
HOLISTIC LANGUAGE PROCESSING:

JOINT MODELS OF LINGUISTIC STRUCTURE

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Jenny Rose Finkel

August 2010

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/ny298sm6241

© 2010 by Jenny Rose Finkel. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/ny298sm6241

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Daniel Jurafsky

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Daphne Koller

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Andrew Ng

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Humans are much better than computers at understanding language. This is, in part, be-

cause humans naturally employ holistic language processing. They effortlessly keep track

of many inter-related layers of low-level information, while simultaneously integrating in

long-distance information from elsewhere in the conversation or document. This thesis is

about joint models for natural language processing which also aim to capture the depen-

dencies between different layers of information and between different parts of a document

when making a decision. I address three aspects of holistic language processing.

First, I present an information extraction model that includes long-distance links in or-

der to jointly make decisions about related words which may be far away from one another

in a document. Most information extraction systems use sequence models, such as linear-

chain conditional random fields, which only have access to a small, local, context when

making decisions. I show how to add long-distance links between related words which can

be arbitrarily far apart with the document. Experiments show that these long-distance links

can be used to improve performance on multiple tasks.

I then move to jointly modeling different layers of information. First I present a

sampling-based pipeline. In a typical linguistic annotation pipeline, different components

are run one after another, and the best output from each is used as the input to the next

stages. The pipeline I present is theoretically equivalentto passing the entire distribution

from one stage to the next, instead of just the most likely output. Experimentally, this

pipeline did outperform the typical, greedy pipeline, but did not outperform taking the

k-best outputs at this stage. I follow this with a full joint model of parsing and named en-

tity recognition. This joint model does not have the directionality constraints inherent in a

iv

pipeline, and both levels of annotation can directly influence and constrain one another. Ex-

periments show that this joint model can produce significantimprovements on both tasks.

I then show how to further improve the joint model using additional data which has been

annotated with only one type of structure, unlike the jointly annotated data needed by the

original joint model. The additional data is incorporated using a hierarchical prior, which

links feature weights between models for the different tasks.

Lastly, I address the problem of multi-domain learning, where the goal is to jointly

model different genres of text (annotated for the same task). This is once again done via

a hierarchical prior which links the feature weights between the models for the different

genres. Experiments show that this can technique can improve performance across all

domains, though, not surprisingly, ones with smaller training corpora improve more.

v

Acknowledgements

First and foremost: thank you Chris. I really cannot imaginehaving had a better advisor. I

think it has always been pretty clear that I really loved gradschool, and you deserve a lot of

the credit for that. I’ve always felt like you were on my side and cared about my success,

and that you gave me the right combination of honest constructive criticism, while at the

same time giving me confidence in myself and my abilities. Youtaught me everything I

know about research, while also providing me with the level of support that I needed to

thrive. I know that it is customary to enumerate all of the research-related skills that you

have instilled in me, but I can’t, and I won’t even try. I will instead say that when I first

joined the NLP group, I don’t think I knew up from down, and nowI feel capable of going

out there and taking over the world. I expect to always keep you as my mentor, and as my

drinking partner at conferences.

I’m also forever indebted to the other members of my committee. DanJ, you have been

like a second advisor to me, and have helped me to always keep an eye on the big picture,

and to look for what I can learn from other work, instead of looking for what’s wrong with

it. Daphne, I think I have learned far more from you than you will ever realize. CS228 was,

without a doubt, the best class I have ever taken, and it has had a huge impact on how I

approach and evaluate research problems. As I’m sure you know, you have a reputation for

for being a no-nonsense kind of person. It took a little whileto get used to, but I now think

it’s one of your best qualities. There was a line in Randy Pausch’s last lecture about how

it’s a bad sign when people stop telling you what you’re doingwrong, because it means

they don’t think you’re good enough to be worth the effort. I hope you never stop telling

me all the things I’m doing wrong. And, last but not least, is Andrew. You always manage

to ask me the right questions, ones that leave me looking at myproblem in a new way and

vi

help me better get to the crux of whatever I’m currently working on. I am sad to be leaving

all of you.

It is common knowledge that peer quality is one of the most important factors for aca-

demic success. The lone genius doesn’t exist; in reality we all learn from one another, so

having smart peers is very valuable. Thankfully, the NLP group is the best group in the CS

department. I feel very lucky to have joined a group full of people who I could learn from,

and who I enjoy hanging out with. Teg, you were my older-grad-student-mentor, and you

helped me immensely my first few years. You also inspired me totake an active role in

the lab, and I strived to serve a similar role for younger students. David Hall, I was always

amazed that my favorite person for technical discussion wasthe lab undergrad, but it was.

I can’t wait to see what you accomplish during your PhD. Marie, you have always been

a wonderful, calming, force for me, and I will miss you. I am excited for what the future

holds for me, but doing research outside of the Stanford NLP group is going to be weird.

I wouldn’t want to imagine what grad school would have been like without my friends.

The Pauls: I’m glad you’re both my best friends, and I love youboth dearly. Caitlin and

Jana, I don’t know what I will do without the two of you around.I guess we’ll just have to

hang out in New York instead! And to the Shady Waffle crew: yourwonderful insanity has

helped keep me sane.

Finally, there’s my family. You guys got the dedication, butI want to say a few more

words than is allowed there. Mom and Dad, looking back, a lot of what you did for me

when I was growing up makes a lot more sense now. I realize now how you strove to give

me every possible opportunity, and to make me feel like I could do anything I put my mind

to. It worked! Once I figured out what I wanted to do, you guys had already given me the

tools, experiences, and encouragement that I needed to makeit happen. And then there’s

my brother, Jon. We may not have been friends when we were growing up, but I am so

glad that we are now. You’re the best big brother in the world,and I can’t wait to live near

you again!

vii

To my brother, Jon, and my parents, Mark and Clare.
I couldn’t have done it without you.

viii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Overview . 1

1.2 Contributions of this thesis 5

1.3 Structure of this thesis .. 6

2 Background 8

2.1 Tasks and their standard algorithms 8

2.1.1 Named entity recognition . 8

2.1.2 Constituency parsing . 12

2.1.3 Dependency parsing . 14

2.2 Data . 19

2.2.1 Named entity recognition . 19

2.2.2 Constituency parsing . 21

2.2.3 Dependency parsing . 22

2.2.4 OntoNotes . 22

2.3 Optimization . 24

2.3.1 Deterministic optimization methods 24

2.3.2 Stochastic optimization methods 24

2.4 Word classes . 26

2.4.1 Distributional similarity clusters 27

ix

2.4.2 Word shapes . 28

3 Using long-distance information efficiently 29

3.1 Introduction . 29

3.2 Related work . 32

3.3 Approach . 34

3.3.1 Models of non-local structure .34

3.3.2 Gibbs sampling for inference in sequence models 36

3.3.3 Gibbs sampling for inference in the product-of-experts model . . . 39

3.4 The CoNLL NER task . 39

3.4.1 Consistency model . 40

3.4.2 Experiments . 42

3.5 The CMU seminar announcements task 43

3.5.1 Task description . 43

3.5.2 Consistency model . 43

3.5.3 Experiments . 44

3.6 Summary . 44

4 Bayes-optimal pipelines 46

4.1 Introduction . 46

4.2 Related work . 49

4.3 Approach . 50

4.3.1 Overview . 50

4.3.2 Probability of a complete labeling 50

4.3.3 Approximate inference in Bayesian networks 51

4.4 Generating samples . 52

4.4.1 Sampling parses . 52

4.4.2 Sampling named entity taggings55

4.4.3 k-Best lists . 56

4.5 Semantic role labeling .57

4.5.1 Task description . 57

4.5.2 System description . 58

x

4.5.3 Experiments . 59

4.6 Recognizing textual entailment 60

4.6.1 Task description . 60

4.6.2 System description . 61

4.6.3 Experiments . 62

4.7 Summary . 63

5 Joint discriminative learning 65

5.1 Introduction . 65

5.2 Discriminative parsing .. 67

5.2.1 A conditional random field context free grammar (CRF-CFG) . . . 68

5.2.2 Experiments . 73

5.2.3 CRF-based dependency parsing 78

5.2.4 Related work . 80

5.3 Nested named entity recognition 82

5.3.1 Related work on nested named entity recognition 84

5.3.2 Nested named entity recognition as parsing 86

5.3.3 Features . 87

5.3.4 GENIA experiments . 89

5.3.5 AnCora experiments . 93

5.4 Joint parsing and named entity recognition 97

5.4.1 Joint representation . 97

5.4.2 Grammar smoothing . 100

5.4.3 Features . 101

5.4.4 Experiments . 102

5.4.5 Related work on joint modeling 106

5.5 Summary . 106

6 Hierarchical joint learning 108

6.1 Introduction . 108

6.2 Related work . 110

6.3 Hierarchical priors for multi-task learning 111

xi

6.3.1 Intuitive overview . 111

6.3.2 Formal model . 112

6.3.3 Optimization with stochastic gradient descent 114

6.3.4 Formalization of prior feature-augmentation work 116

6.4 Improving joint parsing and named entity recognition 117

6.4.1 Base models . 118

6.4.2 Experiments and discussion . 120

6.5 Multi-domain learning .122

6.5.1 Named entity recognition . 123

6.5.2 Dependency parsing . 126

6.6 Summary . 127

7 Conclusions 129

A OntoNotes data inconsistencies 133

xii

List of Tables

2.1 Summary statistics for the named entity datasets used inthis dissertation. . 21

2.2 Training and test set sizes for OntoNotes. 23

2.3 Examples of words and their corresponding word shapes... 28

3.1 Features for named entity recogntion and template filling. 35

3.2 Gibbs sampling compared with Viterbi for inference in a linear-chain CRF. 38

3.3 Label consistency statistics for multiple occurances of the same phrase. . . 40

3.4 Label consistency statistics for phrases and subphrases. 40

3.5 CoNLL NER results for long-distance model. 42

3.6 CMU seminar announcements results for long-distance model. 44

4.1 Results for semantic role labeling task. 60

4.2 Results for recognizing textual entailment. 63

5.1 Lexicon and grammar features for the CRF-CFG. 72

5.2 Grammar size for the CRF-CFG models. 74

5.3 CRF-CFG results on WSJ15. 78

5.4 CRF-CFG results on WSJ40. 79

5.5 CRF-based dependency parsing results. 80

5.6 Local and pairwise features for the nested NER model. 88

5.7 Nested NER results on GENIA, evaluating on all entities.. 91

5.8 Nested NER results on GENIA, evaluating on top-level entities. 91

5.9 Nested NER results on the JNLPBA 2004 shared task data. 93

5.10 Nested NER results on (Spanish) Ancora, evaluating on all entities. 95

xiii

5.11 Nested NER results on (Spanish) Ancora, evaluating on top-level entities. . 95

5.12 Nested NER results on (Catalan) Ancora, evaluating on all entities. 96

5.13 Nested NER results on (Catalan) Ancora, evaluating on top-level entities. . 96

5.14 Joint parse and named entity results on OntoNotes. 102

6.1 Hierarchical joint parse and named entity results on OntoNotes. 121

6.2 Training and test set sizes for NER corpora used. 123

6.3 NER results for hierarchical multi-domain model. 125

6.4 Dependency parsing results for hierarchical multi-domain model. 127

xiv

List of Figures

2.1 An example constituency tree from the PennTreebank. 13

2.2 An example dependency tree. .. 15

2.3 The Eisner dependency parsing algorithm. 17

2.4 A named entity annotated sentence from the AnCora corpus. 21

2.5 Comparison of objective function value resulting from L-BFGS and SGD. . 25

3.1 An example of the label consistency problem. 30

4.1 Pseudo-code for sampling parse trees from a PCFG. 54

4.2 The pipeline for semantic role labeling. 58

4.3 The pipeline for recognizing textual entailment. 61

5.1 A parse tree with corresponding rules and features. 68

5.2 Example outputs from the compared models. 77

5.3 An example of a tree representation over nested named entities. 85

5.4 An example of a binarized and annotated subtree in the nested NER model. 86

5.5 An example of a jointly labeled tree. 98

5.6 An example where the joint model helped both parse and NER. 105

6.1 A graphical representation of the hierarchical joint model. 112

6.2 Linear-chain CRF converted to a semi-CRF represented asa tree. 119

A.1 An example of an inconsistently annotated instance sentence in OntoNotes. 134

A.2 An example of an inconsistently labeled sentence which has been fixed. . . 134

xv

xvi

Chapter 1

Introduction

1.1 Overview

Why are humans so much better than computers at understanding language? In part, it is be-

cause humans naturally employ holistic language processing. They effortlessly keep track

of many inter-related layers oflow-level information, while simultaneously integrating in

long-distance information from elsewhere in the conversation or document. In contrast,

most NLP research focuses only on individual lower-level tasks, like parsing, named en-

tity recognition, or part-of-speech tagging. Moreover, for the sake of efficiency, researchers

modeling these phenomena make extremely strong independence assumptions, which com-

pletely decouple these tasks, and only look at local contextwhen making decisions. When

examining the output of these systems, it is easy to see places where these incorrect inde-

pendence assumptions are harming performance, and producing inconsistent outputs. This

thesis addresses the problems caused by many of these independence assumptions by pre-

senting several different kinds of joint models for naturallanguage processing: joint mod-

els of disparate parts of a document (long-distance modeling), joint models over multiple

datasets (domain adaptation), and joint models over multiple types of structure.

The language understanding tasks that people really care about are high-level,

semantically-oriented ones: question answering, machinetranslation, machine reading,

speech interfaces for robots and machines, and others that we haven’t even thought of yet.

To do a good job on any of these high-level tasks, it is critical to start with a good analysis

1

2 CHAPTER 1. INTRODUCTION

of the document (or sentence or utterance) of interest. If you wish to do question answer-

ing, you will need to identify all the people, locations, andorganizations mentioned (named

entity recognition), and to decide which refer to the same real-world entities (coreference

resolution). Uncovering the syntactic structure (parsing) is essential, since it provides in-

formation about how the entities interact with one another,and what actually happened.

Word sensesare also important: byplant did the writer mean a living thing that grows out

of the ground, or a building where goods are manufactured? Without this kind of informa-

tion, a question answering system may be able to answer a few simple questions based on

substring matching and other heuristic tricks, but will never be able to integrate informa-

tion from various sources, written by different authors with different writing styles, into a

coherent, and correct, answer.

As a field, we have reached a point where models of low-level tasks have reasonably

good performance on established datasets. Parsers on the Wall Street Journal portion of

the PennTreebank (Marcus et al. 1993) score around 92% (Zhang et al. 2009). The best

named entity recognition systems on the popular CoNLL 2003 named entity corpus (Sang

and Meulder 2003) score above 90% (Ratinov and Roth 2009). Models of coreference

resolution and semantic role labelling have also been steadily improving. So, given the

strides that have been made in the field in the past decade, whyare we still not very good at

the high-level tasks which use these low-level systems as input? There are many answers

to this question, and in this thesis I address several aspects of this question.

Firstly, we have the notion ofinternal consistency. When building a model which takes

the outputs from several low-level systems as input, it is important that these outputs are

coherent and consistent, both internally and in conjunction with one another. In the case

of named entity recognition, if a name appears multiple times, and is incorrectly labelled

differently in different instances, this will likely causea high-level system to fail. Because

most modern NLP models only look at local context when makingdecisions, long-distance

information of this sort is often ignored entirely, and it isnot uncommon to incorrectly label

different instances of the same word or phrase differently in different contexts. One could

apply theone-sense-per-discourserule (Gale et al. 1992), which is common in word sense

disambiguation, to named entity recognition, but oftentimes the wrong label (or “sense”)

will be picked, making the situation even worse. Additionally, there are often legitimate

1.1. OVERVIEW 3

reasons to have the same word labeled multiple ways in different contexts, and we do not

want to remove that option. One well-known example from the CoNLL 2003 corpus is

European sports team names, which are often identical to thename of the team’s city. We

want documents to be labelled consistently and correctly.

In addition to wanting documents to be labeled consistentlyfor each indiviual type

of annotation, we also wantinter-model consistency, where all of the different levels of

annotation are consistent with one another. For example, ifa named entity recognition

system labels two phrases as different entity types (e.g., one is a person and the other is an

organization), but a coreference system claims that they are coreferent, this set of labellings

is inconsistent and will also probably cause a high-level system to fail. Nonetheless, this

is the most common technique for analyzing text as input to other systems. Researchers

assemble components built by other researchers and downloaded from the Internet. Data is

run through each component separately, and there is nothingis place to ensure consistency

of the outputs.

One solution to the problems associated with this independent approach is topipeline

the components together. In this case, the output of one component is used as the input to

the next component in the pipeline, and each system is forcedto respect the decisions made

by previous systems. This method ensures consistency, but has other potential problems.

Errors will propagate, and the odds of finding the correct analysis significantly degrades

with each new component added to the pipeline. As observed bySingh et al. (2009), if

you pipeline together 6 components, each with 90% accuracy,then the final output will be

wrong about half the time. This degradation can largely be attributed to the uni-directional

flow of information. If the named entity component makes an error, there is no way for the

coference component to go back and inform the named entity component that the input it

received doesn’t make sense. Instead, it will just to the best it can with what it has, and

oftentimes the result is even more errors. One could pass thek-best outputs (instead of the

1-best output) as inputs to the next stage, and this will alleviate the problem somewhat, but

usually it is not enough. In this dissertation I describe asampling pipeline, which generates

and passes samples at each stage, and has several nice theoretical properties. This model

also outperformed using a 1-best output at each stage, but itdid no better than thek-best

pipeline.

4 CHAPTER 1. INTRODUCTION

This brings us to the solution advocated here: a full, joint model over multiple types of

annotations. Like the pipeline approach, a joint model guarantees consistency between the

different annotations. It has several other strengths as well, most notably the fact that the

different types of information can influence one another. Continuing with our named entity

and coreference example, it’s not even clear what the properorder should be when using

them in a pipeline. Knowing the output from a coreference system would be immensely

helpful to a named entity recognizer, because it will know tolabel coreferent entities iden-

tically. Conversely, a coreference resolver would benefit from named entity knowledge, as

this can both exclude some entities from being coreferent with one another, while also in-

creasing the likelihood of coreference for other sets of entities. If one were to build a joint

model of both of these phenomena, then they would be able to both influence one another

in useful ways. This ability for the different tasks to influence each other is in fact one of

the best avenues for improving performance on the individual components.

Lastly, because the researchers who work on high-level tasks often use components

built by others, they may end up with serious degradations inperformance due todomain

drift. As stated above, the best parser for the PennTreebank scores around 92% when it is

evaluated on data from the same source. However, we often want to work with other data

which is not financial newswire. It is common to run these components on data downloaded

from the Wikipedia and other webpages, blog posts, emails, and other domains, yet they

are rarely trained on these genres of text. Indeed, recent work (McClosky et al. 2010) has

shown that such a parser can drop 10% F1 when used on to transcribed speech, and 15%

when used on biomedical text. It is critical that we find ways of adapting our models so

that they can perform well on many styles of text.

These are precisely the kinds of problems I have tried to solve in this dissertation. I

have worked almost exclusively on low-level components, but always with an eye towards

the fact that we only create these components to be used as input to higher-level systems.

No one writes a named entity recognizer (NER) just so that they can have one running

on their laptop: we can all pull out the names of entities whenreading newspaper articles

without any discernable effort. Named entity recognizers are written because high-level

systems often need to know what entities are being mentionedin the text. One of the

models presented in this thesis adds long-distance information to a standard NER system

1.2. CONTRIBUTIONS OF THIS THESIS 5

which encourages, but does not force, consistent labellingof entities. I also present mod-

els over multiple types of structure – joint parsing and named entity recognition – and a

domain adaptation model which works on both structured and unstructured outputs and

which improves performance across all domains. Additionally, I give an improved method

for building annotation pipelines, and a new model for a discriminative, conditional random

field-based parser, which is a critical precursor for much ofthe work presented.

1.2 Contributions of this thesis

The work presented in this thesis represents a number of contributions to the field of natural

language procesing.

• I present the first feature-rich, CRF-based parser which could scale beyond toy sen-

tences. I also show how to use this parser for more than just simple constituency

parsing: I use it to build a model of nested named entities, and to build a joint parse

and named entity model.

• I present a joint model of parse structure and named entities, and experiments demon-

strate that this joint model improves performance on both ofthe indidivual tasks. The

joint model also produces a consistent output, which is moregenerally useful than the

potentially inconsistent outputs produced by independentsystems. The joint model,

as initally presented, requires data which has been jointlyannotated with both types

of structure. I later show how to further improve this joint model using data which

has been annotated for only a parsing or only named entity recognition.

• The techniques I have chosen to use have also proved influential. My work was

amongst the first in NLP to use sampling-based Baysian inference, a tool which has

now become commonplace in the community. I was also one of thefirst advocates

for using a hierarchical prior to link related models in NLP.Other researchers have

already begin to explore other scenarios in which a hierarchical prior can fruitfully

link related models.

6 CHAPTER 1. INTRODUCTION

1.3 Structure of this thesis

Chapter 2 This chapter contains necessary background information for understanding

the remainder of the dissertation. Specifically, it covers several prominent NLP tasks,

along with datasets, evaluation. It also contains information on prior models, stochastic

optimization, and word classes which are used throughout the document.

Chapter 3 This chapter addresses the problem of how to incorporate long-distance in-

formation into modern information extraction (IE) systems. Based on a linear-chain condi-

tional random field (CRF) model, the current state-of-the-art approach to many IE tasks, I

show how to add long-distance links while keeping inferencetractable. I show that adding

these links improves performance on two different tasks, and produces a more consistent

output, where identical phrases are likely to be labeled identically, unless there is strong

evidence to the contrary. The contents of this chapter are based on Finkel, Grenager, and

Manning (2005).

Chapter 4 This chapter presents a method for improving linguistic annotation pipelines.

Currently, most researchers who study high-level tasks crudely assemble 1-best pipelines

from components written by other researchers and downloaded off of the Internet. This

chapter presents a simple, sampling-based approach to annotation pipelines, which is

equivalent to passing the entire distribution between different stages in the pipeline. I

present results on two different high-level tasks, and compare to both greedy, 1-best

pipelines and tok-best pipelines. The contents of this chapter are based on Finkel, Man-

ning, and Ng (2006).

Chapter 5 This chapter gradually builds up to a joint model of parsing and named entity

recognition. I first present a discriminative, feature-based constituency parser, and an anal-

ogous dependency parser. I then show how to use the constituency parser to build a named

entity recognizer which can elegantly handle nested named entities. Finally, I provide the

necessary modifications to build a joint model of parsing andnamed entity recognition,

including experimental results which show that the joint model helps performance on both

1.3. STRUCTURE OF THIS THESIS 7

tasks. The contents of this chapter are based on Finkel, Kleeman, and Manning (2008),

Finkel and Manning (2009c), and Finkel and Manning (2009b).

Chapter 6 This chapter covers the use of a hierarchical prior for two very different pur-

poses. Hierarchical priors allow the soft-tying of parameters in related tasks, and degree of

information sharing can be specified by adjusting hyper-parameters. In this chapter, I use

a hierarchical prior to do multi-domain learning (similar to domain adaptation but where

performance across all domains is considered) for both named entity recognition and de-

pendency parsing. I also use a hierarchical prior to improvethe joint model presented in

chapter 5 by linking it with single-task models for both of the individual tasks. The contents

of this chapter are based on Finkel and Manning (2009a) and Finkel and Manning (2010)

Chapter 7 In the conclusion to this thesis, I summarize the work presented, and discuss

several potential avenues for future work.

Chapter 2

Background

This chapter contains all of the background information necessary for understanding the

rest of the material in this dissertation. Specifically, it includes information on parsing and

named entity recognition, the two primary NLP tasks coveredin this dissertation. It also

includes descriptions of several datasets, as well as useful models and algorithms, and some

information on repeatedly used word classes.

2.1 Tasks and their standard algorithms

In this section I give an overview of parsing (both constituency and dependency) and named

entity recognition. A few other tasks appear in the documentin isolated instances (seman-

tic role labelling and recognizing textual entailment, in chapter 4), but they are described

where they are used.

2.1.1 Named entity recognition

Named entity recognition (NER) is the task of identifying and classifying names in text.

Here is an example sentence, along with its annotation:

[Jenny Finkel]PER is a student at [Stanford University]ORG in [Palo Alto,

CA]LOC.

8

2.1. TASKS AND THEIR STANDARD ALGORITHMS 9

There is some variability in the types of entities extracted, but the three from the exam-

ple, PERSON(or PER), LOCATION (or LOC), andORGANIZATION (or ORG), are the three

most prevalent. Other common entity types areNUMBER, DATE, TIME, PERCENT, GEO-

POLITICAL ENTITY (or GPE) (this one is very similar toLOCATION), andMISC, which is

often used as a catch-all for all names which don’t fall underone of the categories for a

given dataset. It is common practice to give all non-entity words thebackgroundlabel O,

which stands foroutsidean entity.

Another common task is biomedical NER. BioCreAtIve, one of the first bio-NER

shared tasks (Hirschman et al. 2005), had only two entity types,GENE andPROTEIN, but

the million word GENIA corpus (discussed below) has many more entity types. Here is an

example from GENIA:

[Kappa B-specific DNA binding proteins]PROTEIN: role in the regulation of [hu-

man interleukin-2 gene expression]DNA.

Historically, most NER work has assumed a flat representation, like the examples

above. However, the nesting of entities (such asUniversity of California, a LOCATION

inside anORGANIZATION or PEBP2 site, aPROTEIN inside a DNA), is also covered in this

dissertation (section 5.3).

Evaluation

Named entity recognition is typically evaluated on the entity level, not the token (word)

level, using precision, recall, and F1 score. These are computed using thetrue positives

(the number of correct entities found by the model),false positives(the number of incorrect

entities found by the model), andfalse negatives(the number of correct entities missed by

the model).Precisionconveys what percentage of the guessed entities are correct:

precision=
true positives

true positives+ f alse positives
(2.1)

Recallconveys what percentage of the true entities were found:

recall =
true positives

true positives+ f alsenegatives
(2.2)

10 CHAPTER 2. BACKGROUND

TheF1 scoreis the harmonic mean of the two:

F1 =
2× precision× recall

precision+ recall
(2.3)

It is common to report these scores on the individual entity types, and to then average them

into an overall score. The background symbol does not count as one of these entity types.

Correctly guessing the background symbol for a word counts as atrue negative, and has no

effect on the score. They can bemicro-averaged, where each entity is given equal weight,

or macro-averaged, where each category is given equal weight. Micro-averaging is more

common, but macro-averaging can be useful when some entity types are rare but important.

It is worth noting that there is no partial credit; an incorrect entity boundary is penalized as

both a false positive and as a false negative.

Linear-chain conditional random fields (CRFs)

In this section, I will give an overview of linear-chain conditional random fields (CRFs)

(Lafferty et al. (2001), or see Sutton and McCallum (2007) for a more recent tutorial),

which are the current state-of-the-art for many sequence modeling tasks, including named

entity recognition. A CRF is a conditional sequence model which represents the probability

of a hidden state sequence given some observations (in our case, the words in a sentence

or document). In named entity recognition, the possible entity types vary by dataset and

task. These entity types form the set of possible states (or labels), and there is an additional

state called O (which stands forOUTSIDE an entity, or not an entity). While the original

CRF paper (Lafferty et al. 2001) describes inference in the model in terms of matrix mul-

tiplication, subsequent work has opted to describe it in a more general manner consistent

with the Markov network literature (see Pearl (1988), Cowell et al. (1999), Wainwright and

Jordan (2008) and Koller and Friedman (2009)). The originalformulation only describes

first-orderCRFs, which means that labels are only conditioned on one label on either side.

However, it is fairly straightforward to extend the model tothe higher-order case. Because I

only use first-order CRFs, for simplicity the equations I give are for that case, but by simply

modifying the cliques to cover larger spans one can easily convert them to be higher-order.

Formally, we have a sequence of labels, represented by a vector y whose individual

2.1. TASKS AND THEIR STANDARD ALGORITHMS 11

elementsyi indicate the label at theith position in the sequence. We have a corresponding

sequence of observationsx. We also have a parameter vectorθ of feature weights. Repre-

sented graphically, as in figure 3.1, the label sequence forms a linear chain; each label is

conditionally independent of the other labels in the sequence, given the labels of its neigh-

bors. We have pairwisecliquesover adjacent nodes, and each clique has aclique potential

function, also referred to as afactor table, which represents the interactions between the

nodes in the clique.1 The probability of a label sequence is given by the equation:

PCRF(y|x;θ) =
1

Zx,θ

|y|

∏
i=1

φ(yi−1,yi |x;θ) (2.4)

whereθ is the vector of feature weights,φ(yi−1,yi |x;θ) is the clique potential at position

i corresponding to statesyi−1 andyi ,2 andZx,θ is thepartition function, which serves as a

normalizer:

Zx,θ = ∑
y

|y|

∏
i=1

φ(yi−1,yi |x;θ) (2.5)

We have a feature functionf(yi−1,yi ,x) which computes features over adjacent labels, and

can which utilize any and all information available in the observation sequences. We denote

the value of featurefi by fi(yi−1,yi,x), and we have a corresponding feature weightθi . The

clique potential functions take an exponential form:

φ(yi−1,yi|x;θ) = exp{f(yi−1,yi,x) ·θ} (2.6)

In practice, many features are over only one label (node features) and not neighboring pairs

of labels (edge features). If g(yi ,x) are the node features, andh(yi−1,yi ,x) are the edge

features, thenf(yi−1,yi ,x) = g(yi ,x)+h(yi−1,yi ,x).

Training a CRF consists of finding the feature weights which maximize the conditional

probability of the data. The optimization is typically doneon the log-likelihood, instead

1A factor table is similar in spirit to an unnormalized probability table, though it would be erroneous to
normalize it and then assume that you have the correct marginal distributions for the nodes in the clique.
CRFs areglobally normalized, so information from the rest of the sequence must be taken into account when
computing marginal probabilities.

2To handle the start condition properly, imagine also that wedefine a distinguished start statey0.

12 CHAPTER 2. BACKGROUND

of the likelihood itself, because both functions are convexand have the same maximum,

and it is much simpler to compute the partial derivatives of the log-likelihood. It is also

common practice to put a Gaussian prior3 over the feature weights (this is often referred to

asregularization) to encourage them to not get too large when sparse observations might

make a feature an apparently strong, or even categorical, predictor. The regularized log-

likelihood of a first-order, linear-chain, CRF is given by:

LCRF(y,θ |x) =
|y|

∑
i=1

f(yi−1,yi ,x) ·θ−∑
y′

|y′|

∑
i=1

f(y′i−1,y
′
i,x) ·θ −

|θ |2

2σ2 (2.7)

whereσ is the variance of the prior, and determines the degree of penalization for feature

weights deviating from zero. The partial derivatives of thelog-likelihood, with respect to

the feature weight parameters, are the actual feature counts in the gold data, minus the

expected feature counts in the model using the current feature weights, along with a term

for the prior over the feature weights:

∂LCRF

∂θ j
=
|y|

∑
i=1

f j(yi−1,yi ,x)−Eθ [f j |x]−
θ j

σ2 (2.8)

Once we know how to compute the function value and partial derivatives, we can use any

number of numerical optimization techniques, including L-BFGS (Liu and Nocedal 1989)

and stochastic gradient descent (see section 2.3.2) to find the optimal parameter settings.

2.1.2 Constituency parsing

Parsing is the task of finding the underlying syntactic (or grammatical) structure of a sen-

tence. The output of a parser is aparse tree(also sometimes referred to as simply aparse

or a tree). In this thesis I cover two different types of parse trees, constituency trees, intro-

duced in this section, and dependency trees, introduced in the following section. Refer to

figure 2.1 for an example of a constituency tree.

3L1 priors are also common, but I used a Gaussian prior for all work in this dissertation.

2.1. TASKS AND THEIR STANDARD ALGORITHMS 13

S

NP

DT

The

JJ

luxury

NN

auto

NN

maker

NP

JJ

last

NN

year

VP

VBD

sold

NP

CD

1,214

NNS

cars

PP

IN

in

NP

DT

the

NNP

U.S.

Figure 2.1: An example constituency tree from the PennTreebank.

Phrases The basic unit of a parse tree is aphrase, which has an associatedstate (or

label). For example,the luxury auto makeris anoun phrase(or NP), andin the U.S.is a

prepositional phrase(or PP). At the leaves of the tree areparts of speech, such ascommon

noun(or NN) anddeterminer(or DT). Phrases are decomposed into smaller phrases and

parts of speech. For instance,in the U.S.contains apreposition(or IN) and an NP. The

spanof a phrase refers to the set of words itdominates.

Lexicon Parsers will contain alexiconwhich determines what parts of speech are allowed

for a given word. There areopenandclosedclasses of words. Determiners are a closed

class – there are a small, known number of determiners, and new words cannot be added

to the set. Nouns are an open class – new nouns are being created all the time. Many

parsers have elaborateunknown word modelswhich help determine the part of speech for a

previously unseen word. It is common for the lexicon to return not only the set of possible

tags for a word, but also associated probabilities specifying how likely each one is.

Grammar Parsers will contain a context freegrammar (CFG) which contains rules

which determine how phrases can decompose. For example, PP→ IN NP, tells us that

a prepositional phrase can be made by combining a preposition with a noun phrase. When

building aprobabilistic context free grammar(PCFG), each rule has an associated prob-

ability, and the probabilities of all rules with the same parent will sum to unity. Once a

grammar has been determined, the goal of PCFG parsing is to find the most probable parse

14 CHAPTER 2. BACKGROUND

for a given sentence. More broadly, the grammar and lexicon work together to determine

the set of parse treeslicensedby the grammar (the lexicon is often considered to be part of

the grammar) for a given sentence.

Binarization Most parsing algorithms rely on dynamic programs which require the

grammar to bebinarized. This involves converting rules with more than two childreninto

multiple, related rules. For instance, NP→ DT JJ NP (JJ is an adjective) could be con-

verted into NP→ DT @NP-DT and @NP-DT→ JJ NP In this case @NP is referred to

as anactive state, as it is only part of an NP, and it is being actively constructed. Including

the -DT tells us that the previous child is a DT. The number of previous children included

in the state is referred to as the level ofhorizontal Markovization, and is determined by

the grammar designer. States can also be augmented with information about ancestors fur-

ther up in the tree. This is calledvertical Markovization, or, if only one level is included,

grandparent annotation. Thesplit refers to the point in between the two sub-phrases which

compose the phrase.

Evaluation

Parse trees are usually evaluated using precision, recall and F1 score oflabeled spans.

Scores for parts of speech are often reported separately as just tagging accuracy. It is also

common to report numbers for percent of trees which were completely correct; the average

number ofcrossing brackets, which are guessed spans which overlap with a correct span,

but neither subsume it nor are subsumed by it; and the percentof guessed trees that have no

crossing brackets with the gold tree. Theevalbscript4 is typically used to compute these

numbers, and it does some normalization of the input data with respect to punctuation.

