
RECURSIVE DEEP LEARNING

FOR NATURAL LANGUAGE PROCESSING

AND COMPUTER VISION

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Richard Socher

August 2014

 http://creativecommons.org/licenses/by-sa/3.0/us/

This dissertation is online at: http://purl.stanford.edu/xn618dd0392

© 2014 by Richard Georg Raymond Socher. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Share Alike 3.0 United States License.

ii

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://purl.stanford.edu/xn618dd0392

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Christopher Manning, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Percy Liang

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Andrew Ng

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

c© Copyright by Richard Socher 2014

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Christopher D. Manning) Principal Co-Advisor

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Andrew Y. Ng) Principal Co-Advisor

I certify that I have read this dissertation and that, in my opinion, it

is fully adequate in scope and quality as a dissertation for the degree

of Doctor of Philosophy.

(Percy Liang)

Approved for the University Committee on Graduate Studies

iii

Abstract

As the amount of unstructured text data that humanity produces overall and on the

Internet grows, so does the need to intelligently process it and extract different types

of knowledge from it. My research goal in this thesis is to develop learning models

that can automatically induce representations of human language, in particular its

structure and meaning in order to solve multiple higher level language tasks.

There has been great progress in delivering technologies in natural language pro-

cessing such as extracting information, sentiment analysis or grammatical analysis.

However, solutions are often based on different machine learning models. My goal is

the development of general and scalable algorithms that can jointly solve such tasks

and learn the necessary intermediate representations of the linguistic units involved.

Furthermore, most standard approaches make strong simplifying language assump-

tions and require well designed feature representations. The models in this thesis

address these two shortcomings. They provide effective and general representations

for sentences without assuming word order independence. Furthermore, they provide

state of the art performance with no, or few manually designed features.

The new model family introduced in this thesis is summarized under the term

Recursive Deep Learning. The models in this family are variations and extensions of

unsupervised and supervised recursive neural networks (RNNs) which generalize deep

and feature learning ideas to hierarchical structures. The RNN models of this thesis

obtain state of the art performance on paraphrase detection, sentiment analysis, rela-

tion classification, parsing, image-sentence mapping and knowledge base completion,

among other tasks.

Chapter 2 is an introductory chapter that introduces general neural networks.

iv

The main three chapters of the thesis explore three recursive deep learning modeling

choices. The first modeling choice I investigate is the overall objective function that

crucially guides what the RNNs need to capture. I explore unsupervised, supervised

and semi-supervised learning for structure prediction (parsing), structured sentiment

prediction and paraphrase detection.

The next chapter explores the recursive composition function which computes

vectors for longer phrases based on the words in a phrase. The standard RNN com-

position function is based on a single neural network layer that takes as input two

phrase or word vectors and uses the same set of weights at every node in the parse

tree to compute higher order phrase vectors. This is not expressive enough to capture

all types of compositions. Hence, I explored several variants of composition functions.

The first variant represents every word and phrase in terms of both a meaning vec-

tor and an operator matrix. Afterwards, two alternatives are developed: The first

conditions the composition function on the syntactic categories of the phrases being

combined which improved the widely used Stanford parser. The most recent and

expressive composition function is based on a new type of neural network layer and

is called a recursive neural tensor network.

The third major dimension of exploration is the tree structure itself. Variants of

tree structures are explored and assumed to be given to the RNN model as input.

This allows the RNN model to focus solely on the semantic content of a sentence

and the prediction task. In particular, I explore dependency trees as the underlying

structure, which allows the final representation to focus on the main action (verb) of

a sentence. This has been particularly effective for grounding semantics by mapping

sentences into a joint sentence-image vector space. The model in the last section

assumes the tree structures are the same for every input. This proves effective on the

task of 3d object classification.

v

Acknowledgments

This dissertation would not have been possible without the support of many people.

First and foremost, I would like to thank my two advisors and role models Chris

Manning and Andrew Ng. You both provided me with a the perfect balance of

guidance and freedom. Chris, you helped me see the pros and cons of so many

decisions, small and large. I admire your ability to see the nuances in everything.

Thank you also for reading countless drafts of (often last minute) papers and helping

me understand the NLP community. Andrew, thanks to you I found and fell in love

with deep learning. It had been my worry that I would have to spend a lot of time

feature engineering in machine learning, but after my first deep learning project there

was no going back. I also want to thank you for your perspective and helping me

pursue and define projects with more impact. I am also thankful to Percy Liang for

being on my committee and his helpful comments.

I also want to thank my many and amazing co-authors (in chronological order)

Jia Deng, Wei Dong, Li-Jia Li, Kai Li, Li Fei-Fei, Sam J. Gershman, Adler Perotte,

Per Sederberg, Ken A. Norman, and David M. Blei, Andrew Maas, Cliff Lin, Jeffrey

Pennington, Eric Huang, Brody Huval, Bharath Bhat, Milind Ganjoo, Hamsa Sridhar,

Osbert Bastani, Danqi Chen, Thang Luong, John Bauer, Will Zou, Daniel Cer, Alex

Perelygin, Jean Wu, Jason Chuang, Milind Ganjoo, Quoc V. Le, Romain Paulus,

Bryan McCann, Kai Sheng Tai, JiaJi Hu and Andrej Karpathy. It is due to the

friendly and supportive environment in the Stanford NLP, machine learning group

and the overall Stanford CS department that I was lucky enough to find so many

great people to work with. I really enjoyed my collaborations with you. It is not

only my co-authors who helped make my Stanford time more fun and productive, I

vi

also want to thank Gabor Angeli, Angel Chang and Ngiam Jiquan for proof-reading a

bunch of papers drafts and brainstorming. Also, thanks to Elliot English for showing

me all the awesome bike spots around Stanford!

I also want to thank Yoshua Bengio for his support throughout. In many ways, he

has shown the community and me the path for how to apply, develop and understand

deep learning. I somehow also often ended up hanging out with the Montreal machine

learning group at NIPS; they are an interesting, smart and fun bunch!

For two years I was supported by the Microsoft Research Fellowship for which

I want to sincerely thank the people in the machine learning and NLP groups in

Redmond. A particular shout-out goes to John Platt. I was amazed that he could

give so much helpful and technical feedback, both in long conversations during my

internship but also after just a 3 minute chat in the hallway at NIPS.

I wouldn’t be where I am today without the amazing support, encouragement

and love from my parents Karin and Martin Socher and my sister Kathi. It’s the

passion for exploration and adventure combined with determination and hard work

that I learned from you. Those values are what led me through my PhD and let me

have fun in the process. And speaking of love and support, thank you Eaming for

our many wonderful years and always being on my side, even when a continent was

between us.

vii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Overview . 1

1.2 Contributions and Outline of This Thesis 4

2 Deep Learning Background 8

2.1 Why Now? The Resurgence of Deep Learning 8

2.2 Neural Networks: Definitions and Basics 11

2.3 Word Vector Representations . 14

2.4 Window-Based Neural Networks . 17

2.5 Error Backpropagation . 18

2.6 Optimization and Subgradients . 22

3 Recursive Objective Functions 24

3.1 Max-Margin Structure Prediction with Recursive Neural Networks . . 24

3.1.1 Mapping Words and Image Segments into Semantic Space . . 27

3.1.2 Recursive Neural Networks for Structure Prediction 27

3.1.3 Learning . 33

3.1.4 Backpropagation Through Structure 34

3.1.5 Experiments . 36

3.1.6 Related Work . 41

viii

3.2 Semi-Supervised Reconstruction-Classification Error - For Sentiment

Analysis . 44

3.2.1 Semi-Supervised Recursive Autoencoders 46

3.2.2 Learning . 53

3.2.3 Experiments . 53

3.2.4 Related Work . 60

3.3 Unfolding Reconstruction Errors - For Paraphrase Detection 62

3.3.1 Recursive Autoencoders . 63

3.3.2 An Architecture for Variable-Sized Matrices 67

3.3.3 Experiments . 69

3.3.4 Related Work . 75

3.4 Conclusion . 77

4 Recursive Composition Functions 78

4.1 Syntactically Untied Recursive Neural Networks - For Natural Lan-

guage Parsing . 79

4.1.1 Compositional Vector Grammars 81

4.1.2 Experiments . 89

4.1.3 Related Work . 95

4.2 Matrix Vector Recursive Neural Networks - For Relation Classification 97

4.2.1 MV-RNN: A Recursive Matrix-Vector Model 98

4.2.2 Model Analysis . 104

4.2.3 Predicting Movie Review Ratings 109

4.2.4 Classification of Semantic Relationships 110

4.2.5 Related work . 112

4.3 Recursive Neural Tensor Layers - For Sentiment Analysis 115

4.3.1 Stanford Sentiment Treebank 117

4.3.2 RNTN: Recursive Neural Tensor Networks 119

4.3.3 Experiments . 124

4.3.4 Related Work . 131

4.4 Conclusion . 133

ix

5 Compositional Tree Structures Variants 134

5.1 Dependency Tree RNNs - For Sentence-Image Mapping 134

5.1.1 Dependency-Tree Recursive Neural Networks 136

5.1.2 Learning Image Representations with Neural Networks 141

5.1.3 Multimodal Mappings . 143

5.1.4 Experiments . 145

5.1.5 Related Work . 150

5.2 Multiple Fixed Structure Trees - For 3d Object Recognition 152

5.2.1 Convolutional-Recursive Neural Networks 154

5.2.2 Experiments . 158

5.2.3 Related Work . 162

5.3 Conclusion . 164

6 Conclusions 165

x

List of Tables

3.1 Pixel level multi-class segmentation accuracy comparison 37

3.2 Sentiment datasets statistics . 54

3.3 Example EP confessions from the test data 55

3.4 Accuracy of predicting the class with most votes. 57

3.5 Most negative and positive phrases picked by an RNN model 59

3.6 Accuracy of sentiment classification 59

3.7 Nearest neighbors of randomly chosen phrases of different lengths. . . 70

3.8 Reconstruction of Unfolding RAEs 72

3.9 Test results on the MSRP paraphrase corpus 73

3.10 U.RAE comparison to previous methods on the MSRP paraphrase corpus 74

3.11 Examples of paraphrases with ground truth labels 76

4.1 Comparison of parsers with richer state representations on the WSJ . 91

4.2 Detailed comparison of different parsers. 92

4.3 Hard movie review examples . 109

4.4 Accuracy of classification on full length movie review polarity (MR) . 110

4.5 Examples of correct classifications of ordered, semantic relations . . . 111

4.6 Comparison of learning methods for predicting semantic relations be-

tween nouns . 113

4.7 Accuracy for fine grained (5-class) and binary sentiment 127

4.8 Accuracy of negation detection . 129

4.9 Examples of n-grams for which the RNTN 131

5.1 Comparison of methods for sentence similarity judgments 147

xi

5.2 Results of multimodal ranking when models are trained with a squared

error . 149

5.3 Evaluation comparison between mean rank of the closest correct image

or sentence . 149

5.4 Comparison to RGBD classification approaches 160

6.1 Comparison of RNNs: Composition and Objective 168

6.2 Comparison of RNNs: Properties . 169

6.3 Comparison of all RNNs: Tasks and pros/cons 171

xii

List of Figures

1.1 Example of a prepositional attachment by an RNN 4

2.1 Single neuron . 12

2.2 Nonlinearities used in this thesis . 13

3.1 Illustration of an RNN parse of an image and a sentence 25

3.2 RNN training inputs for sentences and images. 29

3.3 Single Node of an RNN . 31

3.4 Results of multi-class image segmentation 38

3.5 Nearest neighbors of image region trees from an RNN 39

3.6 Nearest neighbors phrase trees in RNN space 40

3.7 A recursive autoencoder architecture 45

3.8 Application of a recursive autoencoder to a binary tree. 48

3.9 Illustration of an RAE unit at a nonterminal tree node 52

3.10 Average KL-divergence between gold and predicted sentiment distri-

butions . 57

3.11 Accuracy for different weightings of reconstruction error 60

3.12 An overview of a U.RAE paraphrase model 64

3.13 Details of the recursive autoencoder model 65

3.14 Example of the min-pooling layer . 69

4.1 Example of a CVG tree with (category,vector) representations 80

4.2 An example tree with a simple Recursive Neural Network 84

4.3 Example of a syntactically untied RNN 86

xiii

4.4 Test sentences of semantic transfer for PP attachments 93

4.5 Binary composition matrices . 94

4.6 Matrix-Vector RNN illustration . 97

4.7 Example of how the MV-RNN merges a phrase 102

4.8 Average KL-divergence for predicting sentiment distributions 105

4.9 Training trees for the MV-RNN to learn propositional operators . . . 108

4.10 The MV-RNN for semantic relationship classification 110

4.11 Example of the RNTN predicting 5 sentiment classes 116

4.12 Normalized histogram of sentiment annotations at each n-gram length 117

4.13 The sentiment labeling interface . 118

4.14 Recursive Neural Network models for sentiment 120

4.15 A single layer of the Recursive Neural Tensor Network 122

4.16 Accuracy curves for fine grained sentiment classification 126

4.17 Example of correct prediction for contrastive conjunction 128

4.18 Change in activations for negations. 129

4.19 RNTN prediction of positive and negative sentences and their negation 130

4.20 Average ground truth sentiment of top 10 most positive n-grams . . 132

5.1 DT-RNN illustration . 135

5.2 Example of a full dependency tree for a longer sentence 136

5.3 Example of a DT-RNN tree structure 138

5.4 The CNN architecture of the visual model 142

5.5 Examples from the dataset of images and their sentence descriptions 143

5.6 Images and their sentence descriptions assigned by the DT-RNN . . . 148

5.7 An overview of the RNN model for RGBD images 154

5.8 Visualization of the k-means filters used in the CNN layer 155

5.9 Recursive Neural Network applied to blocks 158

5.10 Model analysis of RGBD model . 161

5.11 Confusion Matrix of my full RAE model on images and 3D data . . . 162

5.12 Examples of confused classes . 163

xiv

Chapter 1

Introduction

1.1 Overview

As the amount of unstructured text data that humanity produces overall and on the

Internet grows, so does the need to intelligently process it and extract different types

of knowledge from it. My research goal in this thesis is to develop learning models

that can automatically induce representations of human language, in particular its

structure and meaning in order to solve multiple higher level language tasks.

There has been great progress in delivering technologies in natural language pro-

cessing (NLP) such as extracting information from big unstructured data on the web,

sentiment analysis in social networks or grammatical analysis for essay grading. One

of the goals of NLP is the development of general and scalable algorithms that can

jointly solve these tasks and learn the necessary intermediate representations of the

linguistic units involved. However, standard approaches towards this goal have two

common shortcomings.

1. Simplifying Language Assumptions: In NLP and machine learning, we of-

ten develop an algorithm and then force the data into a format that is compat-

ible with this algorithm. For instance, a common first step in text classification

or clustering is to ignore word order and grammatical structure and represent

texts in terms of unordered lists of words, so called bag of words. This leads to

obvious problems when trying to understand a sentence. Take for instance the

1

CHAPTER 1. INTRODUCTION 2

two sentences: “Unlike the surreal Leon, this movie is weird but likeable.” and

“Unlike the surreal but likeable Leon, this movie is weird.” The overall sen-

timent expressed in the first sentence is positive. My model learns that while

the words compose a positive sentiment about Leon in the second sentence, the

overall sentiment is negative, despite both sentences having exactly the same

words. This is in contrast to the above mentioned bag of words approaches that

cannot distinguish between the two sentences. Another common simplification

for labeling words with, for example, their part of speech tag is to consider only

the previous word’s tag or a fixed sized neighborhood around each word. My

models do not make these simplifying assumptions and are still tractable.

2. Feature Representations: While a lot of time is spent on models and in-

ference, a well-known secret is that the performance of most learning systems

depends crucially on the feature representations of the input. For instance, in-

stead of relying only on word counts to classify a text, state of the art systems

use part-of-speech tags, special labels for each location, person or organization

(so called named entities), parse tree features or the relationship of words in

a large taxonomy such as WordNet. Each of these features has taken a long

time to develop and integrating them for each new task slows down both the

development and runtime of the final algorithm.

The models in this thesis address these two shortcomings. They provide effective

and general representations for sentences without assuming word order independence.

Furthermore, they provide state of the art performance with no, or few manually

designed features. Inspiration for these new models comes from combining ideas

from the fields of natural language processing and deep learning. I will introduce the

important basic concepts and ideas of deep learning in the second chapter. Generally,

deep learning is a subfield of machine learning which tackles the second challenge by

automatically learning feature representations from raw input. These representations

can then be readily used for prediction tasks.

There has been great success using deep learning techniques in image classification

(Krizhevsky et al., 2012) and speech recognition (Hinton et al., 2012). However, an

CHAPTER 1. INTRODUCTION 3

import aspect of language and the visual world that has not been accounted for in deep

learning is the pervasiveness of recursive or hierarchical structure. This is why deep

learning so far has not been able to tackle the first of the two main shortcomings.

This thesis describes new deep models that extend the ideas of deep learning to

structured inputs and outputs, thereby providing a solution to the first shortcoming

mentioned above. In other words, while the methods implemented here are based

on deep learning they extend general deep learning ideas beyond classifying fixed

sized inputs and introduce recursion and computing representations for grammatical

language structures.

The new model family introduced in this thesis is summarized under the term

Recursive Deep Learning. The models in this family are variations and extensions of

unsupervised and supervised recursive neural networks. These networks parse natural

language. This enables them to find the grammatical structure of a sentence and align

the neural network architecture accordingly. The recursion comes applying the same

neural network at every node of the grammatical structure. Grammatical structures

help, for instance, to accurately solve the so called prepositional attachment problem

illustrated in the parse of Fig 1.1. In this example, the “with” phrase in “eating

spaghetti with a spoon” specifies a way of eating whereas in “eating spaghetti with

some pesto” specifies a dish. The recursive model captures that the difference is due

to the semantic content of the word following the preposition “with.” This content is

captured in the distributional word and phrase representations. These representations

capture that utensils are semantically similar or that pesto, sauce and tomatoes are

all food related.

Recursive deep models do not only predict these linguistically plausible phrase

structures but further learn how words compose the meaning of longer phrases in-

side such structures. They address the fundamental issue of learning feature vector

representations for variable sized inputs without ignoring structure or word order.

Discovering this structure helps us to characterize the units of a sentence or image

and how they compose to form a meaningful whole. This is a prerequisite for a

complete and plausible model of language. In addition, the models can learn compo-

sitional semantics often purely from training data without a manual description of

CHAPTER 1. INTRODUCTION 4

VP

VBG

eating

NP

NNS

spaghetti

PP

IN

with

NP

DT

a

NN

spoon

Figure 1.1: Example of how a recursive neural network model correctly identifies that
“with a spoon” modifies the verb in this parse tree.

features that are important for a prediction task.

1.2 Contributions and Outline of This Thesis

The majority of deep learning work is focused on pure classification of fixed-sized flat

inputs such as images. In contrast, the recursive deep models presented in this thesis

can predict an underlying hierarchical structure, learn similarity spaces for linguistic

units of any length and classify phrase labels and relations between inputs. This

constitutes an important generalization of deep learning to structured prediction and

makes these models suitable for natural language processing.

The syntactic rules of natural language are known to be recursive, with noun

phrases containing relative clauses that themselves contain noun phrases, e.g., “the

church which has nice windows.” In Socher et al. (2011b), I introduced a max-margin,

structure prediction framework based on Recursive Neural Networks (RNNs) for find-

ing hierarchical structure in multiple modalities. Recursion in this case pertains to

the idea that the same neural network is applied repeatedly on different components

of a sentence. Since this model showed much promise for both language and image

understanding, I decided to further investigate the space of recursive deep learning

models. In this thesis, I explore model variations along three major axes in order

to gain insights into hierarchical feature learning, building fast, practical, state of

CHAPTER 1. INTRODUCTION 5

the art NLP systems and semantic compositionality, the important quality of natural

language that allows speakers to determine the meaning of a longer expression based

on the meanings of its words and the rules used to combine them (Frege, 1892). The

RNN models of this thesis obtain state of the art performance on paraphrase detec-

tion, sentiment analysis, relation classification, parsing, image-sentence mapping and

knowledge base completion, among other tasks.

Chapter 2 is an introductory chapter that introduces general neural networks. It

loosely follows a tutorial I gave together with Chris Manning and Yoshua Bengio at

ACL 2012. The next three chapters outline the main RNN variations: objective func-

tions, composition functions and tree structures. A final conclusion chapter distills

the findings and discusses shortcomings, advantages and potential future directions.

Summary Chapter 3: Recursive Objective Functions

The first modeling choice I investigate is the overall objective function that crucially

guides what the RNNs need to capture. I explore unsupervised learning of word

and sentence vectors using reconstruction errors. Unsupervised deep learning models

can learn to capture distributional information of single words (Huang et al., 2012)

or use morphological analysis to describe rare or unseen words (Luong et al., 2013).

Recursive reconstruction errors can be used to train compositional models to preserve

information in sentence vectors, which is useful for paraphrase detection (Socher et al.,

2011a). In contrast to these unsupervised functions, my parsing work uses a simple

linear scoring function and sentiment and relation classification use softmax classifiers

to predict a label for each node and phrase in the tree (Socher et al., 2011c, 2012b,

2013d). This chapter is based on the following papers (in that order): Socher et al.

(2011b,c,a), each being the basis for one section.

Summary Chapter 4: Recursive Composition Functions

The composition function computes vectors for longer phrases based on the words in a

phrase. The standard RNN composition function is based on a single neural network

layer that takes as input two phrase or word vectors and uses the same set of weights

CHAPTER 1. INTRODUCTION 6

at every node in the parse tree to compute higher order phrase vectors. While this

type of composition function obtained state of the art performance for paraphrase

detection (Socher et al., 2011a) and sentiment classification (Socher et al., 2011c),

it is not expressive enough to capture all types of compositions. Hence, I explored

several variants of composition functions. The first variant represents every word

and phrase in terms of both a meaning vector and an operator matrix (Socher et al.,

2012b). Each word’s matrix acts as a function that modifies the meaning of another

word’s vector, akin to the idea of lambda calculus functions. In this model, the

composition function becomes completely input dependent. This is a very versatile

functional formulation and improved the state of the art on the task of identifying

relationships between nouns (such as message-topic or content-container). But it also

introduced many parameters for each word. Hence, we developed two alternatives,

the first conditions the composition function on the syntactic categories of the phrases

being combined (Socher et al., 2013a). This improved the widely used Stanford parser

and learned a soft version of head words. In other words, the model learned which

words are semantically more important in the representation of a longer phrase. The

most recent and expressive composition function is based on a new type of neural

network layer and is called a recursive neural tensor network (Socher et al., 2013d).

It allows both additive and mediated multiplicative interactions between vectors and

is able to learn several important compositional sentiment effects in language such as

negation and its scope and contrastive conjunctions like but. This chapter is based on

the following papers (in that order): Socher et al. (2013a, 2012b, 2013d), each being

the basis for one section.

Summary Chapter 5: Tree Structures

The third major dimension of exploration is the tree structure itself. I have worked

on constituency parsing, whose goal it is to learn the correct grammatical analysis

of a sentence and produce a tree structure (Socher et al., 2013a). Another approach

allowed the actual task, such as sentiment prediction or reconstruction error, to de-

termine the tree structure (Socher et al., 2011c). In my recent work, I assume the

CHAPTER 1. INTRODUCTION 7

tree structure is provided by a parser already. This allows the RNN model to focus

solely on the semantic content of a sentence and the prediction task (Socher et al.,

2013d). I have explored dependency trees as the underlying structure, which allows

the final representation to focus on the main action (verb) of a sentence. This has

been particularly effective for grounding semantics by mapping sentences into a joint

sentence-image vector space (Socher et al., 2014). The model in the last section as-

sumes the tree structures are the same for every input. This proves effective on the

task of 3d object classification. This chapter is based on the following papers (in that

order): Socher et al. (2014, 2012a), each being the basis for one section.

The next chapter will give the necessary mathematical background of neural net-

works and their training, as well as some motivation for why these methods are

reasonable to explore.

Chapter 2

Deep Learning Background

Most current machine learning methods work well because of human-designed repre-

sentations and inputs features. When machine learning is applied only to the input

features it becomes merely about optimizing weights to make the best final predic-

tion. Deep learning can be seen as putting back together representation learning with

machine learning. It attempts to jointly learn good features, across multiple levels of

increasing complexity and abstraction, and the final prediction.

In this chapter, I will review the reasons for the resurgence of deep, neural net-

work based models, define the most basic form of a neural network, explain how

deep learning methods represent single words. Simple neural nets and these word

representation are then combined in single window based methods for word labeling

tasks. I will end this chapter with a short comparison of optimization methods that

are frequently used. The flow of this chapter loosely follows a tutorial I gave together

with Chris Manning and Yoshua Bengio at ACL 2012.

2.1 Why Now? The Resurgence of Deep Learning

In this section, I outline four main reasons for the current resurgence of deep learning.

8

CHAPTER 2. DEEP LEARNING BACKGROUND 9

Learning Representations

Handcrafting features is time-consuming and features are often both over-specified

and incomplete. Furthermore, work has to be done again for each modality (images,

text, databases), task or even domain and language. If machine learning could learn

features automatically, the entire learning process could be automated more easily

and many more tasks could be solved. Deep learning provides one way of automated

feature learning.

