stochastic gradient descent

As we saw in the previous chapter, inference in joint modet&l$ to be slow, and often
requires the use of stochastic optimization in order for db&imization to be tractable.
| used stochastic gradient descent (SGD) (see section) 2d@.#he experiments in this
section, and here | discuss how to use SGD when we have adtigar prior, since it

is less straightforward than the more common case where we dra objective function
which only requires summing over data.

L-BFGS and gradient descent, two frequently used (nonhksistecc) numerical opti-
mization algorithms, require computing the value and paderivatives of the objective
function using the entire training set. Instead, we usehstsiic gradient descent. It re-
quires a stochastic objective function, which is meant ta b®v computational cost esti-
mate of the real objective function. In most NLP models, sagHhogistic regression with
a Gaussian prior, computing the stochastic objective fangs fairly straightforward: you
compute the model likelihood and partial derivatives foaadomly sampled subset of the
training data. When computing the term for the prior, it mostrescaled by multiplying its
value and derivatives by the proportion of the training datad. The stochastic objective



6.3. HIERARCHICAL PRIORS FOR MULTI-TASK LEARNING 115

function, whereZ C Zis a randomly drawn subset of the full training set, is givgn b

121
12] 4 Z 202

ZLstoc D 0) = Lorig( 9 0)— (6.4)
This is astochastidunction, and multiple calls to it with the sante and 6 will produce
different values because is re-sampled each time. When designing a stochastic olgect
function, the critical fact to keep in mind is that the summatiies and partial derivatives
for any partitioning of the data need to be equal to that offtlledataset. In practice,
stochastic gradient descent only makes use of the partisatiges and not the function
value, so we will focus the remainder of the discussion on twrescale the partial deriva-
tives.

| will now describe the more complicated case of stochagitomzation with a hierar-
chical objective function. For the sake of simplicity, lstassume that we are using a batch
size of one, meaning@| = 1 in the above equation. Note that in the hierarchical model,
each datum (sentence) in each base model should be weigjutaitieso whichever dataset
is the largest should be proportionally more likely to hame of its data sampled. For the
sampled datund, we then compute the function value and partial derivatwigls respect
to the correct base model for that datum. When we rescale taehspecific prior, we
rescale based on the number of data in that model’s trairehget the total number of
data in all the models combined. Having uniformly randonvigveh datund € Ume_ s Zm.
let m(d) € .# indicate to which model’s training data the datum belongse $tochastic
partial derivatives will equal zero for all model parametéf, such tham+# m(d), and for
Om(q) it becomes:

0Lhiersoc 7,0)  0%m@)({d}; Oma) 1 Om(d),i — s
EZen

90m(q),i N 90m(q),i 2

7 (6.5)

Now I will discuss the stochastic partial derivatives widspect to the top-level parameters
6., which requires modifying equation 6.3. The first term inttequation is a summation
over all the models. In the stochastic derivative we onlyfigren this computation for the
datum’s moden(d), and then we rescale that value based on the number of ddtatin t
datum’s mode|Zq)|- The second term in that equation is rescaled bydted number of
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data in all models combined. The stochastic partial davigatwith respect t®, become:

a-=%hier-stoch(A@; 9) 1 G*J - em(d)J 1 9*7i
Um Z ‘9m| U*
me.#

96, Do)

where for conciseness we omitunder the assumption that it equals zero.

An equally correct formulation for the partial derivative @, is to simply rescale equa-
tion 6.3 by thetotal number of data in all models. Early experiments found thahbo
versions gave similar performance, but the latter was Bagamitly slower to compute be-
cause it required summing over the parameter vectors fdraaé models instead of just
the vector for the datum’s model.

When using a batch size larger than one, you compute the @iveations for each
datum in the batch and then add them together.

6.3.4 Formalization of prior feature-augmentation work

This technique for utilizing a hierarchical prior to linklated tasks is equivalent to the
“frustratingly easy” domain adaptation method presente®aumeé Ill (2007), and can
be viewed as a formal version of his modeln his presentation, the adaptation is done
through feature augmentation. Specifically, for each i@aitu the original version, a new
version is created for each domain, as well as a general, idem#ependent version of the
feature. For each datum, two versions of each original feade present: the version for
that datum’s domain, and the domain independent one.