2.1.3 Dependency parsing

A dependency grammar is an alternative representation to a phrase structure (constituency)

grammar. It directly models theheadof each phrase, and the other words in the phrase are

dependentsof the head. The head of a phrase is the most important word, and the other

4Available athttp://nlp.cs.nyu.edu/evalb/.

2.1. TASKS AND THEIR STANDARD ALGORITHMS 15

ROOT
DT JJ NN NN JJ NNVBD CD NNSIN DT NNP
The luxury auto maker last year sold 1,214 cars in the U.S.

Figure 2.2: An example dependency tree, created by converting the constituency tree in
figure 2.1.

wordsmodifyit. The head of a sentence is typically the main verb. Refer tofigure 2.2 for

an example of a dependency tree.

Dependency trees can be eitherlabeledor unlabeled. In the unlabeled case, the tree

structure represents which words modify each other, but notthe nature of the relationship.

The labels represent the type of dependency relation, and examples includesubject, appo-

sition, andtemporal modifier. All of the dependency parsing work in this dissertation is

unlabeled.

Projectivity The link structure connecting dependents to heads will forma tree, with the

primary verb as the root. However, sometimes those links areallowed to cross one another,

and sometimes they are not. When a tree isprojectiveit means that none of the links in

the tree cross one another. Anon-projectivetree has crossing links. Some models force

projectivity (e.g. Eisner (1996)), and some do not (e.g., McDonald et al. (2005b)). The En-

glish language is mostly projective; there are very few instances where links should cross

one another. One example of non-projectivity in English isextraposition, which is when a

phrase is moved from its normal position to the end of the sentence (e.g.,My brother visited

who’s from New York and is a professional gambler). It is also common to modify depen-

dency trees to ensure projectivity, and most algorithms forconverting constituency trees

into dependency trees (discussed in section 2.2.3) do so in away that forces projectivity.

All of the dependency parsing results in this thesis are on English data and assume/enforce

projectivity.

16 CHAPTER 2. BACKGROUND

The Eisner dependency parsing algorithm

The discriminative dependency parser I will present in section 5.2.3 relies heavily on the

Eisner dependency parsing algorithm (Eisner 1996), which Iwill briefly review here. The

algorithm assumes that you have part-of-speech tags for allwords in the sentence, and that

you already have a grammar which specifies the probabilitiesof different parts of speech

attaching to one another (attachment probabilities), and the probability that a word will

stop taking dependents (thestopping probability). Given this grammar, and the parts of

speech for an input sentence, it will find the most probable projective dependency tree.

At its heart, the algorithm relies on a set of three basic shapes. Different pairs of shapes

can be combined to construct new shapes. Each shape has both aleft and a right version,

depending on whether it covers dependents to the right or to the left. Left and right depen-

dents are conditionally independent of one another given the head word. The basic shapes

are given below.

Incomplete left/right triangles These triangles have two indices associated with them:

h, which is the index of the head word, andi, which tells us the other end of the span that

this triangle covers. The headh is still accepting dependents on the left (right) for a left

(right) triangle. It is a left (right) triangle ifi < h (h < i). Incomplete left triangles are

formed by combining a complete left triangle and a left trapezoid. Similarly, incomplete

right triangles are formed by combining a right trapezoid with a complete right triangle.

The probability of the incomplete triangle is the product ofthe probabilities of the complete

triangle and trapezoid of which it is made. See figure 2.3a foran illustration.

Complete left/right triangles These triangles have the same two indices associated with

them as the incomplete triangles do:h, which is the index of the head word, andi, which

indicates the other end of the span. The difference here is that we know thath is no longer

accepting dependents on the left/right. Once again, it is a left triangle if i < h and a right

triangle if h < i. A complete left (right) triangle is made out of an incomplete left (right)

triangle. The probability of an complete triangle is the product of the probabilities of

the incomplete triangle of which is it made and a stopping probability which states how

likely it is for the headh to stop collecting dependents on that side. See figure 2.3b for an

2.1. TASKS AND THEIR STANDARD ALGORITHMS 17

i h′

+

h′ h

⇒

i h h′h

+

h′ i

⇒

ih

(a) Creation of incomplete left/right triangles

i h

⇒

i h ih

⇒

ih

(b) Creation of complete left/right triangles

h′ i

+

i+1 h

⇒

h′ h h i

+

i+1 h′

⇒

h h′

(c) Creation of left/right trapezoids

Figure 2.3: The basic shapes used in the Eisener dependency parsing algorithm, and how
they are combined with one another to produce other shapes.

illustration.

Left/Right trapezoids These shapes also contain two indices:h andh′, andh′ becomes

a dependent ofh in the formation of the trapezoid. In a left trapezoid,h′ < h, andh is a

head word which can still take dependents on its left (thoughthey must be further to the

left thanh′), while h′ is no longer taking dependents on its right. (For a right trapezoid,

invert everything.) A left trapezoid is formed by combininga complete right triangle with

an incomplete left triangle. The probability of a trapezoidis the product of the probabilities

of the triangles from which it is made, and the attachment probability for attachingh′ to h.

See figure 2.3c for an illustration.

Now that I have given an overview of the fundamental shapes, Ican discuss the actual

18 CHAPTER 2. BACKGROUND

algorithm. This is a dynamic programming algorithm based ona chart, much like chart-

based PCFG parsing. The chart is initialized with incomplete left and right triangles over

each word (so,h = i) We then incrementally build up the chart by increasing the span size

that we are looking at. First we will attempt to build incomplete triangles and trapezoids

by iterating through each possible split point for that span(each internal point of the span,

possibly including the span edges as well), combining the appropriate shapes from the left

and right portions, and seeing which split point gives the highest probability. The shapes

and their probabilities are then added to the chart for that span. We then construct complete

triangles for that span from the incomplete triangles, and add them to the chart, before

moving to the next larger span.

The algorithm as just described gives themax inside scores. The max inside score for an

incomplete right triangle tells you the probability of the most likely subtree structure which

spansh to i and hash as the head. What if, instead, you wanted to know the total probability

of all possible subtrees which spanh to i and have headh? In that case, when construct-

ing the chart, when iterating through the possible ways to construct a shape (the possible

split points) you would add the probabilities for each option instead of taking the one with

the highest probability. This is called thesummed inside score. Why would you want the

summed inside score? Because when combined with thesummed outside scoreyou can

get the overall probability thati attaches toh, conditioned on the other words and parts of

speech in the sentence. This probability will come in handy when I cover discriminative

dependency parsing (section 5.2.3), because we will need tocompute partial derivatives

which require this number. Outside scores are computed after inside scores, and are done

top down instead of bottom up. The outside score for a shape inthe chart is constructed by

looking at each shape it can be a child of (so, each shape that it helps to form by (poten-

tially) combining with another shape). The outside score ofthe parent is multiplied by the

inside score of the sibling (if one exists), along with the attachment/stopping probability (if

one was used when constructing the parent during the inside pass). This is done for each

possible parent (and sibling) and the probabilities are summed to get the outside score for

the chart entry. PCFGs have an analogous inside/outside algorithm, which is discussed in

more depth in Manning and Schütze (1999).

2.2. DATA 19

Evaluation

Dependency parsing is scored using attachment accuracy. Every word has a parent in both

the correct and guessed trees,5 and so the accuracy is simply the percent of predicted par-

ents that are correct. In labeled dependency parsing, one can report both labeled and unla-

beled attach accuracy, which (respectively) do and do not take the label into consideration

when determining if an attachment is correct. Because this thesis only includes unlabeled

dependency parsing, I only present unlabeled accuracy numbers.

2.2 Data

2.2.1 Named entity recognition

Because named entity recognition has been around for a long time, it is a well-supported

task with a lot of available datasets. Many of them are used inthis dissertation, and I briefly

describe them below. Please see table 2.1 for some summary statistics on them.

CoNLL This dataset originates from the shared task at the 2003 meeting of the Confer-

ence on Computational Natural Language Learning (CoNLL). It contains British newswire,

annotated withPERSON, LOCATION, ORGANIZATION, andMISC. This is probably the most

popular NER dataset. For more information, please see Sang and Meulder (2003).

MUC-6 This dataset originated from the 1995 meeting of the MessageUnderstanding

Conference (MUC-6). It contains American newswire, and hasbeen annotated withPER-

SON, LOCATION, ORGANIZATION, DATE, TIME, PERCENT, and NUMBER. Historically,

this shared task jump-started research on named entity recognition (prior MUCs did not

have NER shared tasks). For more information, please see Sundheim (1996).

MUC-7 This dataset originated from the 1998 meeting of the MessageUnderstanding

Conference (MUC-7). Like its predecessor, it contains American newswire, and is anno-

tated with the same entity types as MUC-6. For more information, please see Chinchor

5The root verb has a “fake” parent that is ROOT.

20 CHAPTER 2. BACKGROUND

(1998).

GENIA This biomedical named entity dataset is part of the larger GENIA project, which

also contains resources for parsing, coreference resolution, part-of-speech tagging, and

other types of annotations for biomedical data. There is also an associated ontology of

terms and events. The data comes from 2000 Medline abstracts, and has been annotated

with 36 different entity types. The data does contain nestedentities, and is also annotated

with parts of speech. The corpus does not have an official train/dev/test split, though the

GENIA part-of-speech tagger (Tsuruoka et al. 2005) has beenevaluated using the first 90%

of the data for training, and the final 10% for testing. Duringdevelopment I further subdi-

vided the training set into a devtrain and devtest set, but table 2.1 only contains information

for this semi-official split. For more information, please see Ohta et al. (2002) and Kim

et al. (2003).

AnCora This corpus contains Spanish and Catalan newspaper text, and a subset of the

data was used in the SemEval 2007 Task 9 (Márquez et al. 2007b). The data contains

nested entities, and is also annotated with part-of-speechtags, parse trees, semantic roles

and word senses. The corpus annotators made a distinction betweenstrongandweakenti-

ties. They definestrongnamed entities as “a word, a number, a date, or a string of words

that refer to a single individual entity in the real world.” If a strong entity contains mul-

tiple words, it is collapsed into a single token.Weaknamed entities, “consist of a noun

phrase, being it simple or complex” and must contain astrongentity.6 Figure 2.4 shows

an example from the corpus with both strong and weak entities. The entity types present

arePERSON, LOCATION, ORGANIZATION, DATE, NUMBER, andOTHER. Weak entities are

very prevalent; 47.1% of entities are embedded. This corpus was also not split into train

and test sections, so I did so myself, and these are the numbers reported in table 2.1. For

Spanish, files starting with 7–9 were the test set, 5–6 were the development test set, and the

remainder were the development train set. For Catalan, filesstarting with 8–9 were the test

set, 6–7 were the development test set, and the remainder were the development train set.

6Arguably, this represents a misunderstanding of the term “namedentity”, and weak named entities should
just be termedentitiesor referential expressions.

2.2. DATA 21

ROOT

SP

A

At

AQ

doble

double

NC

partido

match

FC

,

,

ORGANIZATION

DA

el

the

ORGANIZATION

NP

Barça

Barça

VS

es

is

DA

el

the

AQ

favorito

favorite

FE

”

”

FC

,

,

VM

afirma

states

PERSON

PERSON

NP

Makaay

Makaay

PERSON

FC

,

,

NC

delantero

attacker

SP

del

of

ORGANIZATION

NP

Deportivo

Deportivo

FP

.

.

Figure 2.4: A named entity annotated sentence from the AnCora corpus, along with its
English translation.

Entity # Train # Dev # Test
Corpus Genre Types Tokens Tokens Tokens

CoNLL 2003 British newswire 4 203K 51K 46K
MUC-6 American newswire 7 165K 14K 15K
MUC-7 American newswire 7 90K 104K 65K
GENIA biomedical abstracts 36 450K – 50K

AnCora Spanish Spansh newspaper 6 459K – 57K
AnCora Catalan Catalan newspaper 6 432K – 49K

Table 2.1: Summary statistics for the named entity datasetsused in this dissertation.

For both, the development train and test sets were combined to form the final train set. Due

to the sub-splitting of the training set for development (meaning there is no additional data

purely for development), I only report the train and test setsizes. For more information,

please see Martı́ et al. (2007).

2.2.2 Constituency parsing

The most common constituency parsing dataset, by far, is thePennTreebank. It contains

approximately one million words (forty thousand sentences) of parsed data from the Wall

Street Journal. It is divided into sections, and sections 2−21 are used for training, 22 is

used for development, and 23 is used for testing. For more information, please see Marcus

et al. (1993).

22 CHAPTER 2. BACKGROUND

2.2.3 Dependency parsing

Data for dependency parsing comes from two sources: dependency tree datasets and con-

version of constituency trees. In recent years the CoNLL shared task has focused on de-

pendency parsing (Buchholz and Marsi 2006, Nivre et al. 2007), and several datasets have

been created as a result. Alternatively, dependency trees are constructed out of constituency

trees via a set ofhead percolation rules. In this case, when looking at a one level subtree

within a tree (a parent and its children), the rules will determine which child is the head of

the phrase, and will then percolate that child’s head up to the parent. For instance, if you

have S→ NP VP (a sentence composed of a noun phrase a verb phrase) thenthe VP will

be the head of the phrase, and its head will be percolated up. If that VP was constructed

by a VP→ VB NP (a verb phrase composed of a verb and a noun phrase), thenthe VB

would have been the head of the VP, and would be percolated up to the S. The head of both

NPs (the one under the S and the one under the VP) would both be dependents of the VB.

The two commonly used sets of head percolation rules are Collins (2003) and Yamada and

Matsumoto (2003). The two are quite similar, and in this dissertation I used Collins’ rules.

2.2.4 OntoNotes

Many of the joint modeling experiments in this dissertationutilize the recently developed

OntoNotes Corpus (Hovy et al. 2006). Its creation has been a joint effort by between

BBN Technologies, the University of Colorado, the University of Pennsylvania, and the

University of Southern California’s Information SciencesInstitute, and the project lead-

ers describe it as “a large, multilingual richly-annotatedcorpus constructed at 90% inter-

annotator agreement.” The project is a work-in-progress and aims to fill many important

gaps in the currently available set of annotated corpora. Itcontains data of a wide vari-

ety of genres in English, Chinese and Arabic, with a final goalof one million words each

for English and Chinese and a half million words of Arabic.7 The most exciting aspect

of the corpus, in my opinion, is the fact that it has been annotated with multiple layers

of information, including constituency trees, predicate structure, word senses, coreference,

and named entities. Given the quantity and variety of data, combined with the many levels

7Most of this data isnot in the form of parallel corpora, though a small portion is.

2.2. DATA 23

Training Testing
Range # Sent. Range # Sent.

ABC 0–55 1195 56–69 199
MNB 0–17 509 18–25 245
NBC 0–29 589 30–39 149
PRI 0–89 1704 90–112 394
VOA 0–198 1508 199–264 385

Table 2.2: Training and test set sizes for the five OntoNotes datasets in sentences. The file
ranges refer to the numbers within the names of the original OntoNotes files.

of annotation, OntoNotes really has the potential to have a large impact on NLP research.

The PennTreebank catalyzed research in parsing technology, and OntoNotes gives us the

ability to build high-quality models, trained on large quantities of data, over many of the

key semantic structures necessary for high-level understanding.

The experiments in this dissertation use Release 3.0 of the data (with the exception

of the dependency parsing work, which uses Release 2.0), though it is worth noting that

Release 4.0 is now available. I also limited experiments to the English portion of the data,

and used the ABC, CNN, MNB, NBC, PRI, and VOA sections, which represent a mix

of speech and newswire data. Table 2.2 gives the number of training and test sentences

in each of the sections. I used the parse and named entity annotations, and discarded the

remaining levels, though I would like to include them in future models. While OntoNotes is

an excellent and much-needed resource, it is not perfect. The different levels of annotation

were done by different parties, and occasionally inconsistencies were found. In appendix A,

I outline the modifications I made to the data before using it.

Named entity types

The data has been annotated with eighteen types of entities.Many of these entity types do

not occur very often, and coupled with the relatively small amount of data, make it difficult

to learn accurate entity models. Examples areWORK OF ART, PRODUCT, andLAW . Early

experiments showed that it was difficult for even a standard named entity recognizer, based

on a state-of-the-art CRF, to learn these types of entities.8 As a result, I decided to merge

8The difficulties were compounded by somewhat inconsistent and occasionally questionable annotations.
For example, the wordtodaywas usually labeled as aDATE, but about 10% of the time it was not labeled as

24 CHAPTER 2. BACKGROUND

all but the three most dominant entity types into into one general entity type calledMISC.

The result was four distinct entity types:PERSON, ORGANIZATION, GPE (geo-political

entity, such as a city or a country, and similar toLOCATION in other corpora), andMISC.

2.3 Optimization

Many of the models in this thesis, and in NLP in general, require doing an optimization in

order to estimate parameters (usually feature weights).

2.3.1 Deterministic optimization methods

Many models for NLP tasks have convex objective functions. For a long time researchers

used generalized iterative scaling (Darroch and Ratcliff 1972) (e.g., Ratnaparkhi (1997))

and conjugate gradient methods to do the optimization (e.g., Toutanova et al. (2003)).

Nowadays it is common to use L-BFGS (Liu and Nocedal 1989), a limited-memory quasi-

newton method. A lot of the experiments in this dissertationuse L-BFGS, but this usually

requires repeatedly doing inference on an entire corpus, often hundreds of times. For some

models, inference is fast enough that iterating over the corpus this many times is not a prob-

lem. But for other models in this dissertation, doing inference hundreds of times is just not

computationally feasible. In those cases, I turned to stochastic optimization techniques,

described in the next section, since they require many fewerpasses through the data, and

can even find fairly decent parameter settings after passingthrough the data only once.

2.3.2 Stochastic optimization methods

Stochastic optimization methods have proven to be extremely efficient for the training

of models involving computationally expensive objective functions (Vishwanathan et al.

2006), like several we will encounter in this dissertation.In fact, the on-line backpropaga-

tion learning used in the neural network parser of Henderson(2004) is a form of stochastic

gradient descent. Standard deterministic optimization routines such as L-BFGS make little

anything. I also found several strangeWORK OF ARTs, including theStanley Cupand theU.S.S. Cole.

2.3. OPTIMIZATION 25

0 5 10 15 20 25 30 35 40 45 50
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0
x 10

5

Passes

Lo
g

Li
ke

lih
oo

d

SGD

L−BFGS

Figure 2.5: WSJ15 objective value for L-BFGS and SGD versus passes through the data.
SGD ultimately converges to a lower objective value, but does equally well on test data.

progress in the initial iterations, often requiring several passes through the data in order to

satisfy sufficient descent conditions placed on line searches. In our experiments stochas-

tic gradient descent (SGD) converged to a worse objective function value than L-BFGS,

however it required far fewer iterations (see figure 2.5) andachieved comparable test set

performance to L-BFGS in a fraction of the time. One early experiment on WSJ15 showed

a seven times speed up.

Stochastic function evaluation

Utilization of stochastic optimization routines requiresthe implementation of a stochastic

objective function. This function,L̂ is designed to approximate the true functionL based

off a small subset of the training data represented byDb. Hereb, the batch size, means that

Db is created by drawingb training examples, with replacement, from the training setD .

26 CHAPTER 2. BACKGROUND

With this notation we can express the stochastic evaluationof the function asL̂ (Db;θ).

This stochastic function must be designed to ensure that:

E
[
∑n

i L̂ (D
(i)
b ;θ)

]
= L (D ;θ)

Note that this property is satisfied, without scaling, for objective functions that sum over

the training data, as it is in our case, but any priors over theparameters must be scaled down

by a factor ofb/ |D |. The stochastic gradient,∇L (D
(i)
b ;θ), is then simply the derivative

of the stochastic function value.

Stochastic gradient descent

SGD was implemented using the standard update:

θk+1 = θk−ηk∇L (D
(k)
b ;θk)

And employed a gain schedule in the form

ηk = η0
τ

τ +k

where parameterτ was adjusted such that the gain is halved after five passes through the

data.

2.4 Word classes

Most of the models in this thesis use discriminative parameter estimation and make ex-

tensive use of features. When creating these features I often augmented the words in the

data with two additional pieces of information: a distributional similarity cluster, and a

word shape, which encodes orthographic information. These two types of word classes are

discussed in this section.

2.4. WORD CLASSES 27

2.4.1 Distributional similarity clusters

Many of the models discussed in this dissertation make use ofdistributional similarity

clusters. There are many popular methods for clustering words – the Brown algorithm

(Brown et al. 1992) has been used extensively (Liang 2005, Koo et al. 2008, Turian et al.

2010), and clusters based on deep-learning (Collobert and Weston 2008) are also beginning

to gain popularity (Turian et al. 2010). I chose to use clusters output from Alexander Clark’s

software which he distributes on his webpage,9 and which is based on Clark (2003). I chose

his model because the code is easy to use, and the default settings give good results.

The exact same clusters were used whenever I discuss the use of distributional similarity

clusters, except where explicitly noted.10 They were trained on approximately 275 million

words. This included the 100 million word British National Corpus (BNC 2007), a random

subset of the EnglishGigaword corpus (Graff et al. 2007), and the words in the CoNLL 2003

(Sang and Meulder 2003), MUC-6 (Sundheim 1996), and MUC-7 (Chinchor 1998) named

entity corpora and the PennTreebank (PTB) (Marcus et al. 1993). When I first experimented

with the clustering software, I initially trained the clusters using approximately 40 million

words, and found the cluster quality to be much worse. I also tried both 40 clusters (since

this is roughly the number of part-of-speech tags in the PTB)and 200 clusters, and found

that using 200 clusters resulted in more useful clusters. When I added cluster-based features

to the state-of-the-art Stanford named entity recognizer (Finkel et al. 2005), I found that,

depending on the dataset, there was a 10%–25% reduction in error. This is comparable to

the results in Miller et al. (2004), the first paper to my knowledge to leverage features based

on distributional similarity tags.

I used these clusters for two very different purposes. The first use was the creation

of cluster-based features, usually modeled after featureswhich use part-of-speech tags as

input. The second use was to restrict possible labels for a given word. Further details are

given in the appropriate sections.

9http://www.cs.rhul.ac.uk/home/alexc/
10New clusters were needed for experiments using biomedical data and non-English data.

28 CHAPTER 2. BACKGROUND

word word shape
Jenny ⇒ Xxxx

beta-carotene ⇒ g-xxx
McDonald ⇒ XxXxxx

CD28-responsive⇒ XXdd-xxx

Table 2.3: Examples of words and their corresponding word shapes..

2.4.2 Word shapes

The word shapereduces a word to a summary of its orthographic information,including

information on letters, numbers, punctuation, etc. To convert a word into its word shape,

the following rules are applied:

1. Spelled out versions of Greek letters are replaces with ‘g.’

2. Digits are replaced with ‘d.’

3. Uppercase letters are replaced with ‘X.’

4. Lowercase letters are replaced with ‘x.’

5. Punctuation remains.

6. Instances where the same character (g/d/x/X) is repeatedmore than three times in a

row are truncated to only include the first three instances.

For several examples of words and their corresponding shapes, please see table 2.3.

Chapter 3

Using long-distance information

efficiently

3.1 Introduction

Named entity recognition (introduced in section 2.1.1)is often modeled using a linear-chain

CRF, which makes decisions using only a small window of localcontext. When deciding

if a particular word is the name of an person, the model can condition on the labels of the

surrounding words, but not other, potentially more informative, instances of that word (or

related words) elsewhere in the document. Oftentimes this is sufficient; the neighboring

words and labels contain enough information to properly identify the entity class for that

word. Sometimes, however, words appear in locally ambiguous contexts. If you look at the

example in figure 3.1, you will see that the wordTanjugappears twice. In the first case it

is modified by the phrasenews agency, which should be sufficient to confidently conclude

that it is an organization. In the second case, it is followedby the wordsaid, which is

ambiguous, because both people and organizations can say things. The second occurrence

of the tokenTanjug is in fact mislabeled by my CRF-based NER system, because people

are more likely to say things than organizations are to say things. However, the probability

distribution on the label for that token is not peaked; the model is much less certain about

this decision than it is about the decision to label the first instance anORGANIZATION. This

error should be correctable if we can incorporate information about the previous decision

29

30 CHAPTER 3. USING LONG-DISTANCE INFORMATION EFFICIENTLY

O O O ORG O O O ORG O

the news agency Tanjug reported . . . airport , Tanjug said

Figure 3.1: An example of the label consistency problem excerpted from a document in the
CoNLL 2003 English dataset. Correct named entity tags are shown above the words:ORG

indicates organization and O indicates a non-entity.

made in the less ambiguous context.

Despite the potential usefulness of this long-distance information, most statistical mod-

els currently used in natural language processing represent only local structure, because

this allows them to be evaluated using exact inference techniques. Although this constraint

is critical in enabling tractable model inference, it is a key limitation in many tasks, since

natural language contains a great deal of non-local structure. A general method for solving

this problem is to relax the requirement of exact inference,substituting approximate infer-

ence algorithms instead, thereby permitting tractable inference in models with non-local

structure. One such technique isGibbs sampling, a simple Markov chain Monte Carlo

(MCMC) algorithm that can be used for appropriate inferencein any factored probabilistic

model, including sequence models (Geman and Geman 1984). Byusing Gibbs sampling,

it is possible to add non-local structure to factored statistical models of language. Although

Gibbs sampling is widely used elsewhere, until recently there has been extremely little use

of it in natural language processing. The only uses in NLP, prior to the publication of the

work described in this chapter, of which I am aware, are Kim etal. (1995), Della Pietra

et al. (1997) and Abney (1997). In this chapter, I use it for inference after adding non-local

dependencies to conditional random field (CRF)-based sequence models for two different

information extraction tasks: named entity recognition (NER) and a template filling task.

The two different tasks benefited from modeling different types of non-local structure.

For named entity recognition, I included a model of label consistency, illustrated in fig-

ure 3.1, and discussed above. The basic idea is that identical words and phrases should be

labeled consistently. We do not necessarily want to enforcethis as a hard constraint, since

there are occasionally good reasons for the same word to be labeled in multiple ways within

3.1. INTRODUCTION 31

the same document, but we would like to encourage it as a soft constraint. I also used the

same technique, but with a different type of long-distance model, to improve performance

in a template filling task. Here, the input is a seminar announcement, and the goal is to

extract the name of the speaker, and the location, start, andend times of the seminar. It

is common to use a sequence model for this type of task, but theproblem that arises is

that the model will often label multiple, different names which appear in the document as

the speaker. For instance, it may also label the person hosting the speaker as the speaker,

because the model primarily learns what peoples’ names looklike. In this instance, we

want to add long-distance links which encourage (or even force) the model to pick only

one answer for each of the slots. We can additionally add long-distance links which encode

the fact that the start time should be before the end time, andthat if only one time is listed

it is likely to be the start time and not the end time.

Linear-chain CRFs (introduced in section 2.1.1) are a prominent approach to these types

of information extraction tasks. These models (and their predecessors, hidden Markov

models (HMMs) (Leek 1997, Freitag and McCallum 1999) and maximum entropy Markov

models (MEMMs) (Borthwick 1999, McCallum et al. 2000)) encode the Markov property:

decisions about the state at a particular position in the sequence can depend only on a small

local window. It is this property which allows tractable computation, as both the Viterbi

and forward-backward algorithms necessary for inference and training critically rely on

this property.

In this chapter, I show how to efficiently incorporate constraints of these forms into

a CRF model by using Gibbs sampling instead of the Viterbi algorithm as the inference

procedure. At training time I build two separate models, thefirst is a linear-chain CRF,

trained in the standard manner, and the second is a task-specific long-distance model. At

test time the two models are combined as a product-of-experts (Hinton 2000). This is

where I use Gibbs sampling for inference, as the combined model is a linear-chain with

added long-distance links. I present experiments on both tasks, and demonstrate that this

technique yields significant improvements.

32 CHAPTER 3. USING LONG-DISTANCE INFORMATION EFFICIENTLY

3.2 Related work

Several authors have successfully incorporated a label consistency constraint into proba-

bilistic named entity recognition systems. Mikheev et al. (1999), Finkel et al. (2004) and,

more recently, Krishnan and Manning (2006) incorporate label consistency information by

using ad-hoc multi-stage labeling procedures that are effective but special-purpose. Curran

and Clark (1999) and Malouf (2002) use a different techniqueto incorporate label consis-

tency into an MEMM. They condition the label of a token at a particular position on the

label of the most recent previous instance of that same tokenin a prior sentence of the

same document. Note that this violates the Markov property:the decision at a position is

conditioned on a state that is arbitrarily far back in the sequence. To allow this, the au-

thors slightly relax the requirement of exact inference. Instead of finding the maximum

likelihood sequence over the entire document, they classify one sentence at a time, allow-

ing them to condition on the maximum likelihood sequence of previous sentences. This

approach is quite effective for enforcing label consistency in many NLP tasks, precisely

because entities are generally most carefully described when they are first introduced in a

text. Nevertheless, it permits a forward flow of informationonly, which is not sufficient for

all cases of interest. Chieu and Ng (2002) and, more recently, Vilain et al. (2009) propose a

solution to this problem. Though they use different base models (a multi-class logistic clas-

sifier which does not model sequence information, and a linear-chain CRF, respectively),

the basic idea is the same for both. For each token, they defineadditional features taken

from other occurrences of the same token in the document. This approach has the added

advantage of allowing the training procedure to automatically learn good weightings for

these “global” features relative to the local ones. However, this approach cannot easily

be extended to incorporate other types of non-local structure, such as the case of template

consistency that we discuss below.

Another highly relevant piece of prior work is that of Bunescu and Mooney (2004).

They use arelational Markov network(RMN) (Taskar et al. 2002) to explicitly model

long-distance dependencies, though they do not represent sequence information as in a

linear-chain CRF. Unfortunately these dependencies must be defined in the model structure

3.2. RELATED WORK 33

before doing any inference, and so the authors are forced to pre-generate all possible can-

didate entities by using crude heuristic part-of-speech patterns, and then add dependencies

between these text spans usingclique templates. This generates a extremely large number

of overlapping candidate entities, and dependencies between them, which then necessitates

additional templates to enforce the constraint that text subsequences cannot both be dif-

ferent entities, something that is more naturally modeled by a CRF. The authors also used

loopy belief propagationand a voted perceptron for approximate learning and inference,

and noted that this led to problems with convergence.

Sutton and McCallum (2004) have the most similar prior work on long-distance depen-

dencies. They introduceskip-chain CRFs, which maintain the underlying CRF sequence

model (which Bunescu and Mooney (2004) lack) while addingskip edgesbetween distant

nodes, and use it to represent relations between entities inan information extraction task.

The dependency arcs which they add to the CRF allow the long distance flow of informa-

tion. The decision of which nodes to connect is also made heuristically, and because the

authors chose to connect all pairs of identical capitalizedwords. They also utilize loopy

belief propagation for approximate learning and inference.

While the technique I used is similar mathematically and in spirit to the above ap-

proaches, it differs in some important ways. Like Sutton andMcCallum (2004), but un-

like Bunescu and Mooney (2004), my method maintains a sequence model structure, while

adding long-distance conditioning influences, and hence does not need to pre-generate can-

didates and then enforce no-overlap constraints. The modelis implemented by adding ad-

ditional constraints into the model at test time, and does not require the preprocessing step

necessary in the two previously mentioned works. This allows for a broader class of long-

distance dependencies, because one does not need to make anyinitial assumptions about

which nodes should be connected, and is helpful when you wishto model relationships

between nodes which are the same class, but may not be similarin any other way. For

instance, in the CMU seminar announcements dataset, one of the labels isSTART TIME.

However, the announcement may also mention multiple times (for example, times when

the speaker is available to meet with students) and these times may also be labeled by the

CRF as aSTART TIME. With the proposed technique, we can penalize the model is mul-

tiple, inconsistent times are all labeled as aSTART TIME. This type of constraint cannot

34 CHAPTER 3. USING LONG-DISTANCE INFORMATION EFFICIENTLY

easily be modeled in an RMN or a skip-chain CRF, because it requires the knowledge that

both entities are given the same class label. But, by adding the constraint that all start times

should be coreferent, it may be possible to fix this error.

My model also allows dependencies between multi-word phrases, and not just single

words. Additionally, the model can be applied on top of a pre-existing trained sequence

model. As such, it does not require complex training procedures, and can instead leverage

all of the established methods for training high accuracy sequence models. It can indeed

be used in conjunction with any statistical hidden state sequence model: HMMs, MEMMs,

CRFs, or even heuristic models. Third, my technique employsGibbs sampling for approx-

imate inference, a simple and probabilistically well-founded algorithm. Gibbs sampling

is generally better suited to estimating a probability distribution than to finding the most

likely label sequence. However, through the use of simulated annealing, I did not find this

to be a problem for our simple linear chain. As a consequence of these differences, my

approach is easier to understand, implement, and adapt to new applications.

3.3 Approach

The model is a product of experts, where the two experts are a linear-chain CRF, which

does not include any long-distance component, and a consistency model, which explicitly

models long-distance relationships. CRFs were introducedin section 2.1.1. The CRFs

used in this chapter were trained in the completely standardmanner, as discussed when

they were introduced. The CRF features that I used are outlined in table 3.1.

In this section, I will first discuss the general form of the long-distance consistency

model. I will then discuss the use of Gibbs sampling for inference in a sequence model,

and then how to apply the technique to our product-of-experts model.

3.3.1 Models of non-local structure

Our models of non-local structure are themselves just sequence models, defining a proba-

bility distribution over all possible state sequences. It is possible to flexibly model various

forms of constraints in a way that is sensitive to the linguistic structure of the data (e.g., one

3.3. APPROACH 35

Feature NER TF
Current Word X X

Previous Word X X

Next Word X X

Current Word Character n-gram all length≤ 6
Current POS Tag X

Surrounding POS Tag Sequence X

Current Word Shape X X

Surrounding Word Shape Sequence X X

Presence of Word in Left Window size 4 size 9
Presence of Word in Right Windowsize 4 size 9

Table 3.1: Features used by the CRF for the two tasks: named entity recognition (NER)
and template filling (TF).

can go beyond imposing just exact identity conditions). I illustrate this by modeling two

forms of non-local structure:label consistencyin the named entity recognition task, and

template consistencyin the template filling task. One could imagine many ways of defining

such models; for simplicity I use the form

PM(y|x) ∝ ∏
λ∈Λ

θ#(λ ,y,x)
λ (3.1)

where the product is over a set of violation typesΛ, and for each violation typeλ we

specify a penalty parameterθλ . The exponent #(λ ,s,o) is the count of the number of times

that the violationλ occurs in the state sequenceswith respect to the observation sequence

o. This has the effect of assigning sequences with more violations a lower probability.

The particular violation types are defined specifically for each task, and are described in

sections 3.4.1 and 3.5.2.

This model, as defined above, is not normalized, and clearly it would be expensive to do

so. As we will see in the discussion of Gibbs sampling, this will not actually be a problem

for us.