Distributed Representations

Many models in natural language processing, such as PCFGs (Manning and Schütze,

1999), are based on counts over words. This can hurt generalization performance

when specific words during testing were not present in the training set. Another

characterization of this problem is the so-called “curse of dimensionality.” Because

an index vector over a large vocabulary is very sparse, models can easily overfit to the

training data. The classical solutions to this problem involve either the above men-

tioned manual feature engineering, or the usage of very simple target functions as in

linear models. Deep learning models of language usually use distributed word vector

representation instead of discrete word counts. I will describe a model to learn such

word vectors in section 2.4. While there are many newer, faster models for learning

word vectors (Collobert et al., 2011; Huang et al., 2012; Mikolov et al., 2013; Luong

et al., 2013; Pennington et al., 2014) this model forms a good basis for understand-

ing neural networks and can be used for other simple word classification tasks. The

resulting vectors capture similarities between single words and make models more

robust. They can be learned in an unsupervised way to capture distributional simi-

larities and be fine-tuned in a supervised fashion. Sections 2.3 and 2.4 will describe

them in more details.

Learning Multiple Levels of Representation

Deep learning models such as convolutional neural networks (LeCun et al., 1998)

trained on images learn similar levels of representations as the human brain. The

CHAPTER 2. DEEP LEARNING BACKGROUND 10

first layer learns simple edge filters, the second layer captures primitive shapes and

higher levels combine these to form objects. I do not intend to draw strong connec-

tions to neuroscience in this thesis but do draw motivation for multi-layer architec-

tures from neuroscience research. I will show how both supervised, semi-supervised

and unsupervised intermediate representations can be usefully employed in a variety

of natural language processing tasks. In particular, I will show that just like hu-

mans can process sentences as compositions of words and phrases, so can recursive

deep learning architectures process and compose meaningful representations through

compositionality.

Recent Advances

Neural networks have been around for many decades (Rumelhart et al., 1986; Hinton,

1990). However, until 2006, deep, fully connected neural networks were commonly

outperformed by shallow architectures that used feature engineering. In that year,

however, Hinton and Salakhutdinov (2006) introduced a novel way to pre-train deep

neural networks. The idea was to use restricted Boltzmann machines to initialize

weights one layer at a time. This greedy procedure initialized the weights of the full

neural network in basins of attraction which lead to better local optima (Erhan et al.,

2010). Later, Vincent et al. (2008) showed that similar effects can be obtained by

using autoencoders. These models try to train the very simple function f(x) = x. A

closer look at this function reveals a common form of f(x) = g2(g1(x)) = x where

g1 introduces an informational bottleneck which forces this function to learn useful

bases to reconstruct the data with. While this started a new wave of enthusiasm

about deep models it has now been superseded by large, purely supervised neural

network models in computer vision (Krizhevsky et al., 2012).

In natural language processing three lines of work have created excitement in

the community. First, a series of state of the art results in speech recognition have

been obtained with deep architectures (Dahl et al., 2010). For an overview of deep

speech processing see Hinton et al. (2012). Second, Collobert and Weston (2008)

showed that a single neural network model can obtain state of the art results on

multiple language tasks such as part-of-speech tagging and named entity recognition.

CHAPTER 2. DEEP LEARNING BACKGROUND 11

Since their architecture is very simple, we describe it in further detail and illustrate

the backpropagation algorithm on it in section 2.4. Lastly, neural network based

language models (Bengio et al., 2003; Mikolov and Zweig, 2012) have outperformed

traditional counting based language models alone.

Three additional reasons have recently helped deep architectures obtain state of

the art performance: large datasets, faster, parallel computers and a plethora of ma-

chine learning insights into sparsity, regularization and optimization. Because deep

learning models learn from raw inputs and without manual feature engineering they

require more data. In this time of “big data” and crowd sourcing, many researchers

and institutions can easily and cheaply collect huge datasets which can be used to

train deep models with many parameters. As we will see in the next section, neural

networks require a large number of matrix multiplications which can easily be paral-

lelized on current multi-core CPU and GPU computing architectures. In section 2.6,

I will give some up-to-date and practical tips for optimizing neural network models.

It is on this fertile ground that my research has developed. The next section will

describe the related basics of prior neural network work.

2.2 Neural Networks: Definitions and Basics

In this section, I will give a basic introduction to neural networks. Fig. 2.1 shows

a single neuron which consists of inputs, an activation function and the output. Let

the inputs be some n-dimensional vector x ∈ Rn. The output is computed by the

following function:

a = f(wTx+ b), (2.1)

where f defines the activation function. This function is also called a nonlinearity

and commonly used examples are the sigmoid function:

f(x) = sigmoid(x) =
1

1 + e−x
, (2.2)

CHAPTER 2. DEEP LEARNING BACKGROUND 12

Figure 2.1: Definition of a single neuron with inputs, activation function and outputs.

or the hyperbolic tangent function:

f(x) = tanh(x) =
1− e−2x

1 + e−2x
. (2.3)

The sigmoid activation function maps any real number to the [0, 1] interval. With

this unit, the activation can be interpreted as the probability for the “neural unit”

parameterized by w and the bias b to be on. Despite the loss of a probabilistic

interpretation, the tanh function is often preferred in practice due to better empirical

performance (possibly due to having both negative and positive values inside the

recursion). Both nonlinearities are shown in Fig. 2.2.

Various other recent nonlinearities exist such as the hard tanh (which is faster

to compute) or rectified linear: f(x) = max(0, x) (which does not suffer from the

vanishing gradient problem as badly). The choice of nonlinearity should largely by

selected by cross-validation over a development set.

A neural network now stacks such single neurons both horizontally (next to each

CHAPTER 2. DEEP LEARNING BACKGROUND 13

f(x) = tanh(x)

−4 −2 2 4

−1

−0.5

0.5

1

x

f(x) = sigmoid(x)

−4 −2 2 4

0.2

0.4

0.6

0.8

x

Figure 2.2: These are two commonly used nonlinearities. All RNN models in this
thesis use the tanh function.

other) and vertically (on top of each other) and is then followed by a final output

layer. For multiple units, I will describe this as follows: each neuron’s activation ai

will be computed by one inner product with its parameters, followed by an addition

with its bias: ai = f(Wi·x + bi), where each parameter vector Wi· ∈ Rn. We can

disentangle the multiplication and the nonlinearity and write this in matrix notation

for m many neurons stacked horizontally as:

z = Wx+ b (2.4)

a = f(z), (2.5)

where W ∈ Rm×n, b ∈ Rm and the f is applied element-wise:

f(z) = f([z1, z2, . . . , zm]) = [f(z1), f(z2), . . . , f(zm)]. (2.6)

The output of such a neural network layer can be seen as a transformation of the

input that captures various interactions of the original inputs. A practitioner has

now two options: (i) stack another layer on top of this one or (ii) directly compute an

error based on this layer. When multiple layers are stacked on top of each other we

will use a superscript to denote the various matrices that parameterize each layer’s

CHAPTER 2. DEEP LEARNING BACKGROUND 14

connections:

z(2) = W (1)x+ b(1)

a(2) = f(z(2))

z(3) = W (2)a(2) + b(2)

a(3) = f(z(3))

. . .

z(l+1) = W (l)a(l) + b(l)

a(l+1) = f(z(l+1)). (2.7)

In this equation we use the nomenclature of the inputs being the first layer. The last

layer (here the lth layer) is then given to an output layer on which an error function

is minimized. Standard examples are a softmax classifier (as defined below in Eq.

2.20) and training with the cross-entropy error, or a linear output layer with a least

squares error.

Before describing the general training procedure for neural networks, called back-

propagation or backprop, the next section introduces word vector representations

which often constitute the inputs x of the above equations.

2.3 Word Vector Representations

The majority of rule-based and statistical language processing algorithms regard

words as atomic symbols. This translates to a very sparse vector representation

of the size of the vocabulary and with a single 1 at the index location of the current

word. This, so-called “one-hot” or “one-on” representations has the problem that it

does not capture any type of similarity between two words. So if a model sees “hotel”

in a surrounding context it cannot use this information when it sees “motel” at the

same location during test time.

Instead of this simplistic approach, Firth (1957) introduced the powerful idea of

CHAPTER 2. DEEP LEARNING BACKGROUND 15

representing each word by means of its neighbors.1 This is one of the most successful

ideas of modern statistical natural language processing (NLP) and has been used

extensively in NLP, for instance Brown clustering (Brown et al., 1992) can be seen as

an instance of this idea. Another example is the soft clustering induced by methods

such as LSA (Deerwester et al., 1990) or latent Dirichlet allocation (Blei et al., 2003).

The related idea of neural language models (Bengio et al., 2003) is to jointly learn such

context-capturing vector representations of words and use these vectors to predict how

likely a word is to occur given its context.

Collobert and Weston (2008) introduced a model to compute an embedding with

a similar idea. This model will be described in detail in Sec. 2.4. In addition, Sec. 2.5

on backpropagation directly following it describes in detail how to train word vectors

with this type of model. At a high level, the idea is to construct a neural network that

outputs high scores for windows that occur in a large unlabeled corpus and low scores

for windows where one word is replaced by a random word. When such a network is

optimized via gradient ascent the derivatives backpropagate into a word embedding

matrix L ∈ Rn×V , where V is the size of the vocabulary.

The main commonality between all unsupervised word vector learning approaches

is that the resulting word vectors capture distributional semantics and co-occurrence

statistics. The model by Collobert and Weston (2008) described in the next section

achieves this via sampling and contrasting samples from the data distribution with

corrupted samples. This formulation transforms an inherently unsupervised problem

into a supervised problem in which unobserved or corrupted context windows become

negative class samples. This idea has been used in numerous word vector learning

models (Collobert and Weston, 2008; Bengio et al., 2009; Turian et al., 2010; Huang

et al., 2012; Mikolov et al., 2013). When models are trained to distinguish true from

corrupted windows they learn word representations that capture the good contexts

of words. This process works but is slow since each window is computed separately.

Most recently, Pennington et al. (2014) showed that predicting the word co-occurrence

matrix (collected over the entire corpus) with a weighted regression loss achieves

better performance on a range of evaluation tasks than previous negative sampling

1The famous quote is “You shall know a word by the company it keeps.”

CHAPTER 2. DEEP LEARNING BACKGROUND 16

approaches. Despite this success, I will describe the window-based model below since

its backpropagation style learning can be used for both unsupervised and supervised

models.

The above description of the embedding matrix L assumes that its column vec-

tors have been learned by a separate unsupervised model to capture co-occurrence

statistics. Another commonly used alternative is to simply initialize L to small uni-

formly random numbers and then train this matrix as part of the model. The next

section assumes such a randomly initialized L and then trains it. Subsequent chap-

ters mention the different pre-training or random initialization choices. Generally, if

the task itself has enough training data, a random L can suffice. For further details

and evaluations of word embeddings, see Bengio et al. (2003); Collobert and Weston

(2008); Bengio et al. (2009); Turian et al. (2010); Huang et al. (2012); Mikolov et al.

(2013); Pennington et al. (2014).

In subsequent chapters, a sentence (or any n-gram) is represented as an ordered

list of m words. Each word has an associated vocabulary index k into the embedding

matrix which is used to retrieve the word’s vector representation. Mathematically,

this look-up operation can be seen as a simple projection layer where a binary vector

b ∈ {0, 1}V is used which is zero in all positions except at the kth index,

xi = Lbk ∈ Rn. (2.8)

The result is a sentence representation in terms of a list of vectors (x1, . . . , xm). In this

thesis, I will use the terms embedding, vector representation and feature representation

interchangeably.

Continuous word representations are better suited for neural network models than

the binary number representations used in previous related models such as the recur-

sive autoassociative memory (RAAM) (Pollack, 1990; Voegtlin and Dominey, 2005)

or recurrent neural networks (Elman, 1991) since the sigmoid units are inherently

continuous. Pollack (1990) circumvented this problem by having vocabularies with

only a handful of words and by manually defining a threshold to binarize the resulting

vectors.

CHAPTER 2. DEEP LEARNING BACKGROUND 17

2.4 Window-Based Neural Networks

In this section, I will describe in detail the simplest neural network model that has

obtained great results on a variety of NLP tasks and was introduced by Collobert

et al. (2011). It has commonalities with the neural network language model previously

introduced by Bengio et al. (2003), can learn word vectors in an unsupervised way

and can easily be extended to other tasks.

The main idea of the unsupervised window-based word vector learning model is

that a word and its context is a positive training sample. A context with a random

word in the center (or end position) constitutes a negative training example. This

is similar to implicit negative evidence in contrastive estimation (Smith and Eisner,

2005). One way to formalize this idea is to assign a score to each window of k words,

then replace the center word and train the model to identify which of the two windows

is the true one. For instance, the model should correctly score:

s(obtained great results on a) > s(obtained great Dresden on a), (2.9)

where the center word “results” was replaced with the random word “Dresden.” I

define any observed window as x and a window corrupted with a random word as xc.

This raises the question on how to compute the score. The answer is by assigning

each word a vector representation, giving these as inputs to a neural network and

have that neural network output a score. In the next paragraphs, I will describe each

of these steps in detail.

Words are represented as vectors and retrieved from the L matrix as described

in the previous section. For simplicity, we will assume a window size of 5. For each

window, we retrieve the word vectors of words in that window and concatenate them

to a 5n-dimensional vector x. So, for the example score of Eq. 2.9, we would have:

x = [xobtainedxgreatxresultsxonxa]. (2.10)

This vector is then given as input to a single neural network layer as described in

section 2.2. Simplifying notation from the multilayer network, we have the following

CHAPTER 2. DEEP LEARNING BACKGROUND 18

equations to compute a single hidden layer and a score:

z = Wx+ b

a = f(z)

s(x) = UTa, (2.11)

where I define the size of the hidden layer to be h and hence W ∈ Rh×5n and U ∈ Rh.

More compactly, this entire scoring function can be written as

s(x) = UTf(Wx+ b). (2.12)

The above equation described the so-called feedforward process of the neural net-

work. The final missing piece for training is the objective function that incorporates

the scores of the observed and corrupted windows such that Eq. 2.9 becomes true.

To this end, the following function J is minimized for each window we can sample

from a large text corpus:

J = max(0, 1− s(x) + s(xc)). (2.13)

Since this is a continuous function, we can easily use stochastic gradient descent

methods for training. But first, we define the algorithm to efficiently compute the

gradients in the next section.

2.5 Error Backpropagation

The backpropagation algorithm (Bryson et al., 1963; Werbos, 1974; Rumelhart et al.,

1986) follows the inverse direction of the feedforward process in order to compute

the gradients of all the network parameters. It is a way to efficiently re-use parts of

the gradient computations that are the same. These similar parts become apparent

when applying the chain rule for computing derivatives of the composition of multiple

functions or layers. To illustrate this, we will derive the backpropagation algorithm

CHAPTER 2. DEEP LEARNING BACKGROUND 19

for the network described in Eq. 2.12.

Assuming that for the current window 1 − s(x) + s(xc) > 0, I will describe the

derivative for the score s(x). At the very top, the first gradient is for the vector U

and is simply:

∂s

∂U
=

∂

∂U
UTa

∂s

∂U
= a, (2.14)

where a is defined as in Eq. 2.11.

Next, let us consider the gradients for W , the weights that govern the layer below

the scoring layer:

∂s

∂W
=

∂

∂W
UTa =

∂

∂W
UTf(z) =

∂

∂W
UTf(Wx+ b). (2.15)

For ease of exposition, let us consider a single weight Wij. This only appears in the

computation of ai, the ith element of a. Hence, instead of looking at the entire inner

product, we can only consider:

∂

∂Wij

UTa → ∂

∂Wij

Uiai.

CHAPTER 2. DEEP LEARNING BACKGROUND 20

That partial derivative can easily be computed by using the chain rule:

Ui
∂

∂Wij

ai = Ui
∂ai
∂zi

∂zi
∂Wij

= Ui
∂f(zi)

∂zi

∂zi
∂Wij

= Uif
′(zi)

∂zi
∂Wij

= Uif
′(zi)

∂Wi·x+ bi
∂Wij

= Uif
′(zi)

∂

∂Wij

∑
k

Wikxk

= Uif
′(zi)︸ ︷︷ ︸xj

= δi xj,

where δi can be seen as the local error signal and xj as the local input signal. In

summary, a single partial derivative is:

∂J

∂Wij

= Uif
′(zi)︸ ︷︷ ︸xj

= δi xj. (2.16)

Since all combination of i = 1, . . . , h cross product with j = 1, . . . , n are needed, the

outer product of the vectors δ and x gives the full gradient of W :

∂J

∂W
= δxT ,

where δ ∈ Rh×1 is the “responsibility” coming from each activation in a. The bias

derivatives are computed similarly:

Ui
∂

∂bi
ai

= Uif
′(zi)

∂Wi·x+ bi
∂bi

= δi (2.17)

CHAPTER 2. DEEP LEARNING BACKGROUND 21

So far, backpropagation was simply taking derivatives and using the chain rule.

The only remaining trick now is that one can re-use derivatives computed for higher

layers when computing derivatives for lower layers. In our example, the main goal of

this was was to train the word vectors. They constitute the last layer. For ease of

exposition, let us consider a single element of the full x vector. Depending on which

index of x is involved, this node will be part of a different word vector. Generally, we

again take derivatives of the score with respect to this element, say xj. Unlike for W ,

we cannot simply take into consideration a single ai because each xj is connected to

all the hidden neurons in the above activations a and hence xj influences the overall

score s(x) through all aj’s. Hence, we start with the sum and and again apply the

chain rule:

∂s

∂xj
=

2∑
i=1

∂s

∂ai

∂ai
∂xj

=
2∑
i=1

∂UTa

∂ai

∂ai
∂xj

=
2∑
i=1

Ui
∂f(Wi·x+ b)

∂xj

=
2∑
i=1

Uif
′(Wi·x+ b)︸ ︷︷ ︸ ∂Wi·x

∂xj

=
2∑
i=1

δiWij

= δTW·j (2.18)

Notice the underbrace that highlights part of the equation that is identical to what

we needed for W and b derivatives? This is the main idea of the backpropagation

algorithm: To re-use these so-called delta messages or error signals.

With the above equations one can put together the full gradients for all parameters

in the objective function of Eq. 2.13. In particular, the derivatives for the input word

vector layer can be written as
∂s

∂x
= W T δ. (2.19)

CHAPTER 2. DEEP LEARNING BACKGROUND 22

Minimizing this objective function results in very useful word vectors that capture

syntactic and semantic similarities between words. There are in fact other even

simpler (and faster) models to compute word vectors that get rid of the hidden layer

entirely (Mikolov et al., 2013; Pennington et al., 2014). However, the above neural

network architecture is still very intriguing because Collobert et al. (2011) showed

that one can replace the last scoring layer with a standard softmax classifier2 and

classify the center word into different categories such as part of speech tags or named

entity tags. The probability for each such class can be computed simply by replacing

the inner product UTa with a softmax classifier:

p(c|x) =
exp(Sc·a)∑
c′ exp(Sc′·a)

, (2.20)

where S ∈ RC×h has the weights of the classification.

2.6 Optimization and Subgradients

The objective function above and in various other models in this thesis is not differen-

tiable due to the hinge loss. Therefore, I generalize gradient ascent via the subgradient

method (Ratliff et al., 2007) which computes a gradient-like direction. Let θ ∈ RM×1

be the vector of all model parameters (in the above example these are the vectorized

L,W,U). Normal stochastic subgradient descent methods can be used successfully in

most models below.

However, an optimization procedure that yields even better accuracy and faster

convergence is the diagonal variant of AdaGrad (Duchi et al., 2011). For parameter

updates, let gτ ∈ RM×1 be the subgradient at time step τ and Gt =
∑t

τ=1 gτg
T
τ . The

parameter update at time step t then becomes:

θt = θt−1 − α (diag(Gt))
−1/2 gt, (2.21)

where α is the global learning rate. Since I use the diagonal of Gt, only M values have

2Also called logistic regression or MaxEnt classifier.

CHAPTER 2. DEEP LEARNING BACKGROUND 23

to be stored and the update becomes fast to compute: At time step t, the update for

the i’th parameter θt,i is:

θt,i = θt−1,i −
α√∑t
τ=1 g

2
τ,i

gt,i. (2.22)

Hence, the learning rate is adapting differently for each parameter and rare pa-

rameters get larger updates than frequently occurring parameters. This is helpful in

this model since some word vectors appear in only a few windows. This procedure

finds much better optima in various experiments of this thesis, and converges more

quickly than L-BFGS which I used in earlier papers (Socher et al., 2011a).

Furthermore, computing one example’s gradient at a time and making an imme-

diate update step is not very efficient. Instead, multiple cores of a CPU or GPU can

be used to compute the gradients of multiple examples in parallel and then make one

larger update step with their sum or average. This is called training with minibatches,

which are usually around 100 in the models below.

The next chapter introduces recursive neural networks and investigates the first

axis of variation: the main objective function.

Chapter 3

Recursive Objective Functions

In this chapter I will motivate and introduce recursive neural networks inside a max-

margin structure prediction framework. While this thesis focuses largely on natural

language tasks, the next section shows that the model is general and applicable to

language and scene parsing. After the max-margin framework I will explore two ad-

ditional objective functions: unsupervised and semi-supervised reconstruction errors.

3.1 Max-Margin Structure Prediction with Recur-

sive Neural Networks

Recursive structure is commonly found in different modalities, as shown in Fig. 3.1.

As mentioned in the introduction The syntactic rules of natural language are known

to be recursive, with noun phrases containing relative clauses that themselves contain

noun phrases, e.g., . . . the church which has nice windows Similarly, one finds

nested hierarchical structuring in scene images that capture both part-of and prox-

imity relationships. For instance, cars are often on top of street regions. A large car

region can be recursively split into smaller car regions depicting parts such as tires

and windows and these parts can occur in other contexts such as beneath airplanes

or in houses. I show that recovering this structure helps in understanding and clas-

sifying scene images. In this section, I introduce recursive neural networks (RNNs)

24

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 25

Figure 3.1: Illustration of a recursive neural network architecture which parses images
and natural language sentences. Segment features and word indices (orange) are first
mapped into semantic feature space (blue). Then they are recursively merged by
the same neural network until they represent the entire image or sentence. Both
mappings and mergings are learned.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 26

for predicting recursive structure in multiple modalities. I primarily focus on scene

understanding, a central task in computer vision often subdivided into segmentation,

annotation and classification of scene images. I show that my algorithm is a general

tool for predicting tree structures by also using it to parse natural language sentences.

Fig. 3.1 outlines my approach for both modalities. Images are oversegmented

into small regions which often represent parts of objects or background. From these

regions I extract vision features and then map these features into a “semantic” space

using a neural network. Using these semantic region representations as input, my

RNN computes (i) a score that is higher when neighboring regions should be merged

into a larger region, (ii) a new semantic feature representation for this larger region,

and (iii) its class label. Class labels in images are visual object categories such as

building or street. The model is trained so that the score is high when neighboring

regions have the same class label. After regions with the same object label are merged,

neighboring objects are merged to form the full scene image. These merging decisions

implicitly define a tree structure in which each node has associated with it the RNN

outputs (i)-(iii), and higher nodes represent increasingly larger elements of the image.

The same algorithm is used to parse natural language sentences. Again, words

are first mapped into a semantic space and then they are merged into phrases in a

syntactically and semantically meaningful order. The RNN computes the same three

outputs and attaches them to each node in the parse tree. The class labels are phrase

types such as noun phrase (NP) or verb phrase (VP).

Contributions. This is the first deep learning method to achieve state-of-the-

art results on segmentation and annotation of complex scenes. My recursive neural

network architecture predicts hierarchical tree structures for scene images and out-

performs other methods that are based on conditional random fields or combinations

of other methods. For scene classification, my learned features outperform state of

the art methods such as Gist descriptors (Oliva and Torralba, 2001a). Furthermore,

my algorithm is general in nature and can also parse natural language sentences ob-

taining competitive performance on length 15 sentences of the Wall Street Journal

dataset. Code for the RNN model is available at www.socher.org.

www.socher.org

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 27

3.1.1 Mapping Words and Image Segments into Semantic

Space

This section contains an explanation of the inputs used to describe scene images

and natural language sentences (segments and words, respectively) and how they are

mapped into the semantic space in which the RNN operates.

Word vectors are processed as described in Sec. 2.3. For image segments I closely

follow the procedure described in Gould et al. (2009) to compute image features.

First, I oversegment an image x into superpixels (also called segments) using the

public implementation1 of the algorithm from Comaniciu and Meer (2002). Instead

of computing multiple oversegmentations, I only choose one set of parameters. In my

dataset, this results in an average of 78 segments per image. I compute 119 features

for the segments as described in Sec. 3.1 of Gould et al. (2009). These features include

color and texture features (Shotton et al., 2006), boosted pixel classifier scores (trained

on the labeled training data), as well as appearance and shape features.

Next, I use a simple neural network layer to map these features into the “se-

mantic” n-dimensional space in which the RNN operates. Let Fi be the features

described above for each segment i = 1, . . . , Nsegs in an image. I then compute the

representation:

ai = f(W semFi + bsem), (3.1)

where W sem ∈ Rn×119 is the matrix of parameters I want to learn, bsem is the bias

and f is applied element-wise and can be any sigmoid-like function. In my vision

experiments, I use the original sigmoid function f(x) = 1/(1 + e−x).

3.1.2 Recursive Neural Networks for Structure Prediction

In my discriminative parsing architecture, the goal is to learn a function f : X → Y ,

where Y is the set of all possible binary parse trees. An input x consists of two parts:

(i) A set of activation vectors {a1, . . . , aNsegs}, which represent input elements such

1http://coewww.rutgers.edu/riul/research/code/EDISON

http://coewww.rutgers.edu/riul/research/code/EDISON

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 28

as image segments or words of a sentence. (ii) A symmetric adjacency matrix A,

where A(i, j) = 1, if segment i neighbors j. This matrix defines which elements can

be merged. For sentences, this matrix has a special form with 1’s only on the first

diagonal below and above the main diagonal.