The equivalence between the two models can be shown witHesianphmetic. Recall
that the log likelihood of our model is:

64, — 6:.i)? i
7 (o3 Bp") 5 G

2Many thanks to David Vickrey for pointing this out.
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We now introduce a new variablgy = 64 — 6., and plug it into the equation for log likeli-

hood: 2 2
3 (Gotzaivn 03 Y ) -5 02

The result is the model of Daumé 1l (2007), where the are the domain-specific fea-
ture weights, and, are the domain-independent feature weights. In his fortiurathe
variancess = o2 for all domainsd.

However, this formalization highlights the opportunity $et the different variances
separately. This separation of the domain-specific andoieiaident variances was critical
to our improved performance. When using a Gaussian prioetaee two parameters set
by the user: the meam (usually zero), and the variance?. Technically, each of these
parameters is actually a vector, with an entry for each featout almost always the vec-
tors are uniform and the same parameter is used for eaclrég#itere are exceptions, e.g.
Lee et al. (2007)). Because Daumée Il (2007) views the adept as merely augmenting
the feature space, each of his features has the same priarandavariance, regardless of
whether it is domain specific or independent. He could havéhsese parameters differ-
ently, but he did not. In our presentation of the model, we explicitly represefffiedent
variances for each domain, as well as the top level parameWe found that specifying
different values for the domain specific versus domain iedelent variances significantly
improved performance, though we found no gains from usififgr@int values for the dif-
ferent domain specific variances. The values were set basddwelopment data.

6.4 Improving joint parsing and named entity recognition

| just described the general framework for hierarchicali@ag, and now | will discuss
how to use it to improve a joint model using additional dataaated for only one task.
Specifically, we have a joint model of parsing and namedyergitognition, and two single-
task models, one for parsing and one for named entity retiognil will discuss each of
these base models, though to varying degrees all have bsemsded previously in this

3Although he alludes to the potential for something simitetihie last section of his paper, when discussing
the kernelization interpretation of his approach.
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dissertation. | will also give experimental results, compgthe joint model trained inside
of the hierarchical model with the joint model describedectson 5.4.

6.4.1 Base models

Named entity recognition For the named entity recognition-only model | used a semi-
CRF (Sarawagi and Cohen 2004, Andrew 2006). Semi-CRFs faésuioned briefly in
section 5.3.2) are very similar to the more popular lindzaitc CRFs, but they have several
key advantages. Semi-CRBegment and labeéhe text simultaneously, whereas a linear-
chain CRF willonly labeleach word, and segmentation is implied by the labels asdigne
to the words. When doing named entity recognition, a semi~@RI have one node for
each entity, unlike a regular CRF which will have one nodesfach word* Please refer to
figure 6.2a-b for an example of a semi-CRF and a linear-chRiR @ver the same sentence.
Note that the entitilary Clinton has one node in the semi-CRF representation, but two
nodes in the linear-chain CRF. Because different segmensdhave different model struc-
tures in a semi-CRF, one has to consider all possible steE{segmentations) as well as
all possible labelings. It is common practice to limit seginength in order to speed up
inference, as this allows for the use of a modified versiorhefforward-backward algo-
rithm. When segment length is not restricted, the inferggroeedure is the same as that
used in parsing (we used this fact in section 3.3).this work | did not enforce a length
restriction, and directly utilize the fact that the modehdae transformed into a parsing
model. Figure 6.2c shows a parse tree representation ofia@GRf and figure 6.2d shows
the same tree after binarization. @ROOT-PER means thatena #re middle of building
a ROOT (so this is aactive statesee section 2.1.2), and the previous child was a PER.
While a linear-chain CRF allows features over adjacent woacgsemi-CRF allows them
over adjacent segments. This means that a semi-CRF careuili features used by a
linear-chain CRF, and can also utilize features over esgmgments, such &srst National
Bank of New York Cityinstead of just adjacent words likérst NationalandBank of Let
y be a vector representing the labeling for an entire senteyjaencodes the label of the

4Both models will have one node per word for non-entity words.
SWhile converting a semi-CRF into a parser results in muctvetdnference than a linear-chain CRF, it
is still significantly faster than a treebank parser due toréduced number of labels.
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Figure 6.2: A linear-chain CRE) labels each word, whereas a semi-CRJFlabels entire
entities. A semi-CRF can be represented as a(tlg@herei indicates an internal node for
an entity.(d) shows the tree representation after binarization.
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ith segment, along with the span of words the segment encaepaketd be the feature
weights, and(s,y;, Yi—1) the feature function over adjacent segmengendy;_1 in sentence
s.5 The regularized log-likelihood of a semi-CRF for a singlateacesis given by:

1yl 2
2150)= 3 el0-(sy.yi)) ~Zao 50 ©7)

The partition functiorZs g serves as a normalizer. It requires summing over thgset
all possible segmentations and labelings for the sentence

ly|
Zso= ) Ziexp{e-f(s,yi,yifl)} (6.8)

YEYsi=

Because we use a tree representation, it is easy to enstitheéHfaatures used in the

NER model are identical to those in the joint parsing and rchargity model, because the

joint model is also based on a tree representation whereesditii corresponds to a single
node in the tree.