36 CHAPTER 3. USING LONG-DISTANCE INFORMATION EFFICIENTLY

3.3.2 Gibbs sampling for inference in sequence models

In hidden state sequence models such as CRFs (and HMMS and MEMMs), it is standard

to use the Viterbi algorithm, a dynamic programming algorithm, to infer the most likely

hidden state sequence given the input and the (parameterized) model (see, e.g., Rabiner

(1989)). Although this is the only tractable method for exact computation, there are other

methods for computing an approximate solution. Monte Carlomethods are a simple and ef-

fective class of methods for approximate inference based onsampling. As an illustration of

such methods, consider the following (extremely) naive method for performing inference.

Imagine we have a hidden state sequence model which defines a probability distribution

over state sequences conditioned on any given input. With such a modelM we should be

able to compute the conditional probability PM(y|x) of any state sequencey = {y0, . . . ,yN}

given some observed input sequencex = {x0, . . . ,xN}. To then find the sequence with the

maximum conditional probability, we could sample a large number of random sequences

from the uniform distribution, score them all with the distribution given by the model, and

output the sequence with the highest score as our most likelystate sequence. The obvious

drawback of this approach is that the space of possible statesequences is large (exponential

in the sequence length) and so one is unlikely to happen upon asequence anywhere near

the optimal one. Alternatively, one can sample sequences from the conditional distribution

defined by the model. These samples are likely to be in high probability areas, increasing

our chances of finding the maximum. The challenge is how to sample sequences efficiently

from the conditional distribution defined by the model.

Gibbs samplingprovides a solution (Geman and Geman 1984). Gibbs sampling defines

a Markov chain in the space of possible variable assignments(in this case, hidden state

sequences) such that the stationary distribution of the Markov chainis the joint distribution

over the variables. Thus it is called a Markov chain Monte Carlo (MCMC) method; see

Andrieu et al. (2003) for a good MCMC tutorial. In practical terms, this means that we

can walk the Markov chain, occasionally outputting samples, and that these samples are

guaranteed to be drawn from the target distribution. Furthermore, the chain is defined in

very simple terms: from each state sequencey(t) we can only transition to a new state

sequencey(t+1) obtained by changing the state at any one positioni, and the distribution

3.3. APPROACH 37

over these possible transitions is just

PG(y(t)|y(t−1)) = PM(y(t)
i |y

(t−1)
−i ,x). (3.2)

wherey−i is all states exceptyi . In other words, the transition probability of the Markov

chain is the conditional distribution of the label at the position, given the rest of the se-

quence. This quantity is easy to compute in any Markov sequence model. One easy way

to walk the Markov chain is to randomly initialize the labelsat each point, and then loop

through the positionsi from 1 toN, and for each one, to resample the hidden state at that

position from the distribution given in equation 3.2.1 By outputting complete sequences at

regular intervals (such as after resampling allN positions), we can sample sequences from

the conditional distribution defined by the model. However,before we begin to regularly

output samples, we can allow the chain tomix. Because we started from an arbitrary point,

the first samples will be of particularly bad quality. If we were trying to estimate the shape

of the probability distribution, this would be problematic. However, because we can com-

pute the model likelihood of each sample, and pick the samplewith the highest probability

(this is discussed in the following paragraph), there is no real harm in including these early

samples. They are unlikely to have high likelihood, and correspondingly, they are unlikely

to be the sample that gets selected, but if one of them does endup being the most likely

sample, then there is no reason to not use it.

The process just described is still gravely inefficient. Random sampling may be a good

way to estimate the shape of a probability distribution, butit is not an efficient way to do

what we want: find the maximum. However, we cannot just transition greedily to higher

probability sequences at each step, because the space is extremely non-convex. We can,

however, borrow a technique from the study of non-convex optimization and usesimulated

annealing(Kirkpatrick et al. 1983). Geman and Geman (1984) show that it is easy to

modify a Gibbs Markov chain to do annealing; at timet we replace the distribution in

equation 3.2 with

PA(y(t)|y(t−1)) =
PM(y(t)

i |y
(t−1)
−i ,x)1/ct

∑ j PM(y(t)
j |y

(t−1)
− j ,x)1/ct

(3.3)

1Instead of looping through the positions, one could also repeatedly randomly sample positions.

38 CHAPTER 3. USING LONG-DISTANCE INFORMATION EFFICIENTLY

Inference CoNLL Seminars
Viterbi 85.51 91.85
Gibbs 85.54 91.85
Sampling 85.51 91.85

85.49 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.85
85.51 91.86

Mean 85.51 91.85
Std. Dev. 0.01 0.004

Table 3.2: An illustration of the effectiveness of Gibbs sampling, compared to Viterbi infer-
ence, for the CoNLL named entity recognition task, and the CMU seminar announcements
information extraction task. This table shows 10 runs of Gibbs sampling in the same CRF
model that was used for Viterbi. For each run the sampler was initialized to a random
sequence, and used a linear annealing schedule that sampledthe complete sequence 1000
times. CoNLL performance is measured as per-entity F1, and CMU seminar announce-
ments performance is measured as per-token F1.

wherec = {c0, . . . ,cT} defines acooling schedule. At each step, we raise each value in the

conditional distribution to an exponent and renormalize before sampling from it. Note that

whenc = 1 the distribution is unchanged, and asc→ 0 the distribution becomes sharper,

and whenc = 0 the distribution places all of its mass on the maximal outcome, having the

effect that the Markov chain always climbs uphill. Thus if wegradually decreasec from 1

to 0, the Markov chain increasingly tends to go uphill. This annealing technique has been

shown to be an effective technique for stochastic optimization (Laarhoven and Arts 1987).

To verify the effectiveness of Gibbs sampling and simulatedannealing as an inference

technique for hidden state sequence models, I compared Gibbs and Viterbi inference meth-

ods for a basic CRF, without the addition of any non-local model. For each of the ten trials,

I generated 1000 samples, and used the one with the highest likelihood. The results, given

in table 3.2, show that if the Gibbs sampler is run long enough, its accuracy is the same

as a Viterbi decoder. Keep in mind that this is exactly the behavior that was expected, but

it is useful to see how many samples were necessary to get there, and it is comforting to

3.4. THE CONLL NER TASK 39

observe the low variance between each of the ten runs.

3.3.3 Gibbs sampling for inference in the product-of-experts model

We’ve now covered how to to Gibbs sampling in a CRF, and extending it to the product of

experts model is trivial. Our overall model is specified by the following equation:

PPoE(y|x;θ) ∝
|y|

∏
i=1

φ(yi−1,yi |x;θ)×∏
λ∈Λ

θ#(λ ,y,x)
λ (3.4)

Like the equation for the long-distance model (equation 3.1), this equation is unnor-

malized. The partition function from the CRF portion of the equation (the first term) has

also been removed, since it only serves as a normalizer, and the equation is already unnor-

malized due to the fact that we are multiplying two probability distributions together (plus,

one of them is already unnormalized).

Thankfully this doesn’t matter, because we only use the model for Gibbs sampling, and

so only need to compute the conditional distribution at a single positioni (as defined in

equation 3.2). One (inefficient) way to compute this quantity is to enumerate all possible

sequences differing only at positioni (so, conditioned on the labels at all points other than

i), compute the score assigned to each by the model, and renormalize. Although it seems

expensive, this computation can be made very efficient with astraightforward memoization

technique: at all times the model maintains data structuresrepresenting the relationship

between entity labels and token sequences, from which one can quickly compute counts of

different types of violations.

3.4 The CoNLL NER task

I tested the effectiveness of the technique on two established datasets: the CoNLL 2003

English named entity recognition dataset, discussed in this section, and the CMU seminar

announcements information extraction dataset, which I will discuss in the next section.

The CoNLL NER corpus was discussed in section 2.2.1, but I will briefly review its

most salient features. It is composed of British newswire, and is annotated with four entity

40 CHAPTER 3. USING LONG-DISTANCE INFORMATION EFFICIENTLY

PER LOC ORG MISC

PER 3141 4 5 0
LOC 6436 188 3
ORG 2975 0
MISC 2030

Table 3.3: Counts of the number of times multiple occurrences of a token sequence is
labeled as different entity types in the same document. Taken from the CoNLL training set.

PER LOC ORG MISC

PER 1941 5 2 3
LOC 0 167 6 63
ORG 22 328 819 191
MISC 14 224 7 365

Table 3.4: Counts of the number of times an entity sequence islabeled differently from
an occurrence of a subsequence of it elsewhere in the document.Rows correspond to se-
quences, and columns to subsequences. Taken from the CoNLL training set.

types:PER, LOC, ORG, andMISC. The data is separated into a training set, a development

set (testa), and a test set (testb). The training set contains 945 documents, and approxi-

mately 203,000 tokens. The development set has 216 documents and approximately 51,000

tokens, and the test set has 231 documents and approximately46,000 tokens.

3.4.1 Consistency model

Label consistency structure derives from the fact that within a particular document, differ-

ent occurrences of a particular token sequence are unlikelyto be labeled as different entity

types. A named entity recognition system modeling this structure would try to assign all

the occurrences of the token sequence to the same entity type, thereby sharing evidence

among them. Although any one occurrence may be ambiguous, itis unlikely that all in-

stances are unclear when taken together. Thus, modeling this structure should (and does)

lead to accuracy improvements.

The CoNLL training data empirically supports the strength of the label consistency

constraint. Table 3.3 shows the counts of entity labels for each pair of identical token se-

quences within a document, where both are labeled as an entity. Note that inconsistent

3.4. THE CONLL NER TASK 41

labelings are very rare.2 In addition, we also want to model subsequence constraints:hav-

ing seenGeoff Woodsearlier in a document as a person is a good indicator that a subsequent

occurrence ofWoodsshould also be labeled as a person. However, if we examine allcases

of the labelings of other occurrences of subsequences of a labeled entity, we find that the

consistency constraint does not hold nearly so strictly in this case. As an example, one doc-

ument contains references to bothThe China Daily, a newspaper, andChina, the country.

The first should be labeled as anORGANIZATION, and second as aLOCATION. Counts of

subsequence labelings within a document are listed in table3.4. Note that there are many

off-diagonal entries: theChina Dailycase is the most common, occurring 328 times in the

dataset.

The penalties used in the long distance constraint model forCoNLL are the empirical

Bayes estimates taken directly from the data (tables 3.3 and3.4), except that I changed

counts of 0 to be 1, so that the distribution remains positive. So the estimate of aPER

also being anORG is 5
3151; there were 5 instances of an entity being labeled as both,PER

appeared 3150 times in the data, and we add 1 to this for smoothing, becausePER-MISC

never occurred. However, when we have a phrase labeled differently in two different places,

continuing with thePER-ORG example, it is unclear if we should penalize it asPER that is

also anORG or anORG that is also aPER. To deal with this, we multiply the square roots

of each estimate (aPER mislabeled as anORG, and anORG mislabeled as aPER) together

to form the penalty term. The penalty term is then multipliedin a number of times equal

to the length of the offending entity; this is meant to “encourage” the entity to shrink.3 For

example, say we have a document with three entities,Rotor Volgogradtwice, once labeled

asPERand once asORG, andRotor, labeled as anORG. The likelihood of aPERalso being

anORG is 5
3151, and of anORG also being aPER is 5

3169, so the penalty for this violation is

(
√

5
3151×

√
5

3169)
2. The likelihood of anORG being a subphrase of aPER is 2

842. So the

total penalty would be 5
3151×

5
3169×

2
842.

2A notable exception is the labeling of the same text as both organization and location within the same
document. This is a consequence of the large portion of European sports news in the CoNLL dataset, so that
city names are often also team names.

3While there is no theoretical justification for this, I foundit to work well in practice.

42 CHAPTER 3. USING LONG-DISTANCE INFORMATION EFFICIENTLY

CoNLL
Approach LOC ORG MISC PER ALL

B&M LT-RMN – – – – 80.09
B&M GLT-RMN – – – – 82.30
Local+Viterbi 88.16 80.83 78.51 90.36 85.51
NonLoc+Gibbs 88.51 81.72 80.43 92.29 86.86

Table 3.5: F1 scores of the local CRF and non-local models on the CoNLL 2003named
entity recognition dataset. I also provide the results fromBunescu and Mooney (2004) for
comparison.

3.4.2 Experiments

In the experiments I compared the impact of adding the non-local models with Gibbs

sampling to a baseline CRF implementation, and to prior workby Bunescu and Mooney

(2004). I evaluated using entity-level, micro-averaged, precision, recall and F1 score (see

section 2.1.1), which was the same evaluation metric used inthe shared task from which

the data originated. The results are found in table 3.5. For all experiments involving Gibbs

sampling, I used a linear cooling schedule. I initialized the chain to the Viterbi output from

the baseline CRF, and then collected 200 samples per trial, and report the average of all

trials. The trials had a low standard deviation – 0.083% – and a high minimum F1 score

– 86.72% – demonstrating the stability of the method. Improvements are significant with

greater than 95% confidence using a standard t-test.

The non-local model increased the F1 score by about 1.3% compared to the baseline

CRF. Although such gains may appear modest, I was only targeting one particular type

of error: consistency errors. Often, words mislabeled by the baseline system would be

corrected by the addition of long-distance links, but occasionally the incorrectly labeled

word would “win,” and words labeled correctly by the baseline system would become

wrong in the new model. Other classes of errors remained largely unchanged. Also, note

that these gains are achieved relative to a near state-of-the-art NER system: the winner

of the CoNLL English task reported an F1 score of 88.76%. In contrast, the increases

published by Bunescu and Mooney (2004) are relative to a baseline system which scores

only 80.9% on the same task.

The biggest drawback to the model is the computational cost.Taking 200 samples

3.5. THE CMU SEMINAR ANNOUNCEMENTS TASK 43

dramatically increases test time. Averaged over 3 runs on both Viterbi and Gibbs, CoNLL

testing time increased from 55 to 1738 seconds. However, this increase in time is due

largely to computing the long-distance penalties and not the conditional probabilities in the

CRF. The 1000 sample runs (in table 3.2) which did not use a global model, averaged 328

seconds, indicating that with simpler, better optimized, global models, test time could be

dramatically reduced.

3.5 The CMU seminar announcements task

3.5.1 Task description

This dataset was developed as part of Dayne Freitag’s dissertation research (Freitag 1998).4

It consists of 485 emails containing seminar announcementsat Carnegie Mellon University.

It is annotated for four fields:SPEAKER, LOCATION, START TIME, andEND TIME. Sutton

and McCallum (2004) used 5-fold cross validation on the entire corpus when evaluating

on this dataset, so I obtained and used their data splits, so that results can be properly

compared. Because the entire dataset is used for testing, there is no development set, and so

I did all of my development using the CoNLL NER data. I also used their evaluation metric,

which is slightly different from the method for the CoNLL data. Instead of evaluating

precision and recall on a per-entity basis, they are evaluated on a per-token basis, and

the overall score is computed by macro-averaging (as opposed to micro-averaging) the

individual types.

3.5.2 Consistency model

Due to the lack of a development set, my consistency model forthe CMU seminar an-

nouncements is much simpler than the CoNLL model; the numbers where selected accord-

ing to my intuitions, and I did not spend much time hand optimizing the model. Specifi-

cally, I had three constraints. The first is that all entitieslabeled asSTART TIME are nor-

malized (e.g.,3:00 pmand3pmare both turned into0300), and are penalized if they are

4Available athttp://nlp.shef.ac.uk/dot.kom/resources.html.

44 CHAPTER 3. USING LONG-DISTANCE INFORMATION EFFICIENTLY

CMU Seminar Announcements
Approach STIME ETIME SPEAK LOC ALL

S&M CRF 97.5 97.5 88.3 77.3 90.2
S&M Skip-CRF 96.7 97.2 88.1 80.4 90.6
Local+Viterbi 96.67 97.36 83.39 89.98 91.85
NonLoc+Gibbs 97.11 97.89 84.16 90.00 92.29

Table 3.6: F1 scores of the local CRF and non-local models on the CMU seminar announce-
ments dataset. I also provide the results from Sutton and McCallum (2004) for comparison.

inconsistent. The second is a corresponding constraint forEND TIME. The last constraint

attempts to consistently label theSPEAKER. If a phrase is labeled as aSPEAKER, we as-

sume that the last word is the speaker’s last name, and we penalize for each occurrence of

that word which is not also labeledSPEAKER. ForSTART TIME andEND TIME the penalty

is multiplied in based on how many words are in the entity. ForSPEAKER, the penalty is

only multiplied in once. I used a hand selected penalty of exp{−4.0}.

3.5.3 Experiments

My experiments on the CMU seminar announcements dataset parallel those on the CoNLL

data. I once again compared the impact of adding the non-local models with Gibbs sam-

pling to a baseline CRF implementation, and to prior work by Sutton and McCallum (2004).

The results are found in table 3.6. For all experiments involving Gibbs sampling, I used a

linear cooling schedule, and report the average over 100 trials. The trials once again had

low standard deviation – 0.007% – and a high minimum F1 score – 92.28%. Compared

with prior work, my model had larger improvements compared to a stronger baseline. Im-

provements are significant with greater than 95% confidence using a standard t-test.

3.6 Summary

In this chapter, I presented a method for efficiently adding long-distance information into a

linear-chain CRF. This is done by training two separate models: the linear-chain CRF and

a long-distance model. At test time, the two models are multiplied together, and instead

3.6. SUMMARY 45

of the standard Viterbi decoding algorithm we use Gibbs sampling to perform inference

and find (an approximation to) the most likely labeling in combined model. While Gibbs

sampling is designed more for estimating a distribution than for finding its max, I did not

have any difficulties with this, as evidenced by the experimental results. I demonstrated

the effectiveness of this technique on two separate tasks, and in both cases achieved larger

improvements to stronger baselines when compared to previous work on the same data.

There are many other potential applications for the technique presented here. I com-

bined a trained (sequence) model with a hand-tuned (long-distance) model, but clearly one

could combine any number of trained and/or hand-tuned models. One could also try to

learn the parameters for the long-distance model through max-margin (Taskar et al. 2003,

Tsochantaridis et al. 2005) or perceptron (Freund and Schapire 1998, Collins 2002) learn-

ing. Because both of these techniques require only the argmax, and not partial derivatives,

the sampling procedure could be used during training time tofind the argmax. A similar

technique could also be used to learn how to weight the different models; the model in this

chapter gave them equal weight. Moving beyond sequence models, this technique can be

applied to nearly any model for which it is known how to do MCMCsampling. Currently,

for PCFG parsing there is no known MCMC procedure (though it is known how to gener-

ate samples from the correct distribution (Finkel et al. 2006, Johnson and Griffiths 2007)),

but if one were developed then long-distance links could usefully be added in a number of

places. They would be helpful for deciding prepositional phrase attachment, since in that

case local information is often insufficient. Long-distance links would also be useful in

places where there is likely to be parallelism, such as the internal structure of two phrases

joined by a conjunction.

Chapter 4

Bayes-optimal inference to improve NLP

pipelines

4.1 Introduction

In the last chapter we considered incorporating long-distance information at one level of

linguistic analysis. In this chapter we turn our attention to the links between different levels

of analysis. Almost any high-level system for natural language understanding must recover

hidden linguistic structure at many different levels: part-of-speech tags, syntactic depen-

dencies, named entities, etc. Consider the case of semanticrole labeling (SRL). In this task

(described more fully in section 4.5), the goal is to identify semantic roles, such assubject,

direct object, andtemporal modifierfor a particular predicate, or verb. Modern semantic

role labeling systems use the syntactic parse tree of the sentence. Question answering sys-

tems require question type classification, parsing, named entity recognition, semantic role

labeling, and often other tasks, many of which are dependenton one another and are often

pipelined together. Pipelined systems are ubiquitous in NLP: in addition to the above ex-

amples, commonly parsers and named entity recognizers use part-of-speech and chunking

information, and also word segmentation for languages suchas Chinese. Almost no NLP

task is truly standalone.

Most current systems for higher-level, aggregate NLP tasksemploy a simple 1-best

feed forward architecture: they greedily take the best output at each stage in the pipeline

46

4.1. INTRODUCTION 47

and pass it on to the next stage. This is the simplest architecture to build (particularly if

reusing existing component systems), but errors are frequently made during this pipeline

of annotations, and when a system is given incorrectly labeled input it is much harder for

that system to do its task correctly. For example, when doingsemantic role labeling, if

no syntactic constituent of the parse actually correspondsto a given semantic role, then

that semantic role will almost certainly be misidentified. So, while it is not surprising, it

is disappointing that F-measures on SRL drop more than 10% when switching from gold

parses to automatic parses (for instance, from 91.2 to 80.0 for the joint model of (Toutanova

et al. 2005)).

A common improvement on this architecture is to passk-best lists between processing

stages, for example Sutton and McCallum (2005) and Wellner et al. (2004). Passing on a

k-best list gives useful improvements (e.g., in Koomen et al.(2005)), but efficiently enu-

meratingk-best lists often requires very substantial cognitive and engineering effort, e.g.,

in Huang and Chiang (2005) and Toutanova et al. (2005).

At the other extreme, one can maintain the entire space of representations (and their

probabilities) at each level, and use this full distribution to calculate the full distribution

at the next level. If restricting oneself to weighted finite state transducers (WFSTs), a

framework applicable to a number of NLP applications (as outlined in Karttunen (2000)), a

pipeline can be compressed down into a single WFST, giving outputs equivalent to propa-

gating the entire distribution through the pipeline. In theworst case there is an exponential

space cost, but in many relevant cases composition is in practice quite practical. Out-

side of WFSTs, maintaining entire probability distributions is usually infeasible in NLP,

because for most intermediate tasks, such as parsing and named entity recognition, there

is an exponential number of possible labelings. Nevertheless, for some models, such as

most parsing models, these exponential labelings can be compactly represented in a packed

form (e.g., Maxwell and Kaplan (1995) and Crouch (2005)) andsubsequent stages can be

re-engineered to work over these packed representations (Geman and Johnson 2002). How-

ever, doing this normally also involves a very high cognitive and engineering effort, and in

practice this solution is infrequently adopted. Moreover,in some cases, a subsequent mod-

ule is incompatible with the packed representation of a previous module and an exponential

amount of work is nevertheless required within this architecture.

48 CHAPTER 4. BAYES-OPTIMAL PIPELINES

In this chapter, I explore an attractive middle ground between the standard, greedy

linguistic pipelines and the full joint models discussed insubsequent chapters. Rather than

only using the 1 ork most likely labelings at each stage, we would indeed like to take

into account all possible labelings and their probabilities. Like the long-distance models of

the previous chapter, this is achieved by use of sampling forapproximate inference. The

form of approximate inference I use is very simple: at each stage in the pipeline, we draw a

sample from the distribution of labels, conditioned on the samples drawn at previous stages.

We repeat this many times, and then use the samples from the last stage, which corresponds

to the final, higher-level task, to form a majority vote classifier. As the number of samples

increases, this method will approximate the complete distribution. Use of the method is

normally a simple modification to an existing piece of code, and the method is general. It

can be applied not only to all pipelines, but to any directed acyclic graph (DAG) structured

multi-stage algorithms as well.

While both this chapter and the previous focus on the use of sampling for inference,

there are some important conceptual differences. In the previous chapter, I used MCMC

to walk around the probability space for a single (highly-structured, joint) distribution, be-

cause we were unable to do exact inference. In this chapter, we are generating independent

samples instead of doing MCMC. Here, the samples are generated as a means of doing

Bayesian inference – we only care about the output from the last stage in the pipeline,

but instead of taking point estimates at each prior stage we would like to take the entire

distribution into account, and this technique provides a means to do that.

I applied the method to two problems: semantic role labelingand recognizing textual

entailment. For semantic role labeling I used a two stage pipeline which parses the input

sentence and then performs semantic role labeling using theparse tree from the previous

stage. For recognizing textual entailment I used a three stage pipeline which tags the sen-

tence with named entities, and then parses it (forcing it to accept named entity boundaries)

before passing it to the entailment decider, which uses boththe named entity and parse

information. The sampling pipeline performed better than the greedy 1-best pipeline, and

performed comparably to ak-best pipeline.

4.2. RELATED WORK 49

4.2 Related work

While sampling pipelines have not been tried before, there is prior work which usesk-best

lists. Sutton and McCallum (2005) used the output of ak-best list from a parser as input to

a semantic role labelling system, but unfortunately they had a negative result and found the

1-best parser output to perform better. More recently, Zhaoet al. (2009) usedk-best parse

information as input to their semantic role labelling system, and performed quite well in the

2009 CoNLL shared task on joint parsing and SRL. The top performing system however

still completely decoupled the tasks.

Hollingshead and Roark (2007) also explore an alternative to standard pipelines, and

present something calledpipeline iteration. One way to view pipelines, is that the outputs

from earlier stages constrain the possible output space forlatter stages. In their work,

they make multiple passes through the pipeline, and allow the outputs from later stages to

constrain the earlier stages during the next iteration. They saw improvements when using

pipeline iteration in a reranking parser.

The work in this chapter also makes extensive use of Ng and Jordan (2001). That paper

focuses on thevoting Gibbs classifier, and analyzes its use as an approximation to the

Bayes optimal classifier. They were interested in the case ofBayesian classification, where

the hyper-parameters for the prior are unknown. In the Bayesoptimal classifier, these

hyper-parameters would be integrated out, effectively utilizing the entire distribution of

possible hyper-parameter values. The voted Gibbs classifier instead samples a value for the

hyper-parameters, and then using that value, generates a sample from the classifier. This is

repeated multiple times, and the outputs from the classifierare used to construct a majority

vote classifier, the output of which is the final output. WhileI have a different problem

setting, the fundamental idea is still the same. In our case,the Bayes optimal classifier

is what you would get if you passed the entire distribution through at each stage in the

pipeline (instead of just a point estimate, which is what a 1-best list passes). My sampling

pipeline is a voting Gibbs classifier, because it passes samples along at each stage, and then

uses them to form a majority-vote classifier in the last stage.

50 CHAPTER 4. BAYES-OPTIMAL PIPELINES

4.3 Approach

4.3.1 Overview

In order to do approximate inference, we model the entire pipeline as a Bayesian network.

Each stage in the pipeline corresponds to a variable in the network. For example, the parser

stage corresponds to a variable whose possible values are all possible parses of the sentence.

The probabilities of the parse trees are conditioned on the parent variables, which may just

be the words of the sentence, or may be the part-of-speech tags output by a part-of-speech

tagger.

The simple linear structure of a typical linguistic annotation network permits exact

inference that is quadratic in the number of possible labelsat each stage, but unfortunately

our annotation variables have a very large domain. Additionally, some networks may not

even be linear; frequently one stage may require the output from multiple previous stages,

or multiple earlier stages may be completely independent ofone another. For example,

a typical question answering system will do question type classification on the question,

and from that extract keywords which are passed to the information retrieval part of the

system. Meanwhile, the retrieved documents are parsed and tagged with named entities; the

network rejoins those outputs with the question type classification to decide on the correct

answer. My approach addresses these issues by using approximate inference instead of

exact inference. The structure of the nodes in the network permits direct sampling based

on a topological sort of the nodes. Samples are drawn from theconditional distributions of

each node, conditioned on the samples drawn at earlier nodesin the topological sort.

4.3.2 Probability of a complete labeling

Before we can discuss how to sample from these Bayes nets, we will formalize how to move

from an annotation pipeline to a Bayes net. LetA be the set ofn annotatorsA1, A2, ...,An

(e.g., part-of-speech tagger, named entity recognizer, parser). These are the variables in the

network. For annotatorAi , we denote the set of other annotators whose input is directly

needed asParents(Ai) ⊂ A and a particular assignment to those variables isparents(Ai).

The possible values for a particular annotatorAi areai (i.e., a particular parse tree or named

4.3. APPROACH 51

entity tagging). We can now formulate the probability of a complete annotation (over all

annotators) in the standard way for Bayes nets:

PBN(a1,a2, ...,an) =
n

∏
i=1

P(ai |parents(Ai)) (4.1)

4.3.3 Approximate inference in Bayesian networks

This factorization of the joint probability distribution facilitates inference. However, exact

inference is intractable because of the number of possible values for our variables. Parsing,

part-of-speech tagging, and named entity tagging (to name afew) all have a number of

possible labels that is exponential in the length of the sentence, so we use approximate in-

ference. I chose Monte Carlo inference, in which samples drawn from the joint distribution

are used to approximate a marginal distribution for a subsetof variables in the distribution.

First, the nodes are sorted in topological order. Then, samples are drawn for each variable,

conditioned on the samples which have already been drawn. Many samples are drawn, and

are used to estimate the joint distribution.

Importantly, for many language processing tasks our application only needs to provide

the most likely value for a high-level linguistic annotation (e.g., the guessed semantic roles,

or answer to a question), and other annotations such as parsetrees are only present to assist

in performing that task. The probability of the final annotation is given by:

PBN(an) = ∑
a1,a2,...,an−1

PBN(a1,a2, ...,an) (4.2)

Because we are summing out all variables other than the final one, we effectively use

only the samples drawn from the final stage, ignoring the labels of the internal variables,

to estimate the marginal distribution over that variable. We then return the label which had

the highest number of samples. For example, when trying to recognize textual entailment

(RTE) (explained in section 4.6), we count how many times we sampled “yes, it is entailed”

and how many times we sampled “no, it is not entailed” and return the answer with more

samples.

52 CHAPTER 4. BAYES-OPTIMAL PIPELINES

When the outcome you are trying to predict is binary (as is thecase with RTE) orn-

ary for smalln, the number of samples needed to obtain a good estimate of theposterior

probability is very small. Somewhat counter-intuitively,this is true even if the spaces

being sampled from during intermediate stages are exponentially large (such as the space

of all parse trees). Ng and Jordan (2001) show that under mildassumptions, with onlyN

samples the relative classification error will be at mostO(1
N) higher than the error of the

Bayes optimal classifier (in our case, the classifier which does exact inference). Even if the

outcome space is not small, the sampling technique I presentcan still be very useful, as we

will see later for the case of SRL.

4.4 Generating samples

The method I have outlined requires the ability to sample from the conditional distributions

in the factored distribution of equation 4.1: in our case, the probability of a particular

linguistic annotation, conditioned on other linguistic annotations. Note that this differs

from the usual annotation task: taking the argmax. But for most algorithms the change is

small and easy. I will now discuss how to obtain samples efficiently from a few different

annotation models: probabilistic context free grammars (PCFGs), and linear-chain CRFs.

4.4.1 Sampling parses

In this section, I will show how to generate parse tree samples from a PCFG for a given

sentence. Early work which used parse sampling (Bod 1995) used a different formalism:

tree substitution grammars. That work presented a bottom-up algorithm for sampling parse

derivations. The derivation is the binarized initial tree output from a parser, which often

includes other, additional annotations on the nodes. This derivation is then debinarized, and

the additional mark-up is removed, before the real parse tree is returned. One example of an

additional annotation is augmenting NPs (noun phrases) to include information stating that

they are temporal or locative. In this case, in the derivation, the state would be NP-TMP or

NP-LOC. You could have two derivations which are identical except for one node which

4.4. GENERATING SAMPLES 53

is labeled NP-TMP in one, and NP-LOC in the other. The final parse trees would be iden-

tical, because the LOC/TMP would be removed. So, as you can see, multiple derivations

can correspond to the same final parse tree. When finding the Viterbi (most likely) parse,

the algorithm actually finds the most likely derivation, andthere is some chance that this

will not correspond to the most likely parse. However, the sampling procedure presented in

Bod (1995) samples derivations, and sampling from the spaceof derivations is equivalent

to sampling in the space of final parse trees. Goodman (1998) then presented a top-down

version of this algorithm. Although I used a PCFG for parsing(instead of a tree substitu-

tion grammar, like the just described work), it is the grammar of Klein and Manning (2003),

which uses extensive state-splitting, which results in additional mark-ups on the nodes in

the tree. Once again there is again a many-to-one correspondence between derivations and

parses, and I use an algorithm similar to Goodman’s, described below.

PCFGs put probabilities on each rule, such as S→ NP VP and NN→ ‘dog’. The

probability of a complete parse tree is the product of the probabilities of the rules used to

construct the parse tree. A dynamic programing algorithm, the inside algorithm, can be

used to find the probability of a sentence. Theinside probabilityβk(p,q) is the probability

that wordsp throughq, inclusive, were produced by the non-terminalk. So the probability

of the sentenceThe boy pet the dog.is equal to the inside probabilityβS(1,6), where the

first word, w1 is Theand the sixth word,w6, is [period]. This quantity is the sum of the

probabilities of all parses of the sentence which haveSas the root symbol. The probability

can be defined recursively (Manning and Schütze 1999) as follows:

βk(p,q) =






P(Nk→ wp) if p = q

∑
r,s

q−1
∑

d=p
P(Nk→ NrNs)βr(p,d)βs(d+1,q) otherwise

(4.3)

whereNk, Nr andNs are non-terminal symbols andwp is the word at positionp. These

probabilities can be efficiently computed using a dynamic program, or memoization of each

value as it is calculated.

54 CHAPTER 4. BAYES-OPTIMAL PIPELINES

function DRAWSAMPLE(Nk, r,s)
if r = s

tree.label = Nk

tree.child = word(r)
return (tree)

for eachrule m∈ {m′ : head(m′) = Nk}
Ni← lChild(m)
N j ← rChild(m)
for q← r to s−1

scores(m,q)← P(m)βi(r,q)β j (q+1,s)
(m,q)← SAMPLEFROM(scores)
tree.label = head(m)
tree.lChild = DRAWSAMPLE(lChild(m), r,q)
tree.rChild = DRAWSAMPLE(rChild(m),q+1,s)
return (tree)

Figure 4.1: Pseudo-code for sampling parse trees from a PCFG. This is a recursive al-
gorithm which starts at the root of the tree and expands each node by sampling from the
distribution of possible rules and ways to split the span of words. Its arguments are a
non-terminal and two integers corresponding to word indices, and it is initially called with
argumentsS, 1, and the length of the sentence. There is a call tosampleFrom, which takes
an (unnormalized) probability distribution, normalizes it, draws a sample and then returns
that sample.

4.4. GENERATING SAMPLES 55

Once all of the inside probabilities have been computed, they can be used to gener-

ate parses from the distribution of all parses of the sentence, using the algorithm in fig-

ure 4.1.This algorithm is called after all of the inside probabilities have been calculated and

stored, and takes as parametersS, 1, andlength(sentence). It works by building the tree,

starting from the root, and recursively generating children based on the posterior proba-

bilities of applying each rule and each possible position onwhich to split the sentences.

Intuitively, the algorithm is given a non-terminal symbol,such asS or NP, and a span of

words and has to decide (a) what rule to apply to expand the non-terminal, and (b) where

to split the span of words, so that each non-terminal resulting from applying the rule has an

associated word span, and the process can repeat. The insideprobabilities are calculated

just once, and we can then generate many samples very quickly; DrawSamplesis linear in

the number of words and rules.