I denote the set of all possible trees that can be constructed from an input x

as A(x). When training the visual parser, I have labels l for all segments. Using

these labels, I can define an equivalence set of correct trees Y (x, l). A visual tree is

correct, if all adjacent segments that belong to the same class are merged into one

super segment before merges occur with super segments of different classes. This

equivalence class over trees is oblivious to how object parts are internally merged or

how complete, neighboring objects are merged into the full scene image. For training

the language parser, the set of correct trees only has one element, the annotated

ground truth tree: Y (x) = {y}. Fig. 3.2 illustrates these ideas.

Max-Margin Estimation

Similar to Taskar et al. (2004), I define a structured margin loss ∆. For the visual

parser, the function ∆(x, l, ŷ) computes the margin for proposing a parse ŷ for input

x with labels l. The loss increases when a segment merges with another one of a

different label before merging with all its neighbors of the same label. I can formulate

this by checking whether the subtree subTree(d) underneath a nonterminal node d

in ŷ appears in any of the ground truth trees of Y (x, l):

∆(x, l, ŷ) =
∑

d∈N(ŷ)

κ1{subTree(d) /∈ Y (x, l)}, (3.2)

where N(ŷ) is the set of non-terminal nodes and κ is a parameter. The loss of the

language parser is the sum over incorrect spans in the tree, see Manning and Schütze

(1999). Given the training set, I search for a function f with small expected loss on

unseen inputs. I consider the following functions:

fθ(x) = arg max
ŷ∈A(x)

s(RNN(θ, x, ŷ)), (3.3)

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 29

Figure 3.2: Illustration of the RNN training inputs: An adjacency matrix of image
segments or words. A training image (red and blue are differently labeled regions)
defines a set of correct trees which is oblivious to the order in which segments with
the same label are merged. See text for details.

where θ are all the parameters needed to compute a score s with an RNN. The

score of a tree y is high if the algorithm is confident that the structure of the tree is

correct. Tree scoring with RNNs will be explained in detail below. In the max-margin

estimation framework (Taskar et al., 2004; Ratliff et al., 2007), I want to ensure that

the highest scoring tree is in the set of correct trees: fθ(xi) ∈ Y (xi, li) for all training

instances i = 1, . . . , n: (xi, li, Yi). Furthermore, I want the score of the highest scoring

correct tree yi to be larger up to a margin defined by the loss ∆. ∀i, ŷ ∈ A(xi):

s(RNN(θ, xi, yi)) ≥ s(RNN(θ, xi, ŷ)) + ∆(xi, li, ŷ).

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 30

These desiderata lead us to the following regularized risk function:

J(θ) =
1

N

N∑
i=1

ri(θ) +
λ

2
||θ||2, where (3.4)

ri(θ) = max
ŷ∈A(xi)

(
s(RNN(θ, xi, ŷ)) + ∆(xi, li, ŷ)

)
− max

yi∈Y (xi,li)

(
s(RNN(θ, xi, yi))

)
(3.5)

Minimizing this objective maximizes the correct tree’s score and minimizes (up to a

margin) the score of the highest scoring but incorrect tree.

Now that I defined the general learning framework, I will describe in detail how I

predict parse trees and compute their scores with RNNs.

Greedy RNNs

I can now describe the RNN model that uses the activation vectors and adjacency

matrix ((i) and (ii) defined above) as inputs. There are more than exponentially

many possible parse trees and no efficient dynamic programming algorithms for my

RNN setting. Therefore, I find a greedy approximation. I start by explaining the

feed-forward process on a test input.

Using the adjacency matrix A, the algorithm finds the pairs of neighboring seg-

ments and adds their activations to a set of potential child node pairs:

C = {[ai, aj] : A(i,j)=1}. (3.6)

In the small toy image of Fig. 3.2, I would have the following pairs: {[a1, a2], [a1, a3],

[a2, a1], [a2, a4], [a3, a1], [a3, a4], [a4, a2], [a4, a3], [a4, a5], [a5, a4]}. Each pair of activa-

tions is concatenated and given as input to a neural network. The network computes

the potential parent representation for these possible child nodes:

p(i,j) = f(W [ci; cj] + b) = f

(
W

[
ci

cj

])
, (3.7)

where the first equality is written in Matlab notation and the second one is a different

notation for the vector concatenation. With this representation I can compute a local

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 31

s = W scorep (3.9)

p = f(W [c1; c2] + b)

Figure 3.3: One recursive neural network which is replicated for each pair of possible
input vectors. This network is different to the original RNN formulation in that it
predicts a score for being a correct merging decision.

score using a simple inner product with a row vector W score ∈ R1×n:

s(i,j) = W scorep(i,j). (3.8)

The network performing these functions is illustrated in Fig. 3.3. Training will aim

to increase scores of good segments pairs (with the same label) and decrease scores

of pairs with different labels (unless no more good pairs are left).

After computing the scores for all pairs of neighboring segments, the algorithm

selects the pair which received the highest score. Let the score sij be the highest

score, I then (i) Remove [ai, aj] from C, as well as all other pairs with either ai or aj

in them. (ii) Update the adjacency matrix with a new row and column that reflects

that the new segment has the neighbors of both child segments. (iii) Add potential

child pairs to C:

C = C − {[ai, aj]} − {[aj, ai]} (3.10)

C = C ∪ {[p(i,j), ak] : ak has boundary with i or j}

In the case of the image in Fig. 3.2, if I merge [a4, a5], then C = {[a1, a2], [a1, a3],

[a2, a1], [a2, p4,5], [a3, a1], [a3, p(4,5)], [p(4,5), a2], [p(4,5), a3]}.
The new potential parents and corresponding scores of new potential child pairs

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 32

are computed with the same neural network of Eq. 3.7. For instance, I compute,

p2,(4,5) = f(W [a2, p4,5] + b), p3,(4,5) = f(W [a3, p4,5] + b), etc.

The process repeats (treating the new pi,j just like any other segment) until all

pairs are merged and only one parent activation is left in the set C. This activa-

tion then represents the entire image. Hence, the same network (with parameters

W, b,W score,W label) is recursively applied until all vector pairs are collapsed. The

tree is then recovered by unfolding the collapsing decisions and making each parent

a node down to the original segments which are the leaf nodes of the tree. The final

score that I need for structure prediction is simply:

s(RNN(θ, xi, ŷ)) =
∑

d∈N(ŷ)
sd. (3.11)

To finish the example, assume the next highest score was s(4,5),3, so I merge the

(4, 5) super segment with segment 3, so

C = {[a1, a2], [a1, p(45),3], [a2, a1], [a2, p(45),3], [p(4,5),3, a1], [p(4,5),3, a2]}. (3.12)

If I then merge segments 1, 2, C = {[p1,2, p(45),3], [p(4,5),3, p1,2]}, leaving us only with

the last choice of merging the differently labeled super segments.

Category Classifiers in the Tree

One of the main advantages of my approach is that each node of the tree built by the

RNN has associated with it a distributed feature representation (the parent vector

p). I can leverage this representation by adding to each RNN parent node (after

removing the scoring layer) a simple softmax layer to predict class labels, such as

visual or syntactic categories:

labelp = softmax(W labelp). (3.13)

When minimizing the cross-entropy error of this softmax layer, the error will back-

propagate and influence both the RNN parameters and the word representations.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 33

Improvements for Language Parsing

Since in a sentence each word only has 2 neighbors, less-greedy search algorithms such

as a bottom-up beam search can be used. In my case, beam search fills in elements of

the chart in a similar fashion as the CKY algorithm. However, unlike standard CNF

grammars, in my grammar each constituent is represented by a continuous feature

vector and not just a discrete category. Hence I cannot prune based on category

equality. I could keep the k-best subtrees in each cell but initial tests showed no

improvement over just keeping the single best constituent in each cell.

Furthermore, since there is only a single correct tree the second maximization in

the objective of Eq. 3.4 can be dropped. For further details on this special case, see

Socher and Fei-Fei (2010).

3.1.3 Learning

My objective J of Eq. 3.4 is not differentiable due to the hinge loss. As described

in Sec. 2.6, I use the subgradient method (Ratliff et al., 2007) which computes a

gradient-like direction called the subgradient. Let

θ = (W sem,W,W score,W label)

be the set of my model parameters,2 then the gradient becomes:

∂J

∂θ
=

1

n

∑
i

∂s(ŷi)

∂θ
− ∂s(yi)

∂θ
+ λθ, (3.14)

where s(ŷi) = s(RNN(θ, xi, ŷmax(A(xi)))) and s(yi) = s(RNN(θ, xi, ymax(Y (xi,li)))). In

order to compute Eq. 3.14 I calculate the derivatives by using backpropagation

through structure introduced in the next subsection.

2In the case of natural language parsing, W sem is replaced by the look-up table L.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 34

3.1.4 Backpropagation Through Structure

The purpose of this section is to give an intuition for backpropagation through struc-

ture. It is a modification to the backpropagation algorithm due to the tree structure of

recursive neural networks (Goller and Küchler, 1996). There are two main differences

resulting from the tree structure:

1. Splitting derivatives at each node.

During forward propagation, the parent is computed using the two children:

p = f

(
W

[
c1

c2

])
. (3.15)

Hence, the error message δ that is sent down from the parent node needs to be split

with respect to each of them. Assume, for instance, that we classify the parent node

in Eq. 3.15 with a softmax classifier as introduced in Eq. 2.20 and in matrix form

just above in Eq. 3.13. Hence we will minimize the cross-entropy error and so the

standard softmax error message δp ∈ Rn×1 at node vector p becomes

δp =
(
(W label)T (labelp − targetp)

)
⊗ f ′(p),

where ⊗ is the Hadamard product between the two vectors and f ′ is the element-wise

derivative of f . Now, using a similar derivation as in Sec. 2.5, we can see that the

error message passed down from vector p to its children is

δp,down =

(
W T δp

)
⊗ f ′

([
c1

c2

])
.

The children of p then each take their half of this error message vector. So the

error message of the left child is

δc1 = δp,down[1 : n],

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 35

and

δc2 = δp,down[n+ 1 : 2n],

where δp,down[d + 1 : 2d] indicates that c2 is the right child of p and hence takes the

2nd half of the error. If each child had its own softmax prediction, then one would

add their error message for the complete δ. For the right child the full message would

be:

δc2,combined = δc2,softmax + δp,down[d+ 1 : 2d].

2. Summing derivatives of all nodes in the tree.

Due to the recursion, the casual reader may assume that derivatives will be very

complicated. However, a closer look shows a simplifying equality: Assuming that the

W matrices at each node are different and then summing up the derivatives of these

different W ’s turns out to be the same as taking derivatives with respect to the same

W inside the recursion. To illustrate this, consider the the following derivative of a

minimally recursive neural network (with a single weight):

∂

∂W
f(W (f(Wx))

= f ′(W (f(Wx))

((
∂

∂W
W

)
f(Wx) +W

∂

∂W
f(Wx)

)
= f ′(W (f(Wx)) (f(Wx) +Wf ′(Wx)x) .

It is easily shown that if we take separate derivatives of each occurrence, we get same

result:

∂

∂W2

f(W2(f(W1x)) +
∂

∂W1

f(W2(f(W1x))

= f ′(W2(f(W1x)) (f(W1x)) + f ′(W2(f(W1x)) (W2f
′(W1x)x)

= f ′(W2(f(W1x)) (f(W1x) +W2f
′(W1x)x)

= f ′(W (f(Wx)) (f(Wx) +Wf ′(Wx)x) .

The same holds true for full RNNs.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 36

In the below experiments, I use L-BFGS over the complete training data to mini-

mize the objective. Generally, this could cause problems due to the non-differentiable

objective function. However, I did not observe problems in practice. In subsequent

chapters, I found minibatched L-BFGS or AdaGrad to perform much better.

3.1.5 Experiments

I evaluate my RNN architecture on both vision and NLP tasks. The only parameters

to tune are n, the size of the hidden layer; κ, the penalization term for incorrect

parsing decisions and λ the regularization parameter. I found that my method is

robust to both choices, varying in performance only a few percent for some parameter

combinations. Furthermore, given the proper regularization, training accuracy was

highly correlated with test performance. I chose n = 100, κ = 0.05 and λ = 0.001.

Scene Understanding: Segmentation and Annotation

The vision experiments are performed on the Stanford background dataset3. I first

provide accuracy of multiclass segmentation where each pixel is labeled with a se-

mantic class. I follow a similar protocol to Gould et al. (2009) and report pixel level

accuracy in table 3.1.5. I train the full RNN model which influences the leaf embed-

dings through backpropagation of higher node classification and structure learning

errors. I can simply label the superpixels by their most likely class based on the

multinomial distribution of the softmax layer. Recall that this layer was trained on

top of all nodes in the tree as described in Sec. 3.1.2. Here, I only use the response at

the leaf nodes. As shown in table 3.1.5, I outperform previous methods that report

results on this data, such as the recent methods of Tighe and Lazebnik (2010). I

report accuracy of an additional logistic regression baseline to show the improvement

using the neural network layer instead of the raw vision features.

On a 2.6GHz laptop my Matlab implementation needs 16 seconds to parse 143

test images. I show segmented and labeled scenes in Fig. 3.4.

3The dataset is available at http://dags.stanford.edu/projects/scenedataset.html

http://dags.stanford.edu/projects/scenedataset.html

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 37

Method and Semantic Pixel Accuracy in %

Pixel CRF, Gould et al.(2009) 74.3
Log. Regr. on Superpixel Features 75.9
Region-based energy, Gould et al.(2009) 76.4
Local Labeling,TL(2010) 76.9
Superpixel MRF,TL(2010) 77.5
Simultaneous MRF,TL(2010) 77.5
RNN (my method) 78.1

Table 3.1: Pixel level multi-class segmentation accuracy of other methods and my
proposed RNN architecture on the Stanford background dataset. TL(2010) methods
are reported in Tighe and Lazebnik (2010).

Scene Classification

The Stanford background dataset can be roughly categorized into three scene types:

city scenes, countryside and sea-side. I label the images with these three labels and

train a linear SVM using the average over all nodes’ activations in the tree as features.

Hence, I employ the entire parse tree and the learned feature representations of the

RNN. With an accuracy of 88.1%, I outperform the state-of-the art features for

scene categorization, Gist descriptors (Oliva and Torralba, 2001b), which obtain only

84.0%. I also compute a baseline using my RNN. In the baseline I use as features

only the very top node of the scene parse tree. I note that while this captures enough

information to perform well above a random baseline (71.0% vs. 33.3%), it does lose

some information that is captured by averaging all tree nodes.

Nearest Neighbor Scene Subtrees

In order to show that the learned feature representations (node activations) capture

important appearance and label information even for higher nodes in the tree, I

visualize nearest neighbor super segments. I parse all test images with the trained

RNN. I then find subtrees whose nodes have all been assigned the same class label by

my algorithm and save the top nodes’ vector representation of that subtree. This also

includes initial superpixels. Using this representation, I compute nearest neighbors

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 38

Figure 3.4: Results of multi-class image segmentation and pixel-wise labeling with
recursive neural networks. Best viewed in color.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 39

across all images and all such subtrees (ignoring their labels). Fig. 3.5 shows the

results. The first image is a random subtree’s top node and the remaining regions are

the closest subtrees in the dataset in terms of Euclidean distance between the vector

representations.

Figure 3.5: Nearest neighbors image region trees: The learned feature representations
of higher level nodes capture interesting visual and semantic properties of the merged
segments below them. Best viewed in color.

Supervised Parsing

In all experiments my word and phrase representations are 100-dimensional, as in the

vision experiments. I train all models on the Wall Street Journal section of the Penn

Tree Bank using the standard training (2–21), development (22) and test (23) splits.

The final unlabeled bracketing F-measure (see Manning and Schütze (1999) for

details) of this single matrix RNN language parser is 90.29% on length 15 sentences,

compared to 91.63% for the widely used Berkeley parser (Klein and Manning, 2003a)

(development F1 is virtually identical with 92.06% for the RNN and 92.08% for the

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 40

Center Phrase and Nearest Neighbors All the figures are adjusted for seasonal

variations
1. All the numbers are adjusted for seasonal fluctuations
2. All the figures are adjusted to remove usual seasonal patterns
3. All Nasdaq industry indexes finished lower, with financial issues hit the hardest

Knight-Ridder wouldn’t comment on the offer
1. Harsco declined to say what country placed the order
2. Coastal wouldn’t disclose the terms
3. Censorship isn’t a Marxist invention

Sales grew almost 7% to $UNK m. from $UNK m.
1. Sales rose more than 7% to $94.9 m. from $88.3 m.
2. Sales surged 40% to UNK b. yen from UNK b.
3. Revenues declined 1% to $4.17 b. from$ 4.19 b.

Fujisawa gained 50 to UNK
1. Mead gained 1 to 37 UNK
2. Ogden gained 1 UNK to 32
3. Kellogg surged 4 UNK to 75

The dollar dropped
1. The dollar retreated
2. The dollar gained
3. Bond prices rallied

Figure 3.6: Nearest neighbors phrase trees. The learned feature representations of
higher level nodes capture interesting syntactic and semantic similarities between the
phrases. (b.=billion, m.=million)

Berkeley parser). Unlike most previous systems, my parser does not provide a parent

with information about the syntactic categories of its children. This shows that my

learned, continuous representations capture enough syntactic information to make

good parsing decisions.

While this parser was not as good as the Berkeley parser, it performed respectably

in terms of speed (on a 2.6GHz laptop the Matlab implementation needs 72 seconds

to parse 421 sentences of length less than 15) and accuracy (1.3% difference in unla-

beled F1). However, for longer sentences the performance dropped off. I introduce a

competitive RNN-based parser for sentences of any length in Sec. 4.1.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 41

Nearest Neighbor Phrases

In the same way I collected nearest neighbors for nodes in the scene tree, I can

compute nearest neighbor embeddings of multi-word phrases using the Euclidean

distance between the node representations. I embed complete sentences from the WSJ

dataset into the syntactico-semantic feature space. Especially for longer sentences it

is often the case that no semantically and syntactically similar sentences are present in

the dataset. In Fig. 3.6 I show several example sentences which had similar sentences

in the dataset and list three of their nearest neighbors in embedding space. My

examples show that the learned features capture several interesting semantic and

syntactic similarities between sentences or phrases.

The next section describes work related to the various aspects of this first thesis

section.

3.1.6 Related Work

Five key research areas influence and motivate this first RNN work. I briefly outline

connections and differences between them.

Scene Understanding has become a central task in computer vision. The goal

is to understand what objects are in a scene (annotation), where the objects are

exactly (segmentation) and what general scene type the image shows (classification).

Some methods for this task such as Oliva and Torralba (2001b) and Schmid (2006)

rely on a global descriptor which can do very well for classifying scenes into broad

categories. However, these approaches fail to gain a deeper understanding of the

objects in the scene. At the same time, there is a myriad of different approaches

for image annotation and semantic segmentation of objects into regions (Rabinovich

et al., 2007; Gupta and Davis, 2008). Recently, these ideas have been combined to

provide more detailed scene understanding (Hoiem et al., 2006; Li et al., 2009; Gould

et al., 2009; Socher et al., 2010).

My algorithm parses an image, that is, it recursively merges pairs of segments

into super segments in a semantically and structurally coherent way. Many other

scene understanding approaches only consider a flat set of regions. Some approaches

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 42

such as Gould et al. (2009) also consider merging operations. For merged super

segments, they compute new features. In contrast, my RNN-based method learns a

representation for super segments. This learned representation together with simple

logistic regression outperforms the original vision features and complex conditional

random field models. Furthermore, I show that the image parse trees are useful

for scene classification and outperform global scene features such as Gist descriptors

(Oliva and Torralba, 2001b). Farabet et al. (2012) introduced a model for scene

segmentation that is based on multi-scale convolutional neural networks and learns

feature representations.

Syntactic parsing of natural language sentences is a central task in natural

language processing (NLP) because of its importance in mediating between linguistic

expression and meaning. For example, much work has shown the usefulness of syn-

tactic representations for subsequent tasks such as relation extraction, semantic role

labeling (Gildea and Palmer, 2002) and paraphrase detection (Callison-Burch, 2008).

My RNN architecture jointly learns how to parse and how to represent phrases in a

continuous vector space of features. This allows us to embed both single lexical units

and unseen, variable-sized phrases in a syntactically coherent order. The learned

feature representations capture syntactic and compositional-semantic information. I

show that they can help inform accurate parsing decisions and capture interesting

similarities between phrases and sentences.

Using NLP techniques in computer vision. The connection between NLP

ideas such as parsing or grammars and computer vision has been explored before (Zhu

and Zhang, 2006; Tighe and Lazebnik, 2010), among many others. My approach is

similar on a high level, however, more general in nature. I show that the same neural

network based architecture can be used for both natural language and image parsing.

Furthermore, when directly compared, I outperform other such methods.

Deep Learning in vision applications can find lower dimensional represen-

tations for fixed size input images which are useful for classification (Hinton and

Salakhutdinov, 2006). Recently, Lee et al. (2009) were able to scale up deep net-

works to more realistic image sizes. Using images of single objects which were all

in roughly the same scale, they were able to learn parts and classify the images into

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 43

object categories. My approach differs in several fundamental ways to any previous

deep learning algorithm. (i) Instead of learning features from raw, or whitened pixels,

I use off-the-shelf vision features of segments obtained from oversegmented full scene

images. (ii) Instead of building a hierarchy using a combination of convolutional and

max-pooling layers, I recursively apply the same network to merged segments and

give each of these a semantic category label. (iii) This is the first deep learning work

which learns full scene segmentation, annotation and classification. The objects and

scenes vary in scale, viewpoint, lighting etc.

Using deep learning for NLP applications has been investigated by several

people (inter alia Bengio et al., 2003; Henderson, 2003; Collobert and Weston, 2008).

In most cases, the inputs to the neural networks are modified to be of equal size

either via convolutional and max-pooling layers or looking only at a fixed size window

around a specific word. My approach is different in that it handles variable sized

sentences in a natural way and captures the recursive nature of natural language.

Furthermore, it jointly learns parsing decisions, categories for each phrase and phrase

feature embeddings which capture the semantics of their constituents . In Socher

et al. (2010) I developed an NLP specific parsing algorithm based on RNNs. This

algorithm is a special case of the one developed here.

Deep learning for phrases Early attempts at using neural networks to describe

phrases include Elman (1991), who used recurrent neural networks to create rep-

resentations of sentences from a simple toy grammar and to analyze the linguistic

expressiveness of the resulting representations. Words were represented as one-on

vectors, which was feasible since the grammar only included a handful of words.

Collobert and Weston (2008) showed that neural networks can perform well on se-

quence labeling language processing tasks while also learning appropriate features.

However, their model is lacking in that it cannot represent the recursive structure

inherent in natural language. They partially circumvent this problem by using either

independent window-based classifiers or a convolutional layer. RNN-specific training

was introduced by Goller and Küchler (1996) to learn distributed representations of

given, structured objects such as logical terms. In contrast, my model both predicts

the structure and its representation.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 44

This section introduced a first structure prediction objective functions with su-

pervised scores and classification. The next section will also learn structure but will

do so in an unsupervised way that does not result in grammatically plausible tree

structures.

3.2 Semi-Supervised Reconstruction-Classification

Error - For Sentiment Analysis

The next type of objective function is based on autoencoders (Bengio, 2009). An

autoencoder is a neural network model that learns the function f(x) = x in order to

learn a reduced dimensional representation of fixed-size inputs such as image patches

or bag-of-words representations. A closer look at this function reveals a common form

of

f(x) = g2(g1(x)) = x, (3.16)

where g1 introduces an informational bottleneck and, for instance, might output a

lower dimensional code.4 Afterwards, g2 attempts to reconstruct the original input

from this lower dimensional code. This mechanism forces this function to learn useful

bases of the original input space.

This section combines the unsupervised objective of such autoencoders with a

softmax-based supervised objective as introduced in Sec. 2.5.

The supervised labels can be of any type. I choose sentiment analysis as the first

example of supervised recursive prediction because it exhibits interesting linguistic

phenomena and variation in predicted classes when multiple words are combined.

Furthermore, the ability to identify sentiments about personal experiences, products,

movies etc. is crucial to understand user generated content in social networks, blogs

or product reviews. Detecting sentiment in these data is a challenging task which has

spawned a lot of interest (Pang and Lee, 2008).

Most sentiment analysis baseline methods are based on bag-of-words representa-

tions (Pang et al., 2002). As mentioned in the first chapter, ignoring word order

4Other forms of informational bottlenecks, such as sparsity (Lee et al., 2007), are also possible

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 45

is an oversimplified independence assumption and models using such representations

cannot properly capture more complex linguistic phenomena such as negation and

its scope in sentiment. More advanced methods such as the one introduced by Nak-

agawa et al. (2010) could capture such phenomena but requires a lot of manually

constructed resources (sentiment lexica, parsers, polarity-shifting rules). This limits

the applicability of these methods to a broader range of tasks and languages. Lastly,

almost all previous work is based on single categories such as positive/negative or

scales such as star ratings, for instance movie reviews (Pang and Lee, 2005), opinions

(Wiebe et al., 2005) or customer reviews (Ding et al., 2008). Such a one-dimensional

scale does not accurately reflect the complexity of human emotions and sentiments.

Figure 3.7: Illustration of a recursive autoencoder architecture which learns seman-
tic vector representations of phrases. Word indices (orange) are first mapped into a
semantic vector space (blue). Then they are recursively merged by the same autoen-
coder network into a fixed length sentence representation. The vectors at each node
are used to as features to predict a distribution over sentiment labels.

I seek to address these three issues. (i) Instead of using a bag-of-words repre-

sentation, the RNN-based models of this thesis exploit hierarchical structure and use

compositional semantics to understand sentiment. (ii) My system can be trained both

on unlabeled domain data and on supervised sentiment data and does not require any

language-specific sentiment lexica, parser, etc. (iii) Rather than limiting sentiment

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 46

to a positive/negative scale, I predict a multidimensional distribution over several

complex sentiments.