Parsing For the parsing-only model | used the discriminative CRBEduhparser de-
scribed previously in section 5.2.

Joint parsing and named entity recognition For the joint parsing and named entity
recognition model | used the joint model described previpimssection 5.4.

6.4.2 Experiments and discussion

| compared the hierarchical joint model to the regular (fograrchical) joint model pre-
sented in section 5.4, once again using the OntoNotes c(pasection 2.2.4). | have also
included the parse-only and NER-only baseline models fitwauh $ection, for comparison.
Table 6.1 has the complete set of results. For each sectithe afata (ABC, MNB, NBC,

5There can also be features over single entities, but thesdeancoded in the feature function over
adjacent entities, so for notational simplicity we do naide an additional term for them.
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Parse Labeled Bracketing Named Entities
Precision Recall F Precision Recall F

ABC  Just Parse 69.8% 69.9% 69.8% -

Just NER - 77.0% 75.1% 76.0%

Baseline Joint 70.2% 70.5% 70.3% 79.2% 76.5% 77.8%

Hierarchical Joint 75.5%  74.4% 74.9% 85.1% 82.7% 83.9%
MNB  Just Parse 61.7% 65.5% 63.6% -

Just NER - 69.6%  49.0% 57.5%

Baseline Joint 61.7% 66.2% 63.9% 709% 63.5% 67.0%

Hierarchical Joint 72.6%  70.2% 71.4% 74.4%  75.5% 74.9%
NBC  Just Parse 59.9% 63.9% 61.8% -

Just NER - 63.9% 60.9% 62.4%

Baseline Joint 50.3% 64.2% 61.6% 68.9% 62.8% 65.7%

Hierarchical Joint 70.4%  69.9% 70.2% 729% 74.0% 73.4%
PRI Just Parse 78.6% 77.0% 76.9% -

Just NER - 813% 77.8% 79.5%

Baseline Joint 78.0% 78.6% 78.3% 86.3%  86.096.2%

Hierarchical Joint 79.2%  78.5% 78.8% 84.2% 855% 84.8%
VOA  Just Parse 775% 76.5% 77.0% —

Just NER - 85.2% 80.3% 82.7%

Baseline Joint 772% 77.8% 77.5% 87.5% 86.7% 87.1%

Hierarchical Joint 79.8%  77.8% 78.8% 87.7%  88.9% 88.3%

Table 6.1: Full parse and NER results for the six datasetseReees were evaluated using
evalB, and named entities were scored using micro-averagadasure (conlleval).

PRI, VOA) | ran experiments training a linear-chain CRF ofyadhe named entity infor-
mation, a CRF-CFG parser on only the parse information,rg jparser and named entity
recognizer, and our hierarchical model. For the hierammuodel, | used the CNN portion
of the data (5093 sentences) for the extra named entity dathignored the parse trees)
and the remaining portions combined for the extra parse(dathignored the named entity
annotations). | used, = 1.0 andoy,, = 0.1, which were chosen based on early experiments
on development data. Small changesitpdo not appear to have much influence, but larger
changes do. | similarly decided how many iterations to raeisastic gradient descent for
(20) based on early development data experiments. | didurothis experiment on the
CNN portion of the data, because the CNN data was alreadyg lusied as the extra NER
data.