4.4.2 Sampling named entity taggings

To do named entity recognition, I used the same linear-chainconditional random field

(CRF) model as presented earlier in section 2.1.1. Previously, we used Markov chain

Monte Carlo (MCMC) as a means of dealing with the additional long-distance dependen-

cies. Here, because we do not have these long-distance dependencies, and because we

want samples from the distribution and not the most likely labelling, we can use a simpler

sampling technique which repeatedly generates independent samples. To review briefly,

when building a CRF we create a linear chain ofcliques, each of which represents the

probabilistic relationship between an adjacent pair of states using afactor tablecontaining

|S|2 values. These factor tables are defined in terms of exponential models conditioned on

features of the observation sequence, and must be instantiated for each new observation

sequence. As stated earlier, these factor tables arenot unnormalized probability tables. We

need to first execute the forward-backward algorithm, a special case of a process called

clique tree calibration, which involves passingmessagesbetween the cliques (see Koller

and Friedman (2009) for a full treatment of this topic). Thisprocess propagates informa-

tion throughout the entire sequence, and after it has completed, the factor tables can be

56 CHAPTER 4. BAYES-OPTIMAL PIPELINES

viewed as unnormalized probabilities, which can be used to compute conditional proba-

bilities, PCRF(yi |yi−n . . .yi−1,x). Once these probabilities have been calculated, generating

samples is very simple. First, we draw a sample for the label at the first position,1 and then,

for each subsequent position, we draw a sample from the distribution for that position, con-

ditioned on the label sampled at the previous position. Thisprocess results in a sample

of a complete labeling of the sequence, drawn from the posterior distribution of complete

named entity taggings.

Similarly to generating sample parses, the expensive part is calculating the probabili-

ties; once we have them we can generate new samples very quickly.

4.4.3 k-Best lists

At first glance,k-best lists may seem like they should outperform sampling, because in

effect they are thek best samples. However, there are several important reasonswhy one

might prefer sampling. One reason is that thek best paths through a word lattice, or the

k best derivations in parse forest do not necessarily correspond to thek best sentences or

parse trees. In fact, there are no known sub-exponential algorithms for the best outputs in

these models, when there are multiple ways to derive the sameoutput (this was discussed

in section 4.4.1). This is not just a theoretical concern – the Stanford parser (Klein and

Manning 2003) uses such a grammar, and I found that when generating a 50-best derivation

list that on average these derivations corresponded to about half as many unique parse trees.

My approach circumvents this issue entirely, because the samples are generated from the

actual output distribution.

Intuition also suggests that sampling should give more diversity at each stage, reducing

the likelihood of not even considering the correct output.2 Using the Brown portion of the

SRL test set (discussed in section 4.5), and 50-samples/50-best, I found that on average the

50-samples system considered approximately 25% more potential SRL labelings than the

50-best system.

When pipelines have more than two stages, it is customary to do a beam search, with a

1Conditioned on the distinguished start states.
2The i-best answer will differ in only one position from one of thej-best answers, wherej < i.

4.5. SEMANTIC ROLE LABELING 57

beam size ofk. This means that at each stage in the pipeline, more and more of the prob-

ability mass gets “thrown away.” Practically, this means that as pipeline length increases,

there will be increasingly less diversity of labels from theearlier stages. In a degenerate

10-stage,k-best pipeline, where the last stage depends mainly on the first stage, it is prob-

able that all but a few labelings from the first stage will havebeen pruned away, leaving

something much smaller than ak-best sample, possibly even a 1-best sample, as input to the

final stage. Using approximate inference to estimate the marginal distribution over the last

stage in the pipeline, such as this sampling approach, the pipeline length does not have this

negative impact or affect the number of samples needed. And unlike k-best beam searches,

there is an entire research community, along with a large body of literature, which stud-

ies how to do approximate inference in Bayesian networks andcan provide performance

bounds based on the method and the number of samples generated.

One final issue with thek-best method arises when instead of a linear chain pipeline,

one is using a general directed acyclic graph, where a node can have multiple parents. In

this situation, doing thek-best calculation actually becomes exponential in the sizeof the

largest in-degree of a node – for a node withp parents, you must try allkp combinations

of the values for the parent nodes. With sampling this is not an issue; each sample can be

generated based on a topological sort of the graph.

4.5 Semantic role labeling

4.5.1 Task description

Given a sentence and a target verb (also called thepredicate) the goal of semantic role

labeling is to identify and label syntactic constituents ofthe parse tree with semantic roles

of the predicate. Common roles areagent, which is the thing performing the action,patient,

which is the thing on which the action is being performed, andinstrument, which is the

thing with which the action is being done. Additionally, there aremodifier arguments

which can specify the location, time, manner, etc. The following sentence provides an

example of a predicate and its arguments:

[The luxury auto maker]agent [last year]temp[sold]pred [1,214 cars]patient in [the

58 CHAPTER 4. BAYES-OPTIMAL PIPELINES

words parser SRL

Figure 4.2: The pipeline for semantic role labeling.

U.S]location.

Semantic role labeling is a key component for systems that doquestion answering,

summarization, and any other task which directly uses a semantic interpretation.

4.5.2 System description

I modified the system described in Haghighi et al. (2005) and Toutanova et al. (2005) to

test my method. The system uses two kinds of models: local models, which score subtrees

of the entire parse tree independently of the labels of othernodes not in that subtree, and

joint models, which score the entire labeling of a tree with semantic roles (for a particular

predicate).

First, the task is separated into two stages, and local models are learned for each. At the

first stage, theidentification stage, a classifier labels each node in the tree as eitherARG,

meaning that it is an argument (either core or modifier) to thepredicate, orNONE, meaning

that it is not an argument. At the second stage, theclassification stage, the classifier is given

a set of arguments for a predicate and must label each with itsspecific semantic role.

Next, a Viterbi-like dynamic algorithm is used to generate alist of the k-best joint

(identification and classification) labelings according tothe local models. The algorithm

enforces the constraint that the roles should be non-overlapping. Finally, a joint model is

constructed which scores a completely labeled tree, and it is used to re-rank thek-best list.

The separation into local and joint models is necessary because there is an exponential num-

ber of ways to label the entire tree, and using the joint modelalone would be intractable. I

retained thek-best structure here, but ideally one would want to use approximate inference

instead of ak-best list here as well. Importance sampling would be particularly well suited

– instances could be sampled from the local model and then re-weighted using the joint

model.

4.5. SEMANTIC ROLE LABELING 59

Because the SRL system outputs ak-best list, we already know exactly how likely it

thinks each of thek outputs is, for a particular parse sample input. If we drew samples

here, we would lose valuable information which we have easy access to. So, for each parse

sample, thek outputs become weighted votes, where their weight is their likelihood in the

k-best list. Multiple samples are passed through, and in the end voting is done with these

weighted samples. The complete pipeline is shown graphically in figure 4.3.

4.5.3 Experiments

In 2004 and 2005 CoNLL had shared tasks on SRL (Carreras and M`arquez (2004) and

Carreras and Màrquez (2005)). I used the CoNLL 2005 data andevaluation script. When

evaluating semantic role labeling results, it is common to present numbers on both the core

arguments (i.e., excluding the modifying arguments) and all arguments. I follow this con-

vention and present both sets of numbers. I give precision, recall and F1 (see section 2.1.1),

which are based on the number of arguments correctly identified. For an argument to be

correct both the span and the classification must be correct;there is no partial credit.

To generate sampled parses, I used the Stanford parser (Klein and Manning 2003). The

CoNLL data comes with parses from Charniak’s parser (Charniak 2000), so I re-parsed

the data and retrained the SRL system on these new parses, resulting in a lower baseline

than previously presented work. I choose to use Stanford’s parser because of the ease with

which it could be modified to generate samples. Unfortunately, its performance is slightly

below that of the other parsers.

The CoNLL data has two separate test sets; the first is section23 of the PennTreebank

(PTB) (Marcus et al. 1993), and the second is “fresh sentences” taken from the Brown

corpus. For full results, please see table 4.1. On the PTB portion, compared to the standard

greedy pipeline, I saw an absolute F-score improvement of 0.7% on both core and all

arguments. On the Brown portion of the test set I saw an improvement of 1.25% on core

and 1.16% on all arguments. In this context, a gain of over 1% is quite large: for instance,

the scores for the top 4 systems on the Brown data at CoNLL 2005were within 1% of each

other. For both portions, I generated 50 samples, and did this 4 times, averaging the results.

The better performance on the Brown portion compared to the PTB portion is likely to be

60 CHAPTER 4. BAYES-OPTIMAL PIPELINES

SRL Results – Penn Treebank Portion
Core Args Precision Recall F-measure

Greedy 79.31% 77.7% 78.50%
K-Best 80.05% 78.45% 79.24%

Sampling 80.13% 78.25% 79.18%
All Args Precision Recall F-measure
Greedy 78.49% 74.77% 76.58%
K-Best 79.58% 74.90% 77.16%

Sampling 79.81% 74.85% 77.31%
SRL Results – Brown Portion

Core Args Precision Recall F-measure
Greedy 68.28% 67.72% 68.0%
K-Best 69.25% 69.02% 69.13%

Sampling 69.35% 68.93% 69.16%
All Args Precision Recall F-measure
Greedy 66.6% 60.45% 63.38%
K-Best 68.82% 61.03% 64.69%

Sampling 68.6% 61.11% 64.64%

Table 4.1: Results for semantic role labeling task. The sampled numbers are averaged over
several runs, as discussed.

because the parser was trained on the PennTreebank trainingdata, so the most likely parses

will be of higher quality for the PTB portion of the test data than for the Brown portion. I

also ran the pipeline using a 50-best list, and found the two results to be comparable.

4.6 Recognizing textual entailment

4.6.1 Task description

In the task of recognizing textual entailment (RTE), also commonly referred to as robust

textual inference, you are provided with two passages, atext and ahypothesis, and must

decide whether the hypothesis can be inferred from the text.The termrobust is used be-

cause the task is not meant to be domain specific. The terminferenceis used because

this is not meant to be logical entailment, but rather what anintelligent, informed human

would infer. Many NLP applications would benefit from the ability to do robust textual

4.6. RECOGNIZING TEXTUAL ENTAILMENT 61

words NER parser RTE

Figure 4.3: The pipeline for recognizing textual entailment.

entailment, including question answering, information retrieval and multi-document sum-

marization. Starting in 2005, there has been an annual series of RTE workshops with an

associated shared challenge (Dagan et al. 2005, Ido et al. 2006, Giampiccolo et al. 2007;

2008, Bentivogli et al. 2009). I used the data from the 2005 and 2006 workshops. In 2005

there were 576 text-hypothesis pairs in the development set, and 800 pairs in the test set

(there is no training set). In 2006 there were 800 pairs in both the development and test

sets3. Here is an example from the development set from the first RTEchallenge:

Text: Researchers at the Harvard School of Public Health say that people who drink coffee

may be doing a lot more than keeping themselves awake – this kind of consumption

apparently also can help reduce the risk of diseases.

Hypothesis: Coffee drinking has health benefits.

The positive and negative examples are balanced, so the baseline of guessing either all

yesor all nowould score 50%. This is a hard task – at the first challenge no system scored

over 60%.

4.6.2 System description

MacCartney et al. (2006) describe a system for doing robust textual inference. They divide

the task into three stages – linguistic analysis, graph alignment, and entailment determina-

tion. The first of these stages,linguistic analysis, is itself a pipeline of parsing and named

entity recognition. They use the syntactic parse to (deterministically) produce a typed de-

pendency graph for each sentence. This pipeline is the one replaced. The second stage,

graph alignment, consists of trying to find good alignments between the typeddependency

3The datasets and further information from the challenges can be downloaded fromhttp://www.pascal-
network.org/Challenges/RTE2/Datasets/.

62 CHAPTER 4. BAYES-OPTIMAL PIPELINES

graphs for the text and hypothesis. Each possible alignmenthas a score, and the alignment

with the best score is propagated forward. The final stage,entailment determination, is

where the decision is actually made. Using the score from thealignment, as well as other

features, a logistic model is created to predict entailment. The parameters for this model

are learned from development data.4 While it would be preferable to sample possible align-

ments, their system for generating alignment scores is not probabilistic, and it is unclear

how one could convert between alignment scores and probabilities in a meaningful way.

Our modified linguistic analysis pipeline (see figure 4.3) does NER tagging and parsing

(in their system, the parse is dependent on the NER tagging because some types of entities

are pre-chunked before parsing) and treats the remaining two sections of their pipeline, the

alignment and determination stages, as one final stage. Because the entailment determina-

tion stage is based on a logistic model, a probability of entailment is given and sampling is

straightforward.

4.6.3 Experiments

For the second PASCAL RTE challenge, two different types of performance measures were

used to evaluate labels and confidence of the labels for the text-hypothesis pairs. The first

measure is accuracy – the percentage of correct judgments. The second measure isaverage

precision. Responses are sorted based on entailment confidence and then average precision

is calculated by the following equation:

averageprecision=
1
R

n

∑
i=1

E(i)
correct up to pairi

i
(4.4)

wheren is the size of the test set,R is the number of positive (entailed) examples,E(i) is an

indicator function whose value is 1 if theith pair is entailed, and theis are sorted based on

the entailment confidence. The intention of this measure is to evaluate how well calibrated

a system is. Systems which are more confident in their correctanswers and less confident

in their incorrect answers will perform better on this measure.

4They report their results on the first PASCAL dataset, and useonly the development set from the first
challenge for learning weights. When I tested on the data from the second challenge, I used all data from the
first challenge and the development data from the second challenge to learn these weights.

4.7. SUMMARY 63

RTE Results
Accuracy Average Precision

Greedy 59.13% 59.91%
Sampling 60.88% 61.99%

Table 4.2: Results for recognizing textual entailment.
The sampled numbers are averaged over several runs, as discussed.

Experimental results are presented in table 4.2. I generated 25 samples for each run,

and repeated the process 7 times, averaging over runs. Accuracy was improved by 1.5%

and average precision by 2%, when compared with the original1-best pipeline. It does

not come as a surprise that the average precision improvement was larger than the accu-

racy improvement, because our model explicitly estimates its own degree of confidence by

estimating the posterior probability of the class label.

4.7 Summary

In this chapter, I have presented an attractive middle-ground between the standard greedy

pipeline, and the fully joint models covered in subsequent chapters. Specifically, I have

presented a method for handling language processing pipelines in which later stages of

processing are conditioned on the results of earlier stages. It is still common practice to

take the best labeling at each point in a linguistic analysispipeline, but this method ignores

information about alternate labelings and their likelihoods. My approach uses all of the

information available, and has the added advantage of beingextremely simple to imple-

ment. By modifying your subtasks to generate samples instead of the most likely labeling,

the method can be used with very little additional overhead.And, as I have shown, such

modifications are usually simple to make; further, with onlya “small” (polynomial) num-

ber of samplesk, under mild assumptions the classification error obtained by the sampling

approximation approaches that of exact inference (Ng and Jordan 2001). In contrast, an

algorithm that keeps track only of thek-best list enjoys no such theoretical guarantee, and

can require an exponentially large value fork to approach comparable error. However, I

found that experimentally, the two performed comparably. It would be interesting to see

how they compare on longer pipelines, or DAG-structured, but non-linear, pipelines.

64 CHAPTER 4. BAYES-OPTIMAL PIPELINES

There are many possible future directions for this work. Onedrawback of the model

I have presented is that information only flows forward. In some respects, that makes the

model similar to an MEMM (Borthwick 1999, McCallum et al. 2000), and it may suffer

from similar problems related to the direction of information. It would be preferable to

instead model this type of pipeline after a linear-chain CRF(Lafferty et al. 2001), and

allow information to flow in both directions. This could potentially be done by particle

filtering (Gordon et al. 1993, Arulampalam et al. 2002), since the weight of each particle

would be based on its likelihood at each stage in the pipeline. Another approach is to move

to a full, joint model, which is what I do in the next chapter, though the joint model is over

fewer tasks than the pipelines presented in this chapter.

The papers on which this chapter and the previous chapter arebased helped begin the

trend in the NLP community of using sampling-based methods for Bayesian inference,

and since their publication there has been extensive work onthe subject. MCMC-based

Bayesian inference has been used for both unsupervised part-of-speech tagging (Gold-

water and Griffiths 2007, Snyder et al. 2008; 2009) and semi-supervised part-of-speech

tagging (Toutanova and Johnson 2008); for unsupervised coreference resolution (Haghighi

and Klein 2007); for a wide variety of parsing models (Johnson and Griffiths 2007, Johnson

et al. 2007, Finkel et al. 2007, Post and Gildea 2009, Cohn et al. 2009, Cohn and Blunsom

2010); and for several machine translation models (DeNero et al. 2008, Cohn and Blunsom

2009, Blunsom et al. 2009, Blunsom and Cohn 2010).

Chapter 5

Joint discriminative learning: parsing

and named entity recognition

5.1 Introduction

As discussed in the previous chapter, no NLP task is truly standalone. In order to build high

quality systems for complex NLP tasks, such as question answering and textual entailment,

it is essential to first have high quality systems for lower level tasks. A good (deep anal-

ysis) question answering system requires the data to first beannotated with several types

of information: parse trees, named entities, word sense disambiguation, etc. When build-

ing such a system, researchers typically follow one of two routes. The simplest, and most

common, is to cobble together independent systems, often written by many other indepen-

dent researchers, for the various types of annotation. While the simplicity is appealing,

no information is shared between the different levels of annotation, there is no guarantee

that their outputs will be consistent, and often suboptimalheuristic fixes are required. The

next most common approach is to pipeline different systems for the different components

together. Usually just the 1-best ork-best outputs are propagated at each stage, though

more elaborate options are possible, such as the one coveredin the previous chapter. While

pipelining does guarantee consistency, it is not a completesolution. Errors propagate, and

components further down the pipeline will get progressively worse quality inputs, and they

have no way of communicating this information back to the earlier stages. Moreover, it’s

65

66 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

not always clear what the correct ordering of components should be; ideally they should all

be able to influence one another. This calls for a full joint model, which is the topic of this

chapter.

In this chapter, I gradually build up to a full joint model of both parsing and named

entity recognition. Joint modeling of multiple phenomena has been tried before, but often

with limited success. For instance, it has proven very difficult to build a joint model of pars-

ing and semantic role labeling, either with PCFG trees (Sutton and McCallum 2005) or with

dependency trees. The CoNLL 2008 shared task (Surdeanu et al. 2008) was intended to be

about joint dependency parsing and semantic role labeling,but the top performing systems

decoupled the tasks and outperformed the systems which attempted to learn them jointly.

Despite these earlier results, I found that combining parsing and named entity recognition

modestly improved performance on both tasks, due to their ability to both constrain and

influence one another, and in the next chapter I will show how to leverage singly-annotated

data to further improve the joint model.

First, I will cover two feature-rich, discriminative, CRF-based parsers, one for con-

stituency trees and one for dependency trees, as they are thebackbone for much of the

remaining work in this dissertation, including the joint parse and NER model which ap-

pears later in the chapter. Then I will show how to convert thediscriminative constituency

parsing model into a model for nested named entity recognition. With only a handful of

exceptions, all NER work to date has focused on a flat structure. When entities are nested

inside one another (e.g.University of California), common practice is to ignore all but the

outermost entity. This strategy throws away a lot of perfectly useful information – infor-

mation which is both valuable to the user and which should be helpful in identifying and

classifying the outermost entities. By utilizing the parser, I explicitly model this nesting

structure and the result is a much more useful NER system. Thenested NER model also

provides a nice segue to the full joint parse and NER model. The joint model operates by

augmenting the parse tree with named entity information, and so it also views NER as a

parsing problem. The data used for those experiments does not contain nested named enti-

ties (such data is difficult to come by), but could very naturally be set up to include nested

entities. The full joint model produces an output which has consistent parse structure and

named entity spans, and does a better job at both tasks than separate models with the same

5.2. DISCRIMINATIVE PARSING 67

features and training data.

5.2 Discriminative parsing

Over the past decade, feature-based discriminative modelshave become the tool of choice

for many natural language processing tasks. Although they take much longer to train than

generative models, they typically produce higher performing systems, in large part due to

the ability to incorporate arbitrary, potentially overlapping features. However, constituency

parsing remains an area dominated by generative methods, due to the computational com-

plexity of the problem. A generative constituency parser can be trained nearly instanta-

neously, because training only requires taking counts off of a treebank. In contrast, training

a discriminative parser typically requires re-parsing thetreebank multiple times. Parsing

a treebank can be computationally expensive, because it isO(n3) in sentence length, and

there is a large grammar constant.

The work in this section provides a framework for training a feature-rich discrimina-

tive parser. I mostly focus on constituency parsing, but thetechnique can also be applied

to dependency parsing, which is covered in section 5.2.3. Unlike prior work, experiments

are not restricted to short sentences, but I do provide results both for training and testing

on sentences of length≤ 15 (WSJ15) and for training and testing on sentences of length

≤ 40, allowing previous WSJ15 results to be put in context withrespect to most modern

parsing literature. The model is a conditional random field-based model. For a rule ap-

plication, arbitrary features can be defined over the rule categories, span and split point

indices, and the words of the sentence. It is well known that constituent length influences

parse probability, but PCFGs cannot easily take this information into account. My parser

allows features over span length and placement, which can beused to model the strong

right-branching tendency of English sentences. Another benefit of the feature-based model

is that it effortlessly allows smoothing over previously unseen rules. While the rule may be

novel, it will likely contain features which have been seen previously. Practicality comes

from three sources. I made use of stochastic optimization methods which allow us to find

optimal model parameters with very few passes through the data. On WSJ15, I found no

difference in parser performance between using stochasticgradient descent (SGD), and the

68 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

S

NP

NN

Factory

NNS

payrolls

VP

VBD

fell

PP

IN

in

NN

September

Phrasal rules
r1 = S0,5→ NP0,2 VP2,5 | Factory payrolls fell in September
r3 = VP2,5→ VBD2,3 PP3,5 | Factory payrolls fell in September
. . .
Lexicon rules
r5 = NN0,1→ Factory| Factory payrolls fell in September
r6 = NNS1,2→ payrolls| Factory payrolls fell in September
. . .

(a) PCFG Structure (b) Rulesr

Figure 5.1: A parse tree and the corresponding rules over which potentials and features are
defined.

more common, but significantly slower, L-BFGS (L-BFGS experiments were too slow to

be performed on WSJ40). I also used limited parallelization, and pre-filtering of the chart

to avoid the expensive feature computation for rules which cannot tile into complete parses

of the sentence. This speed-up does not come with a performance cost; indeed this simpler,

faster model attains an F-score of 90.9%, a 14% relative reduction in errors over previous

discriminative parsing work evaluated on WSJ15.

5.2.1 A conditional random field context free grammar (CRF-CFG)

My parsing model is based on a conditional random field model,however, unlike previ-

ous TreeCRF work (e.g., Cohn and Blunsom (2005), Jousse et al. (2006)) (but like other

discriminative CFG work), we do not assume a particular treestructure, and instead find

the most likely structureand labeling. This is different from most work in graphical mod-

els, where the model structure is pre-defined.1 This is similar to conventional probabilistic

context-free grammar (PCFG) parsing, with two exceptions:(a) we maximizeconditional

likelihood of the parse tree, given the sentence, notjoint likelihood of the tree and sentence;

and (b) probabilities are normalizedglobally instead oflocally – the graphical models de-

piction of our trees is undirected.

Formally, we have a context-free grammar (CFG)G, which consists of (Manning and

1This also differs from most structure-finding work, becausein our case the structure is part of the label for
a particular instance, and in the typical case the point of finding the structure is to determine the dependencies
between the random variables in the model. It is possible to set up our model as a single structure with
additional variables which encode the tree constraints, but such a structure would be more difficult to work
with, less intuitively easy to understand, and would not offer many benefits.

5.2. DISCRIMINATIVE PARSING 69

Schütze 1999):

(i) a set of terminals{wk},k = 1, . . . ,V

(ii) a set of nonterminals{Nk},k = 1, . . . ,n

(iii) a designated start symbolROOT

(iv) a set of rules,{ρ = Ni → ζ j}, whereζ j is a sequence of terminals and nonterminals

A PCFG additionally assigns probabilities to each ruleρ such that∀i ∑ j P(Ni → ζ j) = 1.

The conditional random field CFG (CRF-CFG) instead defines local clique potentials

φ(r|s;θ), wheres is the sentence, andr contains a one-level subtree of a treet, corre-

sponding to a ruleρ , along with relevant information about the span of words which it

encompasses, and, if applicable, the split position (see figure 5.1). These potentials are rel-

ative to the sentence, unlike a PCFG where rule scores do not have access to words at the

leaves of the tree, or even how many words they dominate. To further emphasize this point:

in a PCFG, the score for a rule is always the same, regardless of context, but in a CRF-

CFG, the score for the rule is context-dependent. We then define a conditional probability

distribution over entire trees, using the standard CRF distribution, shown in equation 5.1.

There is, however, an important subtlety lurking in how we define the partition function.

The partition functionZs,θ , which makes the probability of all possible parses sum to unity,

is defined over allstructuresas well as all labelings of those structures. We defineτ(s) to

be the set of all possible parse trees for the given sentence licensed by the grammarG.

P(t|s;θ) =
1

Zs,θ
∏r∈t φ(r|s;θ) (5.1)

where

Zs,θ = ∑t∈τ(s)∏r∈t ′ φ(r|s;θ)

The above model is not well-defined over all CFGs. Unary rulesof the formNi → N j

can form cycles, leading to infinite unary chains with infinite mass. However, it is standard

in the parsing literature to transform grammars into a restricted class of CFGs so as to

permit efficient parsing. Binarization of rules (Earley 1970) is necessary to obtain cubic

70 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

parsing time, and closure of unary chains is required for finding total probability mass

(rather than just best parses) (Stolcke 1995). To address this issue, I define our model over

a restricted class of CFGs which limits unary chains have no repeated states. This was

done by collapsing all allowed unary chains to single unary rules, and disallowing multiple

unary rule applications over the same span.2 I give the details of my binarization scheme

in section 5.2.2.

Computing the objective function

Our clique potentials take an exponential form. We have a feature function, represented by

f(r,s), which returns a vector with the value for each feature. I denote the value of feature

f eatii by fi(r,s) and the model has a corresponding parameterθi for each feature. The

clique potential function is then:

φ(r|s;θ) = exp{f(r,s) ·θ} (5.2)

Note that this function is not normalized, and can return anynon-negative real number.

The log-likelihood of the training dataD , with an additionalL2 regularization term, is

then:

L (D ;θ) = ∑
(t,s)∈D

(

∑
r∈t

(f(r,s) ·θ)− logZs,θ

)
−∑

i

θ2
i

2σ2 (5.3)

And the partial derivatives of the log-likelihood, with respect to the model weights are, as

usual, the difference between the empirical counts and the model expectations:

∂L

∂θi
= ∑

(t,s)∈D

(

∑
r∈t

fi(r,s)−Eθ [fi|s]

)

−
θi

σ2 (5.4)

The partition functionZs,θ and the partial derivatives can be efficiently computed withthe

help of the inside-outside algorithm.3 Zs,θ is equal to the inside score ofROOTover the

span of the entire sentence. To compute the partial derivatives, we walk through each

2In my implementation of the inside-outside algorithm, we then need to keep two inside and outside scores
for each span: one from before and one from after the application of unary rules.

3In our case the values in the chart are the clique potentials which are non-negative numbers, but not
probabilities.

5.2. DISCRIMINATIVE PARSING 71

rule, and span/split, and multiply the outside score of the parent, the inside score(s) of the

child(ren), and the score for that rule and span/split. Thisvalue is divided byZs,θ to get

the normalized probability of that rule in that position. Using the probabilities of each

rule application, over each span/split, we can compute the expected feature values (the

second term in equation 5.4), by multiplying this probability by the value of the feature

corresponding to the weight for which we are computing the partial derivative. The process

is analogous to the computation of partial derivatives in linear chain CRFs. The complexity

of the algorithm is cubic in sentence length, since we loop over all possible start, end, and

split points for phrases in the tree.

Features

As discussed in section 5.2.2, I performed experiments bothon sentences of length≤ 15

and length≤ 40. All feature development was done on the length 15 corpus,due to the

substantially faster train and test times. This has the unfortunate effect that the features

are optimized for shorter sentences and less training data,but I found development on the

longer sentences to be infeasible. Features are divided into two types: lexicon features,

which are over words and tags, andgrammar featureswhich are over the local subtrees

and corresponding span/split (both have access to the entire sentence). I ran two kinds

of experiments: a discriminatively trained model, which used only the rules and no other

grammar features, and a feature-based model which did make use of grammar features.

Both models had access to the lexicon features. I viewed thisas equivalent to the more

elaborate, smoothed unknown word models that are common in many PCFG parsers, such

as Klein and Manning (2003).

I preprocessed the words in the sentences to obtain two extrapieces of information: dis-

tributional similarity clusters (described in section 2.4.1) and an orthographic word shape

(described in section 2.4.2). The full set of features, along with an explanation of notation,

is listed in table 5.1.

72 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

Lexicon Features Grammar Features
t Binary-specific features
b(t) ρ
〈t,w〉 〈b(p(rp)),ds(ws)〉 〈b(p(rp)),ds(ws−1,dsws)〉
〈t, lc(w)〉 〈b(p(rp)),ds(we)〉 PP feature:
〈b(t),w〉 unary? if right child is a PP then〈r,ws〉

〈b(t), lc(w)〉 simplified rule: VP features:
〈t,ds(w)〉 base labels of states if some child is a verb tag, then rule,
〈t,ds(w−1)〉 dist sim bigrams: with that child replaced by the word
〈t,ds(w+1)〉 all dist. sim. bigrams below
〈b(t),ds(w)〉 rule, and base parent state Unaries which span one word:
〈b(t),ds(w−1)〉 dist sim bigrams:
〈b(t),ds(w+1)〉 same as above, but trigrams 〈r,w〉
〈p(t),w〉 heavy feature: 〈r,ds(w)〉
〈t,unk(w)〉 whether the constituent is “big” 〈b(p(r)),w〉
〈b(t),unk(w)〉 as described in Johnson (2001)〈b(p(r)),ds(w)〉

Table 5.1: Lexicon and grammar features for the CRF-CFG.w is the word andt the tag.
r represents a particular rule along with span/split information; ρ is the rule itself,rp is
the parent of the rule;wb, ws, andwe are the first, first after the split (for binary rules)
and last word that a rule spans in a particular context. All states, including the POS tags,
are annotated with parent information;b(s) represents the base label for a states andp(s)
represents the parent annotation on states. ds(w) represents the distributional similarity
cluster, andlc(w) the lower cased version of the word, andunk(w) the unknown word
class.

Parallelization

Unlike Taskar et al. (2004), this algorithm has the advantage of being easily parallelized

(see footnote 7 in their paper). Because the computation of both the log-likelihood and the

partial derivatives involves summing over each tree individually, the computation can be

parallelized by having many clients which each do the computation for one tree, and one

central server which aggregates the information to computethe relevant information for a

set of trees. Because I used a stochastic optimization method, as discussed in section 2.3.2,

we compute the objective for only a small portion of the training data at a time, typically

between 15 and 30 sentences. In this case the gains from adding additional clients decrease

rapidly, because the computation time is dominated by the longest sentences in the batch.

5.2. DISCRIMINATIVE PARSING 73

Chart pre-filtering

Training is also sped up by pre-filtering the chart. On the inside pass of the algorithm one

will see many rules which cannot actually be tiled into complete parses. In standard PCFG

parsing it is not worth figuring out which rules are viable at aparticular chart position and

which are not. In our case however this can make a big difference for several reasons.

Firstly, we are not just looking up a score for the rule, but must compute all the features

(which often requires computationally expensive string manipulations), and dot product

them with the feature weights, which is far more time consuming. We also have to do an

outside pass as well as an inside one, which is sped up considerably by not considering

impossible rule applications. Lastly, we iterate through the data multiple times, so if we

can compute this information just once, we will save time on all subsequent iterations on

that sentence. I do this by doing an inside-outside pass which is simply boolean valued (and

requires no feature computation) to determine which rules are possible at which positions

in the chart. I simultaneously compute the features for the possible rules and then save the

entire data structure to disk. For all but the shortest of sentences, the disk I/O was easily

worth the time compared to re-computation. The first time we see a sentence this method

is still about one third faster than if we did not do the pre-filtering, and on subsequent

iterations the improvement is closer to tenfold.

5.2.2 Experiments

Data

For all experiments, I trained and tested on the PennTreebank (PTB) (see section 2.2.2).

I used the standard splits, training on sections 2 to 21, testing on section 23 and doing

development on section 22. Previous work on (non-reranking) discriminative parsing has

given results on sentences of length≤ 15, but most parsing literature gives results on either

sentences of length≤ 40, or all sentences. To properly situate this work with respect to

both sets of literature I trained models on both length≤ 15 (WSJ15) and length≤ 40

(WSJ40), and we also tested on all sentences using the WSJ40 models. These results

also provide a context for interpreting previous work whichused WSJ15 and not WSJ40.

WSJ15 has 9,753 training sentences, 421 development sentences and 603 test sentences.

74 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

Binary Unary
Model States Rules Rules

WSJ15 1,428 5,818 423
WSJ15 relaxed 1,428 22,376 613
WSJ40 7,613 28,240 823

Table 5.2: Grammar size for the CRF-CFG models.

WSJ40 has 36,765 training sentences and 2,245 test sentences (all development was done

on the length 15 models, due to significantly faster trainingtime). The WSJ40 models were

also evaluated on all 2,416 sentences in section 23, with no length restrictions.

Grammar

I used a relatively simple grammar with few additional annotations. Starting with the gram-

mar read off of the training set, I added parent annotations onto each state, including the

POS tags, resulting in rules such as S-ROOT→ NP-S VP-S. I also added head tag anno-

tations toVPs, in the same manner as Klein and Manning (2003). Lastly, forthe WSJ40

runs I used a simple, right branching binarization where each active state is annotated with

its previous sibling and first child. This is equivalent to children of a state being produced

by a second order Markov process. For the WSJ15 runs, each active state was annotated

with only its first child, which is equivalent to a first order Markov process. See table 5.2

for the number of states and rules produced.

Grammar relaxation

I ran additionalgrammar relaxationexperiments, where I added unseen rules to the gram-

mar. One advantage of my model is that smoothing over unseen rules in the grammar

happens automatically. For each potential rule application, the clique potential is a func-

tion of the dot product of the features and the weights. If no features are present, this equals

e0 = 1. The actual probability will depend on the parameters of the model, and the rest of

the sentence, but it will not be zero. Moreover, due to how I chose to relax the grammar

(discussed below) it will never be the case that an unseen rule has no previously seen fea-

tures. This is because new rules are only constructed from previously seen states, and we

5.2. DISCRIMINATIVE PARSING 75

have features for the states contained in the rule. My motivation for relaxing the grammar

was twofold. Adding new rules could make sentences that werepreviously unparseable

become parseable (cf. Petrov et al. (2006)). Our early experiments showed that increasing

the number of rules to discriminate between generally improved performance of the final

model. To get a sense of what kinds of gains could be hoped for from relaxing the gram-

mar, I did an oracle experiment where I trained the feature-based model, but additionally

included in the grammar all the rules present in the development set. I then compared the

performance of this model on the development data with the performance of the regular,

non-relaxed, feature-based model. The relaxed model increased in performance by 1.5%.