My approach is based on semi-supervised, recursive autoencoders (RAE) which

use as inputs neural word vector representations (Bengio et al., 2003; Collobert and

Weston, 2008). Fig. 3.7 shows an illustration of the model which learns vector

representations of phrases and full sentences as well as their hierarchical structure

from unsupervised text. I extend this model to jointly learn a distribution over

sentiment labels at each node of the hierarchy from sentence-level annotation.

I evaluated the RAE approach on several standard datasets where I achieved state-

of-the art performance in 2011. Since then, the more powerful model introduced in

Sec. 4.3 has outperformed the RAE. I also show results on the experience project

(EP) dataset (Potts, 2010) that captures a broader spectrum of human sentiments

and emotions. The dataset consists of very personal confessions anonymously made

by people on the experience project website www.experienceproject.com. Confessions

are labeled with a set of five reactions by other users. Reaction labels are you rock

(expressing approvement), tehee (amusement), I understand, Sorry, hugs and Wow,

just wow (displaying shock). For evaluation on this dataset I predict both the label

with the most votes as well as the full distribution over the sentiment categories. On

both tasks my model outperforms competitive baselines.

After describing the model in detail, I evaluate it qualitatively by analyzing the

learned n-gram vector representations and compare quantitatively against other meth-

ods on standard datasets and the EP dataset.

3.2.1 Semi-Supervised Recursive Autoencoders

My model aims to find vector representations for variable-sized phrases in either unsu-

pervised or semi-supervised training regimes. These representations can then be used

for subsequent tasks. I first review a related recursive model based on autoencoders,

introduce my recursive autoencoder (RAE) and describe how it can be modified to

jointly learn phrase representations, phrase structure and label predictions of senti-

ments.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 47

Standard Recursive Autoencoders

The goal of autoencoders is to learn a dimensionality reduction of their inputs. In

this section I describe how to obtain a reduced dimensional vector representation for

sentences.

In the past autoencoders have only been used in a setting where the tree structure

was given a-priori. I review this setting before continuing with my model which can

learn the tree structure. Fig. 3.8 shows an instance of a recursive autoencoder (RAE)

applied to a given tree. Assume I am given a list of word vectors x = (x1, . . . , xm) as

described in Sec. 2.3. I also have a binary tree structure for this input in the form

of branching triplets of parents with children: (p → c1c2). Each child can be either

an input word vector xi or a nonterminal node in the tree. For the example in Fig.

3.8, I have the following triplets: ((y1 → x3x4), (y2 → x2y1), (y1 → x1y2)). In order

to be able to apply the same neural network to each pair of children, the hidden

representations yi have to have the same dimensionality as the xi’s.

Given this tree structure, I can now compute the parent representations. The first

parent vector y1 is computed from the children (c1, c2) = (x3, x4):

p = f(We[c1; c2] + be), (3.17)

where I multiplied a matrix of parameters We ∈ Rn×2n by the concatenation of the

two children. After adding a bias term I applied element-wise the tanh function to the

resulting vector. One way of assessing how well this n-dimensional vector represents

its children is to try to reconstruct the children in a reconstruction layer:

[c′1; c′2] = Wdp+ bd. (3.18)

Such a reconstruction function is one possibility for the function g2 mentioned in the

first paragraph of this section and defined in Eq. 3.16.

During training, the goal is to minimize the reconstruction error of this input pair.

For each pair, I compute the Euclidean distance between the original input and its

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 48

Figure 3.8: Illustration of an application of a recursive autoencoder to a binary tree.
The nodes which are not filled are only used to compute reconstruction errors. A
standard autoencoder (in box) is re-used at each node of the tree.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 49

reconstruction:

Erec([c1; c2]) =
1

2
||[c1; c2]− [c′1; c′2]||2 . (3.19)

This model of a standard autoencoder is boxed in Fig. 3.8. Now that I have defined

how an autoencoder can be used to compute an n-dimensional vector representation

(p) of two n-dimensional children (c1, c2), I can describe how such a network can be

used for the rest of the tree.

Essentially, the same steps repeat. Now that y1 is given, I can use Eq. 3.17 to

compute y2 by setting the children to be (c1, c2) = (x2, y1). Again, after computing

the intermediate parent vector y2, I can assess how well this vector capture the content

of the children by computing the reconstruction error as in Eq. 3.19. The process

repeats until the full tree is constructed and I have a reconstruction error at each

nonterminal node. This model is similar to the RAAM model (Pollack, 1990) which

also requires a fixed tree structure.

Unsupervised Recursive Autoencoder for Structure Prediction

Now, assume there is no tree structure given for the input vectors in x. The goal of my

structure-prediction RAE is to minimize the reconstruction error of all vector pairs

of children in a tree. I define A(x) as the set of all possible trees that can be built

from an input sentence x. Further, let T (y) be a function that returns the triplets of

a tree indexed by s of all the non-terminal nodes in a tree. Using the reconstruction

error of Eq. 3.19, I compute

RAEθ(x) = arg min
y∈A(x)

∑
s∈T (y)

Erec([c1; c2]s) (3.20)

I now describe a greedy approximation that constructs such a tree.

Greedy Unsupervised RAE. For a sentence with m words, I apply the au-

toencoder recursively. It takes the first pair of neighboring vectors, defines them as

potential children of a phrase (c1; c2) = (x1;x2), concatenates them and gives them

as input to the autoencoder. For each word pair, I save the potential parent node p

and the resulting reconstruction error.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 50

After computing the score for the first pair, the network is shifted by one position

and takes as input vectors (c1, c2) = (x2, x3) and again computes a potential parent

node and a score. This process repeats until it hits the last pair of words in the

sentence: (c1, c2) = (xm−1, xm). Next, it selects the pair which had the lowest recon-

struction error (Erec) and its parent representation p will represent this phrase and

replace both children in the sentence word list. For instance, consider the sequence

(x1, x2, x3, x4) and assume the lowest Erec was obtained by the pair (x3, x4). After the

first pass, the new sequence then consists of (x1, x2, p(3,4)). The process repeats and

treats the new vector p(3,4) like any other input vector. For instance, subsequent states

could be either: (x1, p(2,(3,4))) or (p(1,2), p(3,4)). Both states would then finish with a

deterministic choice of collapsing the remaining two states into one parent to obtain

(p(1,(2,(3,4)))) or (p((1,2),(3,4))) respectively. The tree is then recovered by unfolding the

collapsing decisions.

The resulting tree structure captures as much of the semantic information as pos-

sible (in order to allow reconstructing the input words) but does not necessarily follow

standard syntactic constraints. I also experimented with a method that finds the glob-

ally optimal solution to Eq.3.20 based on the CKY-algorithm but the performance is

similar and the greedy version is much faster.

Weighted Reconstruction. One problem with simply using the reconstruction

error of both children equally as describe in Eq.3.19 is that each child could represent

a different number of previously collapsed words and is hence of bigger importance

for the overall meaning reconstruction of the sentence. For instance in the case of

(x1, p(2,(3,4))) one would like to give more importance to reconstructing p than x1. I

capture this desideratum by adjusting the reconstruction error. Let n1, n2 be the

number of words underneath a current potential child, I re-define the reconstruction

error to be Erec([c1; c2]; θ) =

n1

n1 + n2

||c1 − c′1||
2

+
n2

n1 + n2

||c2 − c′2||
2

(3.21)

Vector Length Normalization. One of the goals of RAEs is to induce semantic

vector representations that allow us to compare n-grams of different lengths. The

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 51

RAE tries to lower reconstruction error of not only the bigrams but also of nodes

higher in the tree. Unfortunately, since the RAE computes the hidden representations

it then tries to reconstruct, it can just lower reconstruction error by making the hidden

layer very small in magnitude. To prevent such undesirable behavior, I modify the

hidden layer such that the resulting parent representation always has length one, after

computing p as in Eq.3.17, I simply set: p = 1
||p|| .

Semi-Supervised Recursive Autoencoders

So far, the RAE was completely unsupervised and induced general representations

that capture the semantics of multi-word phrases. In this section, I extend RAEs

to a semi-supervised setting in order to predict a sentence- or phrase-level target

distribution t.5

One of the main advantages of the RAE is that each node of the tree built by

the RAE has associated with it a distributed vector representation (the parent vector

p) which could also be seen as features describing that phrase. I can leverage this

representation by adding on top of each parent node a simple softmax layer to predict

class distributions:

d(p; θ) = softmax(W labelp). (3.22)

Assuming there are K labels, d ∈ RK is a K-dimensional multinomial distribution

and
∑

k=1 dk = 1. Fig. 3.9 shows such a semi-supervised RAE unit. Let tk be the

kth element of the multinomial target label distribution t for one entry. The softmax

layer’s outputs are interpreted as conditional probabilities dk = p(k|[c1; c2]), hence

the cross-entropy error is

EcE(p, t; θ) = −
K∑
k=1

tk log dk(p; θ). (3.23)

Using this cross-entropy error for the label and the reconstruction error from Eq.3.21,

the final semi-supervised RAE objective over (sentences,label) pairs (x, t) in a corpus

5For the binary label classification case, the distribution is of the form [1, 0] for class 1 and [0, 1]
for class 2.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 52

Figure 3.9: Illustration of an RAE unit at a nonterminal tree node. Red nodes show
the supervised softmax layer for label distribution prediction.

becomes

J =
1

N

∑
(x,t)

E(x, t; θ) +
λ

2
||θ||2, (3.24)

where I have an error for each entry in the training set that is the sum over the error

at the nodes of the tree that is constructed by the greedy RAE:

E(x, t; θ) =
∑

s∈T (RAEθ(x))

E([c1; c2]s, ps, t, θ).

The error at each nonterminal node is the weighted sum of reconstruction and cross-

entropy errors, E([c1; c2]s, ps, t, θ) =

αErec([c1; c2]s; θ) + (1− α)EcE(ps, t; θ).

The hyperparameter α weighs reconstruction and cross-entropy error. When minimiz-

ing the cross-entropy error of this softmax layer, the error will backpropagate and in-

fluence both the RAE parameters and the word representations. Initially, words such

as good and bad have very similar representations. When learning positive/negative

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 53

sentiment, these word embeddings will change and become different.

In order to predict the sentiment distribution of a sentence with this model, I can

use the output of the top node’s softmax layer. Alternatively, there exist many other

options to extract features from the tree, such as taking the average of all the nodes

and training an SVM.

3.2.2 Learning

Let θ = (We, be,Wd, bd,Wlabel, L) be the set of my model parameters, then the gradient

becomes:

∂J

∂θ
=

1

N

∑
i

∂E(x, t; θ)

∂θ
+ λθ. (3.25)

To compute this gradient, I first greedily construct all trees and then derivatives for

these trees are computed efficiently via backpropagation through structure (Goller

and Küchler, 1996). Because the algorithm is greedy and the derivatives of the super-

vised cross-entropy error also modify the matrix We, this objective is not necessarily

continuous and a step in the gradient descent direction may not necessarily decrease

the objective. However, I found that L-BFGS run over the complete training data

(batch mode) to minimize the objective works well in practice, and that convergence

is smooth, with the algorithm typically finding a good solution quickly.

3.2.3 Experiments

I first describe the new experience project (EP) dataset, results of standard classi-

fication tasks and how to predict sentiment label distributions. I then show results

on other commonly used datasets and conclude with an analysis of the important

parameters of the model.

In the experiments of this section, I represent words using the 100-dimensional

word vectors of the model from Collobert and Weston (2008) provided by Turian

et al. (2010).

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 54

The Experience Project Dataset

The confessions section of the experience project website http://www.experienceproject.

com/confessions.php lets people anonymously write short personal stories or “con-

fessions” (Maas et al., 2011). Once a story is on the site, each user can give a single

vote to one of five label categories (with my interpretation):

1 Sorry, Hugs: User offers condolences to author.

2. You Rock: Indicating approval, congratulations.

3. Teehee: User found the anecdote amusing.

4. I Understand: Show of empathy.

5. Wow, Just Wow: Expression of surprise,shock.

The EP dataset has 31,676 confession entries, a total number of 74,859 votes for one of

the 5 labels above, the average number of votes per entry is 2.4 (with a variance of 33).

For the five categories, the numbers of votes are [14, 816; 13, 325; 10, 073; 30, 844; 5, 801].

Since an entry with less than 4 votes is not very well identified, I train and test only

on entries with at least 4 total votes. There are 6,130 total such entries. The distribu-

tion over total votes in the 5 classes is similar: [0.22; 0.2; 0.11; 0.37; 0.1]. The average

length of entries is 129 words. Some entries contain multiple sentences. In these

cases, I average the predicted label distributions from the sentences. Table 3.2 shows

statistics of this and other commonly used sentiment datasets (which I compare on

in later experiments). Table 3.3 shows example entries as well as gold and predicted

label distributions as described in the next sections.

Corpus K Instances Distr(+/-). Avg|W |
MPQA 2 10,624 0.31/0.69 3
MR 2 10,662 0.5/0.5 22
EP 5 31,675 .2/.2/.1/.4/.1 113
EP≥ 4 5 6,129 .2/.2/.1/.4/.1 129

Table 3.2: Statistics on the different datasets. K is the number of classes. Distr. is
the distribution of the different classes (in the case of 2, the positive/negative classes,
for EP the rounded distribution of total votes in each class). |W | is the average
number of words per instance. I use EP≥ 4, a subset of entries with at least 4 votes.

http://www.experienceproject.com/confessions.php
http://www.experienceproject.com/confessions.php

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 55

KL Predicted&Gold V. Entry (Shortened if it ends with ...)
.03

.16 .16 .16 .33 .16

6 I reguarly shoplift. I got caught once and went to jail, but I’ve found that this
was not a deterrent. I don’t buy groceries, I don’t buy school supplies for my
kids, I don’t buy gifts for my kids, we don’t pay for movies, and I dont buy most
incidentals for the house (cleaning supplies, toothpaste, etc.)...

.03

.38 .04 .06 .35 .14

165 i am a very succesfull buissnes man.i make good money but i have been addicted
to crack for 13 years.i moved 1 hour away from my dealers 10 years ago to stop
using now i dont use daily but once a week usally friday nights. i used to use 1
or 2 hundred a day now i use 4 or 5 hundred on a friday.my problem is i am a
funcational addict...

.05

.14 .28 .14 .28 .14

7 Hi there, Im a guy that loves a girl, the same old bloody story... I met her a
while ago, while studying, she Is so perfect, so mature and yet so lonely, I get to
know her and she get ahold of me, by opening her life to me and so did I with
her, she has been the first person, male or female that has ever made that bond
with me,...

.07

.27 .18 .00 .45 .09

11 be kissing you right now. i should be wrapped in your arms in the dark, but
instead i’ve ruined everything. i’ve piled bricks to make a wall where there never
should have been one. i feel an ache that i shouldn’t feel because i’ve never had
you close enough. we’ve never touched, but i still feel as though a part of me is
missing. ...

.05 23 Dear Love, I just want to say that I am looking for you. Tonight I felt the urge
to write, and I am becoming more and more frustrated that I have not found you
yet. I’m also tired of spending so much heart on an old dream. ...

.05 5 I wish I knew somone to talk to here.

.06 24 I loved her but I screwed it up. Now she’s moved on. I’ll never have her again. I
don’t know if I’ll ever stop thinking about her.

.06 5 i am 13 years old and i hate my father he is alwas geting drunk and do’s not care
about how it affects me or my sisters i want to care but the truthis i dont care if
he dies

.13 6 well i think hairy women are attractive

.35 5 As soon as I put clothings on I will go down to DQ and get a thin mint blizzard.
I need it. It’ll make my soul feel a bit better :)

.36 6 I am a 45 year old divoced woman, and I havent been on a date or had any
significant relationship in 12 years...yes, 12 yrs. the sad thing is, Im not some
dried up old granny who is no longer interested in men, I just can’t meet men.
(before you judge, no Im not terribly picky!) What is wrong with me?

.63 6 When i was in kindergarden i used to lock myself in the closet and eat all the
candy. Then the teacher found out it was one of us and made us go two days
without freetime. It might be a little late now, but sorry guys it was me haha

.92 4 My paper is due in less than 24 hours and I’m still dancing round my room!

Table 3.3: Example EP confessions from the test data with KL divergence between
my predicted distribution (light blue, left bar on each of the 5 classes) and ground
truth distribution (red bar and numbers underneath), number of votes. The 5 classes
are [Sorry, Hugs; You Rock; Teehee; I Understand; Wow, Just Wow]. Even when the
KL divergence is higher, my model makes reasonable alternative label choices. Some
entries are shortened.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 56

Compared to other datasets, the EP data contains a wider range of human emo-

tions that goes far beyond positive/negative product or movie reviews. The topics

range from generic happy statements, daily clumsiness reports, love, loneliness, to

relationship abuse and suicidal notes. As is evident from the total number of label

votes, the most common user reaction is one of empathy and an ability to relate to

the authors experience. However, some stories describe horrible scenarios that are

not common and hence receive more offers of condolence. In the following sections I

shows some examples of stories with predicted and true distributions but refrain from

listing the most horrible experiences.

For all experiments on the EP dataset, I split the data into train (49%), develop-

ment (21%) and test data (30%).

EP: Predicting the Label with Most Votes

The first task for my evaluation on the EP dataset is to simply predict the single class

that receives the most votes. In order to compare my novel joint phrase representation

and classifier learning framework to traditional methods, I use the following baselines:

Random Since there are five classes, this gives 20% accuracy.

Most Frequent Selecting the class which most frequently has the most votes (which

is the I understand class).

Baseline 1: MaxEnt This baseline is a simple MaxEnt model that uses a bag-of-

word representation.

Baseline 2: Features This model is similar to traditional approaches to sentiment

classification in that it uses many hand-engineered resources. I first used a spell-

checker and Wordnet to map words and their misspellings to synsets to reduce

the total number of words. I then replaced sentiment words with a sentiment

category identifier using the sentiment lexica of the Harvard Inquirer (Stone,

1966) and LIWC (Pennebaker et al., 2007). Lastly, I used tf-idf weighting on

the the bag-of-word entry representations and trained an SVM.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 57

Method Accuracy
Random 20.0
Most Frequent 38.1
Baseline 1: MaxEnt 46.4
Baseline 2: Features 47.0
Baseline 3: Word Vectors 45.5
RAE (my method) 49.7

Table 3.4: Accuracy of predicting the class with most votes.

Baseline 3: Word Vectors I can ignore the RAE tree structure and only train

softmax layers on the words in order to influence the word vectors. Then train

an SVM on the average of the word vectors.

Table 3.4 shows the results for predicting the class with the most votes. Even

the approach that is based on sentiment lexica and other resources is outperformed

by my model by almost 3%, showing that for tasks involving complex broad-range

human sentiment, the often used sentiment lexica lack in coverage and traditional

bag-of-words representations are not powerful enough.

EP: Predicting Sentiment Distributions

Figure 3.10: Average KL-divergence between gold and predicted sentiment distribu-
tions (lower is better).

I now turn to evaluating my distribution-prediction approach. In both this and the

previous maximum label task, I backprop using the gold multinomial distribution as a

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 58

target. Since I maximize likelihood and because I want to predict a distribution that

is closest to the distribution of labels that people would assign to a story, I evaluate

using KL divergence: KL(g||p) =
∑

i gi log(gi/pi), where g is the gold distribution

and p is the predicted one. I report the average KL divergence, where a smaller value

indicates better predictive power. To get an idea of the values of KL divergence,

predicting random distributions gives a an average of 1.2 in KL divergence, predicting

simply the average distribution in the training data give 0.83. Fig. 3.10 shows that

my RAE-based model outperforms the other baselines. Table 3.3 shows EP example

entries with predicted and gold distributions, as well as numbers of votes.

Binary Polarity Classification

In order to compare my approach to other methods I also show results on commonly

used sentiment datasets: movie reviews6 (MR) (Pang and Lee, 2005) and opinions7

(MPQA) (Wiebe et al., 2005). I give statistical information on these and the EP

corpus in Table 3.2.

I compare to the state-of-the-art system of Nakagawa et al. (2010), a dependency

tree based classification method that uses CRFs with hidden variables. I use the

same training and testing regimen (10-fold cross validation) as well as their baselines:

majority phrase voting using sentiment and reversal lexica; rule-based reversal using a

dependency tree; Bag-of-Features and their full model Tree-CRF. As shown in Table

3.6, my algorithm outperforms or performs similarly on both compared datasets even

though I do not use any hand-designed lexica. An error analysis on the MPQA

dataset showed several cases of single words which never occurred during training.

Hence, correctly classifying these instances can only be the result of having them in

the original sentiment lexicon.

I visualize the semantic vectors that the recursive autoencoder learns by listing

n-grams that give the highest probability for each polarity. Table 3.5 shows such

n-grams for different lengths when the RAE is trained on the movie review polarity

dataset.

6www.cs.cornell.edu/people/pabo/movie-review-data/
7www.cs.pitt.edu/mpqa/

www.cs.cornell.edu/people/pabo/movie-review-data/
www.cs.pitt.edu/mpqa/

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 59

n Most negative n-grams Most positive n-grams
1 bad; boring; dull; flat; pointless; tv; neither; pre-

tentious; badly; worst; lame; mediocre; lack; rou-
tine; loud; bore; barely; stupid; tired; poorly; suf-
fers; heavy;nor; choppy; superficial

solid; beautifully; rich; chilling; refreshingly; por-
trait; thoughtful; socio-political; quiet; beautiful;
wonderful; engrossing; provides; flaws; culture;
moving; warm; powerful; enjoyable; touching

2 how bad; by bad; dull .; for bad; to bad; boring .;
, dull; are bad; that bad; boring ,; , flat; pointless
.; badly by; on tv; so routine; lack the; mediocre .;
a generic; stupid ,; abysmally pathetic

the beautiful; moving ,; thoughtful and; , inven-
tive; solid and; a beautiful; a beautifully; and hi-
larious; with dazzling; provides the; provides .; and
inventive; as powerful; moving and; a moving; a
powerful

3 . too bad; exactly how bad; and never dull; shot
but dull; is more boring; to the dull; dull , UNK;
it is bad; or just plain; by turns pretentious; ma-
nipulative and contrived; bag of stale; is a bad;
the whole mildly; contrived pastiche of; from this
choppy; stale material .

both the beauty; ... a polished; spare yet auda-
cious; has a solid; cast of solid; with the chilling;
, gradually reveals; beautifully acted .; ... a solid;
romantic , riveting; culture into a; smart and taut;
, fine music; cuts , fast; with a moving; a small
gem; funny and touching

5 boring than anything else .; a major waste ...
generic; nothing i had n’t already; , UNK plotting
; superficial; problem ? no laughs .; , just horribly
mediocre .; dull , UNK feel .; there ’s nothing ex-
actly wrong; movie is about a boring; essentially a
collection of bits

engrossing and ultimately tragic .; with wry humor
and genuine; cute , funny , heartwarming; easily
the most thoughtful fictional; a solid piece of jour-
nalistic; between realistic characters showing hon-
est; engrossing , seldom UNK ,; reminded us that
a feel-good

8 loud , silly , stupid and pointless . ; dull , dumb
and derivative horror film .; UNK ’s film , a boring
, pretentious; this film biggest problem ? no laughs
.; film in the series looks and feels tired; do draw
easy chuckles but lead nowhere .; stupid , infantile
, redundant , sloppy

bringing richer meaning to the story ’s; film is a
riveting , brisk delight .; ... one of the most in-
genious and entertaining; , deeply absorbing piece
that works as a; an escapist confection that ’s pure
entertainment .; shot in rich , shadowy black-and-
white , devils

Table 3.5: Examples of n-grams (n = 1, 2, 3, 5, 8) from the test data of the movie
polarity dataset for which my model predicts the most positive and most negative
responses.

Method MR MPQA
Voting w/Rev. 63.1 81.7
Rule 62.9 82.8
BoF w/ Rev. 76.4 84.1
Tree-CRF (Nakagawa’10) 77.3 86.1
RAE (my method) 77.7 86.0

Table 3.6: Accuracy of sentiment classification. See text for details on the MPQA
dataset.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 60

On a 4-core machine, training time for the smaller corpora such as the movie

reviews takes around 3 hours and for the larger EP corpus around 12 hours until

convergence. Testing of hundreds of movie reviews takes only a few seconds.

Reconstruction vs. Classification Error

In this experiment, I show how the hyperparameter α influences accuracy on the de-

velopment set of one of the cross-validation splits of the MR dataset. This parameter

essentially trade-off the supervised and unsupervised parts of the objective. Fig. 3.11

shows that a larger focus on the supervised objective is important but that a weight

of α = 0.2 for the reconstruction error prevents overfitting and achieves the highest

performance.

Figure 3.11: Accuracy on the development split of the MR polarity dataset for dif-
ferent weightings of reconstruction error and supervised cross-entropy error: err =
αErec + (1− α)EcE.

3.2.4 Related Work

Autoencoder can be used to efficiently learn feature encodings which are useful for

classification. Recently, Mirowski et al. (2010) learn dynamic autoencoders for doc-

uments in a bag-of-words format which, like the semi-supervised one in this section,

combine supervised and reconstruction objectives.

The idea of applying an autoencoder in a recursive setting was introduced by Pol-

lack (1990). Pollack’s recursive auto-associative memories (RAAMs) are similar to

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 61

ours in that they are a connectionst, feedforward model. However, RAAMs learn vec-

tor representations only for fixed recursive data structures, whereas my RAE builds

this recursive data structure. More recently, Voegtlin and Dominey (2005) introduced

a linear modification to RAAMs that is able to better generalize to novel combina-

tions of previously seen constituents. One of the major shortcomings of previous

applications of recursive autoencoders to natural language sentences was their binary

word representation.