As table 6.1 shows, the hierarchical model did substagtistter than the joint model
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overall, which is not surprising given the extra data to vishichad access. Looking at the
smaller corpora (NBC and MNB) we see the largest gains, wath parse and NER per-
formance improving by about 8% F1. ABC saw about a 6% gain dh tasks, and VOA
saw a 1% gain on both. The one negative result is in the PRigoorparsing improves
slightly, but NER performance decreases by almost 2%. Thesxperiment on develop-
ment data resulted in a performance increase, so | are rotgw we saw a decrease here.
One general trend, which is not surprising, is that the hatriaal model helps the smaller
datasets more than the large ones. The source of this isfiticedower baselines are gen-
erally easier to improve upon; the larger corpora had lesgliannotated data to provide
improvements, because it was composed of the remainindlesns&ctions of OntoNotes;
and transfer leaning of this sort is generally know to hefslevhen you have more data.
| found it interesting that the gains tended to be similar othtiasks for all datasets, and
believe this fact is due to my use of roughly the same amousingfly-annotated data for
both parsing and NER.

One possible conflating factor in these experiments is thadmain drift. While | tried
to get the most similar annotated data available — data whiahannotated by the same
annotators, and all of which is broadcast news — these drelifferent domains. While
this is likely to have a negative effect on results, | alsadwe this scenario to be a more
realistic than if it were to also be data drawn from the exaocte distribution.

6.5 Multi-domain learning

In this section | will cover two sets of experiments on domadaptation using a hier-
archical prior, one on named entity recognition and one greddency parsing. In this
case, unlike the previous section, the base models are thiecfame underlying form and
the only difference between them is the training data aasediwith each. The NER and
parsing base models are both models we have seen previously.
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# Train  # Test
Words  Words
MUC-6 165082 15032
MUC-7 89644 64490
CoNLL 203261 46435

Table 6.2: Number of words in the training and test sets faheaf the named entity
recognition datasets.

6.5.1 Named entity recognition

For the NER experiments, | used a linear-chain CRF, as destiin section 2.1.1, for
the base models. | used three named entity datasets, fro@aieL 2003, MUC-6 and
MUC-7 shared tasks (see section 2.2.1 for a more completeiptsn). CoNLL is British
newswire, while MUC-6 and MUC-7 are both American newsw#eguably MUC-6 and
MUC-7 should not count as separate domains, but becausevdreyannotated separately,
for different shared tasks, | chose to treat them as such fegldhat the experimental
results justify the distinction. | used the standard traid test sets for each domain, which
for CoNLL corresponds to the (more difficult) testb set. Fetalls about the number of
training and test words in each dataset, please see table 6.2

One interesting challenge in dealing with both CoNLL and Mtgza is that the label
sets differ. CoNLL has four classe®ERSON ORGANIZATION, LOCATION, andMISC.
MUC data has seven classeBERSON ORGANIZATION, LOCATION, PERCENT, DATE,
TIME, andMONEY. They overlap in the three core classeERSON ORGANIZATION, and
LOCATION), but CoNLL has one additional class and MUC has four addgiclasses.

The differences in the label sets led me to perform two setsxpkeriments for the
baseline and hierarchical Bayesian models. In the firstfsteriments, at training time,
the model allows any label from the union of the label setgardless of whether that
label was legal for the domain. At test time, we would ignosegses made by the model
which were inconsistent with the allowed labels for that ém{ In the second set of
experiments, | restricted the model at training time to oallpw legal labels for each
domain. At test time, the domain was specified, and the modslomce again restricted so

/] treated them identically to if they had been labeled with background symbol. So, for instance,
labelling a word adatein the CoNLL data had no effect on the score.
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that words would never be tagged with a label outside of thatain’s label set.
In the experiments, | compared my model to several stronglimes, and the full set of
results is in table 6.3. The models | used were:

TARGET ONLY. Trained and tested on only the data for that domain.

ALL DATA. Trained and tested on data from all domains, concatenatedone large
dataset.

ALL DATA*. Same as AL DATA, but restricted possible labels for each word based on
domain.

DAUMEQ7. Trained and tested using the same technique as Daurf#)07). Note that
they present results using per-token label accuracy, welesed the more standard
entity precision, recall, and F score (as in the CoNLL 200& st task).

DAUMEO7*. Same as BUMEQ7, but restricted possible labels for each word based on
domain.

HIER BAYES. My hierarchical domain adaptation model.

HIER BAYES*. Same as HER BAYES, but restricted possible labels for each word based
on the domain.

For all of the baseline models, and for the top level-paransein the hierarchical
Bayesian model, | used, = 1. For the domain-specific parameters, | usgd= 0.1 for all
domains.