Motivated by this gain I set out to find ways to relax the grammar that would produce useful

rules without expanding the grammar so much as to make training and testing intolerably

slow.

To relax the grammar, I went through each state, and counted the number of rules in

which it was present. Then I went through each state in the grammar, and looked at its

parent annotation. I tried replacing it with every possibleparent annotation, and if the

created state was present in more thanυ rules, I would find all rules for which the original

state was the parent, and create identical copies, replacing the original parent with this

alternate state. I experimented with several values ofυ, and while the performance on the

development set did not vary greatly for values between 5 and15, I ultimately found 5 to

have the best performance.

Experimental results

For both WSJ15 and WSJ40, I trained a generative model; a discriminative model, which

used lexicon features, but no grammar features other than the rules themselves; and a

feature-based model which had access to all features. For the length 15 data I also did ex-

periments with the relaxed grammar. I used stochastic gradient descent (see section 2.3.2)

for these experiments. Using development data, I found thatan initial gain ofη0 = 0.1

worked well for our setting. The length 15 models had a batch size of 15 and I allowed

twenty passes through the data.4 The length 40 models had a batch size of 30 and I allowed

4Technically we did not make passes through the data, becausewe sampled with replacement to get our
batches. By this I mean having seen as many sentences as are inthe data, despite having seen some sentences

76 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

ten passes through the data. I used performance on the development data to decide when

the models had converged. Additionally, I provide generative numbers for training on the

entire PTB using the same grammar to give a sense of how much performance suffered

from the reduced training data (generative-allin table 5.4).

The full results for WSJ15 are shown in table 5.3 and for WSJ40are shown in table 5.4.

The evaluation metrics are explained in section 2.1.2;CB stands for crossing brackets.

The WSJ15 models were each trained on a single Dual-Core AMD OpteronTM using three

gigabytes of RAM and no parallelization. The discriminatively trained generative model

(discriminativein table 5.3) took approximately 12 minutes per pass throughthe data,

while the feature-based model (feature-basedin table 5.3) took 35 minutes per pass through

the data. The feature-based model with the relaxed grammar (relaxed in table 5.3) took

about four times as long as the regular feature-based model.The discriminatively trained

generative WSJ40 model (discriminativein table 5.4) was trained using two of the same

machines, with 16 gigabytes of RAM each for the clients.5 It took about one day per pass

through the data. The feature-based WSJ40 model (feature-basedin table 5.4) was trained

using four of these machines, also with 16 gigabytes of RAM each for the clients. It took

about three days per pass through the data.

The results clearly show that gains came from both the switchfrom generative to dis-

criminative training, and from the extensive use of features. In figure 5.2 I show for an

example from section 22 the parse trees produced by the generative model and the feature-

based discriminative model, and the correct parse. The parse from the feature-based model

better exhibits the right branching tendencies of English.This is likely due to the heavy

feature (see table 5.1), which encourages long constituents at the end of the sentence. It is

difficult for a standard PCFG to learn this aspect of the English language, because the score

it assigns to a rule does not take its span into account.

multiple times and some not at all.
5The server does almost no computation.

5.2. DISCRIMINATIVE PARSING 77

S

S

NP

PRP

He

VP

VBZ

adds

NP

DT

This

VP

VBZ

is

RB

n’t

NP

NP

CD

1987

VP

VBN

revisited

(a) generative output

S

NP

PRP

He

VP

VBZ

adds

S

NP

DT

This

VP

VBZ

is

RB

n’t

NP

CD

1987

VP

VBN

revisited

(b) feature-based discriminative output

S

NP

PRP

He

VP

VBZ

adds

S

NP

DT

This

VP

VBZ

is

RB

n’t

NP

NP

CD

1987

VP

VBN

revisited

(c) gold parse

Figure 5.2: Example output from our generative and feature-based discriminative models,
along with the correct parse.

78 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

Model P R F1 Exact Avg CB 0 CB
development set – length≤ 15

Taskar 2004 89.7 90.2 90.0 – – –
generative 86.9 85.8 86.4 46.2 0.34 81.2
discriminative 89.1 88.6 88.9 55.5 0.26 85.5
feature-based 90.4 89.3 89.9 59.5 0.24 88.3
relaxed 91.2 90.3 90.7 62.1 0.24 88.1
relaxed-oracle 92.2 90.5 91.3 63.1 0.19 89.5

test set – length≤ 15
Taskar 2004 89.1 89.1 89.1 – – –
Turian 2007 89.6 89.3 89.4 – – –
generative 87.6 85.8 86.7 49.2 0.33 81.9
discriminative 88.9 88.0 88.5 56.6 0.32 85.0
feature-based 91.1 90.2 90.6 61.3 0.24 86.8
relaxed 91.4 90.4 90.9 62.0 0.22 87.9

Table 5.3: Development and test set results, training and testing on sentences of length
≤ 15 from the PennTreebank (WSJ15).

5.2.3 CRF-based dependency parsing

In addition to the constituency parser just described, I also built a CRF-based dependency

parsing model, optimizing the likelihood of the parse, conditioned on the words and part-of-

speech tags of the sentence. At the heart of the model is the Eisner dependency grammar

chart-parsing algorithm (Eisner 1996), which allows for efficient computation of inside

and outside scores, and is described in section 2.1.3. The Eisner algorithm, originally

designed for generative parsing, decomposes the probability of a dependency parse into the

probabilities of each attachment of a dependent to its parent, and the probabilities of each

parent stopping taking dependents. These probabilities can be conditioned on the child,

parent, and direction of the dependency. I used a slight modification of the algorithm which

allows each probability to also be conditioned on whether there is a previous dependent.

While the unmodified version of the algorithm includes stopping probabilities, conditioned

on the parent and direction, they have no impact on which parse for a particular sentence

is most likely, because all words must eventually stop taking dependents. However, in the

modified version, the stopping probability is also conditioned on whether or not there is a

previous dependent, so this probability does make a difference.

5.2. DISCRIMINATIVE PARSING 79

Model P R F1 Exact Avg CB 0 CB
test set – length≤ 40

Petrov 2007 – – 88.8 – – –
generative 83.5 82.0 82.8 25.5 1.57 53.4
generative-all 83.6 82.1 82.8 25.2 1.56 53.3
discriminative 85.1 84.5 84.8 29.7 1.41 55.8
feature-based 89.2 88.8 89.0 37.3 0.92 65.1

test set – all sentences
Petrov 2007 – – 88.3 – – –
generative 82.8 81.2 82.0 23.8 1.83 50.4
discriminative 84.2 83.7 83.9 27.8 1.67 52.8
feature-based 88.2 87.8 88.0 35.1 1.15 62.3

Table 5.4: Test set results, training on sentences of length≤ 40 from the PennTreebank.
Thegenerative-allresults were trained on all sentences regardless of length

While the original Eisner algorithm computes locally normalized probabilities for each

attachment decision, our model computes unnormalized scores. From a graphical models

perspective, our parsing model is undirected, while the original model is directed.6 The

score for a particular tree decomposes the same way in our model as in the original Eisner

model, but it is globally normalized instead of locally normalized. Using the inside and

outside scores we can compute partial derivatives for the feature weights, as well as the

value of the normalizing constant needed to determine the probability of a particular parse.

This is done in a manner completely analogous to the constituency parser just described.

Partial derivatives and the function value are all that is needed to find the optimal feature

weights using L-BFGS.7

Features are computed over each attachment and stopping decision, and can be condi-

tioned on the parent, dependent (or none, if it is a stopping decision), direction of attach-

ment, whether there is a previous dependent in that direction, and the words and parts of

speech of the sentence. I used the same features as McDonald et al. (2005b), augmented

with information about whether or not a dependent is the firstdependent (information they

did not have). The unsupervised dependency parsing work of Klein and Manning (2004)

6The dependencies themselves are stilldirectedin both cases, it is just the underlying graphical model
used to compute the likelihood of a parse which changes from adirected model to an undirected model.

7It was computationally feasible to use L-BFGS in this case, because untyped dependency parsing is much
faster than CRF-based parsing.

80 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

Dependency Parsing
Training Testing

Range # Sent Range # Sent ACCURACY

ABC 0–55 1195 56–69 199 83.32%
CNN 0–375 5092 376–437 1521 85.53%
MNB 0–17 509 18–25 245 77.06%
NBC 0–29 552 30–39 149 76.21%
PRI 0–89 1707 90–112 394 87.65%
VOA 0–198 1512 199–264 383 89.17%

Table 5.5: CRF-based dependency parsing results. Performance is measured as unlabeled
attachment accuracy.

similarly conditioned on the presence or absence of a previous dependent.

Experimental results

For the dependency parsing experiments, I used OntoNotes (Release 2.0), as described in

section 2.2.4. I converted the PCFG trees into dependency trees using the Collins head

rules (Collins 2003). For each of the six domains (ABC, CNN, MNB, NBC, PRI, and

VOA), I aimed for an 75/25 data split, but because I divided the data using the provided

sections, this split was fairly rough. The number of training and test sentences for each

domain are specified in the table 5.5, along with the results.

5.2.4 Related work

Previous work on discriminative constituency parsing falls under one of three approaches.

One approach does discriminative reranking of thek-best list of a generative parser, still

usually depending highly on the generative parser score as afeature (Collins 2000, Char-

niak and Johnson 2005). A second group of papers does parsingby a sequence of inde-

pendent, discriminative decisions, either greedily or with use of a small beam (Ratnaparkhi

1997, Henderson 2004).

The present work falls under the third thread of work, where joint inference via dynamic

programming algorithms is used to train models and to attempt to find the globally best

parse. Prior to 2008, work in this context had mainly been limited to use of artificially

5.2. DISCRIMINATIVE PARSING 81

short sentences due to exorbitant training and inference times. The most similar prior

work in this category is the discriminative constituency parser of Johnson (2001), who did

discriminative training of a generative PCFG. The model wasquite similar to this one,

except that it did not incorporate any features and it required the parameters (which were

just scores for rules) to be locally normalized, as with a generatively trained model. Due to

training time, they used the ATIS treebank corpus of air travel reservations, which is much

smaller than even WSJ15, with only 1,088 training sentences, 294 testing sentences, and an

average sentence length of around 11. They found no significant difference in performance

between their generatively and discriminatively trained parsers. There are two probable

reasons for this result. The training set is very small, and it is a known fact that generative

models tend to work better for small datasets and discriminative models tend to work better

for larger datasets (Ng and Jordan 2002). Additionally, they made no use of features, one

of the primary benefits of discriminative learning.

Taskar et al. (2004) took a large margin approach to discriminative learning. They only

reported results on short sentences – they used the PennTreebank, but restricted the cor-

pus to sentences of length 15 and less (WSJ15). More recent isthe work of Turian and

Melamed (2006) and Turian et al. (2007), who also only reported results on WSJ15, and

which improved both the accuracy of Taskar et al. (2004). They define a simple linear

model, use boosted decision trees to select feature conjunctions, and a line search to op-

timize the parameters. They use an agenda parser, and define their atomic features, from

which the decision trees are constructed, over the entire state being considered. While they

make extensive use of features, their setup is much more complex than mine and takes sub-

stantially longer to train – up to 5 days on WSJ15 – while achieving only small gains over

Taskar et al. (2004).

There are two recent exceptions to the trend of only reporting discriminative parsing re-

sults on artificially short sentences. These were both developed at the same time as the work

presented here. The first example is the work of Petrov and Klein (2008), who discrimina-

tively train parameters for a grammar with latent variables, and do not restrict themselves

to short sentences. Following up on their previous work on grammar splitting (Petrov

et al. 2006), they do discriminative parsing with latent variables, which requires them to

optimize a non-convex function. They iteratively refine their grammar, but when judging

82 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

refinements they train the intermediate models discriminatively instead of generatively. In-

stead of using a stochastic optimization technique, they use L-BFGS, but do coarse-to-fine

pruning to approximate their gradients and log-likelihood. Because they were focusing on

grammar splitting they did not employ any features, and onlysmall gains from switching

from generative to discriminative training. It has been shown on other NLP tasks that mod-

eling improvements, such as the switch from generative training to discriminative training,

usually provide much smaller performance gains than the gains possible from good feature

engineering. For example, in Lafferty et al. (2001), when switching from a generatively

trained hidden Markov model (HMM) to a discriminatively trained, linear-chain, condi-

tional random field (CRF) for part-of-speech tagging, theirerror drops only slightly from

5.7% to 5.6%. When they add in only a small set of orthographic features, their CRF error

rate drops considerably more to 4.3%, and their out-of-vocabulary error rate drops by more

than half. This is further supported by Johnson (2001), who saw no parsing gains when

switching from generative to discriminative training, andby Petrov and Klein (2008) who

saw only small gains of around 0.7% for their final model when switching training meth-

ods. The second piece of work, presented in Carreras et al. (2008), is also a CRF-based

discriminative parser, but with several crucial differences. The authors use a different for-

malism, a tree adjoining grammar (TAG), meaning that they decompose trees in a different

manner, and this decomposition determines what pieces of substructure the features are de-

fined over. They also use a dependency parsing model to efficiently prune down the search

space to make training and inference computationally feasible.

There are several other high performing dependency parsers. McDonald et al. (2005b)

used the MIRA algorithm to train a dependency parser using maximum spanning trees. The

MALT parser (Nivre et al. 2006) is a history-based inductivedependency parser which has

been shown to perform well on a variety of languages.

5.3 Nested named entity recognition

Named entity recognition, introduced in section 2.1.1, is the task of finding entities, such

as people and organizations, in text. Frequently, entitiesare nested within each other, such

as Bank of Chinaand University of Washington, both ORGs with nestedLOCs. Nested

5.3. NESTED NAMED ENTITY RECOGNITION 83

entities are also common in biomedical data, where different biological entities of interest

are often composed of one another. In the GENIA corpus (Ohta et al. 2002, Kim et al.

2003), which is labeled with entity types such asPROTEIN and DNA, roughly 17% of

entities are embedded within another entity. In the AnCora corpus of Spanish and Catalan

newspaper text (Martı́ et al. 2007), nearly half of the entities are embedded. However, work

on named entity recognition (NER) has almost entirely ignored nested entities and instead

chosen to focus on the outermost entities.

This omission of nested entities has largely been for practical, not ideological, reasons.

Most corpus designers have chosen to skirt the issue entirely, and have annotated only

the outermost entities. The widely used CoNLL 2003 (Sang andMeulder 2003), MUC-6

(Sundheim 1996), and MUC-7 (Chinchor 1998) NER corpora, composed of British and

American newswire, are all flatly annotated. The GENIA corpus contains nested entities,

but the JNLPBA 2004 shared task (Collier et al. 2004), which utilized the corpus, removed

all embedded entities for the evaluation. To my knowledge, the only shared task which has

included nested entities is the SemEval 2007 Task 9 (Márquez et al. 2007b), which used

a subset of the AnCora corpus. However, in that task, all entities corresponded to a pre-

determined set of part-of-speech tags or noun phrases in theprovided syntactic structure,

and no participant directly addressed the nested nature of the data.

Another reason for the lack of focus on nested NER is technological. The NER task

arose in the context of the MUC workshops, as small chunks which could be identified by

finite state models or gazetteers. This then led to the widespread use of sequence models,

first hidden Markov models, then maximum entropy Markov models (Borthwick 1999,

McCallum et al. 2000), and, more recently, linear chain CRFs(Lafferty et al. 2001). All of

these models suffer from an inability to easily model nestedentities.

This section presents a novel solution to the problem of nested named entity recog-

nition, which directly utilizes the discriminative constituency parser just described. The

model explicitly represents the nested structure, allowing entities to be influenced not just

by the labels of the words surrounding them, as in a CRF, but also by the entities contained

in them, and in which they are contained. Each sentence is represented as a parse tree,

with the words as leaves, and with phrases corresponding to each entity (and a ROOT node

which joins the entire sentence). The trees look just like syntactic constituency trees, such

84 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

as those in the PennTreebank (Marcus et al. 1993), but they tend to be much flatter. Part-

of-speech tags can be included in the tree, and be jointly modeled with the named entities.

Once sentences are converted into parse trees, they are usedas input to train the discrimina-

tive constituency parser described in the previous section. I found that on top-level entities,

the nested NER model does just as well as more conventional methods. When evaluating

on all entities the model does very well, with F-scores ranging from slightly worse than

performance on top-level only, to substantially better than top-level only.

5.3.1 Related work on nested named entity recognition

There is a large body of work on named entity recognition, butvery little of it addresses

nested entities. Early work on the GENIA corpus (Kazama et al. 2002, Tsuruoka and Tsujii

2003) only worked on the innermost entities. This was soon followed by several attempts

at nested NER in GENIA which built hidden Markov models over the innermost named

entities, and then used a rule-based post-processing step to identify the named entities

containing the innermost entities (Shen et al. 2003, Zhang et al. 2004, Zhou et al. 2004).

Zhou (2006) used a more elaborate model for the innermost entities, but then used the

same rule-based post-processing method on the output to identify non-innermost entities.

Gu (2006) focused only on proteins and DNA, by building separate binary SVM classifiers

for innermost and outermost entities for those two classes.

Several techniques for nested NER in GENIA were presented inAlex et al. (2007).

Their first approach was to layer CRFs, using the output of oneas the input to the next.

For inside-out layering, the first CRF would identify the innermost entities, the next layer

would be over the words and the innermost entities to identify second-level entities, etc. For

outside-in layering, the first CRF would identify outermostentities, and then successive

CRFs would identify increasingly nested entities. They also tried a cascaded approach,

with separate CRFs for each entity type. The CRFs would be applied in a specified order,

and then each CRF could utilize features derived from the output of previously applied

CRFs. This technique has the problem that it cannot identifynested entities of the same

type; this happens frequently in the data, such as the nestedPROTEINs at the beginning of

the sentence in figure 5.3. They also tried a joint labeling approach, where they trained a

5.3. NESTED NAMED ENTITY RECOGNITION 85

ROOT

PROT

PROT

NN

PEBP2

PROT

NN

alpha

NN

A1

,

,

PROT

NN

alpha

NN

B1

,

,

CC

and

PROT

NN

alpha

NN

B2

NNS

proteins

VBD

bound

DT

the

DNA

PROT

NN

PEBP2

NN

site

IN

within

DT

the

DNA

NN

mouse

PROT

NN

GM-CSF

NN

promoter

.

.

Figure 5.3: An example of a tree representation over nested named entities. The sentence
is from the GENIA corpus.PROTis short forPROTEIN.

single CRF, but the label set was significantly expanded so that a single label would include

all of the entities for a particular word. Their best resultswere from the cascaded approach.

Byrne (2007) took a different approach, which she used on historical archive text. She

modified the data by concatenating adjacent tokens (up to length six) into potential entities,

and then labeled each concatenated string using the C&C tagger (Curran and Clark 1999).

When labeling a string, the “previous” string was the one-token-shorter string containing

all but the last token of the current string. For single tokens the “previous” token was the

longest concatenation starting one token earlier.

SemEval 2007 Task 9 (Márquez et al. 2007b) included a nestedNER component, as

well as noun sense disambiguation and semantic role labeling. However, the parts of speech

and syntactic tree were given as part of the input, and named entities were specified as

corresponding to noun phrases in the tree, or particular parts of speech. This restriction

substantially changes the task. Two groups participated inthe shared task, but only one

Márquez et al. (2007a) worked on the named entity component. They used a multi-label

AdaBoost.MH algorithm, over phrases in the parse tree which, based on their labels, could

potentially be entities.

Finally, McDonald et al. (2005a) presented a technique for labeling potentially overlap-

ping segments of text, based on a large margin, multi-label classification algorithm. Their

method could be used for nested named entity recognition, but the experiments they per-

formed were on joint (flat) NER and noun phrase chunking.

86 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

DNAparent=ROOT

NNparent=DNA,grandparent=ROOT

mouse

@DNAparent=ROOT,prev=NN,first=PROT

PROTparent=DNA,grandparent=ROOT

NNparent=PROT,grandparent=DNA

GM-CSF

NNparent=DNA,grandparent=ROOT

promoter

Figure 5.4: An example of a subtree after it has been annotated and binarized. Features are
computed over this representation. An @ indicates a chart parser active state (incomplete
constituent).

5.3.2 Nested named entity recognition as parsing

My model for nested NER is quite simple – I represent each sentence as a constituency tree,

with each named entity corresponding to a phrase in the tree,along with a root node which

connects the entire sentence. No additional syntactic structure is represented. I also model

the parts of speech as preterminals, and the words themselves as the leaves. See figure 5.3

for an example of a named entity tree. Each node is then annotated with both its parent

and grandparent labels, which allows the model to learn how entities nest. I binarize the

trees in a right-branching manner, and then build features over the labels, unary rules, and

binary rules. I also use first-order horizontal Markovization, which allows us to retain some

information about the previous node in the binarized rule. See figure 5.4 for an example of

an annotated and binarized subtree. Once each sentence has been converted into a tree, the

trees are used to train a discriminative constituency parser.

It is worth noting that if you use the model on data that does not have any nested entities,

then it is precisely equivalent to a semi-CRF (Sarawagi and Cohen 2004, Andrew 2006),

but with no length restriction on entities. Like a semi-CRF,we are able to define features

over entire entities of arbitrary length, instead of just over a small, fixed window of words

like a regular linear chain CRF.

Part-of-speech tags are modeled jointly with the named entities, though the model also

5.3. NESTED NAMED ENTITY RECOGNITION 87

works without them. Possible part-of-speech tags are determined based on distributional

similarity clusters (described in section 2.4.1; cluster training data for the individual ex-

periments are given in the appropriate sections). I allowedeach word to be labeled with

any part-of-speech tag seen in the data with any other word inthe same cluster. Because

the part-of-speech tags are annotated with the parent (and grandparent) labels, they restrict

what, if any, entity types a word can be labeled with. Many words, such as verbs, cannot

be labeled with any entities. I also limited the grammar based on the rules observed in

the data. The rules whose children include part-of-speech tags restrict the possible pairs of

adjacent tags. Interestingly, the restrictions imposed bythis joint modeling (both observed

word/tag pairs and observed rules) actually results in muchfaster inference (and therefore

faster train and test times) than a model over named entitiesalone, because the space of

possible parse trees has been significantly reduced. This isdifferent from most work on

joint modeling of multiple levels of annotation (includingthe work later in this chapter),

which usually results in significantly slower inference.

The biggest drawback to this model is runtime. The algorithmis O(n3) in sentence

length. Training on all of GENIA took approximately 23 hoursfor the nested model and

16 hours for the semi-CRF. A semi-CRFwith an entity length restriction, or a regular CRF,

would both have been faster. At runtime, the nested model forGENIA tagged about 38

words per second, while the semi-CRF tagged 45 words per second. For comparison, a

first-order linear-chain CRF trained with similar featureson the same data can tag about

4,000 words per second.

5.3.3 Features

When designing features, I first made ones similar to the features typically designed for a

first-order CRF, and then added features which are not possible in a CRF, but are possible

in the enhanced representation. This includes features over entire entities, features which

directly model nested entities, and joint features over entities and parts of speech. When

features are computed over each label, unary rule, and binary rule, the feature function is

aware of the rule span and split.

Each word is labeled with its distributional similarity cluster (distsim), and a string

88 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

Local Features Pairwise Features
labeli distsimi + distsimi−1 + labeli labeli−1 + labeli
wordi + labeli shapei + shapei+1 + labeli wordi + labeli−1 + labeli
wordi−1 + labeli shapei−1 + shapei + labeli wordi−1 + labeli−1 + labeli
wordi+1 + labeli wordi−1 + shapei + labeli wordi+1 + labeli−1 + labeli
distsimi + labeli shapei + wordi+1 + labeli distsimi + labeli−1 + labeli
distsimi−1 + labeli words in a 5 word window distsimi−1 + labeli−1 + labeli
distsimi+1 + labeli prefixes up to length 6 distsimi+1 + labeli−1 + labeli
shapei + labeli suffixes up to length 6 distsimi−1 + distsimi + labeli−1 + labeli
shapei−1 + labeli shapei + labeli−1 + labeli
shapei+1 + labeli shapei−1 + labeli−1 + labeli

shapei+1 + labeli−1 + labeli
shapei−1 + shapei + labeli−1 + labeli
shapei−1 + shapei+1 + labeli−1 + labeli

Table 5.6: The local and pairwise NER features used in all of our experiments. Consult the
text for a full description of all features, which includes feature classes not in this table.

indicating orthographic information (shape) (see section 2.4). Subscripts represent word

position in the sentence. In addition to those below, we include features for each fully

annotated label and rule.

Local named entity features. Local named entity features are over the label for a single

word. They are equivalent to the local features in a linear chain CRF. However, unlike

in a linear chain CRF, if a word belongs to multiple entities (e.g., a word which is both

a LOCATION and ORGANIZATION) then the local features are computed for each entity.

Local features are also computed for words not contained in any entity. Local features are

in table 5.6.

Pairwise named entity features. Pairwise features are over the labels for adjacent words,

and are equivalent to the edge features in a linear chain CRF.They can occur when pairs of

words have the same label, or over entity boundaries where the words have different labels.

Like with the local features, if a pair of words are containedin, or straddle the border of,

multiple entities, then the features are repeated for each.The pairwise features I use are

shown in table 5.6.

5.3. NESTED NAMED ENTITY RECOGNITION 89

Embedded named entity features. Embedded named entity features occur in binary

rules where one entity is the child of another entity. For ourembedded features, we repli-

cated the pairwise features, except that the embedded namedentity was treated as one of

the words, where the “word” (and other annotations) indicates the type of entity, and not the

actual string that is the entity. For instance, in the subtree in figure 5.4, we would compute

wordi+labeli−1+labeli asPROT-DNA-DNAfor i = 18 (the index of the wordGM-CSF).

The normal pairwise feature at the same position would beGM-CSF-DNA-DNA.

Whole entity features. I created four whole entity features: the entire phrase; thepre-

ceding and following word; the preceding and following distributional similarity tags; and

the preceding distributional similarity tag with the following word.

Local part of speech features. I used the same part-of-speech features as in the discrim-

inative constituency parser (seelexicon featuresin table 5.1).

Joint named entity and part of speech features. For the joint features I replicated the

part-of-speech features, but included the parent of the part-of-speech, which either is the

innermost entity type, or would indicate that the word is notin any entities.

5.3.4 GENIA experiments

I performed two sets of experiments to validate my model. Thefirst set, covered in this

section, is over biomedical data, and the second set, covered in the following section, is

over Spanish and Catalan newspaper text. I designed the experiments to show that my

model works just as well as standard models on outermost entities, the typical NER task,

and also works well on nested entities.

Data

I performed experiments on the GENIA corpus, introduced in section 2.2.1. This cor-

pus contains 2000 Medline abstracts (≈500k words), annotated with 36 different kinds of

biological entities, and with part-of-speech tags. Previous NER work using this corpus

90 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

has employed 10-fold cross-validation for evaluation. I wanted to explore different model

variations (e.g., level of Markovization, and different sets of distributional similarity clus-

terings) and feature sets, so I needed to set aside a development set. I split the data by

putting the first 90% of sentences into the training set, and the remaining 10% into the test

set. This is the exact same split used to evaluate part-of-speech tagging in Tsuruoka et al.

(2005). For development I used the first half of the data to train, and the next quarter of

the data to test.8 I made the same modifications to the label set as the organizers of the

JNLPBA 2004 shared task (Collier et al. 2004). They collapsed all DNA subtypes into

DNA; all RNA subtypes into RNA; allPROTEINsubtypes intoPROTEIN; keptCELL LINE

andCELL TYPE; and removed all other entities. However, they also removedall embedded

entities, while I kept them.

As discussed in section 5.3.2, I annotated each word with a distributional similarity

cluster. I used 200 clusters, trained using 200 million words from PubMed abstracts. Dur-

ing development, I found that fewer clusters resulted in slower inference with no improve-

ment in performance.

Experimental setup

I ran several sets of experiments, varying between all entities, or just top-level entities, for

training and testing. As discussed in section 5.3.2, if we train on just top-level entities

then the model is equivalent to a semi-CRF. Semi-CRFs are state-of-the-art and provide a

good baseline for performance on just the top-level entities. Semi-CRFs are (theoretically)

strictly better than regular, linear chain CRFs, because they can use all of the features

and structure of a linear chain CRF, but also utilize whole-entity features (Andrew 2006). I

also evaluated the semi-CRF model on all entities. This may seem like an unfair evaluation,

because the semi-CRF has no way of recovering the nested entities, but I wanted to illustrate

just how much information is lost when using a flat representation.

8This split may seem strange: I had originally intended a 50/25/25 train/dev/test split, until I found the
previously used 90/10 split.

5.3. NESTED NAMED ENTITY RECOGNITION 91

GENIA – Testing on All Entities

Nested NER Model Semi-CRF Model
Test (train on all entities) (train on top-level entities)

Entities Prec Recall F1 Prec Recall F1
Protein 3034 79.04 69.22 73.80 78.63 64.04 70.59
DNA 1222 69.61 61.29 65.19 71.62 57.61 63.85
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 444 73.82 56.53 64.03 76.59 59.68 67.09
Cell Type 599 68.77 65.44 67.07 72.12 59.60 65.27
Overall 5402 75.39 65.90 70.33 76.17 61.72 68.19

Table 5.7: Named entity results on GENIA, evaluating on all entities.

GENIA – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Protein 2592 78.24 72.42 75.22 76.16 72.61 74.34
DNA 1129 70.40 64.66 67.41 71.21 62.00 66.29
RNA 103 86.08 66.02 74.73 79.27 63.11 70.27
Cell Line 420 75.54 58.81 66.13 76.59 63.10 69.19
Cell Type 537 69.36 70.39 69.87 71.11 65.55 68.22
Overall 4781 75.22 69.02 71.99 74.57 68.27 71.28

Table 5.8: Named entity results on GENIA, evaluating on onlytop-level entities.

Results

Named entity results when evaluating on all entities are shown in table 5.7 and when eval-

uating on only top-level entities are shown in table 5.8. Thenested model outperforms the

flat semi-CRF on both top-level entities and all entities.

While not my main focus, I also evaluated the models on parts of speech. The model

trained on just top level entities achieved POS accuracy of 97.37%, and the one trained on

all entities achieved 97.25% accuracy. The GENIA tagger (Tsuruoka et al. 2005) achieves

98.49% accuracy using the same train/test split.

92 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

Additional JNLPBA 2004 experiments

Because I could not directly compare my results on the NER portion of the GENIA corpus

with any other work, I also evaluated on the JNLPBA corpus. This corpus was used in a

shared task for the BioNLP workshop at Coling in 2004 (Collier et al. 2004). They used the

entire GENIA corpus for training, and modified the label set as discussed in section 5.3.4.

They also removed all embedded entities, and kept only the top-level ones. They then

annotated new data for the test set. This dataset has no nested entities, but because the

training data is GENIA I can still train my model on the data annotated with nested entities,

and then evaluate on their test data by ignoring all embeddedentities found by my named

entity recognizer. This experiment allows me to show that mynamed entity recognizer

works well on top-level entities, by comparing it with priorwork. The model also produces

part-of-speech tags, but the test data is not annotated withpart-of-speech tags, so I cannot

give part-of-speech tagging results on this dataset.

One difficulty I had with the JNLPBA experiments was with tokenization. The version

of GENIA distributed for the shared task is tokenized differently from the original GENIA

corpus, but I needed to train on the original corpus as it is the only version with nested

entities. I tried my best to retokenize the original corpus to match the distributed data, but

did not have complete success. It is worth noting that the data is actually tokenized in a

manner which allows a small amount of “cheating.” Normally,hyphenated words, such

asLPS-induced, are tokenized as one word. However, if the portion of the word before

the hyphen is in an entity, and the part after is not, such asBCR-induced, then the word

is split into two tokens:BCRand-induced. Therefore, when a word starts with a hyphen

it is a very strong indicator that the prior word is the last word of an entity. Because the

train and test data for the shared task do not contain nested entities, fewer words are split in

this manner than in the original data. I did not intentionally exploit this fact in my feature

design, but it is probable that some of the orthographic features “learned” this fact anyway.

This anomaly probably harmed our results overall, because some hyphenated words, which

straddled boundaries in nested entities, and would have been split in the original corpus

(and were split in our training data), were not split in the test data, prohibiting our model

from properly identifying them.

5.3. NESTED NAMED ENTITY RECOGNITION 93

JNLPBA 2004 – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model Zhou & Su (2004)
Test (train on all entities) (train top-level entities)

Entities Prec Recall F1 Prec Recall F1 Prec Recall F1
Protein 4944 67.0 74.6 70.6 68.2 62.7 65.3 69.0 79.2 73.8
DNA 1030 63.0 66.5 64.7 65.5 52.2 58.1 66.8 73.1 69.8
RNA 115 63.1 60.9 62.0 64.6 61.7 63.1 64.7 63.6 64.1
Cell line 487 49.9 60.8 54.8 49.6 52.2 50.9 53.9 65.8 59.2
Cell type 1858 75.1 65.3 69.9 73.3 55.8 63.4 78.1 72.4 75.1
Overall 8434 66.8 70.6 68.6 67.5 59.3 63.1 69.4 76.0 72.6

Table 5.9: Named entity results on the JNLPBA 2004 shared task data. Zhou and Su (2004)
was the best system at the shared task, and is still state-of-the-art on the dataset.

For this experiment, I retrained my model on the entire, retokenized, GENIA corpus.

I also retrained the distributional similarity model on theretokenized data. Once again, I

trained one model on the nested data, and one on just the top-level entities, so that I can

compare performance of both models on the top-level entities. Full results are shown in ta-

ble 5.9, along with the current state-of-the-art (Zhou and Su 2004). Besides the tokenization

issues harming our performance, Zhou and Su (2004) also employed clever post-processing

to improve their results.

5.3.5 AnCora experiments

Data

I performed experiments on the NER portion of AnCora (Martı́et al. 2007), introduced in

section 2.2.1. Recall that this corpus has Spanish and Catalan portions, and I evaluated on

both. The data is also annotated with part-of-speech tags, parse trees, semantic roles and

word senses. The corpus annotators made a distinction betweenstrongandweakentities.

They definestrongnamed entities as “a word, a number, a date, or a string of words that

refer to a single individual entity in the real world.” If a strong NE contains multiple words,

it is collapsed into a single token.Weaknamed entities, “consist of a noun phrase, being it

94 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

simple or complex” and must contain astrongentity.9 Figure 2.4 shows an example from

the corpus with both strong and weak entities. The entity types present arePERSON, LO-

CATION, ORGANIZATION, DATE, NUMBER, andOTHER. Weak entities are very prevalent;

47.1% of entities are embedded.