Sentiment Analysis Pang et al. (2002) were one of the first to experiment with

sentiment classification. They show that simple bag-of-words approaches based on

Naive Bayes, MaxEnt models or SVMs are often insufficient for predicting sentiment

of documents even though they work well for general topic-based document classifica-

tion. Even adding specific negation words, bigrams or part-of-speech information to

these models did not add significant improvements. Other document-level sentiment

work includes Turney (2002); Dave et al. (2003); Beineke et al. (2004); Pang and Lee

(2004). For further references, see Pang and Lee (2008).

Instead of document level sentiment classification, Wilson et al. (2005) analyze the

contextual polarity of phrases and incorporate many well designed features includ-

ing dependency trees. They also show improvements by first distinguishing between

neutral and polar sentences. My model naturally incorporates the recursive interac-

tion between context and polarity words in sentences in a unified framework while

simultaneously learning the necessary features to make accurate predictions. Other

approaches for sentence-level sentiment detection include Yu and Hatzivassiloglou

(2003); Kim and Hovy (2007); Grefenstette et al. (2004); Ikeda et al. (2008).

Most previous work is centered around given sentiment lexica or building one via

heuristics (Kim and Hovy, 2007; Esuli and Sebastiani, 2007), manual annotation (Das

and Chen, 2001) or machine learning techniques (Turney, 2002). In contrast, I do

not require an initial or constructed sentiment lexicon of positive and negative words.

In fact, when training my approach on documents or sentences, it jointly learns such

lexica for both single words and n-grams (see Table 3.5). Mao and Lebanon (2007)

propose isotonic conditional random fields and differentiate between local, sentence-

level and global, document-level sentiment.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 62

The work of Polanyi and Zaenen (2006) and Choi and Cardie (2008) focuses

on manually constructing several lexica and rules for both polar words and related

content-word negators, such as “prevent cancer”, where prevent reverses the negative

polarity of cancer. Like my approach they capture compositional semantics. However,

my model does so without manually constructing any rules or lexica.

Recently, Velikovich et al. (2010) showed how to use a seed lexicon and a graph

propagation framework to learn a larger sentiment lexicon that also includes polar

multi-word phrases such as “once in a life time”. While my method can also learn

multi-word phrases it does not require a seed set or a large web graph. Nakagawa

et al. (2010) introduced an approach based on CRFs with hidden variables with very

good performance. I compare to their state-of-the-art system. I outperform them

on the standard corpora that I tested on without requiring external systems such as

POS taggers, dependency parsers and sentiment lexica. My approach jointly learns

the necessary features and tree structure.

The last two sections learned both the tree structure and a related task prediction.

In contrast, the next model in the section uses fixed parse trees and learns semantic

phrase vectors without any supervised signal.

3.3 Unfolding Reconstruction Errors - For Para-

phrase Detection

In this section, I present a different RAE model that incorporates the similarities

between both single word vectors as well as multi-word phrase vectors for the impor-

tant task of paraphrase detection. Unlike all other models of this thesis, the RNN

objective function in this section is entirely unsupervised. This is necessary because

paraphrase detection requires the ability to deal with a very broad range of semantic

phenomena for which it would be very hard to find sufficient labeled training data.

Paraphrase detection determines whether two sentences of arbitrary length and

form capture the same meaning. It is used in information retrieval, question answering

(Marsi and Krahmer, 2005), plagiarism detection (Clough et al., 2002), evaluation of

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 63

machine translation (Callison-Burch, 2008) and text summarization, among others.

For instance, in order to avoid adding redundant information to a summary one would

like to detect that the following two sentences are paraphrases:

S1 The judge also refused to postpone the trial date of Sept. 29.

S2 Obus also denied a defense motion to postpone the September trial

date.

The full model in this section is based on two novel components as outlined in

Fig. 3.12. The first component, is an unfolding recursive autoencoder (URAE) for

unsupervised feature learning from unlabeled parse trees. The U.RAE is a recursive

neural network that computes features for each node in an unlabeled parse tree.

It is similar to the RAE of the previous section but attempts to reconstruct the

entire subtree under each node instead of the direct children only (a more detailed

comparison will follow below). After node vectors are trained by the U.RAE, these

embeddings are used to compute a similarity matrix that compares both the single

words as well as all nonterminal node vectors in both sentences. In order to keep

as much of the resulting global information of this comparison and deal with the

arbitrary length of the two sentences, I then introduce the second component: a

new variable-sized min-pooling layer which outputs a fixed-size representation. Any

classifier such as logistic regression or a neural network can then be used to classify

whether the two sentences are paraphrases or not.

I first describe the unsupervised feature learning with RAEs followed by a de-

scription of the pooling and following supervised classification. In experiments I

show qualitative comparison of two different RAE models. I then describe my state-

of-the-art results on the Microsoft Research Paraphrase (MSRP) Corpus introduced

by Dolan et al. (2004) and discuss related work.

3.3.1 Recursive Autoencoders

In this section I contrast two variants of unsupervised recursive autoencoders which

can be used to learn features from parse trees.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 64

Recursive Autoencoder

1 2 3

4

5

6

7

3 4

5

1 2
n

Neural Network for Variable-Sized Input

Similarity Matrix

Variable-Sized Pooling Layer

Neural Network

1
2
3

4
5

1 2 3 4 5 6 7

cats catch miceThe Cats eat mice

Pairwise Classification OutputParaphrase

Figure 3.12: An overview of my paraphrase model. The recursive autoencoder learns
phrase features for each node in a parse tree. The distances between all nodes then
fill a similarity matrix which is given to a neural network architecture. Using a novel
min-pooling layer the network can compare variable-sized sentences and classify pairs
as being paraphrases or not.

Recursive Autoencoder

Fig. 3.13 (left) shows an instance of a standard recursive autoencoder (RAE, see

the previous Sec. 3.2, repeated here for ease of exposition and contrast to the new

model) applied to a given parse tree. Here, I assume that such a tree is given for each

sentence by a parser. Assume I am given a list of word vectors x = (x1, . . . , xm) as

described in the previous section. The binary parse tree for this input is in the form

of branching triplets of parents with children: (p → c1c2). The trees are given by a

syntactic parser. Each child can be either an input word vector xi or a nonterminal

node in the tree. For both examples in Fig. 3.13, I have the following triplets:

((y1 → x2x3), (y2 → x1y1)), ∀x, y ∈ Rn.

Given this tree structure, I can now compute the parent representations. The first

parent vector p = y1 is computed from the children (c1, c2) = (x2, x3) by the same

standard neural network layer as in Eq. 3.17.

One way of assessing how well this n-dimensional vector represents its direct chil-

dren is to decode their vectors in a reconstruction layer and then to compute the

Euclidean distance between the original input and its reconstruction as in Eqs. 3.17

and 3.18.

In order to apply the autoencoder recursively, the same steps repeat. Now that

y1 is given, I can use Eq. 3.17 to compute y2 by setting the children to be (c1, c2) =

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 65

Recursive Autoencoder Unfolding Recursive Autoencoder

x1' x2' x3'

x2 x3x1

y2
y1

x1' y1'

We

x2 x3x1

y2
y1

y1'
Wd

We We

We

Wd Wd

Figure 3.13: Two autoencoder models with details of the reconstruction at node y2.
For simplicity I left out the reconstruction layer at the first node y1 which is the same
standard autoencoder for both models. Left: A standard autoencoder that tries to
reconstruct only its direct children. Right: The unfolding autoencoder which tries to
reconstruct all leaf nodes underneath each node.

(x1, y1). Again, after computing the intermediate parent vector p = y2, I can assess

how well this vector captures the content of the children by computing the recon-

struction error as in Eqs. 3.18 and 3.19. The process repeats until the full tree is

constructed and each node has an associated reconstruction error.

During training, the goal is to minimize the reconstruction error of all input pairs

at nonterminal nodes p in a given parse tree T :

Erec(T) =
∑
p∈T

Erec(p) (3.26)

For the example in Fig. 3.13, I minimize Erec(T) = Erec(y1) + Erec(y2).

Since the RAE computes the hidden representations it then tries to reconstruct,

it could potentially lower reconstruction error by shrinking the norms of the hidden

layers. In order to prevent this, I add a length normalization layer p = p/||p|| to this

RAE model (referred to as the standard RAE). Another more principled solution is

to use a model in which each node tries to reconstruct its entire subtree and then

measure the reconstruction of the original leaf nodes. Such a model is described in

the next section.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 66

Unfolding Recursive Autoencoder

The unfolding RAE has the same encoding scheme as the standard RAE. The dif-

ference is in the decoding step which tries to reconstruct the entire spanned subtree

underneath each node as shown in Fig. 3.13 (right). For instance, at node y2, the

reconstruction error is the difference between the leaf nodes underneath that node

[x1;x2;x3] and their reconstructed counter parts. The unfolding produces the recon-

structed leaves by starting at y2 and computing

[x′1; y′1] = f(Wdy2 + bd). (3.27)

Then it recursively splits y′1 again to produce vectors

[x′2;x′3] = f(Wdy
′
1 + bd). (3.28)

In general, I repeatedly use the decoding matrix Wd to unfold each node with the

same tree structure as during encoding. The reconstruction error is then computed

from a concatenation of the word vectors in that node’s span. For a node y that spans

words i to j:

Erec(y(i,j)) =
∣∣∣∣[xi; . . . ;xj]− [x′i; . . . ;x′j]∣∣∣∣2 . (3.29)

The unfolding autoencoder essentially tries to encode each hidden layer such that

it best reconstructs its entire subtree to the leaf nodes. Hence, it will not have

the problem of hidden layers shrinking in norm. Another potential problem of the

standard RAE is that it gives equal weight to the last merged phrases even if one is

only a single word (in Fig. 3.13, x1 and y1 have similar weight in the last merge). In

contrast, the unfolding RAE captures the increased importance of a child when the

child represents a larger subtree.

Deep Recursive Autoencoder

Both types of RAE can be extended to have multiple encoding layers at each node

in the tree. Instead of transforming both children directly into parent p, I can have

another hidden layer h in between. While the top layer at each node has to have the

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 67

same dimensionality as each child (in order for the same network to be recursively

compatible), the hidden layer may have arbitrary dimensionality. For the two-layer

encoding network, I would replace Eq. 3.17 with the following:

h = f(W (1)
e [c1; c2] + b(1)

e) (3.30)

p = f(W (2)
e p+ b(2)

e). (3.31)

RAE Training

For training I use a set of parsed trees and then minimize the sum of all nodes’

reconstruction errors. I compute the gradient efficiently via backpropagation through

structure (Goller and Küchler, 1996). Even though the objective is not convex, I

found that L-BFGS run with mini-batch training works well in practice. Convergence

is smooth and the algorithm typically finds a good locally optimal solution quickly.

After the unsupervised training of the RAE, I can use the learned feature rep-

resentations for several different tasks. The qualitative experiments below suggest

numerous applications for such features.

3.3.2 An Architecture for Variable-Sized Matrices

Now that I have described the unsupervised feature learning, I explain how to use

these features to classify sentence pairs as being in a paraphrase relationship or not.

Computing Sentence Similarity Matrices

My method incorporates both single word and phrase similarities in one framework.

First, the RAE computes phrase vectors for the nodes in a given parse tree. I then

compute Euclidean distances between all word and phrase vectors of the two sen-

tences. These distances fill a similarity matrix S as shown in Fig. 3.12. For comput-

ing the similarity matrix, the rows and columns are first filled by the words in their

original sentence order. I then add to each row and column the nonterminal nodes in

a depth-first, right-to-left order.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 68

Simply extracting aggregate statistics of this table such as the average distance or

a histogram of distances cannot accurately capture the global gist of the similarities.

For instance, paraphrases often have low or zero Euclidean distances in elements close

to the diagonal of the similarity matrix. This happens when similar words align well

between the two sentences. However, since the matrix dimensions vary based on the

sentence lengths one cannot simply feed the similarity matrix into a standard neural

network layer or logistic regression classifier.

Pooling

Consider a similarity matrix S generated by sentences of lengths n and m. Since the

parse trees are binary and I also compare all nonterminal nodes, S ∈ R(2n−1)×(2m−1).

I would like to map S into a matrix Spooled of fixed size, np × np. My first step in

constructing such a map is to partition the rows and columns of S into np roughly

equal parts, producing an np × np grid.8 I then define Spooled to be the matrix of

minimum values of each rectangular region within this grid, as shown in Fig. 3.14.

The matrix Spooled loses some of the information contained in the original matrix,

but it still captures much of its global structure. Since elements of S with small

Euclidean distances show that there are similar phrases in both sentences, I keep this

information by applying a min function to the pooling regions. Other functions, like

averaging, are also possible, but might obscure the presence of similar phrases. This

pooling layer could make use of overlapping pooling regions. For simplicity, I consider

only non-overlapping pooling regions.

8The partitions will only be of equal size if 2n− 1 and 2m− 1 are divisible by np. I account for
this in the following way, although many alternatives are possible. Let the number of rows of S be
R = 2n − 1. Each pooling window then has bR/npc many rows. Let M = R mod np, the number
of remaining rows. I then evenly distribute these extra rows to the last M window regions which
will have bR/npc+ 1 rows. The same procedure applies to the number of columns for the windows.
In the rare cases when np > R, the pooling layer needs to first up-sample. I achieve this by simply
duplicating pixels row-wise until R ≤ np. This procedure will have a slightly finer granularity for
the single word similarities which is desired for my task since word overlap is a good indicator for
paraphrases.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 69

Figure 3.14: Example of the min-pooling layer finding the smallest number in a
pooling window region of the original similarity matrix.

3.3.3 Experiments

For unsupervised RAE training I used a subset of 150,000 sentences from the NYT and

AP sections of the Gigaword corpus. I used the Stanford parser (Klein and Manning,

2003a) to create the parse trees for all sentences. For initial word embeddings I used

the 100-dimensional vectors computed via the unsupervised method of Collobert and

Weston (2008) and provided by Turian et al. (2010).

For all paraphrase experiments I used the Microsoft Research paraphrase cor-

pus(MSRP) introduced by Dolan et al. (2004). The dataset consists of 5,801 sentence

pairs. The average sentence length is 21, the shortest sentence has 7 words and the

longest 36. 3,900 are labeled as being in the paraphrase relationship (technically de-

fined as “mostly bidirectional entailment”). I use the standard split of 4,076 training

pairs (67.5% of which are paraphrases) and 1,725 test pairs (66.5 % paraphrases). All

sentences were labeled by two annotators who agreed in 83% of the cases. A third

annotator resolved conflicts. During dataset collection, negative examples were se-

lected to have high lexical overlap to prevent trivial examples. For more information

see Dolan et al. (2004); Das and Smith (2009).

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 70

As described in Sec. 3.3.1, I can have deep RAE networks with two encoding

layers. In an initial experiment with a validation set I found that two layer RAEs

always outperform single layer RAEs. The hidden RAE layer (see h in Eq. 3.31) has

200 units.

Center Phrase Recursive Average RAE Unfolding RAE
the U.S. the U.S. and German the Swiss the former U.S.
suffering low morale suffering a 1.9 billion

baht UNK 76 million
suffering due to no
fault of my own

suffering heavy ca-
sualties

halted supplies to them halted supplies to the
Bosnian Serbs in August

halted supplies to the
Bosnian Serbs in Au-
gust

resume supplies to
them

to watch hockey to watch one Jordanian
border policeman stamp
the Israeli passports

to watch television to watch a video

advance to the next
round

advance to final qualify-
ing round in Argentina

advance to the final of
the UNK 1.1 million
Kremlin Cup

advance to the
semis

a prominent political
figure

such a high-profile figure a powerful business
figure

the most visible
and popular public
figure

Table 3.7: Nearest neighbors of randomly chosen phrases of different lengths. The
unfolding RAE captures most closely both syntactic and semantic similarities. R.Avg
focuses only on the last merged words and incorrectly adds extra information.

Qualitative Evaluation of Nearest Neighbors

In order to show that the learned feature representations capture important seman-

tic and syntactic information even for higher nodes in the tree, I visualize nearest

neighbor phrases of varying length. After embedding sentences from the Gigaword

corpus, I compute nearest neighbors for all nodes in all trees. In Table 3.7 the first

phrase is a randomly chosen phrase and the remaining phrases are the closest phrases

in the dataset that are not in the same sentence. I use Euclidean distance between

the vector representations. Note that I do not constrain the neighbors to have the

same word length. I compare the two autoencoder models above: RAE and unfolding

RAE (U.RAE), as well as a recursive averaging baseline (R.Avg). R.Avg recursively

takes the average of both child vectors in the tree.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 71

Table 3.7 shows several interesting phenomena. Recursive averaging is almost

entirely focused on an exact string match of the last merged words of the current

phrase in the tree. This leads the nearest neighbors to incorrectly add various extra

information which breaks the paraphrase relationship. The standard RAE does well

though it is also somewhat focused on the last merges in the tree. Finally, the

unfolding RAE captures most closely the underlying syntactic and semantic structure.

However, like all these methods it can suffer from word vectors that are only based

on small co-occurrence windows. Namely, some words that appear in similar contexts

might be antonyms, for instance to “halt” and “resume”.

Reconstructing Phrases via Recursive Decoding

In this section I analyze the information captured by the unfolding RAE’s 100-

dimensional phrase vectors. I show that these 100-dimensional vector representations

can not only capture and memorize single words but also longer, unseen phrases.

In order to show how much of the information can be recovered I recursively

reconstruct sentences after encoding them. The process is similar to unfolding during

training. It starts from a phrase vector of a nonterminal node in the parse tree. I

then unfold the tree as given during encoding and find the nearest neighbor word

to each of the reconstructed leaf node vectors. Table 3.8 shows that the RAE can

very well reconstruct phrases of up to length five. No other method that I compared

had such reconstruction capabilities. Longer phrases retain some correct words and

usually the correct part of speech but the semantics of the words get merged.

Evaluation on Full-Sentence Paraphrasing

I now turn to evaluating the unsupervised features and their performance as input

to my neural network architecture in my main task of paraphrase detection. My

neural network consists of the min-pooling layer, one hidden layer, followed by a

softmax classification layer. In the similarity matrix S, I ignore stop words which I

set conservatively to be the 10 most frequent words.

Methods which are based purely on vector representations invariably lose some

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 72

Encoding Input Generated Text from Unfolded Recon-
struction

a flight a flight

the safety the safety

of a flight of a flight

the first qualifying session the first qualifying session

Most of the victims Most of the rebels

the signing of the accord the signing of the accord

the safety of a flight the safety of a flight

the U.S. House of Representatives the Swiss House of Representatives

visit and discuss investment possibilities visit and postpone financial possibilities

the agreement it made with Malaysia the agreement it released for Mexico

the safety of a flight and illegal possession
of a weapon

the labour of the base and municipal tax-
payers of the language

a pocket knife was found in his suitcase in
the plane ’s cargo hold

a fatal knife was concentrated in the order
in the European national gun rally

Table 3.8: Original inputs for encoding and the generated output from decoding and
displaying the nearest neighbor word. The unfolding RAE can reconstruct perfectly
phrases with up to 5 words. Longer phrases start to get incorrect nearest neighbor
words. For other methods good reconstructions are only possible for at most two or
three words.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 73

information. For instance, numbers often have very similar representations, but even

small differences are crucial to reject the paraphrase relation in this dataset. Hence,

I add a feature which is 1 if two sentences contain exactly the same numbers and 0

otherwise. Since my pooling-layer ignores sentence length, I also add the difference

in sentence length. Lastly, the number of exact string matches in the parse trees gets

lost in the pooling layer, so I add this number as a separate feature to all methods

and also report performance without it (only S).

For all of my models, I perform 10-fold cross-validation on the training set to

choose the best regularization parameters and the size of the hidden neural network

layer. Based on an initial exploration on the training data, I fix the size of the pooling

layer to np = 15, slightly less than the average sentence length.

Unsupervised Acc. F1

R.Avg 75.9 82.9
RAE 2L 75.5 82.7
U.RAE 2L 76.4 83.4

Supervised Acc. F1

RAE-Hist 72.0 81.7
Only Feat. 73.2 81.8
Only S 72.6 81.1
Logistic Reg. 74.2 82.0

Table 3.9: Test results on the MSRP paraphrase corpus. Comparisons of unsuper-
vised feature learning methods (left) and similarity feature extraction and supervised
classification methods (right).

In my first set of experiments shown in Table 3.9 (left) I compare several unsuper-

vised learning methods: Recursive average baseline (R.Avg.) as defined in Sec. 3.3.3,

two-layered RAEs and unfolding RAEs (U.RAE). With the help of my powerful

pooling-layer architecture and good initial word vectors the simple RAE and recur-

sive averaging both perform well, only the unfolding RAE can learn compositional

features beyond the initial word vectors and identify the more complex paraphrase

relationships to improve accuracy. The performance improvement of the unfolding

RAE is statistically significant over the R.Avg under a paired t-test (p < 0.06).

Next, I compare my min-pooling neural network to simpler feature extraction and

supervised learning methods as shown in Table 3.9 (right). This table shows that

each of the components of my architecture is important for achieving high accuracy.

For every setting I exhaustively cross-validate on the training data over all possible

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 74

parameters (unsupervised features, logistic regression, hidden layer sizes) and report

the best performance. The settings are:

(i) RAE-Hist. This method replaces the min-pooling layer with a histogram of similar-

ities in the matrix S. The low performance shows that my variable-sized min-pooling

layer is much better able to capture the global similarity information than simple

aggregate statistics of S.

(ii) Only Feat. This method uses only the string matching feature described above

and shows that simple binary string and number matching can detect many of the

simple paraphrases but fails to detect more complex cases.

(iii) Only S. This baseline gives the performance of the unfolding RAE without the

string matching feature showing that some of the string matching information gets

lost in Spooled.

(iv) Logistic Reg. This setup replaces the single-layer neural network with just logis-

tic regression. This cannot capture some of the interactions that are in the similarity

matrix.

Table 3.10 shows my results compared to previous approaches (most are explained

in Sec. 3.3.4 below). My unfolding RAE achieves state-of-the-art performance without

numerous hand-designed semantic features such as WordNet.

Model Acc. F1
All Paraphrase Baseline 66.5 79.9
Rus et al. (2008) 70.6 80.5
Mihalcea et al. (2006) 70.3 81.3
Islam and Inkpen (2007) 72.6 81.3
Qiu et al. (2006) 72.0 81.6
Fernando and Stevenson (2008) 74.1 82.4
Wan et al. (2006) 75.6 83.0
Das and Smith (2009) 73.9 82.3
Das and Smith (2009)+Feat. 76.1 82.7
U.RAE 2L (my method) 76.4 83.4

Table 3.10: Test results on the MSRP paraphrase corpus. Comparison to previous
methods. See text for details.

In Table 3.11 I show several examples of correctly classified paraphrase candidate

pairs together with their similarity matrix after min-pooling. The first and last pair

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 75

are simple cases of paraphrase and not paraphrase. The second example shows a

pooled similarity matrix when large chunks are swapped in both sentences. My model

is very robust to such transformations and gives a high probability to this pair. Even

more complex examples such as the third with very little direct string matches (few

blue squares) are correctly classified. The second to last example is highly interesting.

Even though there is a clear diagonal with good string matches, the gap in the center

shows that the first sentence contains much extra information. This is also captured

by my model.

3.3.4 Related Work

Paraphrase Detection The field of paraphrase detection has progressed immensely

in recent years. Early approaches were based purely on lexical matching techniques

(Barzilay and Lee, 2003; Zhang and Patrick, 2005; Qiu et al., 2006; Kozareva and

Montoyo, 2006). Since these methods are often based on exact string matches of

n-grams, they fail to detect similar meaning that is conveyed by synonymous words.

Several approaches overcome this problem by using Wordnet- and corpus-based se-

mantic similarity measures (Mihalcea et al., 2006; Islam and Inkpen, 2007). In their

approach they choose for each open-class word the single most similar word in the

other sentence. Fernando and Stevenson (2008) improved upon this idea by comput-

ing a similarity matrix that captures all pair-wise similarities of single words in the

two sentences. They then threshold the elements of the resulting similarity matrix

and compute the mean of the remaining entries. There are two shortcomings of such

methods: They ignore (i) the syntactic structure of the sentences (by comparing only

single words) and (ii) the global structure of such a similarity matrix (by computing

only the mean).

Instead of comparing only single words, Wan et al. (2006) adds features from

dependency parses. Most recently, Das and Smith (2009) adopted the idea that

paraphrases have related syntactic structure. Their quasi-synchronous grammar for-

malism incorporates a variety of features from WordNet, a named entity recognizer,

a part-of-speech tagger, and the dependency labels from the aligned trees. In order

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 76

L Pr Sentences Sim.Mat.

P 0.95 (1) LLEYTON Hewitt yesterday traded his tennis racquet for his
first sporting passion - Australian football - as the world champion
relaxed before his Wimbledon title defence
(2) LLEYTON Hewitt yesterday traded his tennis racquet for his
first sporting passion-Australian rules football-as the world cham-
pion relaxed ahead of his Wimbledon defence

P 0.82 (1) The lies and deceptions from Saddam have been well documented
over 12 years
(2) It has been well documented over 12 years of lies and deception
from Saddam

P 0.67 (1) Pollack said the plaintiffs failed to show that Merrill and Blodget
directly caused their losses
(2) Basically , the plaintiffs did not show that omissions in Merrill’s
research caused the claimed losses

N 0.49 (1) Prof Sally Baldwin , 63 , from York , fell into a cavity which
opened up when the structure collapsed at Tiburtina station , Italian
railway officials said
(2) Sally Baldwin , from York , was killed instantly when a walkway
collapsed and she fell into the machinery at Tiburtina station

N 0.44 (1) Bremer , 61 , is a onetime assistant to former Secretaries of
State William P. Rogers and Henry Kissinger and was ambassador-
at-large for counterterrorism from 1986 to 1989
(2) Bremer , 61 , is a former assistant to former Secretaries of State
William P. Rogers and Henry Kissinger

N 0.11 (1) The initial report was made to Modesto Police December 28
(2) It stems from a Modesto police report

Table 3.11: Examples of sentence pairs with ground truth labels (P - Paraphrase N -
Not Paraphrase), the probabilities my model assigns to them for being a paraphrase
(Pr(S1, S2) > 0.5 is assigned the label Paraphrase) and their similarity matrices after
min-pooling. Simple paraphrase pairs have clear diagonal structure due to perfect
word matches with Euclidean distance 0 (dark blue). That structure is preserved by
my min-pooling layer. Matrices best viewed in color. See text for more details.