The HER BAYES model outperformed all baselines for both of the MUC datgsetd
tied with the DauMEOQ7 for CoNLL. The largest improvement was on MUC-6, wheremd
BAYES outperformed RBUMEOQ7*, the second best model, by36%. This improvement
is greater than the improvement made by that model over the BATA* baseline. To
assess significance | used a document-level paired t-test &l of the data combined),
and found that HER BAYES significantly outperformed all of the baselines (not inchg
HIER BAYES*) with greater than 95% confidence.

For both the HER BAYES and DAUMEQO7 models, | found that performance was better
for the variant which did not restrict possible labels basadhe domain, while the A
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Named Entity Recognition

Model | Precision Recall F1
MUC-6

TARGET ONLY 86.74 80.10 83.29

ALL DATA* 85.04 83.49 84.26

ALL DATA 86.00 82.71 84.32

DAUMEQT7* 87.83 83.41 85.56

DAUMEOQ7 87.81 82.23 85.46

HIER BAYES* 88.59 84.97 86.74
HIER BAYES 88.77 85.14 86.92

MUC-7
TARGET ONLY 81.17 70.23 75.30
ALL DATA* 81.66 76.17 78.82
ALL DATA 82.20 7091 76.14
DAUMEQT7* 83.33 75.42 79.18
DAUMEQ7 83.51 75.63 79.37

HIER BAYES* 82.90 76.95 79.82
HIER BAYES 83.17 77.02 79.98

CoNLL
TARGET ONLY 85.55 84.72 85.13
ALL DATA* 86.34 84.45 85.38
ALL DATA 86.58 83.90 85.22
DAUMEQT7* 86.09 85.06 85.57
DAUMEQ7 86.35 85.26 85.80

HIER BAYES* 86.33 85.06 85.69
HIER BAYES 86.51 85.13 85.81

Table 6.3: Named entity recognition results for each of thedets. With the exception
of the TARGET ONLY model, all three datasets were combined when training ehtifeo
models.

DATA model did benefit from the label restriction. Forgs BAYES and DauMEOQ7, this

result may be due to the structure of the models. Becauseatmdiels have domain-specific
features, the models likely learned that these labels wererractually allowed. However,
when a feature does not occur in the data for a particular dgrtieen the domain-specific
parameter for that feature will have positive weight duemence present in the other
domains, which at test time can lead to assigning an illedpallto a word. This information
that a word may be of some other (unknown to that domain)yetyiite may help prevent
the model from mislabeling the word. For example, in CoNL&tianalities, such asaqi
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and American are labeled asiisc. If a previously unseen nationality is encountered in
the MUC testing data, the MUC model may be tempted to labed islacation but this
evidence from the CoNLL data may prevent that, by causingiitstead be labeledisc,

a label which will subsequently be ignored.

In most previous domain adaptation work, there is a distimdbetweersourceandtar-
getdata. Results are only presented on the target data, angefrdy the amount of training
data in the target domain has been reduced, thus makinget é@ashow an improvement.
The motivation for this reduction is usually to demonstridigt the user need only label a
small amount of data and can then intelligently utilize tbaradant source data. However,
another common use case is that the user has a lot of labeiedfidan various sources,
and wishes to build the best possible model from that data.r€ults show that, so long
as the amount of data in each domain is not widely dispatagepossible to achieve gains
on all of the domains simultaneously.

6.5.2 Dependency parsing

| also tested the hierarchical domain adaptation model aimn@yped dependency parsing
task, to see how it performs on a more structurally complek than sequence modeling.
For these experiments, | used a CRF-based dependency, pardescribed in section 5.2.3,
for the base models.

For the dependency parsing experiments, | used OntoNotea$te2.0 data (an earlier
release of the data described in section 2.2.4). | once agawverted the PCFG trees into
dependency trees using the Collins head rules (Collins 2003

| compared the same four domain adaptation models for demeygarsing as | did for
the named entity experiments, once again setting 1.0 andog = 0.1. Unlike the named
entity experiments however, there were no label set distreips between the domains,
so only one version of each domain adaptation model was sa&gesnstead of the two
versions in that section. TheARGET ONLY results are the same as in the dependency
parsing experiments reported earlier in section 5.2.3.