Experimental setup

The part-of-speech tags provided in the data include detailed morphological information,

using a similar annotation scheme to the Prague TreeBank (Hana and Hanová 2002). There

are around 250 possible tags, and experiments on the development data with the full tagset

where unsuccessful. I removed all but the first two characters of each POS tag, resulting

in a set of 57 tags which more closely resembles that of the PennTreebank (Marcus et al.

1993). All reported results use this modified version of the POS tag set.

The model took only the words as input, none of the extra annotations. For both lan-

guages I trained a 200 cluster distributional similarity model over the words in the corpus.

I performed the same set of experiments on AnCora as I did on GENIA.

Results and discussion

The full results for Spanish when testing on all entities areshown in table 5.10, and for only

top-level entities are shown in table 5.11. For part-of-speech tagging, the nested model

achieved 95.93% accuracy, compared with 95.60% for the flatly trained model. The full

results for Catalan when testing on all entities are shown intable 5.12, and for only top-

level entities are shown in table 5.13. Part-of-speech tagging results were even closer on

Catalan: 96.62% for the nested model, and 96.59% for the flat model.

It is not surprising that the models trained on all entities do significantly better than

the flatly trained models when testing on all entities. The story is a little less clear when

testing on just top-level entities. In this case, the nestedmodel does 4.38% better than

the flat model on the Spanish data, but 2.45% worse on the Catalan data. But, the overall

picture is the same as for GENIA: modeling the nested entities does not, on average, reduce

9Arguably, this represents a misunderstanding of the term “namedentity”, and weak named entities should
just be termedentitiesor referential expressions.

5.3. NESTED NAMED ENTITY RECOGNITION 95

AnCora Spanish – Testing on All Entities

Nested NER Model Semi-CRF Model
Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Person 1778 65.29 78.91 71.45 75.10 32.73 45.59
Organization 2137 86.43 56.90 68.62 47.02 26.20 33.65
Location 1050 78.66 46.00 58.05 84.94 13.43 23.19
Date 568 87.13 83.45 85.25 79.43 29.23 42.73
Number 991 81.51 80.52 81.02 66.27 28.15 39.52
Other 512 17.90 64.65 28.04 10.77 16.60 13.07
Overall 7036 62.38 66.87 64.55 51.06 25.77 34.25

Table 5.10: Named entity results on the Spanish portion of AnCora, evaluating on all enti-
ties.

AnCora Spanish – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
Test (train on all entities) (train on top-level entities)

Entities Precision Recall F1 Precision Recall F1
Person 1050 57.42 66.67 61.70 71.23 52.57 60.49
Organization 1060 77.38 40.66 53.31 44.33 49.81 46.91
Location 279 72.49 36.04 48.15 79.52 24.40 37.34
Date 290 72.29 57.59 64.11 71.77 51.72 60.12
Number 519 57.17 49.90 53.29 54.87 44.51 49.15
Other 541 11.30 38.35 17.46 9.51 26.88 14.04
Overall 3739 50.57 49.72 50.14 46.07 44.61 45.76

Table 5.11: Named entity results on the Spanish portion of AnCora, evaluating on only
top-level entities.

96 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

AnCora Catalan – Testing on All Entities

Nested NER Model Semi-CRF Model
Test (train all entities) (train top-level entities only)

Entities Precision Recall F1 Precision Recall F1
Person 1303 89.01 50.35 64.31 70.08 46.20 55.69
Organization 1781 68.95 83.77 75.64 65.32 41.77 50.96
Location 1282 76.78 72.46 74.56 75.49 36.04 48.79
Date 606 84.27 81.35 82.79 70.87 38.94 50.27
Number 1128 86.55 83.87 85.19 75.74 38.74 51.26
Other 596 85.48 8.89 16.11 64.91 6.21 11.33
Overall 6696 78.09 68.23 72.83 70.39 37.60 49.02

Table 5.12: Named entity results on the Catalan portion of AnCora, evaluating on all enti-
ties.

AnCora Catalan – Testing on Top-level Entities Only

Nested NER Model Semi-CRF Model
Test (train all entities) (train top-level entities only)

Entities Precision Recall F1 Precision Recall F1
Person 801 67.44 47.32 55.61 62.63 67.17 64.82
Organization 899 52.21 74.86 61.52 57.68 73.08 64.47
Location 659 54.86 67.68 60.60 62.42 57.97 60.11
Date 296 62.54 66.55 64.48 59.46 66.89 62.96
Number 528 62.35 70.27 66.07 63.08 68.94 65.88
Other 342 49.12 8.19 14.04 45.61 7.60 13.03
Overall 3525 57.67 59.40 58.52 60.53 61.42 60.97

Table 5.13: Named entity results on the Catalan portion of AnCora, evaluating on only
top-level entities.

5.4. JOINT PARSING AND NAMED ENTITY RECOGNITION 97

performance on the top-level entities, but a nested entity model does substantially better

when evaluated on all entities.

5.4 Joint parsing and named entity recognition

In this section, I will present a joint model of syntax and named entities. It will be based on

the discriminative constituency parser earlier in this chapter, and will use the same named-

entity-as-parsing representation from the previous section. As the field moves progressively

towards higher-level tasks, like machine translation and question answering, joint modeling

will become increasingly important, due to the need for complete, consistent, and coherent

analysis of texts.

When constructing a joint model of parsing and named entity recognition, it makes

sense to think about how the two distinct levels of annotation may help one another. Ideally,

a named entity should correspond to a phrase in the constituency tree. However, parse trees

will occasionally lack some explicit structure, such as with right branching noun phrases.

In these cases, a named entity may correspond to a contiguousset of children within a

subtree of the entire parse. The one thing that should never happen is for a named entity

span to have crossing brackets with any spans in the parse tree.

For named entities, the joint model should help with boundaries. The internal structure

of the named entity, and the structural context in which it appears, can also help with

determining the type of entity. Finding the best parse for a sentence can be helped by the

named entity information in similar ways. Because named entities shouldcorrespond to

phrases, information about them should lead to better bracketing. Also, knowing that a

phrase is a named entity, and the type of entity, may help in getting the structural context,

and internal structure, of that entity correct.

5.4.1 Joint representation

After modifying the OntoNotes dataset to ensure consistency, which was discussed in sec-

tion 2.2.4 and appendix A, I augment the parse tree with namedentity information, for

98 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

NP

DT

the

NP

NNP

[District

PP

IN

of

NP

NNP

Columbia]GPE

NP

DT

the

NamedEntity-GPE*

NP-GPE

NNP-GPE

District

PP-GPE

IN-GPE

of

NP-GPE

NNP-GPE

Columbia

(a) before (b) after

Figure 5.5: An example of a (sub)tree which is modified for input to our learning algorithm.
Starting from the normalized tree (a) (discussed in section2.2.4), a new NAMEDENTITY

node (b) is added, so that the named entity corresponds to a single phrasal node. That node,
and its descendents, have their labels augmented with the type of named entity. The* on
the NAMEDENTITY node indicates that it is the root of the named entity.

input to the learning algorithm. In the cases where a named entity corresponds to multi-

ple contiguous children of a subtree, I add a new NAMEDENTITY node, which is the new

parent to those children. Now, all named entities correspond to a single phrasal node in

the entire tree. The labels of the phrasal node and its descendants are then augmented with

the type of named entity. I also distinguish between the rootnode of an entity, and the de-

scendant nodes. See figure 5.5 for an illustration. This representation has several benefits,

outlined below.

Nested entities

The OntoNotes data does not contain any nested entities. Consider the named entity por-

tions of the rules seen in the training data. These will look,for instance, likeNONE→

NONE PERSON, and ORGANIZATION → ORGANIZATION ORGANIZATION. Because we

only allow named entity derivations which we have seen in thedata, and the data does not

contain any nested entities, nested entities are impossible. However, as discussed in sec-

tion 5.3, there is clear benefit in a representation allowingnested entities. For example, it

5.4. JOINT PARSING AND NAMED ENTITY RECOGNITION 99

would be beneficial to recognize that theUnited States Supreme Courtis a anORGANIZA-

TION, but that it also contains a nestedGEO-POLITICAL ENTITY (GPE). Fortunately, if we

encounter data which has been annotated with nested entities, this representation will be

able to handle them in a natural way. In the given example, thederivation would include

ORGANIZATION → GPE ORGANIZATION. This information will be helpful for correctly

labeling previously unseen nested entities such asNew Jersey Supreme Court, because the

model will learn how nested entities tend to decompose. So, if the data were further aug-

mented to include nested entity information, this representation would already work with

it and be able to take advantage of this additional information.

Feature representation for named entities

As discussed in chapter 3, named entity recognizers are usually constructed using sequence

models, with linear-chain CRFs being the most common. Whileit is possible for CRFs to

have links that are longer distance than just between adjacent words, most of the benefit is

from local features, over the words and labels themselves, and from features over adjacent

pairs of words and labels. My joint representation allows usto port both types of features

from such a named entity recognizer. In the nested NER work inthe previous section,

it is fairly straightforward to see how these features can berepresented, since the named

entity trees only contain nodes for named entities, and there are not syntax-based nodes

to potentially complicate things. Fortunately, with one minor exception, the joint model

can still represent all linear-chain CRF-style features. The local features can simply be

computed at the same time as the features over parts of speechare computed. These are

the leaves of the tree, when only the named entity for the current word is known.10 The

pairwise features, over adjacent labels, are computed at the same time as features over

binary rules. Binarization of the tree is necessary for efficient computation, so the trees

consist solely of unary and binary productions. Because of this, for all pairs of adjacent

words within an entity, there will be a binary rule applied where one word will be under

the left child and the other word will be under the right child, and so we will know if

those two words have the same entity type, or if they straddlethe boundary of an entity.

10Note that features can include information about otherwords, because the entire sentence is observed.
The featurescannotinclude information about the labels of those words.

100 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

Therefore, we compute features over adjacent words/labelswhen computing the features

for the binary rule which joins them. The one exception is adjacent non-entity words.

When evaluating a binary rule application, where neither child is an entity, this does not

necessarily mean that the rightmost descendant of the left child (or the leftmost descendant

of the right child) is not part of an entity. Thankfully, mostof the beneficial pairwise

features are over entity boundaries, and, to a lesser extent, adjacent words within an entity.

From a practical perspective, losing boundary features over adjacent non-entities is not a

problem.

5.4.2 Grammar smoothing

When building my discriminative constituency parser, the grammar (recall that this is the

set of allowed rules) was determined by reading off the rulesused in the training data,

as is common practice. However, because of the addition of named entity annotations to

grammar rules, if we use the grammar as read off the treebank we will encounter problems

with sparseness which severely degrade performance. This degradation occurs because of

CFG rules which only occur in the training data augmented with named entity information,

and because of rules which only occur without the named entity information. To combat

this problem, I added extra rules, unseen in the training data.

Augmenting the grammar

For every rule encountered in the training data which has been augmented with named

entity information, extra copies of that rule are added to the grammar. I add one copy with

all of the named entity information stripped away, and another copy for each other entity

type, where the named entity augmentation has been changed to the other entity type.

These additions help, but they are not sufficient. Most entities correspond to noun

phrases, so I took all rules which had an NP as a child, and madecopies of that rule where

the NP was augmented with each possible entity type. These grammar additions sufficed

to improve overall performance.

5.4. JOINT PARSING AND NAMED ENTITY RECOGNITION 101

Augmenting the lexicon

The lexicon is augmented in a similar manner to the rules. Forevery part-of-speech tag

seen with a named entity annotation, I also add that tag with no named entity information,

and a version which has been augmented with each type of namedentity.

It would be computationally infeasible to allow any word to have any part-of-speech

tag. This is because the grammar and lexicon together determine the set of possible parse

trees for a given sentence. Allowing a word to have more possible parts of speech, means

that more grammar rules can cover that word, which then meansthat more parse trees are

possible over that sentence. Pruning the lexicon and grammar can have significant effects of

parsing time. I therefore limit the allowed part-of-speechtags for common words based on

the tags they have been observed with in the training data. I also augment each word with

a distributional similarity tag, which I discuss in greaterdepth in section 2.4.1, and allow

tags seen with other words which belong to the same distributional similarity cluster. When

deciding what tags are allowed for each word, I initially ignore named entity information.

Once allowed base tags are determined for a word, we also allow that tag, augmented with

any type of named entity, if the augmented tag is present in the lexicon.

5.4.3 Features

Features are defined over both the parse rules and the named entities. Most of the features

are over one or the other aspects of the structure, but not both.

Both the named entity and parsing features utilize the wordsof the sentence, as well as

an orthographicword shapeand a distributional similarity cluster, which were described in

section 2.4.

For the named entity features, I used a fairly standard feature set, the same as those

used in section 5.3 (see table 5.6). For parse features, I used the exact same features as

those in section 5.2 (see table 5.1). When computing those features, all of the named entity

information was removed from the rules, so that these features were just over the parse

information and not at all over the named entity information.

Lastly, we have the joint features. I included as features each augmented rule and each

augmented label. This allowed the model to learn that certain types of phrasal nodes, such

102 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

Parse Labeled Bracketing Named Entities Training
Precision Recall F1 Precision Recall F1 Time

ABC Just Parse 70.2% 70.1%70.2% – 25m
Just NER – 76.8% 72.3% 74.5%
Joint Model 69.8% 70.2% 70.0% 77.7% 72.3%74.9% 45m

CNN Just Parse 76.9% 77.1% 77.0% – 16.5h
Just NER – 75.6% 76.0% 75.8%
Joint Model 77.4% 78.0% 77.7% 78.7% 78.7% 78.7% 31.7h

MNB Just Parse 64.0% 67.1% 65.5% – 12m
Just NER – 72.3% 54.6% 62.2%
Joint Model 63.8$ 67.5% 65.6% 71.4% 62.2% 66.5% 19m

NBC Just Parse 59.7% 63.7% 61.6% – 10m
Just NER – 67.5% 60.7% 63.9%
Joint Model 60.7% 65.4% 62.9% 71.4% 64.8% 68.0% 17m

PRI Just Parse 76.2% 76.5% 76.4% – 2.4h
Just NER – 82.1% 84.9% 83.4%
Joint Model 76.9% 78.0% 77.4% 86.1% 86.6% 86.4% 4.2h

VOA Just Parse 76.6% 75.7% 76.2% – 2.3h
Just NER – 82.8% 76.0% 79.2%
Joint Model 77.6% 77.5% 77.5% 88.4% 88.0% 88.2% 4.4h

Table 5.14: Full parse and NER results for the six datasets. Parse trees were evaluated
using evalB, and named entities were scored using macro-averaged F-measure (conlleval).

as NPs are more likely to be named entities, and that certain entities were more likely to

occur in certain contexts and have particular types of internal structure.

5.4.4 Experiments

I ran the joint model on the six OntoNotes datasets describedin section 2.2.4, using sen-

tences of length 40 and under (approximately 200,000 annotated English words, consider-

ably smaller than the PennTreebank).

For comparison, I also trained the parser without the named entity information (and

omitted the NAMEDENTITY nodes), and a linear chain CRF using just the named entity in-

formation. Both the baseline parser and CRF were trained using the exact same features as

the joint model, and all were optimized using stochastic gradient descent (see section 2.3.2).

The full results can be found in table 5.14. Parse trees were scored usingevalB(the ex-

tra NAMEDENTITY nodes were ignored when computing evalB for the joint model), and

5.4. JOINT PARSING AND NAMED ENTITY RECOGNITION 103

named entities were scored using entity F-measure (see section 2.1.1).11

While the main benefit of the joint model is the ability to get aconsistent output over

both types of annotations, I also found that modeling the parse and named entities jointly

resulted in improved performance on both. When looking at these numbers, it is important

to keep in mind that the sizes of the training and test sets aresignificantly smaller than the

PennTreebank. The largest of the six datasets, CNN, has about one seventh the amount

of training data as the PennTreebank, and the smallest, MNB,has around 500 sentences

from which to train. Parse performance was improved by the joint model for five of the

six datasets, by up to 1.6% F1. Looking at the parsing improvements on a per-label basis,

the largest gains came from improved identification of NML (nominal, used to represent

left-branching noun phrases) constituents, from an F-score of 45.9% to 57.0% (on all the

data combined, for a total of 420 NML constituents). This label was added in the new

treebank annotation conventions, so as to identify internal left-branching structure inside

previously flat NPs (noun phrases). To my surprise, performance on NPs only increased

by 1%, though over 12,949 constituents, for the largest improvement in absolute terms.

The second largest gain was on PPs (prepositional phrases), which improved by 1.7% over

3,775 constituents. I tested the significance of our results (on all the data combined) using

Dan Bikel’s randomized parsing evaluation comparator12 and found that both the precision

and recall gains were significant atp≤ 0.01.

Much greater improvements in performance were seen on namedentity recognition,

where most of the domains saw improvements in the range of 3−4%, with performance

on theVOAdata improving by nearly 9%, which is a 43% reduction in error. There was no

clear trend in terms of precision versus recall, or the different entity types. The first place

to look for improvements is with the boundaries for named entities. Once again looking at

all of the data combined, in the baseline model there were 203entities where part of the

11Sometimes the parser would be unable to parse a sentence (less than 2% of sentences), due to restrictions
in part of speech tags. Because the underlying grammar (ignoring the additional named entity information)
was the same for both the joint and baseline parsers, it is thecase that whenever a sentence is unparseable by
either the baseline or joint parser, it is in fact unparseable by both of them, and would affect the parse scores
of both models equally. However, the CRF is able to named entity tag any sentence, so these unparseable
sentences had an effect on the named entity score. To combat this, I fell back on the baseline CRF model to
get named entity tags for unparseable sentences.

12Available athttp://www.cis.upenn.edu/ dbikel/software.html

104 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

entity was found, but one or both boundaries were incorrectly identified. The joint model

corrected 72 of those entities, while incorrectly identifying the boundaries of 37 entities

which had previously been correctly identified. In the baseline NER model, there were

243 entities for which the boundaries were correctly identified, but the type of entity was

incorrect. The joint model corrected 80 of them, while changing the labels of 39 entities

which had previously been correctly identified. Additionally, 190 entities were found that

the baseline model had missed entirely, and 68 entities werelost. I tested the statistical

significance of the gains (of all the data combined) using thesame sentence-level, stratified

shuffling technique as Bikel’s parse comparator and found that both precision and recall

gains were significant atp < 10−4.

An example from the data where the joint model helped improveboth parse structure

and named entity recognition is shown in figure 5.6. The output from the individual models

is shown in part (a), with the output from the named entity recognizer shown in brackets on

the words at leaves of the parse. The output from the joint model is shown in part (b), with

the named entity information encoded within the parse. In this example, the named entity

Egyptian Islamic Jihadhelped the parser to get its surrounding context correct, because

it is improbable to attach a PP headed bywith to anorganization. At the same time, the

surrounding context helped the joint model correctly identify Egyptian Islamic Jihadas an

organizationand not aperson. The baseline parser also incorrectly added an extra level

of structure to the person nameOsama Bin Laden, while the joint model found the correct

structure.

One significant limitation of this method is the training time. The training times for the

individual corpora are also given in table 5.14, and you can see that training the joint model

took approximately twice as long as training the parse-onlymodel, which was already quite

expensive. While I would have liked to evaluate the full joint model on all of OntoNotes

combined, it would have taken several months and so was not really feasible. Hopefully as

computers get faster, this drawback will be mediated.

5.4. JOINT PARSING AND NAMED ENTITY RECOGNITION 105

VP

VBD

were

NP

NP

NNS

members

PP

IN

of

NP

NP

the [Egyptian Islamic Jihad]PER

PP

IN

with

NP

NP

NNS

ties

PP

TO

to

NP

NML

NNP

[Osama

NNP

Bin

NNP

Laden]PER

(a) Output from the single-task model

NP

NP

NNS

members

PP

IN

of

NP-ORG*

the Egyptian Islamic Jihad

PP

IN

with

NP

NP

NNS

ties

PP

TO

to

NP-PER*

NNP-P

Osama

NNP-P

Bin

NNP-P

Laden

(b) Output from the joint parse and named entity model

Figure 5.6: An example for which the joint model helped with both parse structure and
named entity recognition. The individual models (a) incorrectly attach the PP, labelEgyp-
tian Islamic Jihadas aperson, and incorrectly add extra internal structure toOsama Bin
Laden. The joint model (b) gets both the structure and the named entity correct.

106 CHAPTER 5. JOINT DISCRIMINATIVE LEARNING

5.4.5 Related work on joint modeling

A pioneering antecedent for this work is Miller et al. (2000), who trained a Collins-style

generative parser (Collins 1997) over a syntactic structure augmented with thetemplate

entityandtemplate relationsannotations for the MUC-7 shared task. Their sentence aug-

mentations were similar to ours, but they did not make use of features due to the generative

nature of their model. This approach was not followed up on inother work, presumably be-

cause around this time nearly all the activity in named entity and relation extraction moved

to the use of discriminative sequence models, which allowedthe flexible specification of

feature templates that are very useful for these tasks. The present model is able to bring

together both these lines of work, by integrating the strengths of both approaches. The task

was also a bit different, as template entity extraction consists of filling in a template, as

opposed to named entity recognition, which requires marking the entities within the text.

There have been other attempts in NLP to jointly model multiple levels of structure,

with varying degrees of success. Most work on joint parsing and semantic role labeling

(SRL) has been disappointing, despite obvious connectionsbetween the two tasks. Sutton

and McCallum (2005) attempted to jointly model PCFG parsingand SRL for the CoNLL

2005 shared task, but were unable to improve performance on either task. The CoNLL

2008 shared task (Surdeanu et al. 2008) was joint dependencyparsing and SRL, but the

top performing systems decoupled the tasks, rather than building joint models. Zhang and

Clark (2008) successfully built a joint model of Chinese word segmentation and parts of

speech using a single perceptron.

5.5 Summary

In this chapter, I presented two discriminative parsers, and then used them to build models

of nested named entities and a joint model of parsing and named entity recognition. The

discriminative constituency parser is a feature-rich CRF-based parser, and was the first

such parser to scale up to non-toy sentences. I showed substantial improvements over a

generative baseline, and found that about a third of the gains were a result of switching from

generative to discriminative training, and two thirds werefrom the inclusion of features.

5.5. SUMMARY 107

This discriminative constituency parser was then used to build a model of nested named

entities. It is very natural to model nested entities using aparse tree, since once a root node

is added, the nested structure is in fact a parse tree. The parser makes it easy to utilize all

of the linear-chain CRF features which have been developed for NER over the past decade.

I performed experiments on biomedical data, and on Spanish and Catalan newspaper text.

The experiments showed that the nested model did not (on average) increase or decrease

performance on the top-level entities (the standard NER task), while still doing quite well

on the nested entities, which most prior work has ignored. One difficulty here is the lack of

available data for nested NER; it would be nice to see some English newswire or web data

which has been annotated to include nested entities and not just the top level ones.

Finally, I presented a full joint model of parsing and named entity recognition. This

model also used the parse as its backbone, and represented named entities as nodes in the

tree. I showed that by modeling these different types of information together, we can get

modest parsing gains and large NER improvements.

Chapter 6

Hierarchical joint learning

6.1 Introduction

The previous chapter culminated in a joint model of parsing and named entity recognition,

and the model presented required data which had been jointlyannotated with both kinds of

structure. However, it is common to have multiple, related tasks, each of which have their

own separate annotated corpora. This setup is calledmulti-task learning, and in this chapter

I show how to use a hierarchical prior to do multi-task learning for two very different use

cases.

In the experimental results on joint modelling in the previous chapter, I showed that the

resulting models produce more consistent outputs, and thatperformance improves across

all aspects of the joint structure. However, one significantlimitation for many joint models

is the lack of jointly annotated data. The previously described joint model of parsing and

named entity recognition had small gains on parse performance and moderate gains on

named entity performance, when compared with single-task models trained on the same

data. However, the performance of this model, trained usingthe OntoNotes corpus, fell

short of separate parsing and named entity models trained onlarger corpora, annotated

with only one type of information. By using a hierarchical prior to link the feature weights

for related tasks, we can learn high-quality joint models with smaller quantities of jointly-

annotated data that has been augmented with larger amounts of single-task annotated data.

To my knowledge this work is the first attempt at such a task. The hierarchical prior links

108

6.1. INTRODUCTION 109

a joint model trained on jointly-annotated data with other single-task models trained on

single-task annotated data. The key to making this work is for the joint model to share

some features with each of the single-task models. Then, thesingly-annotated data can be

used to influence the feature weights for the shared featuresin the joint model. This is an

important contribution, because it provides all the benefits of joint modeling, but without

the high cost of jointly annotating large corpora. I appliedthe hierarchical joint model

to parsing and named entity recognition, and it reduced errors by over 20% on both tasks

when compared to a joint model trained on only the jointly annotated data.

The second use case for hierarchical multi-task learning ismulti-domain learning,

which is very similar to domain adaptation, an important NLPtask. The only difference is

that in multi-domain learning the focus is on improving performance acrossall domains,

while in domain adaptation there is a distinction betweensourcedata andtargetdata, and

the goal is to improve performance on the target data. The word domainis used here some-

what loosely: it may refer to a topical domain or to distinctions that linguists might term

mode (speech versus writing) or register (formal written prose versus SMS communica-

tions). For example, one may have a large amount of parsed newswire, and want to use it

to augment a much smaller amount of parsed e-mail, to build a higher quality parser for

e-mail data. I also consider the extension to the task where the annotation is not the same,

but is consistent across domains (that is, some domains may be annotated with more in-

formation than others). With named entity recognition, it is not uncommon to successfully

identify an entity, but mislabel the type of entity. Using data from another domain that has

been labeled with additional entity types not present in theoriginal data may help prevent

misidentifying entities in the original data which are of a type only labeled in the other

datasets.

This problem is important because it is omnipresent in real life natural language pro-

cessing tasks. Annotated data is expensive to produce and limited in quantity. Typically,

one may begin with a considerable amount of annotated newswire data, some annotated

speech data, and a little annotated e-mail data. It would be most desirable if the aggregated

training data could be used to improve the performance of a system on each of these do-

mains. I apply this model to two previously discussed tasks,named entity recognition and

dependency parsing, and in both cases found significant improvements when compared to

110 CHAPTER 6. HIERARCHICAL JOINT LEARNING

strong baselines.

In this chapter I will first cover the fundamentals of multi-task learning with a hierarchi-

cal prior. I will then ground the technique with respect to each individual task, and provide

experimental results for both.

6.2 Related work

My domain adaptation model is a generalization of the model presented in (Daumé III

2007), which is discussed in more detail in section 6.3.4. Another similar piece of domain

adaptation work is Chelba and Acero (2004), who also modify their prior. Their work is

limited to two domains, a source and a target, and their algorithm has a two stage pro-

cess: First, train a classifier on the source data, and then use the learned weights from that

classifier as the mean for a Gaussian prior when training a newmodel on just the target

data.

Daumé III and Marcu (2006) also took a Bayesian approach to domain adaptation, but

structured their model in a very different way. In their model, it is assumed that each

datum within a domain is either a domain-specific datum, or a general datum, and then

domain-specific and general weights were learned. Whether each datum is domain-specific

or general is not known, so they developed an EM-based algorithm for determining this

information, while simultaneously learning the feature weights. Their model had good

performance, but came with a 10 to 15 times slowdown at training time. My slowest de-

pendency parser took four days to train, making this model close to infeasible for learning

on that data.

Both tasks addressed in this chapter can be viewed as instances ofmulti-task learning,

a machine learning paradigm in which the objective is to simultaneously solve multiple,

related tasks for which you have separate labeled training data. There has not been much

work on multi-task learning in the NLP community; in addition to the domain adaptation

work of Daumé III (2007), described above, Ando and Zhang (2005) utilized a multi-task

learner within their semi-supervised algorithm to learn feature representations which were

useful across a large number of related tasks. Outside of theNLP community, Elidan et al.

(2008) used an undirected Bayesian transfer hierarchy to several tasks, including jointly

6.3. HIERARCHICAL PRIORS FOR MULTI-TASK LEARNING 111

modeling the shapes of multiple mammal species and a text classification task. Like the

work presented here, they also used pointwise estimation onthe parameters. Evgeniou et al.

(2005) applied a hierarchical prior to modeling exam scoresof students. Other instances of

multi-task learning include (Baxter 1997, Caruana 1997, Yuet al. 2005, Xue et al. 2007).

For a more general discussion of hierarchical models, we direct the reader to Chapter 5 of

Gelman et al. (2003) and Chapter 12 of Gelman and Hill (2006).

6.3 Hierarchical priors for multi-task learning

In this section I will cover the general technique behind both of my hierarchical joint learn-

ing models, as the underlying technology is identical in both cases. The only requirement

for using this technique is that you have multiple base models which share some subset of

features with one another. In the first case, those base models are a joint parsing and NER

model, and then single-task models for both parsing and NER.In the second case, those

base models are identical named entity (or dependency parsing) models where each base

model is trained on data from a different domain. I will discuss the details of both of these

cases in subsequent sections. At times when it helps to have an example I will concretize

the general model using the case of joint parsing and NER.

6.3.1 Intuitive overview

As discussed, we have multiple related base models (and their corresponding training data

sets). The key to the hierarchical model is that each of the base models have some features

in common with some of the other base models, though they can also have some features

which are only present in one of the base models. Each model has its own set of parameters

(feature weights). However, parameters for the features which are shared between the

different base models are able to influence one another via a hierarchical prior. This prior

encourages the learned weights for the different models to be similar to one another. After

training has been completed, we can retain only the parameters about which we care – in

the joint parsing and and NER case this is the joint model’s parameters, whereas in the

multi-domain learning case this corresponds to the parameters for all of the domains.

112 CHAPTER 6. HIERARCHICAL JOINT LEARNING

PARSE JOINT NER

µ

θ∗ σ∗

θp σp

Dp

θ j σ j

D j

θn σn

Dn

Figure 6.1: A graphical representation of my hierarchical joint model. There are separate
base models for just parsing, just NER, and joint parsing andNER. The parameters for
these models are linked via a hierarchical prior.

6.3.2 Formal model

We have a setM of base models which have corresponding log-likelihood functions

Lm(Dm;θm) for eachm∈M , whereDm is the model-specific training data andθm is the

model-specific parameter (feature weight) vectors for model m. These likelihood functions

do not include priors over theθs. For representational simplicity, we assume that each of

these vectors is the same size and corresponds to the same ordering of features. Features

which don’t apply to a particular model type (e.g., parse features in the named entity model)

will always be zero, so their weights have no impact on that model’s likelihood function.

Conversely, allowing the presence of those features in models for which they do not apply

will not influence their weights in the other models because there will be no evidence about

them in the data. These base models are linked by a hierarchical prior, and their feature

weight vectors are all drawn from this prior. The parametersθ∗ for this prior have the same

dimensionality as the model-specific parametersθm and are drawn from another, top-level

prior. In our case, this top-level prior is a zero-mean Gaussian.1

The graphical representation of a hierarchical model with three base models is shown

1Though I used a zero-mean Gaussian prior, this top-level prior could take many forms, including anL1

prior, or another hierarchical prior.

6.3. HIERARCHICAL PRIORS FOR MULTI-TASK LEARNING 113

in figure 6.1. The log-likelihood of this model is

Lhier-joint(D ;θ) = ∑
m∈M

(
Lm(Dm;θm)−∑

i

(θm,i−θ∗,i)2

2σ2
m

)
−∑

i

(θ∗,i−µi)
2

2σ2
∗

(6.1)

The first summation in this equation computes the log-likelihood of each model, using

the data and parameters which correspond to that model, and the prior likelihood of that

model’s parameters, based on a Gaussian prior centered around the top-level, non-model-

specific parametersθ∗, and with model-specific varianceσm. The final summation in the

equation computes the prior likelihood of the top-level parametersθ∗ according to a Gaus-

sian prior with varianceσ∗ and meanµ (typically zero). This formulation encourages

each base model to have feature weights similar to the top-level parameters (and hence

one another). I use pointwise estimation (Elidan et al. 2008) when learning the feature

weights. By this I mean that I directly estimate the top-level parameters,θ∗, instead of

being Bayesian and integrating them out.

The effects of the variancesσm andσ∗ warrant some discussion.σ∗ has the familiar in-

terpretation of dictating how much the model “cares” about feature weights diverging from

zero (orµ). The model-specific variances,σm, have an entirely different interpretation.

They dictate how strong the penalty is for the domain-specific parameters to diverge from

one another (via their similarity toθ∗). Whenσm are very low, then the feature weights

are encouraged to be very similar, and taken to the extreme this is equivalent to completely

tying the parameters between the tasks. Whenσm are very high, then there is less encour-

agement for the parameters to be similar, and taken to the extreme this is equivalent to

completely decoupling the tasks.

We need to compute partial derivatives in order to optimize the model parameters. The

partial derivatives for the parameters for each base modelm are given by:

∂Lhier(D ;θ)

∂θm,i
=

∂Lm(Dm,θm)

∂θm,i
−

θm,i−θ∗,i
σ2

d

(6.2)

where the first term is the partial derivative according to the base model, and the second

term is the prior centered around the top-level parameters.The partial derivatives for the

114 CHAPTER 6. HIERARCHICAL JOINT LEARNING

top level parametersθ∗ are:

∂Lhier(D ;θ)

∂θ∗,i
=

(

∑
m∈M

θ∗,i−θm,i

σ2
m

)
−

θ∗,i−µi

σ2
∗

(6.3)

where the first term relates to how far each model-specific weight vector is from the top-

level parameter values, and the second term relates how far each top-level parameter is

from zero.

When a model has strong evidence for a feature, effectively what happens is that it pulls

the value of the top-level parameter for that feature closerto the model-specific value for

it. When it has little or no evidence for a feature then it willbe pulled in the direction of

the top-level parameter for that feature, whose value was influenced by the models which

have evidence for that feature.

6.3.3 Optimization with stochastic gradient descent

As we saw in the previous chapter, inference in joint models tends to be slow, and often

requires the use of stochastic optimization in order for theoptimization to be tractable.

I used stochastic gradient descent (SGD) (see section 2.3.2) for the experiments in this

section, and here I discuss how to use SGD when we have a hierarchical prior, since it

is less straightforward than the more common case where we have an objective function

which only requires summing over data.

L-BFGS and gradient descent, two frequently used (non-stochastic) numerical opti-

mization algorithms, require computing the value and partial derivatives of the objective

function using the entire training set. Instead, we use stochastic gradient descent. It re-

quires a stochastic objective function, which is meant to bea low computational cost esti-

mate of the real objective function. In most NLP models, suchas logistic regression with

a Gaussian prior, computing the stochastic objective function is fairly straightforward: you

compute the model likelihood and partial derivatives for a randomly sampled subset of the

training data. When computing the term for the prior, it mustbe rescaled by multiplying its

value and derivatives by the proportion of the training dataused. The stochastic objective

6.3. HIERARCHICAL PRIORS FOR MULTI-TASK LEARNING 115

function, whereD̂ ⊆D is a randomly drawn subset of the full training set, is given by

Lstoch(D ;θ) = Lorig(D̂ ;θ)−
|D̂ |

|D |∑i

(θ∗,i)2

2σ2
∗

(6.4)

This is astochasticfunction, and multiple calls to it with the sameD andθ will produce

different values becausêD is re-sampled each time. When designing a stochastic objective

function, the critical fact to keep in mind is that the summedvalues and partial derivatives

for any partitioning of the data need to be equal to that of thefull dataset. In practice,

stochastic gradient descent only makes use of the partial derivatives and not the function

value, so we will focus the remainder of the discussion on howto rescale the partial deriva-

tives.