CHAPTER 3. RECURSIVE OBJECTIVE FUNCTIONS 77

to obtain high performance they combine their parsing-based model with a logistic

regression model that uses 18 hand-engineered surface features.

I merge these word-based models and syntactic models in one joint framework:

The matrix consists of phrase similarities and instead of just taking the mean of the

similarities I can capture the global layout of the matrix via the min-pooling layer.

Autoencoder The work related to autoencoders has already been described in

Sec. 3.2.4. In addition to the work mentioned in that section, Bottou (2011) recently

discussed related ideas of recursive autoencoders and recursive image and text un-

derstanding but without experimental results. Larochelle et al. (2009) investigated

autoencoders with an unfolded “deep objective”.

3.4 Conclusion

This concludes the chapter on RNN objective functions, the choice of which will follow

largely from the problem definition.

Every RNN has an associated objective function. The next chapter concentrates

on another important aspect: the composition or encoding function which so far has

been a standard neural network. The objective functions that train these composition

functions will be similar to those of this chapter: scores and softmax classifiers as in

Eq. 3.22 in section 3.2.1.

Chapter 4

Recursive Composition Functions

The previous chapter introduced standard RNNs and introduced the main objective

functions. This chapter investigates more powerful RNN architectures that move

beyond having the same, standard neural network for composing parent vectors as in

the previous chapter. The main objective functions, I explored are

1. Syntactically untied RNNs: The composition matrix that is used to compute

the parent vector depends on the syntactic category of the children.

2. Matrix Vector RNNs: This is a more extreme form of untying, in which every

composition matrix depends on the exact words in all the leaves underneath

each node. This is the result of every single word having its own associated

matrix that is multiplied with the vector of the sibling node.

3. Recursive Neural Tensor Networks: This section introduces an entirely new type

of neural network layer based on the idea that there are multiple multiplicative

effects when two word vectors are combined. Empirically, this outperforms all

previous neural architectures on tasks such as sentiment analysis.

Each model is motivated by a specific language task, such as parsing or sentiment

analysis. The ideas in this chapter are quite general and could also be combined. For

instance, one could syntactically untie the recursive neural tensor network or cluster

the Matrices and hence arrive at a similar structure as the syntactically untied RNN.

78

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 79

4.1 Syntactically Untied Recursive Neural Networks

- For Natural Language Parsing

The models of previous sections did not make much use of linguistically motivated

syntactic theory. Motivated by a long history of parsing models, the model in this

section differs and combines linguistic knowledge with deep feature learning.

While Sec. 3.1 gave an introduction to general image and sentence parsing this

section is more focused on the specifics of parsing natural language. I revisit syntactic

language parsing because it is a central task in natural language processing due to its

importance in mediating between linguistic expression and meaning. Much work has

shown the usefulness of syntactic representations for subsequent NLP tasks such as

relation extraction, semantic role labeling (Gildea and Palmer, 2002) and paraphrase

detection (Callison-Burch, 2008).

Apart from my work in Sec. 3.1, syntactic descriptions standardly use coarse

discrete categories such as NP for noun phrases or PP for prepositional phrases.

However, recent work has shown that parsing results can be greatly improved by

defining more fine-grained syntactic categories, which better capture phrases with

similar behavior, whether through manual feature engineering (Klein and Manning,

2003a) or automatic learning (Petrov et al., 2006). However, subdividing a category

like NP into 30 or 60 subcategories can only provide a very limited representation of

phrase meaning and semantic similarity. Two strands of work therefore attempt to

go further. First, recent work in discriminative parsing has shown gains from careful

engineering of features (Taskar et al., 2004; Finkel et al., 2008). Features in such

parsers can be seen as defining effective dimensions of similarity between categories.

Second, lexicalized parsers (Collins, 2003; Charniak, 2000) associate each category

with a lexical item. This gives a fine-grained notion of semantic similarity, which

is useful for tackling problems like ambiguous attachment decisions. However, this

approach necessitates complex shrinkage estimation schemes to deal with the sparsity

of observations of the lexicalized categories.

In many natural language systems, single words and n-grams are usefully described

by their distributional similarities (Brown et al., 1992), among many others. But, even

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 80

(riding,V,) (a,Det,) (bike,NN,)

(a bike,NP,)

(riding a bike,VP,)

Discrete Syntactic – Continuous Semantic
Representations in the Compositional Vector Grammar

Figure 4.1: Example of a CVG tree with (category,vector) representations at each
node. The vectors for nonterminals are computed via a new type of recursive neural
network which is conditioned on syntactic categories from a PCFG.

with large corpora, many n-grams will never be seen during training, especially when

n is large. In these cases, one cannot simply use distributional similarities to represent

unseen phrases.

In this section, I present an RNN-based model to learn features and phrase repre-

sentations even for very long, unseen n-grams. This model generalizes RNN models

from the previous chapter. In particular, I introduce a Compositional Vector Gram-

mar Parser (CVG) for structure prediction. Like the above work on parsing, the

model addresses the problem of representing phrases and categories. Unlike them, it

jointly learns how to parse and how to represent phrases as both discrete categories

and continuous vectors as illustrated in Fig. 4.1. CVGs combine the advantages of

standard probabilistic context free grammars (PCFGs) with those of recursive neu-

ral networks (RNNs). The former can capture the discrete categorization of phrases

into NP or PP while the latter can capture fine-grained syntactic and compositional-

semantic information on phrases and words. This information can help in cases where

syntactic ambiguity can only be resolved with semantic information, such as in the

PP attachment of the two sentences: They ate udon with forks. vs. They ate udon

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 81

with chicken.

The RNN-based parser of Sec. 3.1 used the same (tied) weights at all nodes to

compute the vector representing a constituent. This requires the composition function

to be extremely powerful, since it has to combine phrases with different syntactic

head words, and it is hard to optimize since the parameters form a very deep neural

network. I generalize the fully tied RNN to one with syntactically untied weights.

The weights at each node are conditionally dependent on the categories of the child

constituents. This allows different composition functions when combining different

types of phrases and is shown to result in a large improvement in parsing accuracy.

My compositional distributed representation allows a CVG parser to make accu-

rate parsing decisions and capture similarities between phrases and sentences. Any

PCFG-based parser can be improved with an RNN. I use a simplified version of

the Stanford Parser (Klein and Manning, 2003a) as the base PCFG and improve its

accuracy from 86.56 to 90.44% labeled F1 on all sentences of the WSJ section 23.

4.1.1 Compositional Vector Grammars

This section introduces Compositional Vector Grammars (CVGs), a model to jointly

find syntactic structure and capture compositional semantic information.

CVGs build on two observations. Firstly, that a lot of the structure and regularity

in languages can be captured by well-designed syntactic patterns. Hence, the CVG

builds on top of a standard PCFG parser. However, many parsing decisions show

fine-grained semantic factors at work. Therefore I combine syntactic and semantic

information by giving the parser access to rich syntactico-semantic information in

the form of distributional word vectors and compute compositional semantic vector

representations for longer phrases (Costa et al., 2003; Menchetti et al., 2005; Socher

et al., 2011b). The CVG model merges ideas from both generative models that

assume discrete syntactic categories and discriminative models that are trained using

continuous vectors.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 82

Word Vector Representations

I use the same word vectors as described in detail in Sec. 2.3.

For ease of exposition, I define again the matrix with all the word embeddings

as L. As before, the resulting L matrix is used as follows: Assume I am given a

sentence as an ordered list of m words. Each word w has an index [w] = i into the

columns of the embedding matrix. This index is used to retrieve the word’s vector

representation aw using a simple multiplication with a binary vector e, which is zero

everywhere, except at the ith index. So aw = Lei ∈ Rn. Henceforth, after mapping

each word to its vector, I represent a sentence S as an ordered list of (word,vector)

pairs: x = ((w1, aw1), . . . , (wm, awm)).

Now that I have discrete and continuous representations for all words, I can con-

tinue with the approach for computing tree structures and vectors for nonterminal

nodes.

Max-Margin Training Objective for CVGs

The goal of supervised parsing is to learn a function g : X → Y , where X is the set

of sentences and Y is the set of all possible labeled binary parse trees. The set of all

possible trees for a given sentence xi is defined as Y (xi) and the correct tree for a

sentence is yi.

The structured margin loss I will now describe now is very similar to that of

Sec. 3.1.2. There are two main differences. The first one is that I am using a CVG

here which is not only based on an RNN. The second difference is described after

Eq. 4.4 just below.

I first define a structured margin loss ∆(yi, ŷ) for predicting a tree ŷ for a given

correct tree. The loss increases the more incorrect the proposed parse tree is (Good-

man, 1998). The discrepancy between trees is measured by counting the number of

nodes N(y) with an incorrect span (or label) in the proposed tree:

∆(yi, ŷ) =
∑

d∈N(ŷ)

κ1{d /∈ N(yi)}. (4.1)

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 83

I set κ = 0.1 in all experiments. For a given set of training instances (xi, yi), I search

for the function gθ, parameterized by θ, with the smallest expected loss on a new

sentence. It has the following form:

gθ(x) = arg max
ŷ∈Y (x)

s(CVG(θ, x, ŷ)), (4.2)

where the tree is found by the Compositional Vector Grammar (CVG) introduced below

and then scored via the function s. The higher the score of a tree the more confident

the algorithm is that its structure is correct. This max-margin, structure-prediction

objective (Taskar et al., 2004; Ratliff et al., 2007; Socher et al., 2011b) trains the CVG

so that the highest scoring tree will be the correct tree: gθ(xi) = yi and its score will

be larger up to a margin to other possible trees ŷ ∈ Y(xi):

s(CVG(θ, xi, yi)) ≥ s(CVG(θ, xi, ŷ)) + ∆(yi, ŷ) (4.3)

This leads to the regularized risk function for m training examples:

J(θ) =
1

m

m∑
i=1

ri(θ) +
λ

2
‖θ‖2

2, where

ri(θ) = max
ŷ∈Y (xi)

(
s(CVG(xi, ŷ)) + ∆(yi, ŷ)

)
− s(CVG(xi, yi)) (4.4)

Intuitively, to minimize this objective, the score of the correct tree yi is increased and

the score of the highest scoring incorrect tree ŷ is decreased.

Note the similarity to the max-margin loss of Eq. 3.5 in Sec. 3.1.2. The equation

here is a special case since it assumes there is only a single correct tree instead of an

equivalent set of correct trees.

Scoring Trees with CVGs

For ease of exposition, I first summarize how to score an existing fully labeled tree

with a standard RNN and then contrast that process in detail to that of the CVG.

For more details on the standard RNN see Sec. 3.1.2. The subsequent section will

then describe a bottom-up beam search and its approximation for finding the optimal

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 84

(A, a=) (B, b=) (C, c=)

P(1), p(1)=

 P(2), p(2)=

Standard Recursive Neural Network

= f W
b
c

= f W
a
p(1)

Figure 4.2: An example tree with a simple Recursive Neural Network: The same
weight matrix is replicated and used to compute all non-terminal node representa-
tions.

tree.

Assume, for now, I am given a labeled parse tree as shown in Fig. 4.2. I define the

word representations as (vector, POS) pairs: ((a,A), (b, B), (c, C)), where the vectors

are defined as in sections 4.1.1 and 2.3 and the POS tags come from a PCFG.

The standard RNN as defined in Sec. 3.1.2 and in Fig. 4.2 essentially ignores all

POS tags and syntactic categories and each non-terminal node is associated with the

same neural network (i.e., the weights across nodes are fully tied). In summary, it

computes the non-terminals via the following equations:

p(1) = f

(
W

[
b

c

])
, p(2) = f

(
W

[
a

p1

])

The parent scores for all nodes i are computed via:

s(p(i)) = vTp(i).

The standard RNN requires a single composition function to capture all types of

compositions: adjectives and nouns, verbs and nouns, adverbs and adjectives, etc.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 85

Even though this function is a powerful one, I found a single neural network weight

matrix cannot fully capture the richness of compositionality. Several extensions are

possible: A two-layered RNN would provide more expressive power, however, it is

much harder to train because the resulting neural network becomes very deep and

suffers from vanishing gradient problems.

Based on the above considerations, I propose the Compositional Vector Grammar

(CVG) that conditions the composition function at each node on discrete syntactic

categories extracted from a PCFG. Hence, CVGs combine discrete, syntactic rule

probabilities and continuous vector compositions. The idea is that the syntactic

categories of the children determine what composition function to use for computing

the vector of their parents. While not perfect, a dedicated composition function for

each rule RHS can well capture common composition processes such as adjective

or adverb modification versus noun or clausal complementation. For instance, it

could learn that an NP should be similar to its head noun and little influenced by a

determiner, whereas in an adjective modification both words considerably determine

the meaning of a phrase. The original RNN is parameterized by a single weight matrix

W . In contrast, the CVG uses a syntactically untied RNN (SU-RNN) which has a

set of such weights. The size of this set depends on the number of sibling category

combinations in the PCFG.

Fig. 4.3 shows an example SU-RNN that computes parent vectors with syntacti-

cally untied weights. The CVG computes the first parent vector via the SU-RNN:

p(1) = f

(
W (B,C)

[
b

c

])
,

where W (B,C) ∈ Rn×2n is now a matrix that depends on the categories of the two

children. In this bottom up procedure, the score for each node consists of summing

two elements: First, a single linear unit that scores the parent vector and second, the

log probability of the PCFG for the rule that combines these two children:

s
(
p(1)
)

=
(
v(B,C)

)T
p(1) + logP (P1 → B C), (4.5)

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 86

(A, a=) (B, b=) (C, c=)

P(1), p(1)=

 P(2), p(2)=

Syntactically Untied Recursive Neural Network

= f W(B,C) b
c

= f W(A,P) a
p(1)

(1)

Figure 4.3: Example of a syntactically untied RNN in which the function to compute
a parent vector depends on the syntactic categories of its children which I assume are
given for now.

where P (P1 → B C) comes from the PCFG. This can be interpreted as the log

probability of a discrete-continuous rule application with the following factorization:

P ((P1, p1)→ (B, b)(C, c)) (4.6)

= P (p1 → b c|P1 → B C)P (P1 → B C),

Note, however, that due to the continuous nature of the word vectors, the probability

of such a CVG rule application is not comparable to probabilities provided by a PCFG

since the latter sum to 1 for all children.

Assuming that node p1 has syntactic category P1, I compute the second parent

vector via:

p(2) = f

(
W (A,P1)

[
a

p(1)

])
.

The score of the last parent in this trigram is computed via:

s
(
p(2)
)

=
(
v(A,P1)

)T
p(2) + logP (P2 → A P1).

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 87

Parsing with CVGs

The above scores (Eq. 4.5) are used in the search for the correct tree for a sentence.

The goodness of a tree is measured in terms of its score and the CVG score of a

complete tree is the sum of the scores at each node:

s(CVG(θ, x, ŷ)) =
∑

d∈N(ŷ)

s
(
pd
)
. (4.7)

The main objective function in Eq. 4.4 includes a maximization over all possible trees

maxŷ∈Y (x). Finding the global maximum, however, cannot be done efficiently for

longer sentences nor can I use dynamic programming. This is due to the fact that the

vectors break the independence assumptions of the base PCFG. A (category, vector)

node representation is dependent on all the words in its span and hence to find the

true global optimum, I would have to compute the scores for all binary trees. For a

sentence of length n, there are Catalan(n) many possible binary trees which is very

large even for moderately long sentences.

One could also use a bottom-up beam search (Manning and Schütze, 1999). In that

case, one would keep a k-best list at every cell of the chart, possibly for each syntactic

category. However, such a beam search inference procedure is still considerably slower

than using only the simplified base PCFG, especially since it has a small state space.

Since each probability look-up is cheap but computing SU-RNN scores requires a

matrix product, I would like to reduce the number of SU-RNN score computations

to only those trees that require semantic information. I note that labeled F1 of the

Stanford PCFG parser on the test set is 86.17%. However, if one used an oracle to

select the best tree from the top 200 trees that it produces, one could get an F1 of

95.46%.

I use this knowledge to speed up inference via two bottom-up passes through the

parsing chart. During the first one, I use only the base PCFG to run CKY dynamic

programming through the tree. The k = 200-best parses at the top cell of the chart

are calculated using the efficient algorithm of Huang and Chiang (2005). Then, the

second pass is a beam search with the full CVG model (including the more expensive

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 88

matrix multiplications of the SU-RNN). This beam search only considers phrases that

appear in the top 200 parses. This is similar to a re-ranking setup but with one main

difference: the SU-RNN rule score computation at each node still only has access to

its child vectors, not the whole tree or other global features. This allows the second

pass to be very fast. I use this setup in my experiments below.

Training SU-RNNs

The full CVG model is trained in two stages. First the base PCFG is trained and its

top trees are cached and then used for training the SU-RNN conditioned on the PCFG.

The SU-RNN is trained using the objective in Eq. 4.4 and the scores as exemplified

by Eq. 4.7. For each sentence, I use the method described above to efficiently find an

approximation for the optimal tree.

To minimize the objective I want to increase the scores of the correct tree’s con-

stituents and decrease the score of those in the highest scoring incorrect tree. Deriva-

tives are computed via backpropagation through structure as described in Sec. 3.1.4.

The derivative of tree i has to be taken with respect to all parameter matrices W (AB)

that appear in it. The main difference between backpropagation in standard RNNs

and SU-RNNs is that the derivatives at each node only add to the overall derivative

of the specific matrix at that node. For more details on backpropagation through

RNNs, see Sec. 3.1.4.

Subgradient and AdaGrad

The objective function is not differentiable due to the hinge loss. As described in

Sec. 2.6, I use the subgradient method (Ratliff et al., 2007) which computes a gradient-

like direction. Let θ = (X,W (··), v(··)) ∈ RM be a vector of all M model parameters,

where I denote W (··) as the set of matrices that appear in the training set. The

subgradient of Eq. 4.4 becomes:

∂J

∂θ
=
∑
i

∂s(xi, ŷmax)

∂θ
− ∂s(xi, yi)

∂θ
+ θ,

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 89

where ŷmax is the tree with the highest score. To minimize the objective, I use the

diagonal variant of AdaGrad (Duchi et al., 2011) with minibatches which is also

described in Sec. 2.6. Adapting the learning rate for each parameter is particularly

helpful in the SU-RNN since some W matrices appear in only a few training trees.

This procedure found much better optima (by ≈3% labeled F1 on the dev set), and

converged more quickly than L-BFGS which I had used in RNN training in previous

sections. Training time is roughly 4 hours on a single machine.

Initialization of Weight Matrices

In the absence of any knowledge on how to combine two categories, my prior for

combining two vectors is to average them instead of performing a completely random

projection. Hence, I initialize the binary W matrices with:

W (··) = 0.5[In×nIn×n0n×1] + ε,

where I include the bias in the last column and the random variable is uniformly

distributed: ε ∼ U [−0.001, 0.001]. The first block is multiplied by the left child and

the second by the right child:

W (AB)


a

b

1

 =
[
W (A)W (B)bias

] 
a

b

1


= W (A)a+W (B)b+ bias,

where, for notational convenience, I changed the notation for the bias vector which

was b in previous chapters.

4.1.2 Experiments

I evaluate the CVG in two ways: First, by a standard parsing evaluation on Penn

Treebank WSJ and then by analyzing the model errors in detail.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 90

Cross-validating Hyperparameters

I used the first 20 files of WSJ section 22 to cross-validate several model and opti-

mization choices. The base PCFG uses simplified categories of the Stanford PCFG

Parser (Klein and Manning, 2003a). I decreased the state splitting of the PCFG

grammar (which helps both by making it less sparse and by reducing the number of

parameters in the SU-RNN) by adding the following options to training: ‘-noRightRec

-dominatesV 0 -baseNP 0’. This reduces the number of states from 15,276 to 12,061

states and 602 POS tags. These include split categories, such as parent annota-

tion categories like VP^S. Furthermore, I ignore all category splits for the SU-RNN

weights, resulting in 66 unary and 882 binary child pairs. Hence, the SU-RNN has

66+882 transformation matrices and scoring vectors. Note that any PCFG, including

latent annotation PCFGs (Matsuzaki et al., 2005) could be used. However, since the

vectors will capture lexical and semantic information, even simple base PCFGs can

be substantially improved. Since the computational complexity of PCFGs depends

on the number of states, a base PCFG with fewer states is much faster.

Testing on the full WSJ section 22 dev set (1700 sentences) takes roughly 470 sec-

onds with the simple base PCFG, 1320 seconds with my new CVG and 1600 seconds

with the currently published Stanford factored parser. Hence, increased performance

comes also with a speed improvement of approximately 20%.

I fix the same regularization of λ = 10−4 for all parameters. The minibatch size

was set to 20. I also cross-validated on AdaGrad’s learning rate which was eventually

set to α = 0.1 and word vector size. The 25-dimensional vectors provided by Turian

et al. (2010) provided the best performance and were faster than 50-,100- or 200-

dimensional ones. I hypothesize that the larger word vector sizes, while capturing

more semantic knowledge, result in too many SU-RNN matrix parameters to train

and hence perform worse.

Results on WSJ

The best single model model obtains a labeled F1 on all sentences of 90.0. One can

ensemble two SU-RNNs to obtain 90.9% F1 on all dev set sentences. This model

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 91

resulted in 90.4% on the final test set (WSJ section 23). Table 4.1 compares my

results to the two Stanford parser variants (the unlexicalized PCFG (Klein and Man-

ning, 2003a) and the factored parser (Klein and Manning, 2003b)) and other parsers

that use richer state representations: the Berkeley parser (Petrov and Klein, 2007),

Collins parser (Collins, 1997), SSN: a statistical neural network parser (Henderson,

2004), Factored PCFGs (Hall and Klein, 2012), Charniak-SelfTrain: the self-training

approach of McClosky et al. (2006), which bootstraps and parses additional large

corpora multiple times, Charniak-RS: the state of the art self-trained and discrim-

inatively re-ranked Charniak-Johnson parser combining (Charniak, 2000; McClosky

et al., 2006; Charniak and Johnson, 2005). See Kummerfeld et al. (2012) for more

comparisons and the related work section for a brief introduction to these parsing

approaches. I compare also to a standard RNN ‘CVG (RNN)’, to the proposed CVG

with SU-RNNs and a model that uses two randomly initialized SU-RNNs in an en-

semble.

Parser dev (all) test≤ 40 test (all)
Stanford PCFG 85.8 86.2 85.5
Stanford Factored 87.4 87.2 86.6
Factored PCFGs 89.7 90.1 89.4
Collins 87.7
SSN (Henderson) 89.4
Berkeley Parser 90.1
CVG (RNN) 85.7 85.1 85.0
CVG (SU-RNN) 90.0
CVG (2×SU-RNN) 91.2 91.1 90.4
Charniak-SelfTrain 91.0
Charniak-RS 92.1

Table 4.1: Comparison of parsers with richer state representations on the WSJ. The
last line is the self-trained re-ranked Charniak parser.

Model Analysis

Analysis of Error Types. Table 4.2 shows a detailed comparison of different errors.

In particular, it shows the average number of bracket errors per sentence for several

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 92

error types. I use the code provided by Kummerfeld et al. (2012) and compare to

the previous version of the Stanford factored parser as well as to the Berkeley and

Charniak-reranked-self-trained parsers (defined above). See Kummerfeld et al. (2012)

for details and comparisons to other parsers. One of the largest sources of improved

performance over the original Stanford factored parser is in the correct placement

of PP phrases. When measuring only the F1 of parse nodes that include at least

one PP child, the CVG improves the Stanford parser by 6.2% to an F1 of 77.54%.

This is a 0.23 reduction in the average number of bracket errors per sentence. The

‘Other’ category includes VP, PRN and other attachments, appositives and internal

structures of modifiers and QPs.

Error Type Stanford CVG Berkeley Char-RS
PP Attach 1.02 0.79 0.82 0.60
Clause Attach 0.64 0.43 0.50 0.38
Diff Label 0.40 0.29 0.29 0.31
Mod Attach 0.37 0.27 0.27 0.25
NP Attach 0.44 0.31 0.27 0.25
Co-ord 0.39 0.32 0.38 0.23
1-Word Span 0.48 0.31 0.28 0.20
Unary 0.35 0.22 0.24 0.14
NP Int 0.28 0.19 0.18 0.14
Other 0.62 0.41 0.41 0.50

Table 4.2: Detailed comparison of different parsers. Numbers are bracket errors per
sentence, lower is better.

Analysis of Composition Matrices. An analysis of the norms of the binary

matrices reveals that the model learns a soft vectorized notion of head words: Head

words are given larger weights and importance when computing the parent vector:

For the matrices combining siblings with categories VP:PP, VP:NP and VP:PRT,

the weights in the part of the matrix which is multiplied with the VP child vector

dominates. Similarly NPs dominate DTs. Fig. 4.5 shows example matrices. The two

strong diagonals are due to the initialization described in Sec. 4.1.1. Note how the

headword has larger weights in its block of the composition matrix; the VP block has

the largest weights and adjective phrase matter more than simple determiners.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 93

(a) Stanford factored parser
S

NP

PRP

He

VP

VBZ

eats

NP

NP

NNS

spaghetti

PP

IN

with

NP

DT

a

NN

spoon

S

NP

PRP

He

VP

VBZ

eats

NP

NP

NNS

spaghetti

PP

IN

with

NP

PRP

meat

(b) Compositional Vector Grammar
S

NP

PRP

He

VP

VBZ

eats

NP

NNS

spaghetti

PP

IN

with

NP

DT

a

NN

spoon

S

NP

PRP

He

VP

VBZ

eats

NP

NP

NNS

spaghetti

PP

IN

with

NP

NN

meat

Figure 4.4: Test sentences of semantic transfer for PP attachments. The CVG was
able to transfer semantic word knowledge from two related training sentences. In
contrast, the Stanford parser could not distinguish the PP attachments based on the
word semantics.