The full dependency parsing results can be found in table Eisstly, |1 found that
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Dependency Parsing

Training Testing BRGET  ALL HIER
Range # Sent Range # Sent NQ DAatA DAUMEO7 BAYES
ABC 0-55 1195 5669 199 83.32%88.97%  87.30% 88.68%
CNN 0-375 5092 376-437 1521 85.53% 87.09% 86.41987.26%
MNB 0-17 509 18-25 245 77.06% 86.41% 84.70%86.71%
NBC 0-29 552 30-39 149 76.21%85.82%  85.01% 85.32%
PRI 0-89 1707 90-112 394 87.65% 90.28% 89.529090.59%

VOA 0-198 1512 199-264 383 89.17%92.11%  90.67% 92.09%

Table 6.4: Dependency parsing results for each of the doadaptation models. Perfor-
mance is measured as unlabeled attachment accuracy.

DAUMEQ7, which had outperformed theLA DATA baseline for the sequence modeling
task, performed worse than the baseline here, indicatiagttie transfer of information
between domains in the more structurally complicated taghkhierently more difficult. My
model’s gains over the A DATA baseline are quite small, but | tested their significance
using a sentence-level paired t-test (over all of the databieed) and found them to be
significant atp < 107>, | am unsure why some domains improved while others did rot. |
is not simply a consequence of training set size, but may keaalqualities of the domains
themselves.

6.6 Summary

In this chapter, | used a hierarchical prior for multi-taglaining in two very different
scenarios. | first covered the general technique of usingeeatdhical prior to link the
feature weights for related tasks. | then used this to im@nowy joint parse and named
entity recognition model, by linking that joint model witkegarate task-specific models
for the two tasks. The task specific models were trained udatg which had only been
annotated for the single task. This resulted in gains on tastks, thanks to the ability to
incorporate information from the singly-annotated data.

| then used a hierarchical prior to do multi-domain learnindinked three different
NER corpora to one another, linking their features via adrghical prior, and showed
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that this resulted in better performance for all three datgasl also performed a compa-
rable experiment on dependency parsing, this time linkihgfahe different sections of
OntoNotes. In this case, the hierarchical model always tieatnodel trained on just a
single domain, and was comparable to one trained on all tteecdenbined.

There are several potentially future avenues for futurekwdm all the experiments in
this chapter, | used a uniform variance for all the differeattures and domains. However,
intuitively, it seems that some features should be mordylit@ be similar between tasks
than others, and therefore we would like to be able to leagrsipmas as well.

There are also many potential uses for hierarchical priofdliP. They may be useful
for semi-supervised learning: you could use a pre-trainedehto label large amounts of
raw text, and then link a model trained on the automaticatipotated text with a model
trained on the gold-standard text. In that case, the welghtaed on the gold-standard text
will be more influenced by the gold data than the non-gold,daitithe non-gold data can
still provide useful information about unseen or rarelyrsésatures in the gold data. Quite
recently, two papers (Berg-Kirkpatrick and Klein 2010, tevat al. 2010) used hierarchical
priors to link parameters between different languages wdwng unsupervised parsing.



Chapter 7
Conclusions

In this dissertation, | presented techniques for varioumsl&iof joint modeling. In chap-
ter 3, | addressed the case of modeling long-distance deperes in information extrac-
tion systems; in this case, we were jointly modeling muétjalisparate parts of the same
document. My proposed solution was to use a product-ofsxpeodel to combine a
state-of-the-art linear-chain CRF with a long-distancedeio For named entity recogni-
tion, the long-distance model was designed to encourageiddéwords and phrases to be
labeled consistently. For a template filling task, the laligtance model encouraged only
one phrase to be labeled for each of the template slots. |1@##as sampling, a form of
approximate inference, combined with simulated anneatmnd the best labeling in the
product model.

| then turned to the task of jointly modeling different kindé phenomena. Many
higher-level NLP systems require input from multiple lowevel systems. Typically, this
lower-level information is acquired by running data thrbum pipeline of annotators. In
chapter 4, | proposed an alternative to the standard, gréelgst pipeline. Instead of tak-
ing the most likely output at each stage, | generated sampt=ad, and passed them along
to the next stage. This was done many times, and in the en@uthglas formed a majority
vote classifier for the final stage. | found that this versidra @ipeline outperformed a
1-best pipeline on two different tasks, and performed caaipy to ak-best pipeline.