I will now describe the more complicated case of stochastic optimization with a hierar-

chical objective function. For the sake of simplicity, let us assume that we are using a batch

size of one, meaning|D̂ | = 1 in the above equation. Note that in the hierarchical model,

each datum (sentence) in each base model should be weighted equally, so whichever dataset

is the largest should be proportionally more likely to have one of its data sampled. For the

sampled datumd, we then compute the function value and partial derivativeswith respect

to the correct base model for that datum. When we rescale the model-specific prior, we

rescale based on the number of data in that model’s training set, not the total number of

data in all the models combined. Having uniformly randomly drawn datumd∈
⋃

m∈M Dm,

let m(d) ∈M indicate to which model’s training data the datum belongs. The stochastic

partial derivatives will equal zero for all model parameters θm such thatm 6= m(d), and for

θm(d) it becomes:

∂Lhier-stoch(D ;θ)

∂θm(d),i
=

∂Lm(d)({d};θm(d))

∂θm(d),i
−

1
|Dm(d)|

(θm(d),i−θ∗,i
σ2

d

)
(6.5)

Now I will discuss the stochastic partial derivatives with respect to the top-level parameters

θ∗, which requires modifying equation 6.3. The first term in that equation is a summation

over all the models. In the stochastic derivative we only perform this computation for the

datum’s modelm(d), and then we rescale that value based on the number of data in that

datum’s model|Dm(d)|. The second term in that equation is rescaled by thetotal number of

116 CHAPTER 6. HIERARCHICAL JOINT LEARNING

data in all models combined. The stochastic partial derivatives with respect toθ∗ become:

∂Lhier-stoch(D ;θ)

∂θ∗,i
=

1
|Dm(d)|

(θ∗,i−θm(d),i

σ2
m

)
−

1

∑
m∈M

|Dm|

(
θ∗,i
σ2
∗

)
(6.6)

where for conciseness we omitµ under the assumption that it equals zero.

An equally correct formulation for the partial derivative of θ∗ is to simply rescale equa-

tion 6.3 by thetotal number of data in all models. Early experiments found that both

versions gave similar performance, but the latter was significantly slower to compute be-

cause it required summing over the parameter vectors for allbase models instead of just

the vector for the datum’s model.

When using a batch size larger than one, you compute the givenfunctions for each

datum in the batch and then add them together.

6.3.4 Formalization of prior feature-augmentation work

This technique for utilizing a hierarchical prior to link related tasks is equivalent to the

“frustratingly easy” domain adaptation method presented in Daumé III (2007), and can

be viewed as a formal version of his model.2 In his presentation, the adaptation is done

through feature augmentation. Specifically, for each feature in the original version, a new

version is created for each domain, as well as a general, domain-independent version of the

feature. For each datum, two versions of each original feature are present: the version for

that datum’s domain, and the domain independent one.

The equivalence between the two models can be shown with simple arithmetic. Recall

that the log likelihood of our model is:

∑
d

(

Lorig(Dd;θd)−∑
i

(θd,i−θ∗,i)2

2σ2
d

)

−∑
i

(θ∗,i)2

2σ2
∗

2Many thanks to David Vickrey for pointing this out.

6.4. IMPROVING JOINT PARSING AND NAMED ENTITY RECOGNITION 117

We now introduce a new variableψd = θd−θ∗, and plug it into the equation for log likeli-

hood:

∑
d

(
Lorig(Dd;ψd +θ∗)−∑

i

(ψd,i)
2

2σ2
d

)
−∑

i

(θ∗,i)2

2σ2
∗

The result is the model of Daumé III (2007), where theψd are the domain-specific fea-

ture weights, andθ∗ are the domain-independent feature weights. In his formulation, the

variancesσ2
d = σ2

∗ for all domainsd.

However, this formalization highlights the opportunity toset the different variances

separately. This separation of the domain-specific and independent variances was critical

to our improved performance. When using a Gaussian prior there are two parameters set

by the user: the mean,µ (usually zero), and the variance,σ2. Technically, each of these

parameters is actually a vector, with an entry for each feature, but almost always the vec-

tors are uniform and the same parameter is used for each feature (there are exceptions, e.g.

Lee et al. (2007)). Because Daumé III (2007) views the adaptation as merely augmenting

the feature space, each of his features has the same prior mean and variance, regardless of

whether it is domain specific or independent. He could have set these parameters differ-

ently, but he did not.3 In our presentation of the model, we explicitly represent different

variances for each domain, as well as the top level parameters. We found that specifying

different values for the domain specific versus domain independent variances significantly

improved performance, though we found no gains from using different values for the dif-

ferent domain specific variances. The values were set based on development data.

6.4 Improving joint parsing and named entity recognition

I just described the general framework for hierarchical learning, and now I will discuss

how to use it to improve a joint model using additional data annotated for only one task.

Specifically, we have a joint model of parsing and named entity recognition, and two single-

task models, one for parsing and one for named entity recognition. I will discuss each of

these base models, though to varying degrees all have been discussed previously in this

3Although he alludes to the potential for something similar in the last section of his paper, when discussing
the kernelization interpretation of his approach.

118 CHAPTER 6. HIERARCHICAL JOINT LEARNING

dissertation. I will also give experimental results, comparing the joint model trained inside

of the hierarchical model with the joint model described in section 5.4.

6.4.1 Base models

Named entity recognition For the named entity recognition-only model I used a semi-

CRF (Sarawagi and Cohen 2004, Andrew 2006). Semi-CRFs (alsomentioned briefly in

section 5.3.2) are very similar to the more popular linear-chain CRFs, but they have several

key advantages. Semi-CRFssegment and labelthe text simultaneously, whereas a linear-

chain CRF willonly labeleach word, and segmentation is implied by the labels assigned

to the words. When doing named entity recognition, a semi-CRF will have one node for

each entity, unlike a regular CRF which will have one node foreach word.4 Please refer to

figure 6.2a-b for an example of a semi-CRF and a linear-chain CRF over the same sentence.

Note that the entityHilary Clinton has one node in the semi-CRF representation, but two

nodes in the linear-chain CRF. Because different segmentations have different model struc-

tures in a semi-CRF, one has to consider all possible structures (segmentations) as well as

all possible labelings. It is common practice to limit segment length in order to speed up

inference, as this allows for the use of a modified version of the forward-backward algo-

rithm. When segment length is not restricted, the inferenceprocedure is the same as that

used in parsing (we used this fact in section 5.3).5 In this work I did not enforce a length

restriction, and directly utilize the fact that the model can be transformed into a parsing

model. Figure 6.2c shows a parse tree representation of a semi-CRF, and figure 6.2d shows

the same tree after binarization. @ROOT-PER means that we are in the middle of building

a ROOT (so this is anactive state; see section 2.1.2), and the previous child was a PER.

While a linear-chain CRF allows features over adjacent words, a semi-CRF allows them

over adjacent segments. This means that a semi-CRF can utilize all features used by a

linear-chain CRF, and can also utilize features over entiresegments, such asFirst National

Bank of New York City, instead of just adjacent words likeFirst NationalandBank of. Let

y be a vector representing the labeling for an entire sentence. yi encodes the label of the

4Both models will have one node per word for non-entity words.
5While converting a semi-CRF into a parser results in much slower inference than a linear-chain CRF, it

is still significantly faster than a treebank parser due to the reduced number of labels.

6.4. IMPROVING JOINT PARSING AND NAMED ENTITY RECOGNITION 119

B-PER

Hilary

I-PER

Clinton

O

visited

B-GPE

Haiti

O

.

(a)

PER

Hilary Clinton

O

visited

GPE

Haiti

O

.

(b)

ROOT

PER

PER-i

Hilary

PER-i

Clinton

O

visited

GPE

GPE-i

Haiti

O

.

(c)

ROOT

PER

PER-i

Hilary

PER-i

Clinton

@ROOT-PER

O

visited

@ROOT-O

GPE

GPE-i

Haiti

O

.

(d)

Figure 6.2: A linear-chain CRF(a) labels each word, whereas a semi-CRF(b) labels entire
entities. A semi-CRF can be represented as a tree(c), wherei indicates an internal node for
an entity.(d) shows the tree representation after binarization.

120 CHAPTER 6. HIERARCHICAL JOINT LEARNING

ith segment, along with the span of words the segment encompasses. Letθ be the feature

weights, andf(s,yi ,yi−1) the feature function over adjacent segmentsyi andyi−1 in sentence

s.6 The regularized log-likelihood of a semi-CRF for a single sentences is given by:

L (y|s;θ) =
|y|

∑
i=1

exp{θ · f(s,yi,yi−1)}−Zs,θ −
|θ |2

2σ2 (6.7)

The partition functionZs,θ serves as a normalizer. It requires summing over the setys of

all possible segmentations and labelings for the sentences:

Zs,θ = ∑
y∈ys

|y|

∑
i=1

exp{θ · f(s,yi,yi−1)} (6.8)

Because we use a tree representation, it is easy to ensure that the features used in the

NER model are identical to those in the joint parsing and named entity model, because the

joint model is also based on a tree representation where eachentity corresponds to a single

node in the tree.

Parsing For the parsing-only model I used the discriminative CRF-based parser de-

scribed previously in section 5.2.

Joint parsing and named entity recognition For the joint parsing and named entity

recognition model I used the joint model described previously in section 5.4.

6.4.2 Experiments and discussion

I compared the hierarchical joint model to the regular (non-hierarchical) joint model pre-

sented in section 5.4, once again using the OntoNotes corpus(see section 2.2.4). I have also

included the parse-only and NER-only baseline models from that section, for comparison.

Table 6.1 has the complete set of results. For each section ofthe data (ABC, MNB, NBC,

6There can also be features over single entities, but these can be encoded in the feature function over
adjacent entities, so for notational simplicity we do not include an additional term for them.

6.4. IMPROVING JOINT PARSING AND NAMED ENTITY RECOGNITION 121

Parse Labeled Bracketing Named Entities
Precision Recall F1 Precision Recall F1

ABC Just Parse 69.8% 69.9% 69.8% –
Just NER – 77.0% 75.1% 76.0%
Baseline Joint 70.2% 70.5% 70.3% 79.2% 76.5% 77.8%
Hierarchical Joint 75.5% 74.4% 74.9% 85.1% 82.7% 83.9%

MNB Just Parse 61.7% 65.5% 63.6% –
Just NER – 69.6% 49.0% 57.5%
Baseline Joint 61.7% 66.2% 63.9% 70.9% 63.5% 67.0%
Hierarchical Joint 72.6% 70.2% 71.4% 74.4% 75.5% 74.9%

NBC Just Parse 59.9% 63.9% 61.8% –
Just NER – 63.9% 60.9% 62.4%
Baseline Joint 59.3% 64.2% 61.6% 68.9% 62.8% 65.7%
Hierarchical Joint 70.4% 69.9% 70.2% 72.9% 74.0% 73.4%

PRI Just Parse 78.6% 77.0% 76.9% –
Just NER – 81.3% 77.8% 79.5%
Baseline Joint 78.0% 78.6% 78.3% 86.3% 86.0%86.2%
Hierarchical Joint 79.2% 78.5% 78.8% 84.2% 85.5% 84.8%

VOA Just Parse 77.5% 76.5% 77.0% –
Just NER – 85.2% 80.3% 82.7%
Baseline Joint 77.2% 77.8% 77.5% 87.5% 86.7% 87.1%
Hierarchical Joint 79.8% 77.8% 78.8% 87.7% 88.9% 88.3%

Table 6.1: Full parse and NER results for the six datasets. Parse trees were evaluated using
evalB, and named entities were scored using micro-averagedF-measure (conlleval).

PRI, VOA) I ran experiments training a linear-chain CRF on only the named entity infor-

mation, a CRF-CFG parser on only the parse information, a joint parser and named entity

recognizer, and our hierarchical model. For the hierarchical model, I used the CNN portion

of the data (5093 sentences) for the extra named entity data (and ignored the parse trees)

and the remaining portions combined for the extra parse data(and ignored the named entity

annotations). I usedσ∗ = 1.0 andσm = 0.1, which were chosen based on early experiments

on development data. Small changes toσm do not appear to have much influence, but larger

changes do. I similarly decided how many iterations to run stochastic gradient descent for

(20) based on early development data experiments. I did not run this experiment on the

CNN portion of the data, because the CNN data was already being used as the extra NER

data.

As table 6.1 shows, the hierarchical model did substantially better than the joint model

122 CHAPTER 6. HIERARCHICAL JOINT LEARNING

overall, which is not surprising given the extra data to which it had access. Looking at the

smaller corpora (NBC and MNB) we see the largest gains, with both parse and NER per-

formance improving by about 8% F1. ABC saw about a 6% gain on both tasks, and VOA

saw a 1% gain on both. The one negative result is in the PRI portion: parsing improves

slightly, but NER performance decreases by almost 2%. The same experiment on develop-

ment data resulted in a performance increase, so I are not sure why we saw a decrease here.

One general trend, which is not surprising, is that the hierarchical model helps the smaller

datasets more than the large ones. The source of this is three-fold: lower baselines are gen-

erally easier to improve upon; the larger corpora had less singly-annotated data to provide

improvements, because it was composed of the remaining, smaller, sections of OntoNotes;

and transfer leaning of this sort is generally know to help less when you have more data.

I found it interesting that the gains tended to be similar on both tasks for all datasets, and

believe this fact is due to my use of roughly the same amount ofsingly-annotated data for

both parsing and NER.

One possible conflating factor in these experiments is that of domain drift. While I tried

to get the most similar annotated data available – data whichwas annotated by the same

annotators, and all of which is broadcast news – these are still different domains. While

this is likely to have a negative effect on results, I also believe this scenario to be a more

realistic than if it were to also be data drawn from the exact same distribution.

6.5 Multi-domain learning

In this section I will cover two sets of experiments on domainadaptation using a hier-

archical prior, one on named entity recognition and one on dependency parsing. In this

case, unlike the previous section, the base models are all ofthe same underlying form and

the only difference between them is the training data associated with each. The NER and

parsing base models are both models we have seen previously.

6.5. MULTI-DOMAIN LEARNING 123

Train # Test
Words Words

MUC-6 165,082 15,032
MUC-7 89,644 64,490
CoNLL 203,261 46,435

Table 6.2: Number of words in the training and test sets for each of the named entity
recognition datasets.

6.5.1 Named entity recognition

For the NER experiments, I used a linear-chain CRF, as described in section 2.1.1, for

the base models. I used three named entity datasets, from theCoNLL 2003, MUC-6 and

MUC-7 shared tasks (see section 2.2.1 for a more complete description). CoNLL is British

newswire, while MUC-6 and MUC-7 are both American newswire.Arguably MUC-6 and

MUC-7 should not count as separate domains, but because theywere annotated separately,

for different shared tasks, I chose to treat them as such, andfeel that the experimental

results justify the distinction. I used the standard train and test sets for each domain, which

for CoNLL corresponds to the (more difficult) testb set. For details about the number of

training and test words in each dataset, please see table 6.2.

One interesting challenge in dealing with both CoNLL and MUCdata is that the label

sets differ. CoNLL has four classes:PERSON, ORGANIZATION, LOCATION, and MISC.

MUC data has seven classes:PERSON, ORGANIZATION, LOCATION, PERCENT, DATE,

TIME, andMONEY. They overlap in the three core classes (PERSON, ORGANIZATION, and

LOCATION), but CoNLL has one additional class and MUC has four additional classes.

The differences in the label sets led me to perform two sets ofexperiments for the

baseline and hierarchical Bayesian models. In the first set of experiments, at training time,

the model allows any label from the union of the label sets, regardless of whether that

label was legal for the domain. At test time, we would ignore guesses made by the model

which were inconsistent with the allowed labels for that domain.7 In the second set of

experiments, I restricted the model at training time to onlyallow legal labels for each

domain. At test time, the domain was specified, and the model was once again restricted so

7I treated them identically to if they had been labeled with the background symbol. So, for instance,
labelling a word adatein the CoNLL data had no effect on the score.

124 CHAPTER 6. HIERARCHICAL JOINT LEARNING

that words would never be tagged with a label outside of that domain’s label set.

In the experiments, I compared my model to several strong baselines, and the full set of

results is in table 6.3. The models I used were:

TARGET ONLY. Trained and tested on only the data for that domain.

ALL DATA . Trained and tested on data from all domains, concatenated into one large

dataset.

ALL DATA *. Same as ALL DATA , but restricted possible labels for each word based on

domain.

DAUME07. Trained and tested using the same technique as Daumé III(2007). Note that

they present results using per-token label accuracy, whilewe used the more standard

entity precision, recall, and F score (as in the CoNLL 2003 shared task).

DAUME07*. Same as DAUME07, but restricted possible labels for each word based on

domain.

HIER BAYES. My hierarchical domain adaptation model.

HIER BAYES*. Same as HIER BAYES, but restricted possible labels for each word based

on the domain.

For all of the baseline models, and for the top level-parameters in the hierarchical

Bayesian model, I usedσ∗ = 1. For the domain-specific parameters, I usedσd = 0.1 for all

domains.

The HIER BAYES model outperformed all baselines for both of the MUC datasets, and

tied with the DAUME07 for CoNLL. The largest improvement was on MUC-6, where HIER

BAYES outperformed DAUME07*, the second best model, by 1.36%. This improvement

is greater than the improvement made by that model over the ALL DATA * baseline. To

assess significance I used a document-level paired t-test (over all of the data combined),

and found that HIER BAYES significantly outperformed all of the baselines (not including

HIER BAYES*) with greater than 95% confidence.

For both the HIER BAYES and DAUME07 models, I found that performance was better

for the variant which did not restrict possible labels basedon the domain, while the ALL

6.5. MULTI-DOMAIN LEARNING 125

Named Entity Recognition
Model Precision Recall F1

MUC-6
TARGET ONLY 86.74 80.10 83.29
ALL DATA * 85.04 83.49 84.26
ALL DATA 86.00 82.71 84.32
DAUME07* 87.83 83.41 85.56
DAUME07 87.81 82.23 85.46
HIER BAYES* 88.59 84.97 86.74
HIER BAYES 88.77 85.14 86.92

MUC-7
TARGET ONLY 81.17 70.23 75.30
ALL DATA * 81.66 76.17 78.82
ALL DATA 82.20 70.91 76.14
DAUME07* 83.33 75.42 79.18
DAUME07 83.51 75.63 79.37
HIER BAYES* 82.90 76.95 79.82
HIER BAYES 83.17 77.02 79.98

CoNLL
TARGET ONLY 85.55 84.72 85.13
ALL DATA * 86.34 84.45 85.38
ALL DATA 86.58 83.90 85.22
DAUME07* 86.09 85.06 85.57
DAUME07 86.35 85.26 85.80
HIER BAYES* 86.33 85.06 85.69
HIER BAYES 86.51 85.13 85.81

Table 6.3: Named entity recognition results for each of the models. With the exception
of the TARGET ONLY model, all three datasets were combined when training each of the
models.

DATA model did benefit from the label restriction. For HIER BAYES and DAUME07, this

result may be due to the structure of the models. Because bothmodels have domain-specific

features, the models likely learned that these labels were never actually allowed. However,

when a feature does not occur in the data for a particular domain, then the domain-specific

parameter for that feature will have positive weight due to evidence present in the other

domains, which at test time can lead to assigning an illegal label to a word. This information

that a word may be of some other (unknown to that domain) entity type may help prevent

the model from mislabeling the word. For example, in CoNLL, nationalities, such asIraqi

126 CHAPTER 6. HIERARCHICAL JOINT LEARNING

andAmerican, are labeled asMISC. If a previously unseen nationality is encountered in

the MUC testing data, the MUC model may be tempted to label is as a location, but this

evidence from the CoNLL data may prevent that, by causing it to instead be labeledMISC,

a label which will subsequently be ignored.

In most previous domain adaptation work, there is a distinction betweensourceandtar-

getdata. Results are only presented on the target data, and frequently the amount of training

data in the target domain has been reduced, thus making it easier to show an improvement.

The motivation for this reduction is usually to demonstratethat the user need only label a

small amount of data and can then intelligently utilize the abundant source data. However,

another common use case is that the user has a lot of labeled data, from various sources,

and wishes to build the best possible model from that data. Our results show that, so long

as the amount of data in each domain is not widely disparate, it is possible to achieve gains

on all of the domains simultaneously.

6.5.2 Dependency parsing

I also tested the hierarchical domain adaptation model on anuntyped dependency parsing

task, to see how it performs on a more structurally complex task than sequence modeling.

For these experiments, I used a CRF-based dependency parser, as described in section 5.2.3,

for the base models.

For the dependency parsing experiments, I used OntoNotes Release 2.0 data (an earlier

release of the data described in section 2.2.4). I once againconverted the PCFG trees into

dependency trees using the Collins head rules (Collins 2003).

I compared the same four domain adaptation models for dependency parsing as I did for

the named entity experiments, once again settingσ∗ = 1.0 andσd = 0.1. Unlike the named

entity experiments however, there were no label set discrepancies between the domains,

so only one version of each domain adaptation model was necessary, instead of the two

versions in that section. The TARGET ONLY results are the same as in the dependency

parsing experiments reported earlier in section 5.2.3.

.

The full dependency parsing results can be found in table 6.4. Firstly, I found that

6.6. SUMMARY 127

Dependency Parsing
Training Testing TARGET ALL HIER

Range # Sent Range # Sent ONLY DATA DAUME07 BAYES

ABC 0–55 1195 56–69 199 83.32%88.97% 87.30% 88.68%
CNN 0–375 5092 376–437 1521 85.53% 87.09% 86.41%87.26%
MNB 0–17 509 18–25 245 77.06% 86.41% 84.70%86.71%
NBC 0–29 552 30–39 149 76.21%85.82% 85.01% 85.32%
PRI 0–89 1707 90–112 394 87.65% 90.28% 89.52%90.59%
VOA 0–198 1512 199–264 383 89.17%92.11% 90.67% 92.09%

Table 6.4: Dependency parsing results for each of the domainadaptation models. Perfor-
mance is measured as unlabeled attachment accuracy.

DAUME07, which had outperformed the ALL DATA baseline for the sequence modeling

task, performed worse than the baseline here, indicating that the transfer of information

between domains in the more structurally complicated task is inherently more difficult. My

model’s gains over the ALL DATA baseline are quite small, but I tested their significance

using a sentence-level paired t-test (over all of the data combined) and found them to be

significant atp < 10−5. I am unsure why some domains improved while others did not. It

is not simply a consequence of training set size, but may be due to qualities of the domains

themselves.

6.6 Summary

In this chapter, I used a hierarchical prior for multi-task learning in two very different

scenarios. I first covered the general technique of using a hierarchical prior to link the

feature weights for related tasks. I then used this to improve my joint parse and named

entity recognition model, by linking that joint model with separate task-specific models

for the two tasks. The task specific models were trained usingdata which had only been

annotated for the single task. This resulted in gains on bothtasks, thanks to the ability to

incorporate information from the singly-annotated data.

I then used a hierarchical prior to do multi-domain learning. I linked three different

NER corpora to one another, linking their features via a hierarchical prior, and showed

128 CHAPTER 6. HIERARCHICAL JOINT LEARNING

that this resulted in better performance for all three datasets. I also performed a compa-

rable experiment on dependency parsing, this time linking all of the different sections of

OntoNotes. In this case, the hierarchical model always beatthe model trained on just a

single domain, and was comparable to one trained on all the data combined.

There are several potentially future avenues for future work. In all the experiments in

this chapter, I used a uniform variance for all the differentfeatures and domains. However,

intuitively, it seems that some features should be more likely to be similar between tasks

than others, and therefore we would like to be able to learn the sigmas as well.

There are also many potential uses for hierarchical priors in NLP. They may be useful

for semi-supervised learning: you could use a pre-trained model to label large amounts of

raw text, and then link a model trained on the automatically-annotated text with a model

trained on the gold-standard text. In that case, the weightslearned on the gold-standard text

will be more influenced by the gold data than the non-gold data, but the non-gold data can

still provide useful information about unseen or rarely seen features in the gold data. Quite

recently, two papers (Berg-Kirkpatrick and Klein 2010, Iwata et al. 2010) used hierarchical

priors to link parameters between different languages whendoing unsupervised parsing.

Chapter 7

Conclusions

In this dissertation, I presented techniques for various kinds of joint modeling. In chap-

ter 3, I addressed the case of modeling long-distance dependencies in information extrac-

tion systems; in this case, we were jointly modeling multiple, disparate parts of the same

document. My proposed solution was to use a product-of-experts model to combine a

state-of-the-art linear-chain CRF with a long-distance model. For named entity recogni-

tion, the long-distance model was designed to encourage identical words and phrases to be

labeled consistently. For a template filling task, the long-distance model encouraged only

one phrase to be labeled for each of the template slots. I usedGibbs sampling, a form of

approximate inference, combined with simulated annealing, to find the best labeling in the

product model.

I then turned to the task of jointly modeling different kindsof phenomena. Many

higher-level NLP systems require input from multiple lower-level systems. Typically, this

lower-level information is acquired by running data through a pipeline of annotators. In

chapter 4, I proposed an alternative to the standard, greedy, 1-best pipeline. Instead of tak-

ing the most likely output at each stage, I generated samplesinstead, and passed them along

to the next stage. This was done many times, and in the end the samples formed a majority

vote classifier for the final stage. I found that this version of a pipeline outperformed a

1-best pipeline on two different tasks, and performed comparably to ak-best pipeline.

A major limitation of 1-best,k-best, and sampling pipelines is that information only

129

130 CHAPTER 7. CONCLUSIONS

flows forward. Oftentimes you instead want a true joint model, where all levels of informa-

tion can constrain and influence each other. In chapter 5, I gradually built up to a full joint

model of parsing and named entity recognition. First, I presented a discriminative con-

stituency parser. This parser was the first feature-rich CRF-based parser which could scale

up beyond toy sentences. This parser also served as the backbone for several other models.

I first used it to do nested named entity recognition. Most prior work on named entities

has assumed a flat structure, and has ignored named entities which were nested inside of

other named entities (e.g.,Charles Shaw Corp.). The discriminative parser provided a nat-

ural framework for representing this nesting structure, while also allowing the utilization

of previously developed features which had originally beendesigned for sequence (flat)

models. Having shown how to use the parser for both parsing and named entity recognition

separately, I then showed how to use it to model them jointly.By picking the proper rep-

resentation, grammar, and features, I found that modeling these two phenomena together I

could improve performance on both tasks.

One drawback to the joint model just described is the relatively small amount of train-

ing data, compared to the amount of data available which has been annotated with just a

single task (chapter 6). With this in mind, I presented a hierarchical model which could

leverage both jointly and singly labeled data to improve thejoint model. This was done

via a hierarchical prior, which loosely linked the feature weights for single-task and joint

models, and allowed the weights for the joint model to be influenced by the single-task

data.

Finally, I used the same hierarchical technique to jointly learn models for multiple

domains or genres of text. In this case, the same type of model(a linear-chain CRF in one

experiment, and a discriminative dependency parser in another) was used for each genre,

but each had its own specific model, and the feature weights ofthe models were linked via

a hierarchical prior.

There are several conclusions that can be drawn from the workpresented here. Chap-

ter 3 and chapter 4 both utilized a sampling-based approaches to solve problems which

could not be solved with exact inference methods. Regardless of the tasks being addressed,

or the specific techiques being used, I think the fundamentalidea here is important: lan-

guage has very complex structure which cannot be modeled perfectly, but it is better to try to

131

get the model right, including many of the complex interactions, and accept that inference

may not be perfect, than to have perfect inference in a severely handicapped model. Good

inference techiques are important, but without properly capturing the complex structure of

language, we can never hope to build systems which do true natural language understand-

ing. That said, it is also not clear if a full joint model like the one presented in chapter 5

is the final answer. Adding new layers of annotations greatlyincreased the possible space

of outputs, and as a result slowed inference down considerably. Part of the problem here

may in fact have been my insistence on using an exact inference technique, and I do not

know how well this would scale when even more types of information are added. I believe

that future joint models will likely need to be setup in a manner that more naturally al-

lows for high-quality approximate inference. Lastly, I think that hierarchical models have

a bright future in NLP. They are an easy way to link related tasks. From an implementation

persepctive, it is incredibly simple to add them to existingmodels, when using pointwise

estimation. From a computational standpoint, they do not take much longer to optimize

than the individual models from which they are constructed.And, from a modeling per-

spective, they provide an elegant way to efectively share information between related tasks

and datasets.

There are many avenues for future work building off of the ideas in this thesis, some

of which have already begun to be explored. Several of the models presented here utilized

the OntoNotes corpus. I used this for the joint parse and named entity experiments, but

the data is annotated with more than just these two kinds of information. It also contains

semantic role labels, coreference information, and word senses. It is easy to see how these

kinds of information should also be able to influence and constrain one another. If two

entities are coreferent, then they should be the same named entity type. Semantic role

labels directly utilize phrases in the tree, and also knowing what types of roles certain

phrases tend to play should influence where they are placed inthe parse tree. It would be

wonderful to see a joint model of all these phenomena. One of the most basic ideas behind

the joint model I presented was the fact that the features could decompose: some were

over just the parse structure, some were over only the named entities, and some were over

both. Future joint models will need to find even more ways to decompose the model for

the sake of tractability. One potential way to do this would be dual decomposition(Rush

132 CHAPTER 7. CONCLUSIONS

et al. 2010, Koo et al. 2010). Dual decomposition allows us todo inference in complicated,

previously intractable, models, by factoring the model into two (or more) components, and

then forcing the components to agree on the subset of variables which they share. For

instance, it would be natural to jointly model named entities and coreference information.

Such a model could be combined with the joint parse and named entity model from this

thesis, and the two models would be forced to agree on the named entity annotations in the

data.

Many of the techniques proposed in this thesis could be useful for tasks beyond joint

learning. The sampling-based approaches presented in chapters 3 and 4 have already helped

foster the widespread use of sampling for approximate inference in many tasks, as was

discussed in section 4.7. The hierarchical models in chapter 6 similarly have the potential

to be quite useful. Hierarchical priors have already begun to be used for soft parameter

typing between languages for parsing models (see section 6.6).

Ultimately, to do real natural language understanding, we need to first to a good job at

these kinds of low-level tasks. It is my hope that the ideas presented in this dissertation

have brought us closer to that goal, both with the technologies used and by showing that is

preferable to jointly model things (whether it be words, tasks, or genres) which are related.

Computationally we want to decouple tasks, because it will usually make inference faster

and simpler, but intellectually we know that these tasks arerelated, and that we will never

be able to truly do natural language understanding while we keep them separate.

Appendix A

OntoNotes data inconsistencies

While other work has utilized the OntoNotes corpus (Pradhanet al. 2007, Yu et al. 2008),

the papers on which this thesis is based are the first work to myknowledge to simultane-

ously model the multiple levels of annotation available. Because this is a new corpus, still

under development, it is not surprising that there were places where the data was inconsis-

tently annotated, namely with crossing brackets between named entity and tree annotations.

In the places where I found inconsistent annotation it was rarely the case that the differ-

ent levels of annotation were inherently inconsistent, butrather the inconsistency resulted

from somewhat arbitrary choices made by the annotators. Forexample, when the last word

in a sentence ends with a period, such asCorp., one period functions both to mark the ab-

breviation and the end of the sentence. The convention of thePennTreebank is to separate

the final period and treat it as the end of sentence marker, butwhen the final word is also

part of an entity, that final period was frequently included in the named entity annotation,

resulting in the sentence terminating period being part of the entity, and the entity not cor-

responding to a single phrase. See figure A.1 for an illustration from the data. In this case,

I removed the terminating period from the entity, to producea consistent annotation.

Overall, I found that 656 entities, out of 55,665 total, could not be aligned to a phrase,

or multiple contiguous children of a node. I identified and corrected the following sources

of inconsistencies:

Periods and abbreviations.This is the problem described above with theCorp. exam-

ple. I corrected it by removing the sentence terminating final period from the entity

133

134 APPENDIX A. ONTONOTES DATA INCONSISTENCIES

S

NP

NNP

[Mr.

NNP

Todt]PER

VP

VBD

had

VP

VBN

been

NP

NP

NN

president

PP

IN

of

NP

NNP

[Insilco

NNP

Corp

.

.]ORG

Figure A.1: An example from the OntoNotes data of inconsistently labeled named entity
and parse structure.The inclusion of the final period in the named entity results in the named
entity structure having crossing brackets with the parse structure.

NP

NP

DT

the

NNP

[District

PP

IN

of

NP

NNP

Columbia]GPE

NP

DT

the

NP

NNP

[District

PP

IN

of

NP

NNP

Columbia]GPE

(a) (b)

Figure A.2: (a) Another example from the data of inconsistently labeled named entity and
parse structure. In this instance, we flatten the nested NP, resulting in (b), so that the named
entity corresponds to a contiguous set of children of the top-level NP.

annotation.

Determiners and PPs.Noun phrases composed of a nested noun phrase and a preposi-

tional phrase were problematic when they also consisted of adeterminer followed by

an entity. I dealt with this by flattening the nested NP, as illustrated in figure A.2.

Adjectives and PPs.This problem is similar to the previous problem, with the difference

being that there are also adjectives preceding the entity. The solution is also similar

to the solution to the previous problem. I moved the adjectives from the nested NP

into the main NP.

135

These three modifications to the data solved most, but not all, of the inconsistencies.

Another source of problems was conjunctions, such asNorth and South Korea, whereNorth

and Southis a phrase, butSouth Koreais an entity. The rest of the errors seemed to be due

to annotation errors and other random weirdnesses. I ended up unable to make 0.4% of

the entities consistent with the parses, so I omitted those entities from the training and test

data.

One more change made to the data was with respect to possessive NPs. When I encoun-

tered noun phrases which ended with(POS ’s)or (POS ’), I modified the internal structure

of theNP. Originally, theseNPs were flat, but I introduced a new nestedNP which contained

the entire contents of the originalNP except for thePOS. The originalNP label was then

changed toPOSSNP. This change is motivated by the status of’s as a phrasal affix or clitic:

It is theNP preceding’s that is structurally equivalent to otherNPs, not the larger unit that

includes’s. This change has the additional benefit in this context that more named entities

will correspond to a single phrase in the parse tree, rather than a contiguous set of phrases.

Bibliography

2007. The British National Corpus, version 3 (BNC XML Edition). Distributed by Oxford

University Computing Services on behalf of the BNC Consortium. URL: http://

www.natcorp.ox.ac.uk/.