Semantic Transfer for PP Attachments. In this small model analysis, I use

two pairs of sentences that the original Stanford parser and the CVG did not parse

correctly after training on the WSJ. I then continue to train both parsers on two

similar sentences and then analyze if the parsers correctly transferred the knowledge.

The training sentences are He eats spaghetti with a fork. and She eats spaghetti with

pork. The very similar test sentences are He eats spaghetti with a spoon. and He

eats spaghetti with meat. Initially, both parsers incorrectly attach the PP to the

verb in both test sentences. After training, the CVG parses both correctly, while

the factored Stanford parser incorrectly attaches both PPs to spaghetti. The CVG’s

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 94

DT-NP

ADJP-NP

VP-NP

Figure 4.5: Three binary composition matrices showing that head words dominate
the composition. The model learns to not give determiners much importance, in
contrast the adjective vectors have some important components. The two diagonals
show clearly the two blocks that are multiplied with the left and right children,
respectively. Note also that the NP here refers to the partial category “@NP” in the
DT and ADJP modifier cases.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 95

ability to transfer the correct PP attachments is due to the semantic word vector

similarity between the words in the sentences. Fig. 4.4 shows the outputs of the two

parsers.

4.1.3 Related Work

The CVG is inspired by two lines of research: Enriching PCFG parsers through more

diverse sets of discrete states and recursive deep learning models that jointly learn

classifiers and continuous feature representations for variable-sized inputs.

Improving Discrete Syntactic Representations

As mentioned in the introduction, there are several approaches to improving discrete

representations for parsing. Klein and Manning (2003a) use manual feature engineer-

ing, while Petrov et al. (2006) use a learning algorithm that splits and merges the

syntactic categories in order to maximize likelihood on the treebank. Their approach

splits categories into several dozen subcategories. Another approach is lexicalized

parsers (Collins, 2003; Charniak, 2000) that describe each category with a lexical

item, usually the head word. More recently, Hall and Klein (2012) combine several

such annotation schemes in a factored parser. I extend the above ideas from discrete

representations to richer continuous ones. The CVG can be seen as factoring discrete

and continuous parsing in one model. Another different approach to the above gen-

erative models is to learn discriminative parsers using many well designed features

(Taskar et al., 2004; Finkel et al., 2008). I also borrow ideas from this line of research

in that my parser combines the generative PCFG model with discriminatively learned

RNNs.

Deep Learning and Recursive Deep Learning

Henderson (2003) was the first to show that neural networks can be success-

fully used for large scale parsing. He introduced a left-corner parser to estimate the

probabilities of parsing decisions conditioned on the parsing history. The input to

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 96

Henderson’s model consists of pairs of frequent words and their part-of-speech (POS)

tags. Both the original parsing system and its probabilistic interpretation (Titov

and Henderson, 2007) learn features that represent the parsing history and do not

provide a principled linguistic representation like my phrase representations. Other

related work includes Henderson (2004), who discriminatively trains a parser based

on synchrony networks and Titov and Henderson (2006), who use an SVM to adapt

a generative parser to different domains.

Costa et al. (2003) apply recursive neural networks to re-rank possible phrase

attachments in an incremental parser. Their work is the first to show that RNNs can

capture enough information to make correct parsing decisions, but they only test on

a subset of 2000 sentences. Menchetti et al. (2005) use RNNs to re-rank different

parses. For their results on full sentence parsing, they re-rank candidate trees created

by the Collins parser (Collins, 2003). Similar to their work, I use the idea of letting

discrete categories reduce the search space during inference. I compare to fully tied

RNNs in which the same weights are used at every node. My syntactically untied

RNNs outperform them by a significant margin. The idea of untying has also been

successfully used in deep learning applied to vision (Le et al., 2012).

This section is based on several ideas of Socher et al. (2011b) which was the basis

for Sec. 3.1. The main differences are (i) the dual representation of nodes as discrete

categories and vectors, (ii) the combination with a PCFG, and (iii) the syntactic

untying of weights based on child categories. I directly compare models with fully

tied and untied weights. Another work that represents phrases with a dual discrete-

continuous representation is by Kartsaklis et al. (2012).

The next section introduces a model that puts the idea of syntactic untying to the

extreme: by giving every word and phrase its own composition function.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 97

… very good movie ...
 (a , A) (b , B) (c , C)

Recursive Matrix-Vector Model

f(Ba, Ab)=

 Ba= Ab=

- vector

- matrix
...

…

Figure 4.6: A recursive neural network which learns semantic vector representations
of phrases in a tree structure. Each word and phrase is represented by a vector and a
matrix, e.g., very = (a,A). The matrix is applied to neighboring vectors. The same
function is repeated to combine the phrase very good with movie.

4.2 Matrix Vector Recursive Neural Networks -

For Relation Classification

The RNNs of previous sections tackle the problem of compositionality in vector spaces

which has been investigates by several researchers (Mitchell and Lapata, 2010; Baroni

and Zamparelli, 2010; Zanzotto et al., 2010; Yessenalina and Cardie, 2011). In this

section, I revisit and further investigate the compositionality problem. I extend the

above approaches with a more general and powerful model of semantic composition.

In particular, this section introduces a different recursive neural network model

for semantic compositionality. Fig. 4.6 shows an illustration of the model in which

each constituent (a word or longer phrase) has a matrix-vector (MV) representation.

The vector captures the meaning of that constituent as in all previous models. The

matrix captures how it modifies the meaning of the other word that it combines with.

A representation for a longer phrase is again computed bottom-up by recursively

combining the words according to the syntactic structure of a parse tree. Since the

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 98

model uses the MV representation with a neural network as the final merging function,

I call this model a matrix-vector recursive neural network (MV-RNN).

I show that the ability to capture semantic compositionality in a syntactically

plausible way translates into state of the art performance on various tasks. The

first experiment of this section demonstrates that my model can learn fine-grained

semantic compositionality. The task is to predict a sentiment distribution over movie

reviews of adverb-adjective pairs such as unbelievably sad or really awesome. The

MV-RNN is the only model that is able to properly negate sentiment when adjectives

are combined with not. The MV-RNN outperforms previous state of the art models

on full sentence sentiment prediction of movie reviews. The last experiment shows

that the MV-RNN can also be used to find relationships between words using the

learned phrase vectors. The relationship between words is recursively constructed and

composed by words of arbitrary type in the variable length syntactic path between

them. On the associated task of classifying relationships between nouns in arbitrary

positions of a sentence the model outperforms all previous approaches on the SemEval-

2010 Task 8 competition (Hendrickx et al., 2010). It outperforms all but one of

the previous approaches without using any hand-designed semantic resources such

as WordNet or FrameNet. By adding WordNet hypernyms, part-of-speech tags and

named entity tags the MV-RNN outperforms the state of the art that uses significantly

more resources.

4.2.1 MV-RNN: A Recursive Matrix-Vector Model

Apart from RNNs, the dominant approach for building representations of multi-word

units from single word vector representations has been to form a linear combination

of the single word representations, such as a sum or weighted average. This hap-

pens in information retrieval and in various text similarity functions based on lexical

similarity. This can work well when the meaning of a text is literally “the sum of

its parts”, but fails when words function as operators that modify the meaning of

another word: the meaning of “extremely strong” cannot be captured as the sum of

word representations for “extremely” and “strong.”

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 99

The models of previous sections provided a new way for moving beyond a linear

combination, through use of a matrix W that multiplied the word vectors (a, b), and

a nonlinearity function g (such as a sigmoid or tanh). Even though the nonlinearity

allows to express a wider range of functions, it is almost certainly too much to expect

a single fixed W matrix to be able to capture the meaning combination effects of all

natural language operators. After all, inside the function g, I have the same linear

transformation for all possible pairs of word vectors.

Recent work has started to capture the behavior of natural language operators in-

side semantic vector spaces by modeling them as matrices, which would allow a matrix

for “extremely” to appropriately modify vectors for “smelly” or “strong” (Baroni and

Zamparelli, 2010; Zanzotto et al., 2010). These approaches are along the right lines

but so far have been restricted to capture linear functions of pairs of words whereas

I would like nonlinear functions to compute compositional meaning representations

for multi-word phrases or full sentences.

The MV-RNN combines the strengths of both of these ideas by (i) assigning a

vector and a matrix to every word and (ii) learning an input-specific, nonlinear,

compositional function for computing vector and matrix representations for multi-

word sequences of any syntactic type. Assigning vector-matrix representations to

all words instead of only to words of one part of speech category allows for greater

flexibility which benefits performance. If a word lacks operator semantics, its matrix

can be an identity matrix. However, if a word acts mainly as an operator, such

as “extremely”, its vector can become close to zero, while its matrix gains a clear

operator meaning, here magnifying the meaning of the modified word in both positive

and negative directions.

In this section I describe the initial word representations, the details of combining

two words as well as the multi-word extensions. This is followed by an explanation

of my training procedure.

Matrix-Vector Neural Word Representation

I represent a word as both a continuous vector (see Sec. 2.3) and a matrix of pa-

rameters. In this experiment, I initialize all word vectors x ∈ Rn with pre-trained

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 100

50-dimensional word vectors from the unsupervised model of Collobert and Weston

(2008). Using Wikipedia text, their model learns word vectors by predicting how

likely it is for each word to occur in its context. Similar to other local co-occurrence

based vector space models, the resulting word vectors capture syntactic and semantic

information. Every word is also associated with a matrix X. In all experiments, I

initialize matrices as X = I + ε, i.e., the identity plus a small amount of Gaussian

noise. If the vectors have dimensionality n, then each word’s matrix has dimension-

ality X ∈ Rn×n. While the initialization is random, the vectors and matrices will

subsequently be modified to enable a sequence of words to compose a vector that

can predict a distribution over semantic labels. Henceforth, I represent any phrase

or sentence of length m as an ordered list of vector-matrix pairs ((a,A), . . . , (m,M)),

where each pair is retrieved based on the word at that position.

Composition Models for Two Words

I first review composition functions for two words. In order to compute a parent

vector p from two consecutive words and their respective vectors a and b, Mitchell

and Lapata (2010) give as their most general function: p = f(a, b, R,K),where R is

the a-priori known syntactic relation and K is background knowledge.

There are many possible functions f . For my models, there is a constraint on p

which is that it has the same dimensionality as each of the input vectors. This way, I

can compare p easily with its children and p can be the input to a composition with

another word. The latter is a requirement that will become clear in the next section.

This excludes tensor products which were outperformed by simpler weighted addition

and multiplication methods in (Mitchell and Lapata, 2010).

I will explore methods that do not require any manually designed semantic re-

sources as background knowledge K. No explicit knowledge about the type of rela-

tion R is used. Instead I want the model to capture this implicitly via the learned

matrices. I propose the following combination function which is input dependent:

p = fA,B(a, b) = f(Ba,Ab) = g

(
W

[
Ba

Ab

])
, (4.8)

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 101

where A,B are matrices for single words, the global W ∈ Rn×2n is a matrix that

maps both transformed words back into the same n-dimensional space. The element-

wise function g could be simply the identity function but I use instead a nonlinearity

such as the sigmoid or hyperbolic tangent tanh. Such a nonlinearity will allow us to

approximate a wider range of functions beyond purely linear functions. I can also add

a bias term before applying g but omit this for clarity. Rewriting the two transformed

vectors as one vector z, I get p = g(Wz) which is a single layer neural network. In

this model, the word matrices can capture compositional effects specific to each word,

whereas W captures a general composition function.

This function builds upon and generalizes several recent models in the literature.

The most related work is that of Mitchell and Lapata (2010) and Zanzotto et al.

(2010) who introduced and explored the composition function p = Ba+Ab for word

pairs. This model is a special case of Eq. 4.8 when I set W = [II] (i.e. two

concatenated identity matrices) and g(x) = x (the identity function). Baroni and

Zamparelli (2010) computed the parent vector of adjective-noun pairs by p = Ab,

where A is an adjective matrix and b is a vector for a noun. This cannot capture

nouns modifying other nouns, e.g., disk drive. This model too is a special case of

the above model with B = 0n×n. Lastly, the RNN composition function of models in

chapter 3 is also a special case with both A and B set to the identity matrix. I will

compare to these special cases in my experiments.

Recursive Compositions of Multiple Words and Phrases

This section describes how I extend a word-pair matrix-vector-based compositional

model to learn vectors and matrices for longer sequences of words. The main idea is

to apply the same function f to pairs of constituents in a parse tree. For this to work,

I need to take as input a binary parse tree of a phrase or sentence and also compute

matrices at each nonterminal parent node. The function f can be readily used for

phrase vectors since it is recursively compatible (p has the same dimensionality as its

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 102

… very good movie …
 (a , A) (b , B) (c , C)

Matrix-Vector Recursive Neural Network

(p1 , P1)

(p2, P2) p2 = g(W)
P2 = WM

Cp1
P1c[]

[]P1

C

Figure 4.7: Example of how the MV-RNN merges a phrase with another word at a
nonterminal node of a parse tree.

children). For computing nonterminal phrase matrices, I define the function

P = fM(A,B) = WM

[
A

B

]
, (4.9)

where WM ∈ Rn×2n, so P ∈ Rn×n just like each input matrix.

After two words form a constituent in the parse tree, this constituent can now be

merged with another one by applying the same functions f and fM . For instance, to

compute the vectors and matrices depicted in Fig. 4.7, I first merge words a and b

and their matrices: p1 = f(Ba,Ab), P1 = fM(A,B). The resulting vector-matrix pair

(p1, P1) can now be used to compute the full phrase when combining it with word c

and computing p2 = f(Cp1, P1c), P2 = fM(P1, C). The model computes vectors and

matrices in a bottom-up fashion, applying the functions f, fM to its own previous

output (i.e. recursively) until it reaches the top node of the tree which represents the

entire sentence.

For experiments with longer sequences I will compare to standard RNNs and the

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 103

special case of the MV-RNN that computes the parent by p = Ab+Ba, which I name

the linear Matrix-Vector Recursion model (linear MVR). Previously, this model had

not been trained for multi-word sequences. Sec. 4.2.5 talks about alternatives for

compositionality.

Objective Functions for Training

One of the advantages of RNN-based models is that each node of a tree has associated

with it a distributed vector representation (the parent vector p) which can also be

seen as features describing that phrase. I train these representations by adding on

top of each parent node a simple softmax classifier to predict a class distribution over

e.g., sentiment or relationship classes: d(p) = softmax(W labelp). For more details see

section 3.2.1.

For the applications below (excluding logic), the corresponding error function

E(s, t, θ) that I minimize for a sentence s and its tree t is the sum of cross-entropy

errors at all nodes as described in Sec. 3.1.4 and again in Eq. 3.23 in the RAE section.

The only other methods that use this type of objective function are the other

models in chapter 3 which also combine it with either a score or reconstruction error.

Hence, for comparisons to other related work, I need to merge variations of computing

the parent vector p with this classifier. The main difference is that the MV-RNN has

more flexibility since it has an input-specific recursive function fA,B to compute each

parent. In the following applications, I will use the softmax classifier to predict both

sentiment distributions and noun-noun relationships.

Learning

Let θ = (W,WM ,W
label, L, LM) be my model parameters and λ a vector with regular-

ization hyperparameters for all model parameters. L and LM are the sets of all word

vectors and word matrices. The gradient of the overall objective function J becomes:

∂J

∂θ
=

1

N

∑
(x,t)

∂E(x, t; θ)

∂θ
+ λθ. (4.10)

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 104

To compute this gradient, I first compute all tree nodes (pi, Pi) from the bottom-up

and then take derivatives of the softmax classifiers at each node in the tree from the

top down. Derivatives are computed efficiently via backpropagation through structure

as described in Sec. 3.1.4. Even though the objective is not convex, I found that L-

BFGS run over the complete training data (batch mode) minimizes the objective well

in practice and convergence is smooth.

Discussion: Evaluation and Generality

Evaluation of compositional vector spaces is a complex task. Most related work com-

pares similarity judgments of unsupervised models to those of human judgments and

aims at high correlation. These evaluations can give important insights. However,

even with good correlation the question remains how these models would perform

on downstream NLP tasks such as sentiment detection. I experimented with unsu-

pervised learning of general vector-matrix representations by having the MV-RNN

predict words in their correct context. Initializing the models with these general

representations, did not improve the performance on the tasks I consider. For senti-

ment analysis, this is not surprising since antonyms often get similar vectors during

unsupervised learning from co-occurrences due to high similarity of local syntactic

contexts. In my experiments, the high prediction performance came from supervised

learning of meaning representations using labeled data. While these representations

are task-specific, they could be used across tasks in a multi-task learning setup. How-

ever, in order to fairly compare to related work, I use only the supervised data of each

task. Before I describe my full-scale experiments, I analyze the model’s expressive

powers.

4.2.2 Model Analysis

This section analyzes the model with two proof-of-concept studies. First, I examine

its ability to learn operator semantics for adverb-adjective pairs. If a model cannot

correctly capture how an adverb operates on the meaning of adjectives, then there’s

little chance it can learn operators for more complex relationships. The second study

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 105

Method Avg KL
p = 0.5(a + b) 0.189
p = a⊗ b 0.104
p = [a; b] 0.101
p = Ab 0.103
RNN 0.093
Linear MVR 0.093
MV-RNN 0.091

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
fairly annoying

MV−RNN
RNN

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
fairly awesome

MV−RNN
RNN

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
fairly sad

MV−RNN
RNN

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
not annoying

MV−RNN
RNN

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
not awesome

MV−RNN
RNN

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
not sad

Training Pair

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
unbelievably annoying

MV−RNN
RNN

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
unbelievably awesome

MV−RNN
RNN

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5
unbelievably sad

MV−RNN
RNN

Figure 4.8: Left: Average KL-divergence for predicting sentiment distributions of
unseen adverb-adjective pairs of the test set. See text for p descriptions. Lower is
better. The main difference in the KL divergence comes from the few negation pairs
in the test set. Right: Predicting sentiment distributions (over 1-10 stars on the
x-axis) of adverb-adjective pairs. Each row has the same adverb and each column
the same adjective. Many predictions are similar between the two models. The RNN
and linear MVR are not able to modify the sentiment correctly: not awesome is more
positive than fairly awesome and not annoying has a similar shape as unbelievably
annoying. Predictions of the linear MVR model are almost identical to the standard
RNN.

analyzes whether the MV-RNN can learn simple boolean operators of propositional

logic such as conjunctives or negation from truth values. Again, if a model did not

have this ability, then there’s little chance it could learn these frequently occurring

phenomena from the noisy language of real texts such as movie reviews.

Predicting Sentiment Distributions of Adverb-Adjective Pairs

The first study considers the prediction of fine-grained sentiment distributions of

adverb-adjective pairs and analyzes different possibilities for computing the parent

vector p. The results show that the MV-RNN operators are powerful enough to

capture the operational meanings of various types of adverbs. For example, very is

an intensifier, pretty is an attenuator, and not can negate or strongly attenuate the

positivity of an adjective. For instance not great is still pretty good and not terrible;

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 106

see Potts (2010) for details.

I use a publicly available IMDB dataset of extracted adverb-adjective pairs from

movie reviews.1 The dataset provides the distribution over star ratings: Each consec-

utive word pair appears a certain number of times in reviews that have also associated

with them an overall rating of the movie. After normalizing by the total number of

occurrences, one gets a multinomial distribution over ratings. Only word pairs that

appear at least 50 times are kept. Of the remaining pairs, I use 4211 randomly

sampled ones for training and a separate set of 1804 for testing. I never give the

algorithm sentiment distributions for single words, and, while single words overlap

between training and testing, the test set consists of never before seen word pairs.

The softmax classifier is trained to minimize the cross entropy error. Hence, an

evaluation in terms of KL-divergence is the most reasonable choice. It is defined as

KL(g||p) =
∑

i gi log(gi/pi), where g is the gold distribution and p is the predicted

one.

I compare to several baselines and ablations of the MV-RNN model. An (ad-

verb,adjective) pair is described by its vectors (a, b) and matrices (A,B).

1 p = 0.5(a+ b), vector average

2. p = a⊗ b, element-wise vector multiplication

3. p = [a; b], vector concatenation

4. p = Ab, similar to Baroni and Lenci (2010)

5. p = g(W [a; b]), RNN, similar to Socher et al.

6. p = Ab+Ba, Linear MVR, similar to Mitchell and Lapata (2010); Zanzotto et al.

(2010)

7. p = g(W [Ba;Ab]), MV-RNN

The final distribution is always predicted by a softmax classifier whose inputs p vary

for each of the models.

I cross-validated all models over regularization parameters for word vectors, the

softmax classifier, the RNN parameter W and the word operators (10−4, 10−3) and

word vector sizes (n = 6, 8, 10, 12, 15, 20). All models performed best at vector sizes

of below 12. Hence, it is the model’s power and not the number of parameters that

1http://compprag.christopherpotts.net/reviews.html

http://compprag.christopherpotts.net/reviews.html

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 107

determines the performance. The table in Fig. 4.8 shows the average KL-divergence

on the test set. It shows that the idea of matrix-vector representations for all words

and having a nonlinearity are both important. The MV-RNN which combines these

two ideas is best able to learn the various compositional effects. The main difference

in KL divergence comes from the few negation cases in the test set. Fig. 4.8 shows

examples of predicted distributions. Many of the predictions are accurate and similar

between the top models. However, only the MV-RNN has enough expressive power

to allow negation to completely shift the sentiment with respect to an adjective. A

negated adjective carrying negative sentiment becomes slightly positive, whereas not

awesome is correctly attenuated. All three top models correctly capture the U-shape

of unbelievably sad. This pair peaks at both the negative and positive spectrum

because it is ambiguous. When referring to the performance of actors, it is very

negative, but, when talking about the plot, many people enjoy sad and thought-

provoking movies. The p = Ab model does not perform well because it cannot model

the fact that for an adjective like “sad,” the operator of “unbelievably” behaves

differently.

Logic- and Vector-based Compositionality

Another natural question is whether the MV-RNN can, in general, capture some of

the simple boolean logic that is sometimes found in language. In other words, can it

learn some of the propositional logic operators such as and, or, not in terms of vectors

and matrices from a few examples. Answering this question can also be seen as a

first step towards bridging the gap between logic-based, formal semantics (Montague,

1974) and vector space models.

The logic-based view of language accounts nicely for compositionality by directly

mapping syntactic constituents to lambda calculus expressions. At the word level,

the focus is on function words, and nouns and adjectives are often defined only in

terms of the sets of entities they denote in the world. Most words are treated as

atomic symbols with no relation to each other. There have been many attempts at

automatically parsing natural language to a logical form using recursive compositional

rules.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 108

false

false ∧ false

false

true ∧ false

false

false ∧ true

true

true ∧ true

true

¬ false

false

¬ true

Figure 4.9: Training trees for the MV-RNN to learn propositional operators. The
model learns vectors and operators for ∧ (and) and ¬ (negation). The model outputs
the exact representations of false and true respectively at the top node. Hence, the
operators can be combined recursively an arbitrary number of times for more complex
logical functions.

Conversely, vector space models have the attractive property that they can au-

tomatically extract knowledge from large corpora without supervision. Unlike logic-

based approaches, these models allow us to make fine-grained statements about the

semantic similarity of words which correlate well with human judgments (Griffiths

et al., 2007). Logic-based approaches are often seen as orthogonal to distributional

vector-based approaches. However, Garrette et al. (2011) recently introduced a com-

bination of a vector space model inside a Markov Logic Network. Another interesting

new line of work is that of Bowman et al. (2014) who show that recursive neural

models (such as the one of Sec. 4.3) can be used for reasoning with quantifiers.

One open question is whether vector-based models can learn some of the simple

logic encountered in language such as negation or conjunctives. To this end, I illus-

trate in a simple example that my MV-RNN model and its learned word matrices

(operators) have the ability to learn propositional logic operators such as ∧,∨,¬ (and,

or, not). This is a necessary (though not sufficient) condition for the ability to pick

up these phenomena in real datasets and tasks such as sentiment detection which I

focus on in the subsequent sections.

My setup is as follows. I train on 6 strictly right-branching trees as in Fig. 4.9. I

consider the 1-dimensional case and fix the representation for true to (t = 1, T = 1)

and false to (f = 0, F = 1). Fixing the operators to the 1 × 1 identity matrix 1 is

essentially ignoring them. The objective is then to create a perfect reconstruction of

(t, T) or (f, F) (depending on the formula), which I achieve by the least squares error

between the top vector’s representation and the corresponding truth value, e.g. for

¬false: min ||ptop − t||2 + ||Ptop − T ||2.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 109

As my function g (see Eq. 4.8), I use a linear threshold unit: g(x) = max(min(x, 1), 0).

Giving the derivatives computed for the objective function for the examples in Fig. 4.9

to a standard L-BFGS optimizer quickly yields a training error of 0. Hence, the output

of these 6 examples has exactly one of the truth representations, making it recursively

compatible with further combinations of operators. Thus, I can combine these opera-

tors to construct any propositional logic function of any number of inputs (including

xor). Hence, this MV-RNN is complete in terms of propositional logic.

S. C. Review sentence
1
√

The film is bright and flashy in all the right ways.
0
√

Not always too whimsical for its own good this strange hybrid of crime
thriller, quirky character study, third-rate romance and female empower-
ment fantasy never really finds the tonal or thematic glue it needs.