A major limitation of 1-bestk-best, and sampling pipelines is that information only
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flows forward. Oftentimes you instead want a true joint modlere all levels of informa-
tion can constrain and influence each other. In chapter Bduwlly built up to a full joint
model of parsing and named entity recognition. First, | préed a discriminative con-
stituency parser. This parser was the first feature-rich-®R$ed parser which could scale
up beyond toy sentences. This parser also served as thedvectdy several other models.
| first used it to do nested named entity recognition. Mosbipwork on named entities
has assumed a flat structure, and has ignored named entitiels were nested inside of
other named entities (e.@harles Shaw Corp. The discriminative parser provided a nat-
ural framework for representing this nesting structurejlevhalso allowing the utilization
of previously developed features which had originally belesigned for sequence (flat)
models. Having shown how to use the parser for both parsidgnamed entity recognition
separately, | then showed how to use it to model them joifglypicking the proper rep-
resentation, grammar, and features, | found that modefiage two phenomena together |
could improve performance on both tasks.

One drawback to the joint model just described is the redatigmall amount of train-
ing data, compared to the amount of data available which baa bnnotated with just a
single task (chapter 6). With this in mind, | presented adrghical model which could
leverage both jointly and singly labeled data to improvejtiet model. This was done
via a hierarchical prior, which loosely linked the featureights for single-task and joint
models, and allowed the weights for the joint model to be eriflted by the single-task
data.

Finally, 1 used the same hierarchical technique to joindgirh models for multiple
domains or genres of text. In this case, the same type of nfadelear-chain CRF in one
experiment, and a discriminative dependency parser inhanpwas used for each genre,
but each had its own specific model, and the feature weightseahodels were linked via
a hierarchical prior.

There are several conclusions that can be drawn from the predented here. Chap-
ter 3 and chapter 4 both utilized a sampling-based apprsatcheolve problems which
could not be solved with exact inference methods. Regadiethe tasks being addressed,
or the specific techiques being used, | think the fundamedéa here is important: lan-
guage has very complex structure which cannot be modeléeigbgy but it is better to try to
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get the model right, including many of the complex interaicti, and accept that inference
may not be perfect, than to have perfect inference in a seveamdicapped model. Good
inference techiques are important, but without properlyteang the complex structure of
language, we can never hope to build systems which do trugatdnguage understand-
ing. That said, it is also not clear if a full joint model likke one presented in chapter 5
is the final answer. Adding new layers of annotations graattyeased the possible space
of outputs, and as a result slowed inference down consitjerBart of the problem here
may in fact have been my insistence on using an exact inferesahnique, and | do not
know how well this would scale when even more types of infdroreare added. | believe
that future joint models will likely need to be setup in a manthat more naturally al-
lows for high-quality approximate inference. Lastly, Irtkithat hierarchical models have
a bright future in NLP. They are an easy way to link relateétsagrom an implementation
persepctive, it is incredibly simple to add them to existingdels, when using pointwise
estimation. From a computational standpoint, they do nia tauch longer to optimize
than the individual models from which they are constructédd, from a modeling per-
spective, they provide an elegant way to efectively shemnimation between related tasks
and datasets.

There are many avenues for future work building off of theaslén this thesis, some
of which have already begun to be explored. Several of theatsqutesented here utilized
the OntoNotes corpus. | used this for the joint parse and daenéty experiments, but
the data is annotated with more than just these two kindsfofrmation. It also contains
semantic role labels, coreference information, and worgass. It is easy to see how these
kinds of information should also be able to influence and taimsone another. If two
entities are coreferent, then they should be the same nantayg gype. Semantic role
labels directly utilize phrases in the tree, and also kngwirhat types of roles certain
phrases tend to play should influence where they are placéntiparse tree. It would be
wonderful to see a joint model of all these phenomena. Onleeoifitost basic ideas behind
the joint model | presented was the fact that the featuretdadecompose: some were
over just the parse structure, some were over only the namigces, and some were over
both. Future joint models will need to find even more ways tootepose the model for
the sake of tractability. One potential way to do this woudddnal decompositioiRush
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et al. 2010, Koo et al. 2010). Dual decomposition allows wdatinference in complicated,
previously intractable, models, by factoring the modebitwto (or more) components, and
then forcing the components to agree on the subset of vagalhich they share. For
instance, it would be natural to jointly model named erdgitdd coreference information.
Such a model could be combined with the joint parse and namgty enodel from this
thesis, and the two models would be forced to agree on thechantéy annotations in the
data.

Many of the techniques proposed in this thesis could be Ugaftasks beyond joint
learning. The sampling-based approaches presented itece&@and 4 have already helped
foster the widespread use of sampling for approximate @mfee in many tasks, as was
discussed in section 4.7. The hierarchical models in cin&psamilarly have the potential
to be quite useful. Hierarchical priors have already begubd used for soft parameter
typing between languages for parsing models (see sectn 6.