Abney, S. 1997. Stochastic attribute-value grammars.Computational Linguistics23:597–

618.

Alex, Beatrice, Barry Haddow, and Claire Grover. 2007. Recognising nested named entities

in biomedical text. InBioNLP Workshop at ACL 2007, pp. 65–72.

Ando, Rie Kubota, and Tong Zhang. 2005. A high-performance semi-supervised learn-

ing method for text chunking. InACL ’05: Proceedings of the 43rd Annual Meeting

on Association for Computational Linguistics, pp. 1–9. Association for Computational

Linguistics.DOI: http://dx.doi.org/10.3115/1219840.1219841.

Andrew, Galen. 2006. A hybrid markov/semi-markov conditional random field for se-

quence segmentation. InProceedings of the Conference on Empirical Methods in Natu-

ral Language Processing (EMNLP 2006).

Andrieu, C., N. d Freitas, A. Doucet, and M. I. Jordan. 2003. An introduction to MCMC

for machine learning.Machine Learning50:5–43.

Arulampalam, M. Sanjeev, Simon Maskell, and Neil Gordon. 2002. A tutorial on particle

filters for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal

Processing50:174–188.

136

BIBLIOGRAPHY 137

Baxter, J. 1997. A bayesian/information theoretic model oflearning to learn via multiple

task sampling. InMachine Learning, volume 28.

Bentivogli, L., Bernardo Magnini, Ido Dagan, H. T. Dang, andDanilo Giampiccolo. 2009.

The fifth pascal recognizing textual entailment challenge.In Proceedings of the TAC-09

Text Analysis Conference.

Berg-Kirkpatrick, Taylor, and Dan Klein. 2010. Phylogenetic grammar induction. In

Proceedings of the 48th Annual Meeting of the Association for Computational Lin-

guistics, pp. 1288–1297. Association for Computational Linguistics. URL: http:

//www.aclweb.org/anthology/P10-1131.

Blunsom, Phil, and Trevor Cohn. 2010. Inducing synchronousgrammars with slice sam-

pling. In Proceedings of Human Language Technologies: The 11th Annual Conference

of the North American Chapter of the Association for Computational Linguistics (HLT-

NAACL).

Blunsom, Phil, Trevor Cohn, Chris Dyer, and Miles Osborne. 2009. A gibbs sampler

for phrasal synchronous grammar induction. InProceedings of the Joint Conference

of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP (ACL-IJCNLP), pp. 782–790.URL: http:

//www.aclweb.org/anthology/P/P09/P09-1088.

Bod, Rens. 1995. The problem of computing the most probable tree in data-oriented

parsing and stochastic tree grammars. InProceedings of EACL 1995.

Borthwick, A. 1999. A Maximum Entropy Approach to Named Entity Recognition. PhD

thesis, New York University.

Brown, P.F., P.V. Desouza, R.L. Mercer, V.J.D. Pietra, and J.C. Lai. 1992. Class-based

n-gram models of natural language.Computational linguistics18(4):467–479.

Buchholz, S., and E. Marsi. 2006. CoNLL-X shared task on multilingual dependency

parsing. InProceedings of the Tenth Conference on Computational Natural Language

Learning, pp. 149–164. Association for Computational Linguistics.

138 BIBLIOGRAPHY

Bunescu, R., and R. J. Mooney. 2004. Collective informationextraction with relational

Markov networks. InProceedings of the 42nd ACL, pp. 439–446.

Byrne, Kate. 2007. Nested named entity recognition in historical archive text. InICSC

’07: Proceedings of the International Conference on Semantic Computing, pp. 589–596.

Carreras, X., M. Collins, and T. Koo. 2008. TAG, dynamic programming, and the per-

ceptron for efficient, feature-rich parsing. InProceedings of the Twelfth Conference on

Computational Natural Language Learning, pp. 9–16.

Carreras, Xavier, and Lluı́s Màrquez. 2004. Introductionto the CoNLL-2004 shared task:

Semantic role labeling. InProceedings of CoNLL 2004.

Carreras, Xavier, and Lluı́s Màrquez. 2005. Introductionto the CoNLL-2005 shared task:

Semantic role labeling. InProceedings of CoNLL 2005.

Caruana, R. 1997. Multitask learning. InMachine Learning, volume 28.

Charniak, Eugene. 2000. A maximum-entropy-inspired parser. In HLT-NAACL 2000, pp.

132–139.

Charniak, Eugene, and Mark Johnson. 2005. Coarse-to-finen-best parsing and maxent

discriminative reranking. InACL 43, pp. 173–180.

Chelba, Ciprian, and Alex Acero. 2004. Adaptation of a maximum entropy capitalizer:

Little data can help a lot. InEMNLP 2004.

Chieu, H. L., and H. T. Ng. 2002. Named entity recognition: a maximum entropy approach

using global information. InProceedings of the 19th Coling, pp. 190–196.

Chinchor, N. 1998. Overview of MUC-7. InProceedings of the Seventh Message Under-

standing Conference (MUC-7).

Clark, Alexander. 2003. Combining distributional and morphological information for

part of speech induction. InProceedings of the tenth Annual Meeting of the European

Association for Computational Linguistics (EACL), pp. 59–66.

BIBLIOGRAPHY 139

Cohn, Trevor, and Philip Blunsom. 2005. Semantic role labelling with tree conditional

random fields. InCoNLL 2005.

Cohn, Trevor, and Phil Blunsom. 2009. A Bayesian model of syntax-directed tree to string

grammar induction. InProceedings of the 2009 Conference on Empirical Methods in

Natural Language Processing (EMNLP), pp. 352–361.URL: http://www.aclweb.

org/anthology/D/D09/D09-1037.

Cohn, Trevor, and Phil Blunsom. 2010. Blocked inference in Bayesian tree substitution

grammars. InProceedings of the 48th Annual Meeting of the Association for Computa-

tional Linguistics, p. To Appear.

Cohn, Trevor, Sharon Goldwater, and Phil Blunsom. 2009. Inducing compact but accu-

rate tree-substitution grammars. InProceedings of Human Language Technologies: The

2009 Annual Conference of the North American Chapter of the Association for Com-

putational Linguistics (HLT-NAACL), pp. 548–556. URL: http://www.aclweb.

org/anthology/N/N09/N09-1062.

Collier, Nigel, J. Kim, Y. Tateisi, T. Ohta, and Y. Tsuruoka (eds.). 2004.Proceedings of

the International Joint Workshop on NLP in Biomedicine and its Applications.

Collins, Michael. 1997. Three generative, lexicalised models for statistical parsing. InACL

1997.

Collins, Michael. 2000. Discriminative reranking for natural language parsing. InICML

17, pp. 175–182.

Collins, Michael. 2002. Discriminative training methods for hidden markov models: theory

and experiments with perceptron algorithms. InEMNLP ’02: Proceedings of the ACL-02

conference on Empirical methods in natural language processing, pp. 1–8. Association

for Computational Linguistics.DOI: http://dx.doi.org/10.3115/1118693.1118694.

Collins, M. 2003. Head-driven statistical models for natural language parsing.Computa-

tional Linguistics29(4):589–637.

140 BIBLIOGRAPHY

Collobert, R., and J. Weston. 2008. A unified architecture for natural language processing:

Deep neural networks with multitask learning. InProceedings of the 25th International

Conference on Machine learning, pp. 160–167.

Cowell, R. G., A. Philip Dawid, S. L. Lauritzen, and D. J. Spiegelhalter. 1999.Probabilistic

Networks and Expert Systems. Springer-Verlag.

Crouch, Richard. 2005. Packed rewriting for mapping semantics to KR. InProceedings of

the 6th International Workshop on Computational Semantics.

Curran, J. R., and S. Clark. 1999. Language independent NER using a maximum entropy

tagger. InCoNLL 1999, pp. 164–167.

Dagan, Ido, Oren Glickman, and Bernardo Magnini. 2005. The PASCAL recognizing

textual entailment challenge. InProceedings of the PASCAL Challenges Workshop on

Recognizing Textual Entailment.

Darroch, J.N., and D. Ratcliff. 1972. Generalized iterative scaling for log-linear models.

The Annals of Mathematical Statistics43(5):1470–1480.

Daumé III, Hal. 2007. Frustratingly easy domain adaptation. In Conference of the Associ-

ation for Computational Linguistics (ACL).

Daumé III, Hal, and Daniel Marcu. 2006. Domain adaptation for statistical classifiers.

Journal of Artificial Intelligence Research.

Della Pietra, S., V. Della Pietra, and J. Lafferty. 1997. Inducing features of random fields.

IEEE Transactions on Pattern Analysis and Machine Intelligence19:380–393.

DeNero, John, Alexandre Bouchard-Côté, and Dan Klein. 2008. Sampling alignment struc-

ture under a bayesian translation model. InEMNLP ’08: Proceedings of the Conference

on Empirical Methods in Natural Language Processing, pp. 314–323. Association for

Computational Linguistics.

Earley, Jay. 1970. An efficient context-free parsing algorithm. Communications of the

ACM 6(8):451–455.

BIBLIOGRAPHY 141

Eisner, Jason. 1996. Three new probabilistic models for dependency parsing: An explo-

ration. InProceedings of the 16th International Conference on Computational Linguis-

tics (COLING-96).

Elidan, Gal, Benjamin Packer, Geremy Heitz, and Daphne Koller. 2008. Convex point

estimation using undirected bayesian transfer hierarchies. InUAI 2008.

Evgeniou, T., C. Micchelli, and M. Pontil. 2005. Learning multiple tasks with kernel

methods. InJournal of Machine Learning Research.

Finkel, J., S. Dingare, H. Nguyen, M. Nissim, and C. D. Manning. 2004. Exploiting context

for biomedical entity recognition: from syntax to the web. In Joint Workshop on Natural

Language Processing in Biomedicine and Its Applications atColing 2004.

Finkel, Jenny Rose, Trond Grenager, and Christopher Manning. 2005. Incorporating non-

local information into information extraction systems by gibbs sampling. InACL 2005.

Finkel, Jenny Rose, Trond Grenager, and Christopher D. Manning. 2007. The infinite tree.

In In Association for Computational Linguistics (ACL).

Finkel, Jenny Rose, Alex Kleeman, and Christopher D. Manning. 2008. Efficient, feature-

based conditional random field parsing. InACL/HLT-2008.

Finkel, Jenny Rose, and Christopher D. Manning. 2009a. Hierarchical bayesian domain

adaptation. InProceedings of the North American Association of Computational Lin-

guistics (NAACL 2009). URL: pubs/hdba.pdf.

Finkel, Jenny Rose, and Christopher D. Manning. 2009b. Joint parsing and named en-

tity recognition. InProceedings of the North American Association of Computational

Linguistics (NAACL 2009). URL: pubs/joint-parse-ner.pdf.

Finkel, Jenny Rose, and Christopher D. Manning. 2009c. Nested named entity recognition.

In Proceedings of EMNLP 2009. URL: pubs/nested-ner.pdf.

Finkel, Jenny Rose, and Christopher D. Manning. 2010. Hierarchical joint learning: Im-

proving joint parsing and named entity recognition with non-jointly labeled data. In

Proceedings of ACL 2010. URL: pubs/hier-joint.pdf.

142 BIBLIOGRAPHY

Finkel, Jenny Rose, Christopher D. Manning, and Andrew Y. Ng. 2006. Solving the

problem of cascading errors: Approximate bayesian inference for linguistic annotation

pipelines. InEMNLP 2006.

Freitag, D. 1998.Machine learning for information extraction in informal domains. PhD

thesis, Carnegie Mellon University.

Freitag, D., and A. McCallum. 1999. Information extractionwith HMMs and shrinkage.

In AAAI 1999 Workshop on Machine Learning for Information Extraction.

Freund, Yoav, and Robert E. Schapire. 1998. Large margin classification using the percep-

tron algorithm. InMachine Learning, pp. 277–296.

Gale, W.A., K.W. Church, and D. Yarowsky. 1992. One sense perdiscourse. InPro-

ceedings of the workshop on Speech and Natural Language, p. 237. Association for

Computational Linguistics.

Gelman, A., J. B. Carlin, H. S. Stern, and Donald D. B. Rubin. 2003. Bayesian Data

Analysis. Chapman & Hall.

Gelman, Andrew, and Jennifer Hill. 2006.Data Analysis Using Regression and Multi-

level/Hierarchical Models. Cambridge University Press.

Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbsdistributions, and the

Bayesian restoration of images.IEEE Transitions on Pattern Analysis and Machine

Intelligence6:721–741.

Geman, Stuart, and Mark Johnson. 2002. Dynamic programmingfor parsing and estima-

tion of stochastic unification-based grammars. InProceedings of ACL 2002.

Giampiccolo, Danilo, Bernardo Magnini, Ido Dagan, and BillDolan. 2007. The third

pascal recognizing textual entailment challenge. InProceedings of the ACL-PASCAL

Workshop on Textual Entailment and Paraphrasing.

Giampiccolo, Danilo, Bernardo Magnini, Ido Dagan, and BillDolan. 2008. The fourth

pascal recognizing textual entailment challenge. InProceedings of the TAC-08 Text

Analysis Conference.

BIBLIOGRAPHY 143

Goldwater, Sharon, and Tom Griffiths. 2007. A fully bayesianapproach to unsupervised

part-of-speech tagging. InProceedings of the 45th Annual Meeting of the Association of

Computational Linguistics, pp. 744–751. Association for Computational Linguistics.

Goodman, Joshua. 1998.Parsing Inside-Out. PhD thesis, Harvard University.

Gordon, N.J., D.J. Salmond, and A.F.M. Smith. 1993. Novel approach to nonlinear/non-

Gaussian Bayesian state estimation. InIEE Proceedings, volume 140, pp. 107–113.

Graff, D., J. Kong, K. Chen, and K. Maeda. 2007. English gigaword third edition. Lin-

guistic Data Consortium.

Gu, Baohua. 2006. Recognizing nested named entities in GENIA corpus. InBioNLP

Workshop at HLT-NAACL 2006, pp. 112–113.

Haghighi, A., and D. Klein. 2007. Unsupervised coreferenceresolution in a nonparametric

bayesian model. InACL 2007.

Haghighi, Aria, Kristina Toutanova, and Christopher D. Manning. 2005. A joint model for

semantic role labeling. InProceedings of CoNLL 2005.

Hana, Jiřı́, and Hana Hanová. 2002. Manual for morphological annotation. Technical

Report TR-2002-14, UK MFF CKL.

Henderson, James. 2004. Discriminative training of a neural network statistical parser. In

ACL 42, pp. 96–103.

Hinton, Geoffrey. 2000. Training products of experts by minimizing contrastive divergence.

Neural Computation14:2002.

Hirschman, L., A. Yeh, C. Blaschke, and A. Valencia. 2005. Overview of BioCreAtIvE:

critical assessment of information extraction for biology. BMC bioinformatics6(Suppl

1):S1.

Hollingshead, Kristy, and Brian Roark. 2007. Pipeline iteration. InACL 2007.

144 BIBLIOGRAPHY

Hovy, Eduard, Mitchell Marcus, Martha Palmer, Lance Ramshaw, and Ralph Weischedel.

2006. Ontonotes: The 90% solution. InHLT-NAACL 2006.

Huang, Liang, and David Chiang. 2005. Betterk-best parsing. InProceedings of the 9th

International Workshop on Parsing Technologies.

Ido, Roy Bar-Haim, Ido Dagan, Bill Dolan, Lisa Ferro, DaniloGiampiccolo, Bernardo

Magnini, and Idan Szpektor. 2006. The second pascal recognising textual entailment

challenge. InProceedings of the Second PASCAL Challenges Workshop on Recognising

Textual Entailment.

Iwata, Tomoharu, Daichi Mochihashi, and Hiroshi Sawada. 2010. Learning common

grammar from multilingual corpus. InProceedings of the ACL 2010 Conference Short

Papers, pp. 184–188. Association for Computational Linguistics.URL: http://www.

aclweb.org/anthology/P10-2034.

Johnson, Mark. 2001. Joint and conditional estimation of tagging and parsing models. In

Meeting of the Association for Computational Linguistics, pp. 314–321.

Johnson, M., T. Griffiths, and S. Goldwater. 2007. Adaptor grammars: A framework for

specifying compositional nonparametric Bayesian models.In NIPS 2007.

Johnson, Mark, and Thomas L. Griffiths. 2007. Bayesian inference for PCFGs via Markov

chain Monte Carlo. InIn Proceedings of the North American Conference on Computa-

tional Linguistics (NAACL 07.

Jousse, Florent, Rémi Gilleron, Isabelle Tellier, and Marc Tommasi. 2006. Conditional

Random Fields for XML trees. InECML Workshop on Mining and Learning in Graphs.

Karttunen, Lauri. 2000. Applications of finite-state transducers in natural-language pro-

cessing. InProceesings of the Fifth International Conference on Implementation and

Application of Automata.

Kazama, Jun’ichi, Takaki Makino, Yoshihiro Ohta, and Jun’ichi Tsujii. 2002. Tuning

support vector machines for biomedical named entity recognition. In Proceedings of the

Workshop on Natural Language Processing in the Biomedical Domain (ACL 2002).

BIBLIOGRAPHY 145

Kim, Jin-Dong, Tomoko Ohta, Yuka Teteisi, and Jun’ichi Tsujii. 2003. Genia corpus –

a semantically annotated corpus for bio-textmining.Bioinformatics19(suppl. 1):i180–

i182.

Kim, M., Y. S. Han, and K. Choi. 1995. Collocation map for overcoming data sparseness.

In Proceedings of the 7th EACL, pp. 53–59.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing.

Science220:671–680.

Klein, D., and C.D. Manning. 2004. Corpus-based induction of syntactic structure: Mod-

els of dependency and constituency. InProceedings of the 42nd Annual Meeting on

Association for Computational Linguistics.

Klein, Dan, and Christopher D. Manning. 2003. Accurate unlexicalized parsing. InPro-

ceedings of the Association of Computational Linguistics (ACL).

Koller, D., and N. Friedman. 2009.Probabilistic Graphical Models: Principles and Tech-

niques. MIT Press.

Koo, T., X. Carreras, and M. Collins. 2008. Simple semi-supervised dependency parsing.

In Proceedings of ACL, volume 8, pp. 595–603.

Koo, Terry, Alexander M. Rush, Michael Collins, Tommi Jaakkola, and David Sontag.

2010. Dual decomposition for parsing with non-projective head automata. InEMNLP.

Koomen, Peter, Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2005. Generalized infer-

ence with multiple semantic role labeling systems. InProceedings of CoNLL 2005, pp.

181–184.

Krishnan, Vijay, and Christopher D. Manning. 2006. An effective two-stage model for

exploiting non-local dependencies in named entity recognition. InACL-44: Proceedings

of the 21st International Conference on Computational Linguistics and the 44th annual

meeting of the Association for Computational Linguistics, pp. 1121–1128. Association

for Computational Linguistics.DOI: http://dx.doi.org/10.3115/1220175.1220316.

146 BIBLIOGRAPHY

Laarhoven, P. J. Van, and E. H. L. Arts. 1987.Simulated Annealing: Theory and Applica-

tions. Reidel Publishers.

Lafferty, John, Andrew McCallum, and Fernando Pereira. 2001. Conditional Random

Fields: Probabilistic models for segmenting and labeling sequence data. InICML 2001,

pp. 282–289. Morgan Kaufmann, San Francisco, CA.

Lee, Su-In, Vassil Chatalbashev, David Vickrey, and DaphneKoller. 2007. Learning a

meta-level prior for feature relevance from multiple related tasks. InICML ’07: Pro-

ceedings of the 24th international conference on Machine learning.

Leek, T. R. 1997. Information extraction using hidden Markov models. Master’s thesis,

U.C. San Diego.

Liang, P. 2005. Semi-supervised learning for natural language. Master’s thesis, Mas-

sachusetts Institute of Technology.

Liu, Dong C., and Jorge Nocedal. 1989. On the limited memory BFGS method for large

scale optimization.Math. Programming45(3, (Ser. B)):503–528.

MacCartney, Bill, Trond Grenager, Marie de Marneffe, Daniel Cer, and Christopher D.

Manning. 2006. Learning to recognize features of valid textual entailments. InProceed-

ings of NAACL-HTL 2006.

Malouf, R. 2002. Markov models for language-independent named entity recognition. In

Proceedings of the 6th CoNLL, pp. 187–190.

Manning, Christopher D., and Hinrich Schütze. 1999.Foundations of Statistical Natural

Language Processing. The MIT Press.

Marcus, Mitchell P., Beatrice Santorini, and Mary Ann Marcinkiewicz. 1993. Building a

large annotated corpus of English: The Penn Treebank.Computational Linguistics19

(2):313–330.

Márquez, L., L. Padrè, M. Surdeanu, and L. Villarejo. 2007a. UPC: Experiments with

joint learning within semeval task 9. InProceedings of the 4th International Workshop

on Semantic Evaluations (SemEval-2007).

BIBLIOGRAPHY 147

Márquez, L., L. Villarejo, M.A. Martı́, and M. Taulè. 2007b. Semeval-2007 task 09: Multi-

level semantic annotation of Catalan and Spanish. InProceedings of the 4th International

Workshop on Semantic Evaluations (SemEval-2007).

Martı́, M.A., M. Taulè, M. Bertran, and L. Márquez. 2007. Ancora: Multilingual and

multilevel annotated corpora.MS, Universitat de Barcelona.URL: http://clic.

ub.edu/ancora/ancora-corpus.pdf.

Maxwell, III, John T., and Ronald M. Kaplan. 1995. A method for disjunctive constraint

satisfaction. In Mary Dalrymple, Ronald M. Kaplan, John T. Maxwell III, and Annie Za-

enen (eds.),Formal Issues in Lexical-Functional Grammar, number 47 in CSLI Lecture

Notes Series, chapter 14, pp. 381–481. CSLI Publications.

McCallum, A., D. Freitag, and F. Pereira. 2000. Maximum entropy Markov models for in-

formation extraction and segmentation. InICML 2000, pp. 591–598. Morgan Kaufmann,

San Francisco, CA.

McClosky, David, Eugene Charniak, and Mark Johnson. 2010. Automatic domain adap-

tation for parsing. InProceedings of the North American Chapter of the Association for

Computational Linguistics - Human Language Technologies 2010 Conference (NAACL-

HLT’10), Main Conference.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. 2005a.Flexible text segmenta-

tion with structured multilabel classification. InHLT ’05: Proceedings of the conference

on Human Language Technology and Empirical Methods in Natural Language Process-

ing, pp. 987–994.

McDonald, Ryan, Koby Crammer, and Fernando Pereira. 2005b.Online large-margin

training of dependency parsers. InACL 2005.

Mikheev, A., M. Moens, and C. Grover. 1999. Named entity recognition without gazetteers.

In EACL 1999, pp. 1–8.

Miller, Scott, Heidi Fox, Lance Ramshaw, and Ralph Weischedel. 2000. A novel use of

statistical parsing to extract information from text. InIn 6th Applied Natural Language

Processing Conference, pp. 226–233.

148 BIBLIOGRAPHY

Miller, S., J. Guinness, and A. Zamanian. 2004. Name taggingwith word clusters and

discriminative training. InProceedings of HLT-NAACL, volume 4.

Ng, Andrew, and Michael Jordan. 2001. Convergence rates of the voting Gibbs classi-

fier, with application to Bayesian feature selection. InProceedings of the Eighteenth

International Conference on Machine Learning.

Ng, Andrew, and Michael Jordan. 2002. On discriminative vs.generative classifiers: A

comparison of logistic regression and naive bayes. InAdvances in Neural Information

Processing Systems (NIPS).

Nivre, J., J. Hall, S. Kübler, R. McDonald, J. Nilsson, S. Riedel, and D. Yuret. 2007. The

CoNLL 2007 shared task on dependency parsing. InProceedings of the CoNLL Shared

Task Session of EMNLP-CoNLL 2007. Association for Computational Linguistics.

Nivre, J., J. Hall, and J. Nilsson. 2006. MaltParser: A data-driven parser-generator for

dependency parsing. InProceedings of LREC, volume 6. Citeseer.

Ohta, Tomoko, Yuka Tateisi, and Jin-Dong Kim. 2002. The GENIA corpus: an annotated

research abstract corpus in molecular biology domain. InProceedings of the second

international conference on Human Language Technology Research, pp. 82–86.

Pearl, J. 1988.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman.

Petrov, Slav, Leon Barrett, Romain Thibaux, and Dan Klein. 2006. Learning accurate,

compact, and interpretable tree annotation. InACL 44/COLING 21, pp. 433–440.

Petrov, Slav, and Dan Klein. 2008. Discriminative log-linear grammars with latent vari-

ables. InNIPS.

Post, Matt, and Daniel Gildea. 2009. Bayesian learning of a tree substitution grammar. In

ACL-IJCNLP ’09: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pp.

45–48. Association for Computational Linguistics.

Pradhan, Sameer S., Lance Ramshaw, Ralph Weischedel, Jessica MacBride, and Lin-

nea Micciulla. 2007. Unrestricted coreference: Identifying entities and events

BIBLIOGRAPHY 149

in ontonotes. International Conference on Semantic Computing0:446–453. DOI:

http://doi.ieeecomputersociety.org/10.1109/ICSC.2007.93.

Rabiner, L. R. 1989. A tutorial on Hidden Markov Models and selected applications in

speech recognition.Proceedings of the IEEE77(2):257–286.

Ratinov, L., and D. Roth. 2009. Design challenges and misconceptions in named entity

recognition. InProceedings of the Thirteenth Conference on ComputationalNatural

Language Learning, pp. 147–155. Association for Computational Linguistics.

Ratnaparkhi, Adwait. 1997. A linear observed time statistical parser based on maximum

entropy models. InEMNLP 2, pp. 1–10.

Rush, Alexander M, David Sontag, Michael Collins, and TommiJaakkola. 2010. On dual

decomposition and linear programming relaxations for natural language processing. In

EMNLP.

Sang, Erik F. Tjong Kim, and Fien De Meulder. 2003. Introduction to the conll-2003 shared

task: Language-independent named entity recognition. InProceedings of CoNLL-2003.

Sarawagi, Sunita, and William W. Cohen. 2004. Semi-markov conditional random fields

for information extraction. InIn Advances in Neural Information Processing Systems

17, pp. 1185–1192.

Shen, Dan, Jie Zhang, Guodong Zhou, Jian Su, and Chew-Lim Tan. 2003. Effective adapta-

tion of a hidden markov model-based named entity recognizerfor biomedical domain. In

Proceedings of the ACL 2003 workshop on Natural language processing in biomedicine.

Association for Computational Linguistics (ACL 2003).

Singh, S., K. Schultz, and A. McCallum. 2009. Bi-directional joint inference for entity res-

olution and segmentation using imperatively-defined factor graphs. Machine Learning

and Knowledge Discovery in Databasespp. 414–429.

Snyder, Benjamin, Tahira Naseem, Jacob Eisenstein, and Regina Barzilay. 2008. Un-

supervised multilingual learning for pos tagging. InEMNLP ’08: Proceedings of the

150 BIBLIOGRAPHY

Conference on Empirical Methods in Natural Language Processing, pp. 1041–1050.

Association for Computational Linguistics.

Snyder, Benjamin, Tahira Naseem, Jacob Eisenstein, and Regina Barzilay. 2009. Adding

more languages improves unsupervised multilingual part-of-speech tagging: a bayesian

non-parametric approach. InNAACL ’09: Proceedings of Human Language Technolo-

gies: The 2009 Annual Conference of the North American Chapter of the Association for

Computational Linguistics, pp. 83–91. Association for Computational Linguistics.

Stolcke, Andreas. 1995. An efficient probabilistic context-free parsing algorithm that

computes prefix probabilities.Computational Linguistics21:165–202.

Sundheim, B.M. 1996. Overview of results of the MUC-6 evaluation. In Proceedings of

the Sixth Message Understanding Conference (MUC-6).

Surdeanu, Mihai, Richard Johansson, Adam Meyers, Lluı́s M`arquez, and Joakim Nivre.

2008. The CoNLL-2008 shared task on joint parsing of syntactic and semantic depen-

dencies. InProceedings of the 12th Conference on Computational Natural Language

Learning (CoNLL).

Sutton, C., and A. McCallum. 2004. Collective segmentationand labeling of distant entities

in information extraction. InICML Workshop on Statistical Relational Learning and Its

connections to Other Fields.

Sutton, Charles, and Andrew McCallum. 2005. Joint parsing and semantic role labeling.

In Conference on Natural Language Learning (CoNLL).

Sutton, Charles, and Andrew McCallum. 2007. An introduction to conditional random

fields for relational learning. In Lise Getoor and Ben Taskar(eds.), Introduction to

Statistical Relational Learning. MIT Press.

Taskar, B., P. Abbeel, and D. Koller. 2002. Discriminative probabilistic models for rela-

tional data. InProceedings of the 18th Conference on Uncertianty in Artificial Intelli-

gence (UAI-02), pp. 485–494.

Taskar, B., C. Guestrin, and D. Koller. 2003. Max-margin Markov networks. InNIPS.

BIBLIOGRAPHY 151

Taskar, Ben, Dan Klein, Michael Collins, Daphne Koller, andChristopher D. Manning.

2004. Max-margin parsing. InProceedings of the Conference on Empirical Methods in

Natural Language Processing (EMNLP).

Toutanova, K., A. Haghighi, and C. D. Manning. 2005. Joint learning improves semantic

role labeling. InACL 2005.

Toutanova, Kristina, and Mark Johnson. 2008. A bayesian lda-based model for semi-

supervised part-of-speech tagging. In J.C. Platt, D. Koller, Y. Singer, and S. Roweis

(eds.),Advances in Neural Information Processing Systems 20, pp. 1521–1528. MIT

Press.

Toutanova, K., D. Klein, and C. Manning. 2003. Feature-richpart-of-speech tagging with

a cyclic dependency network. InHLT-NAACL 2003.

Tsochantaridis, I., T. Joachims, T. Hofmann, and Y. Altun. 2005. Large margin methods for

structured and interdependent output variables.Journal of Machine Learning Research

(JMLR)6:1453–1484.

Tsuruoka, Yoshimasa, Yuka Tateishi, Jin-Dong Kim, Tomoko Ohta, John McNaught,

Sophia Ananiadou, and Jun’ichi Tsujii. 2005. Developing a robust part-of-speech tag-

ger for biomedical text. InAdvances in Informatics - 10th Panhellenic Conference on

Informatics, LNCS 3746, pp. 382–392.

Tsuruoka, Yoshimasa, and Jun’ichi Tsujii. 2003. Boosting precision and recall of

dictionary-based protein name recognition. InProceedings of the ACL-03 Workshop

on Natural Language Processing in Biomedicine, pp. 41–48.

Turian, Joseph, and I. Dan Melamed. 2006. Advances in discriminative parsing. InACL

44, pp. 873–880.

Turian, Joseph, Lev-Arie Ratinov, and Yoshua Bengio. 2010.Word representations: A sim-

ple and general method for semi-supervised learning. InProceedings of the 48th Annual

Meeting of the Association for Computational Linguistics, pp. 384–394. Association

152 BIBLIOGRAPHY

for Computational Linguistics.URL: http://www.aclweb.org/anthology/

P10-1040.

Turian, Joseph, Ben Wellington, and I. Dan Melamed. 2007. Scalable discriminative

learning for natural language parsing and translation. InAdvances in Neural Information

Processing Systems 19, pp. 1409–1416. MIT Press.

Vilain, Marc, Jonathan Huggins, and Ben Wellner. 2009. A simple feature-copying ap-

proach for long-distance dependencies. InCoNLL ’09: Proceedings of the Thirteenth

Conference on Computational Natural Language Learning, pp. 192–200. Association

for Computational Linguistics.

Vishwanathan, S. V. N., Nichol N. Schraudolph, Mark W. Schmidt, and Kevin P. Mur-

phy. 2006. Accelerated training of conditional random fields with stochastic gradient

methods. InICML 23, pp. 969–976.

Wainwright, Martin J, and Michael I Jordan. 2008.Graphical Models, Exponential Fami-

lies, and Variational Inference. Now Publishers Inc.

Wellner, Ben, Andrew McCallum, Fuchun Peng, and Michael Hay. 2004. An integrated,

conditional model of information extraction and coreference with application to citation

matching. InProceedings of the 20th Annual Conference on Uncertainty inArtificial

Intelligence.

Xue, Ya, Xuejun Liao, Lawrence Carin, and Balaji Krishnapuram. 2007. Multi-task learn-

ing for classification with dirichlet process priors.J. Mach. Learn. Res.8.

Yamada, H., and Y. Matsumoto. 2003. Statistical dependencyanalysis with support vector

machines. InProceedings of IWPT, pp. 195–206.

Yu, Kai, Volker Tresp, and Anton Schwaighofer. 2005. Learning gaussian processes from

multiple tasks. InICML ’05: Proceedings of the 22nd international conferenceon Ma-

chine learning.

Yu, Liang-Chih, Chung-Hsien Wu, and Eduard Hovy. 2008. OntoNotes: Corpus cleanup

of mistaken agreement using word sense disambiguation. InProceedings of the 22nd

BIBLIOGRAPHY 153

International Conference on Computational Linguistics (Coling 2008), pp. 1057–1064.

URL: http://www.aclweb.org/anthology/C08-1133.

Zhang, H., M. Zhang, C.L. Tan, and H. Li. 2009. K-best combination of syntactic parsers.

In Proceedings of the 2009 Conference on Empirical Methods in Natural Language Pro-

cessing, pp. 1552–1560. Association for Computational Linguistics.

Zhang, Jie, Dan Shen, Guodong Zhou, Jian Su, and Chew-Lim Tan. 2004. Enhancing

HMM-based biomedical named entity recognition by studyingspecial phenomena.Jour-

nal of Biomedical Informatics37(6):411–422.

Zhang, Yue, and Stephen Clark. 2008. Joint word segmentation and POS tagging using a

single perceptron. InACL 2008.

Zhao, Hai, Wenliang Chen, Jun’ichi Kazama, Kiyotaka Uchimoto, and Kentaro Torisawa.

2009. Multilingual dependency learning: Exploiting rich features for tagging syntactic

and semantic dependencies. InProceedings of the Thirteenth Conference on Computa-

tional Natural Language Learning (CoNLL 2009): Shared Task, pp. 61–66. Association

for Computational Linguistics.

Zhou, Guodong. 2006. Recognizing names in biomedical textsusing mutual information

independence model and SVM plus sigmoid.International Journal of Medical Infor-

matics75:456–467.

Zhou, GuoDong, and Jian Su. 2004. Exploring deep knowledge resources in biomedical

name recognition. InJoint Workshop on Natural Language Processing in Biomedicine

and Its Applications at Coling 2004.

Zhou, Guodong, Jie Zhang, Jian Su, Dan Shen, and Chewlim Tan.2004. Recognizing

names in biomedical texts: a machine learning approach.Bioinformatics20(7):1178–

1190.