Ultimately, to do real natural language understanding, egdmo first to a good job at
these kinds of low-level tasks. It is my hope that the ide@&sgmted in this dissertation
have brought us closer to that goal, both with the technekgsed and by showing that is
preferable to jointly model things (whether it be wordsk&gr genres) which are related.
Computationally we want to decouple tasks, because it willally make inference faster
and simpler, but intellectually we know that these tasksel@ed, and that we will never
be able to truly do natural language understanding while @epkhem separate.



Appendix A
OntoNotes data inconsistencies

While other work has utilized the OntoNotes corpus (Pradétaad. 2007, Yu et al. 2008),
the papers on which this thesis is based are the first work t&mowledge to simultane-
ously model the multiple levels of annotation availablec&ese this is a new corpus, still
under development, it is not surprising that there weregdaghere the data was inconsis-
tently annotated, namely with crossing brackets betwearedaentity and tree annotations.
In the places where | found inconsistent annotation it weedydhe case that the differ-
ent levels of annotation were inherently inconsistent,rhther the inconsistency resulted
from somewhat arbitrary choices made by the annotatorse¥amnple, when the last word
in a sentence ends with a period, suctCasp., one period functions both to mark the ab-
breviation and the end of the sentence. The convention d?é&maTreebank is to separate
the final period and treat it as the end of sentence markexryben the final word is also
part of an entity, that final period was frequently includedhe named entity annotation,
resulting in the sentence terminating period being parhefantity, and the entity not cor-
responding to a single phrase. See figure A.1 for an illustmdtom the data. In this case,
| removed the terminating period from the entity, to prodaansistent annotation.
Overall, | found that 656 entities, out of &5 total, could not be aligned to a phrase,
or multiple contiguous children of a node. | identified andreoted the following sources
of inconsistencies:

Periods and abbreviations. This is the problem described above with Berp. exam-
ple. | corrected it by removing the sentence terminating fiesiod from the entity
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134 APPENDIX A. ONTONOTES DATA INCONSISTENCIES

S
-
NP VP .
/\ /\
NNP NNP VBD VP
/\
VBN NP
/\
NP PP
\ T
NN IN NP
/\
NNP NNP
\ \
[Mr. Todtlper  had been president of [Insilco Corp Jora

Figure A.1: An example from the OntoNotes data of inconsitydabeled named entity
and parse structure.The inclusion of the final period in tmed entity results in the named
entity structure having crossing brackets with the pamesire.

NP NP
— _
NP PP DT NP PP
T T \ T
DT NNP IN NP NNP IN NP
\ \
NNP NNP
\ \
the [District of Columbia]cpe the [District of Columbialgpe

(@) (b)

Figure A.2: (a) Another example from the data of inconsifyelabeled named entity and
parse structure. In this instance, we flatten the nestedds#lting in (b), so that the named
entity corresponds to a contiguous set of children of theléopl NP.

annotation.

Determiners and PPs.Noun phrases composed of a nested noun phrase and a preposi-
tional phrase were problematic when they also consistedleterminer followed by
an entity. | dealt with this by flattening the nested NP, asstiated in figure A.2.

Adjectives and PPs.This problem is similar to the previous problem, with thefeliénce
being that there are also adjectives preceding the entitg. sblution is also similar
to the solution to the previous problem. | moved the adjestiirom the nested NP

into the main NP.
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These three modifications to the data solved most, but novfathe inconsistencies.
Another source of problems was conjunctions, sudd@sh and South KoreavhereNorth
and Souths a phrase, bubouth Koreas an entity. The rest of the errors seemed to be due
to annotation errors and other random weirdnesses. | endadhable to make .@% of
the entities consistent with the parses, so | omitted thosges from the training and test
data.

One more change made to the data was with respect to possBi$%sv When | encoun-
tered noun phrases which ended WIBOS 's)or (POS ), | modified the internal structure
of theNp. Originally, thesevps were flat, but | introduced a new nesteelwhich contained
the entire contents of the originalP except for theros The originalNp label was then
changed teeossNP This change is motivated by the statussodis a phrasal affix or clitic:

It is the NP precedings that is structurally equivalent to oth&ps, not the larger unit that
includes’s. This change has the additional benefit in this context thmemamed entities
will correspond to a single phrase in the parse tree, ratiar & contiguous set of phrases.
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