0
√

Doesn’t come close to justifying the hype that surrounded its debut at the
Sundance film festival two years ago.

0 x Director Hoffman, his writer and Kline’s agent should serve detention.
1 x A bodice-ripper for intellectuals.

Table 4.3: Hard movie review examples of positive (1) and negative (0) sentiment
(S.) that of all methods only the MV-RNN predicted correctly (C:

√
) or could not

classify as correct either (C: x).

4.2.3 Predicting Movie Review Ratings

In this section, I analyze the model’s performance on full length sentences. I compare

to previous state of the art methods on the same benchmark dataset of movie reviews

as in Sec. 3.2. In this and the next experiment I use binarized trees from the Stanford

Parser (Klein and Manning, 2003a). I use the exact same setup and parameters

(regularization, word vector size, etc.) as the code published for the model in Sec. 3.2

which is available at www.socher.org.

Table 4.4 shows comparisons to the system of Nakagawa et al. (2010), a depen-

dency tree based classification method that uses CRFs with hidden variables. The

recursive autoencoder model of Sec. 3.2 obtained 77.7% accuracy. My new MV-RNN

gives the highest performance, outperforming also the linear MVR (Sec. 4.2.1). How-

ever, the next Sec. 4.3 introduces another model that is even more accurate than all

www.socher.org

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 110

Method Acc.
Tree-CRF, Nakagawa et al. (2010) 77.3
RAE, Socher et al. (2011c) 77.7
Linear MVR 77.1
MV-RNN 79.0

Table 4.4: Accuracy of classification on full length movie review polarity (MR).

of those in the above table.

Table 4.3 shows several hard examples that only the MV-RNN was able to classify

correctly. None of the methods correctly classified the last two examples which require

more world knowledge.

… the [movie] showed [wars] …

MV-RNN for Relationship Classification
…

…

Classifier: Message-Topic

Figure 4.10: The MV-RNN learns vectors in the path connecting two words (dotted
lines) to determine their semantic relationship. It takes into consideration a variable
length sequence of various word types in that path.

4.2.4 Classification of Semantic Relationships

The previous task considered global classification of an entire phrase or sentence. In

my last experiment I show that the MV-RNN can also learn how a syntactic context

composes an aggregate meaning of the semantic relationships between words. In

particular, the task is finding semantic relationships between pairs of nominals. For

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 111

Relationship Sentence with labeled nouns for which to predict relationships
Cause-Effect(e2,e1) Avian [influenza]e1 is an infectious disease caused by type a strains

of the influenza [virus]e2.
Entity-Origin(e1,e2) The [mother]e1 left her native [land]e2 about the same time and

they were married in that city.
Message-Topic(e2,e1) Roadside [attractions]e1 are frequently advertised with

[billboards]e2 to attract tourists.
Product-Producer(e1,e2) A child is told a [lie]e1 for several years by their [parents]e2 before

he/she realizes that ...
Entity-Destination(e1,e2) The accident has spread [oil]e1 into the [ocean]e2.
Member-Collection(e2,e1) The siege started, with a [regiment]e1 of lightly armored

[swordsmen]e2 ramming down the gate.
Instrument-Agency(e2,e1) The core of the [analyzer]e1 identifies the paths using the con-

straint propagation [method]e2.
Component-Whole(e2,e1) The size of a [tree]e1 [crown]e2 is strongly correlated with the

growth of the tree.
Content-Container(e1,e2) The hidden [camera]e1, found by a security guard, was hidden in

a business card-sized [leaflet box]e2 placed at an unmanned ATM
in Tokyo’s Minato ward in early September.

Table 4.5: Examples of correct classifications of ordered, semantic relations between
nouns by the MV-RNN. Note that the final classifier is a recursive, compositional
function of all the words in the syntactic path between the bracketed words. The
paths vary in length and the words vary in type.

instance, in the sentence “My [apartment]e1 has a pretty large [kitchen]e2.”, I want

to predict that the kitchen and apartment are in a component-whole relationship.

Predicting such semantic relations is useful for information extraction and thesaurus

construction applications. Many approaches use features for all words on the path

between the two words of interest. I show that by building a single compositional

semantics for the minimal constituent including both terms one can achieve a higher

performance.

This task requires the ability to deal with sequences of words of arbitrary type

and length in between the two nouns in question. Fig. 4.10 explains my method for

classifying nominal relationships. I first find the path in the parse tree between the

two words whose relation I want to classify. I then select the highest node of the path

and classify the relationship using that node’s vector as features. I apply the same

type of MV-RNN model as in sentiment to the subtree spanned by the two words.

I use the dataset and evaluation framework of SemEval-2010 Task 8 (Hendrickx

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 112

et al., 2010). There are 9 ordered relationships (with two directions) and an undirected

other class, resulting in 19 classes. Among the relationships are: message-topic, cause-

effect, instrument-agency (etc. see Table 4.5 for list). A pair is counted as correct if

the order of the words in the relationship is correct.

I use 50-dimensional, pre-trained word vectors (see Sec. 4.2.1) and a pooling size

of 3. Table 4.6 lists results for several competing methods together with the resources

and features used by each method. I compare to the systems of the competition

which are described in Hendrickx et al. (2010) as well as the RNN and linear MVR.

Most systems used a considerable amount of hand-designed semantic resources. In

contrast to these methods, the MV-RNN only needs a parser for the tree structure and

learns all semantics from unlabeled corpora and the training data. Only the SemEval

training dataset is specific to this task, the remaining inputs and the training setup

are the same as in previous sentiment experiments.

The best method on this dataset (Rink and Harabagiu, 2010) obtains 82.2% F1. In

order to see whether my system can improve over this system, I added three features

to the MV-RNN vector and trained another softmax classifier. The features and their

performance increases were POS tags (+0.9); WordNet hypernyms (+1.3) and named

entity tags (NER) of the two words (+0.6). Features were computed using the code

of Ciaramita and Altun (2006).2 With these features, the performance improved over

the state of the art system. Table 4.5 shows random correct classification examples.

4.2.5 Related work

Distributional approaches have become omnipresent for the recognition of seman-

tic similarity between words and the treatment of compositionality has seen much

progress in recent years.

Semantic Word Vector Spaces The dominant approach in semantic vector spaces

uses distributional similarities of single words. Often, co-occurrence statistics of a

word and its context are used to describe each word (Pado and Lapata, 2007; Turney

and Pantel, 2010; Baroni and Lenci, 2010), such as tf-idf. Variants of this idea use

2sourceforge.net/projects/supersensetag/

sourceforge.net/projects/supersensetag/

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 113

Classifier Feature Sets F1

SVM POS, stemming, syntactic patterns 60.1
SVM word pair, words in between 72.5
SVM POS, WordNet, stemming, syntactic patterns 74.8
SVM POS, WordNet, morphological features, thesauri,

Google n-grams
77.6

MaxEnt POS, WordNet, morphological features, noun compound
system, thesauri, Google n-grams

77.6

SVM POS, WordNet, prefixes and other morphological fea-
tures, POS, dependency parse features, Levin classes,
PropBank, FrameNet, NomLex-Plus, Google n-grams,
paraphrases, TextRunner

82.2

RNN - 74.8
Lin.MVR - 73.0
MV-RNN - 79.1
RNN POS,WordNet,NER 77.6
Lin.MVR POS,WordNet,NER 78.7
MV-RNN POS,WordNet,NER 82.4

Table 4.6: Learning methods, their feature sets and F1 results for predicting semantic
relations between nouns. The MV-RNN outperforms all but one method without any
additional feature sets. By adding three such features, it obtains state of the art
performance.

more complex frequencies such as how often a word appears in a certain syntactic

context (Pado and Lapata, 2007; Erk and Padó, 2008). These representations have

proven very effective in sense discrimination and disambiguation (Schütze, 1998), au-

tomatic thesaurus extraction (Lin, 1998; Curran, 2004) and selectional preferences

(Erk and Padó, 2008) and cognitive modeling (Landauer and Dumais, 1997). How-

ever, distributional vectors often do not properly capture the differences in antonyms

since those often have similar contexts. One possibility to remedy this is to use

neural word vectors (Bengio et al., 2003). These vectors can be trained in an unsu-

pervised fashion to capture distributional similarities (Collobert and Weston, 2008;

Huang et al., 2012) but then also be fine-tuned and trained to specific tasks such as

sentiment detection (Socher et al., 2011c). The models in this section can use purely

supervised word representations learned entirely on the new corpus.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 114

Compositionality in Vector Spaces Most of the compositionality algorithms and

related datasets capture two word compositions. Mitchell and Lapata (2010) use e.g.

two-word phrases and analyze similarities computed by vector addition, multiplica-

tion, convolution (Metcalfe, 1990) and others. They measured the similarity between

word pairs such as compound nouns or verb-object pairs and compared these with

human similarity judgments. Simple vector averaging or multiplication performed

best, hence my comparisons to related baselines above. Some related models such as

holographic reduced representations (Plate, 1995), quantum logic (Widdows, 2008),

discrete-continuous models (Clark and Pulman, 2007) and the recent compositional

matrix space model (Rudolph and Giesbrecht, 2010) have not been experimentally

validated on larger corpora. Grefenstette and Sadrzadeh (2011) analyze subject-verb-

object triplets and find a matrix-based categorical model to correlate well with human

judgments. I compare to the recent line of work on supervised compositional models.

In particular I will describe and experimentally compare my new RNTN model to

RNNs (Socher et al., 2011c) and MV-RNNs (Socher et al., 2012b) both of which have

been applied to bag of words sentiment corpora.

My model builds upon and generalizes the models of Mitchell and Lapata (2010);

Baroni and Zamparelli (2010); Zanzotto et al. (2010); Socher et al. (2011c) (see

Sec. 4.2.1). I compare to them in my experiments. Yessenalina and Cardie (2011)

introduce a sentiment analysis model that describes words as matrices and composi-

tion as matrix multiplication. Since matrix multiplication is associative, this cannot

capture different scopes of negation or syntactic differences. Their model, is a spe-

cial case of my encoding model (when you ignore vectors, fix the tree to be strictly

branching in one direction and use as the matrix composition function P = AB).

Since my classifiers are trained on the vectors, I cannot compare to this approach

directly. Grefenstette and Sadrzadeh (2011) learn matrices for verbs in a categorical

model. The trained matrices improve correlation with human judgments on the task

of identifying relatedness of subject-verb-object triplets. Another alternative would

be to use CCG trees as a backbone for vector composition (K.M. Hermann, 2013).

This concludes the MV-RNN section. The MV-RNN combines attractive theoret-

ical properties with good performance on large, noisy datasets. It generalizes several

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 115

models in the literature, can learn propositional logic, accurately predicts sentiment

and can be used to classify semantic relationships between nouns in a sentence. How-

ever, it has a large number of parameters and there are no methods yet for pre-training

the word matrices. For more discussion and a comparison between all models see the

final conclusion chapter of this thesis. The next section will introduce the last and

most powerful composition function.

4.3 Recursive Neural Tensor Layers - For Senti-

ment Analysis

Despite the large attention that compositionality in semantic vector spaces has re-

ceived in the previous section and recent work (Mitchell and Lapata, 2010; Socher

et al., 2010; Zanzotto et al., 2010; Yessenalina and Cardie, 2011; Socher et al., 2012b;

Grefenstette et al., 2013), progress is held back by the current lack of large and labeled

compositionality resources and even more powerful models to accurately capture the

underlying phenomena presented in such data. To address this need, I introduce the

Stanford Sentiment Treebank and a powerful Recursive Neural Tensor Network that

can accurately predict the compositional semantic effects present in this new corpus.

The Stanford Sentiment Treebank is the first corpus with fully labeled parse trees

that allows for a complete analysis of the compositional effects of sentiment in lan-

guage. The corpus is based on the dataset introduced by Pang and Lee (2005) and

used in Sec. 3.2 and 4.2. It was parsed with the Stanford parser (Klein and Man-

ning, 2003a) and includes a total of 215,154 unique phrases from those parse trees,

each annotated by 3 human judges on Amazon Mechanical Turk. This new dataset

allows us to analyze the intricacies of sentiment and to capture complex linguistic

phenomena with powerful algorithms. Fig. 4.11 shows one prediction examples with

the model of this section which shows clear compositional structure. The granularity

and size of this dataset will enable the community to train compositional models that

are based on supervised and structured machine learning techniques. While there are

several datasets with document and chunk labels available, there is a need to better

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 116

–

0

0

This

0

film

–

–

–

0

does

0

n’t

0

+

care
+

0

about

+

+

+

+

+

cleverness

0

,

0

wit

0

or

+

0

0

any
0

0

other

+

kind

+

0

of

+

+

intelligent
+ +

humor

0

.

Figure 4.11: Example of the Recursive Neural Tensor Network accurately predicting
5 sentiment classes, very negative to very positive (– –, –, 0, +, + +), at every node
of a parse tree and capturing the negation and its scope in this sentence.

capture sentiment from short comments, such as Twitter data, which provide less

overall signal per document.

In order to capture the compositional effects with higher accuracy, I propose a

new model called the Recursive Neural Tensor Network (RNTN). Recursive Neural

Tensor Networks take as input phrases of any length. Like RNN models from previous

sections, they represent a phrase through word vectors and a parse tree and then

compute vectors for higher nodes in the tree using the same tensor-based composition

function. I compare to several compositional models of previous sections, such as

standard RNNs (Socher et al., 2011c), MV-RNNs (Socher et al., 2012b), and baselines

such as neural networks that ignore word order, Naive Bayes (NB), bi-gram NB and

SVM. All models get a significant boost when trained with the new dataset but

the RNTN obtains the highest performance with 80.7% accuracy when predicting

fine-grained sentiment for all nodes. Lastly, I use a test set of positive and negative

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 117

sentences and their respective negations to show that, unlike bag of words models, the

RNTN accurately captures the sentiment change and scope of negation. RNTNs also

learn that sentiment of phrases following the contrastive conjunction ‘but’ dominates.

The complete training and testing code, a live demo and the Stanford Sentiment

Treebank dataset are available at http://nlp.stanford.edu/sentiment.

4.3.1 Stanford Sentiment Treebank

5 10 15 20 25 30 35 40 45
N-Gram Length

0%

20%

40%

60%

80%

100%

%
 o

f S
en

tim
en

t V
al

ue
s

Neutral

Somewhat Positive

Positive

Very Positive

Somewhat Negative

Negative
Very Negative

(a)

(a)

(b)

(b)

(c)

(c)

(d)

(d)

Distributions of sentiment values for (a) unigrams,
(b) 10-grams, (c) 20-grams, and (d) full sentences.

Figure 4.12: Normalized histogram of sentiment annotations at each n-gram length.
Many shorter n-grams are neutral; longer phrases are well distributed. Few annotators
used slider positions between ticks or the extreme values. Hence the two strongest
labels and intermediate tick positions are merged into 5 classes.

Bag of words classifiers can work well in longer documents by relying on a few

words with strong sentiment like ‘awesome’ or ‘exhilarating.’ However, sentiment

accuracies even for binary positive/negative classification for single sentences has not

exceeded 80% for several years. For the more difficult multiclass case including a

neutral class, accuracy is often below 60% for short messages on Twitter (Wang

et al., 2012). From a linguistic or cognitive standpoint, ignoring word order in the

treatment of a semantic task is not plausible, and, as I will show, it cannot accurately

classify hard examples of negation. Correctly predicting these hard cases is necessary

to further improve performance.

In this section I will introduce and provide some analyses for the new Sentiment

Treebank which includes labels for every syntactically plausible phrase in thousands

http://nlp.stanford.edu/sentiment

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 118

nerdy folks

|
Very

negative

|
Negative

|
Somewhat
negative

|
Neutral

|
Somewhat
positive

|
Positive

|
Very

positive

phenomenal fantasy best sellers

|
Very

negative

|
Negative

|
Somewhat
negative

|
Neutral

|
Somewhat
positive

|
Positive

|
Very

positive

Figure 4.13: The labeling interface. Random phrases were shown and annotators had
a slider for selecting the sentiment and its degree.

of sentences, allowing us to train and evaluate compositional models.

I consider the corpus of movie review excerpts from the rottentomatoes.com

website originally collected and published by Pang and Lee (2005). The original

dataset includes 10,662 sentences, half of which were considered positive and the

other half negative. Each label is extracted from a longer movie review and reflects the

writer’s overall intention for this review. The normalized, lower-cased text is first used

to recover, from the original website, the text with capitalization. Remaining HTML

tags and sentences that are not in English are deleted. The Stanford Parser (Klein

and Manning, 2003a) is used to parses all 10,662 sentences. In approximately 1,100

cases it splits the snippet into multiple sentences. I then used Amazon Mechanical

Turk to label the resulting 215,154 phrases. Fig. 4.13 shows the interface annotators

saw. The slider has 25 different values and is initially set to neutral. The phrases in

each hit are randomly sampled from the set of all phrases in order to prevent labels

being influenced by what follows.

rottentomatoes.com

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 119

Fig. 4.12 shows the normalized label distributions at each n-gram length. Starting

at length 20, the majority are full sentences. One of the findings from labeling sen-

tences based on reader’s perception is that many of them could be considered neutral.

I also notice that stronger sentiment often builds up in longer phrases and the major-

ity of the shorter phrases are neutral. Another observation is that most annotators

moved the slider to one of the five positions: negative, somewhat negative, neutral,

positive or somewhat positive. The extreme values were rarely used and the slider

was not often left in between the ticks. Hence, even a 5-class classification into these

categories captures the main variability of the labels. I will name this fine-grained

sentiment classification and my main experiment will be to recover these five labels

for phrases of all lengths.

4.3.2 RNTN: Recursive Neural Tensor Networks

All the models in this thesis compute compositional vector representations for phrases

of variable length and syntactic type. These representations are used as features to

classify each phrase. Fig. 4.14 displays this approach with an example of phrase-

labeled sentiment. When an n-gram is given to the compositional models, it is parsed

into a binary tree and each leaf node, corresponding to a word, is represented as a

vector as in previous sections. Recursive neural models will then compute parent

vectors in a bottom up fashion using different types of compositionality functions g.

The parent vectors are again given as features to a classifier. For ease of exposition,

I will use the tri-gram in this figure to explain the new model.

As before, each word is represented as a d-dimensional vector. In this section, I

simply initialize all word vectors by randomly sampling each value from a uniform

distribution: U(−r, r), where r = 0.0001. All the word vectors are stacked in the

word embedding matrix L ∈ Rd×|V |, where |V | is the size of the vocabulary. Initially

the word vectors will be random but the L matrix is seen as a parameter that is

trained jointly with the model.

I can use the word vectors directly as parameters to optimize and as feature inputs

to a softmax classifier. For classification into five classes, I compute the posterior

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 120

 not very good ...
 a b c

p1 =g(b,c)

p2 = g(a,p1)

0 0 +

+ +

-

Figure 4.14: Approach of Recursive Neural Network models for sentiment: Compute
parent vectors in a bottom up fashion using a compositionality function g and use
node vectors as features for a classifier at that node. This function varies for the
different models.

probability over labels given the word vector via:

ya = softmax(Wsa), (4.11)

where Ws ∈ R5×d is the sentiment classification matrix. For the given tri-gram, this

is repeated for vectors b and c.

Two previous models in this thesis had been applied to the sentiment analysis task:

RAEs of Sec. 3.2 and MV-RNNs of Sec. 4.2. One problem with the RAE sentiment

model was that its unsupervised tree structures did not correspond to proper linguistic

parses. Furthermore, I found that with the additional amount of training data, the

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 121

reconstruction loss at each node is not necessary to obtain high performance. The

problem with MV-RNNs is that the number of parameters becomes very large and

depends on the size of the vocabulary. While linguistically plausible, it would be

cognitively more plausible if there was a single powerful composition function with

a fixed number of parameters. The standard RNN is a good candidate for such a

function. However, in the standard RNN, the input vectors only implicitly interact

through the nonlinearity (squashing) function. A more direct, possibly multiplicative,

interaction would allow the model to have greater interactions between the input

vectors.

Motivated by these ideas I ask the question: Can a single, more powerful com-

position function perform better and compose aggregate meaning from smaller con-

stituents more accurately than many input-specific ones? In order to answer this ques-

tion, I propose a new model called the Recursive Neural Tensor Network (RNTN).

The main idea is to use the same, tensor-based composition function for all nodes.

Fig. 4.15 shows a single tensor layer. I define the output of a tensor product

h ∈ Rd via the following vectorized notation and the equivalent but more detailed

notation for each slice V [i] ∈ Rd×d:

h =

[
b

c

]T
V [1:d]

[
b

c

]
;hi =

[
b

c

]T
V [i]

[
b

c

]
.

where V [1:d] ∈ R2d×2d×d is the tensor that defines multiple bilinear forms.

The RNTN uses this definition for computing p1:

p1 = f

[b

c

]T
V [1:d]

[
b

c

]
+W

[
b

c

] ,

where W is as defined in the previous models. The next parent vector p2 in the

tri-gram will be computed with the same weights:

p2 = f

[a

p1

]T
V [1:d]

[
a

p1

]
+W

[
a

p1

] .

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 122

 Slices of Standard
 Tensor Layer Layer

p = f V[1:2] + W

Neural Tensor Layer

b
c

b
c

b
c

T

p = f +

Figure 4.15: A single layer of the Recursive Neural Tensor Network. Each dashed
box represents one of d-many slices and can capture a type of influence a child can
have on its parent.

The main advantage over the previous RNN model, which is a special case of

the RNTN when V is set to 0, is that the tensor can directly relate input vectors.

Intuitively, I can interpret each slice of the tensor as capturing a specific type of

composition.

An alternative to RNTNs would be to make the compositional function more

powerful by adding a second neural network layer. However, initial experiments

showed that it is hard to optimize this model and vector interactions are still more

implicit than in the RNTN.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 123

Tensor Backprop through Structure

I describe in this section how to train the RNTN model. For more intuition and an

introduction to backprop through structure see Sec. 3.1.4. As mentioned above, each

node has a softmax classifier trained on its vector representation to predict a given

ground truth or target vector t. I assume the target distribution vector at each node

has a 0-1 encoding. If there are C classes, then it has length C and a 1 at the correct

label. All other entries are 0.

I want to maximize the probability of the correct prediction, or minimize the

cross-entropy error between the predicted distribution yi ∈ RC×1 at node i and the

target distribution ti ∈ RC×1 at that node. This is equivalent (up to a constant) to

minimizing the KL-divergence between the two distributions. The error as a function

of the RNTN parameters θ = (V,W,Ws, L) for a sentence is:

E(θ) =
∑
i

∑
j

tij log yij + λ‖θ‖2 (4.12)

The derivative for the weights of the softmax classifier are standard and simply sum

up from each node’s error. I define xi to be the vector at node i (in the example

trigram, the xi ∈ Rd×1 are (a, b, c, p1, p2)). I skip the standard derivative for Ws.

Each node backpropagates its error through to the recursively used weights V,W .

Let δi,s ∈ Rd×1 be the softmax error vector at node i:

δi,s =
(
W T
s (yi − ti)

)
⊗ f ′(xi),

where ⊗ is the Hadamard product between the two vectors and f ′ is the element-wise

derivative of f which in the standard case of using f = tanh can be computed using

only f(xi).

The remaining derivatives can only be computed in a top-down fashion from the

top node through the tree and into the leaf nodes. The full derivative for V and W is

the sum of the derivatives at each of the nodes. I define the complete incoming error

messages for a node i as δi,com. The top node, in my case p2, only received errors from

the top node’s softmax. Hence, δp2,com = δp2,s which I can use to obtain the standard

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 124

backprop derivative for W as described in Sec. 3.1.4. For the derivative of each slice

k = 1, . . . , d, I get:

∂Ep2

∂V [k]
= δp2,comk

[
a

p1

][
a

p1

]T
,

where δp2,comk is just the k’th element of this vector. Now, I can compute the error

message for the two children of p2:

δp2,down =

(
W T δp2,com + S

)
⊗ f ′

([
a

p1

])
,

where I define

S =
d∑

k=1

δp2,comk

(
V [k] +

(
V [k]

)T)[a

p1

]
The children of p2, will then each take half of this vector and add their own softmax

error message for the complete δ. In particular, I have

δp1,com = δp1,s + δp2,down[d+ 1 : 2d],

where δp2,down[d+ 1 : 2d] indicates that p1 is the right child of p2 and hence takes the

2nd half of the error, for the final word vector derivative for a, it will be δp2,down[1 : d].

The full derivative for slice V [k] for this trigram tree then is the sum at each node:

∂E

∂V [k]
=

Ep2

∂V [k]
+ δp1,comk

[
b

c

][
b

c

]T
,

and similarly for W . For this nonconvex optimization I use AdaGrad (Duchi et al.,

2011) which converges in less than 3 hours to a local optimum.

4.3.3 Experiments

I include two types of analyses. The first type includes several large quantitative

evaluations on the test set. The second type focuses on two linguistic phenomena

that are important in sentiment.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 125

For all models, I use the dev set and cross-validate over regularization of the

weights, word vector size as well as learning rate and minibatch size for AdaGrad.

Optimal performance for all models was achieved at word vector sizes between 25 and

35 dimensions and batch sizes between 20 and 30. Performance decreased at larger or

smaller vector and batch sizes. This indicates that the RNTN does not outperform

the standard RNN due to simply having more parameters. The MV-RNN has orders

of magnitudes more parameters than any other model due to the word matrices. The

RNTN would usually achieve its best performance on the dev set after training for 3

- 5 hours. Initial experiments showed that the recursive models worked significantly

worse (over 5% drop in accuracy) when no nonlinearity was used. I use f = tanh in

all experiments.

I compare to commonly used methods that use bag of words features with Naive

Bayes and SVMs, as well as Naive Bayes with bag of bigram features. I abbreviate

these with NB, SVM and biNB. I also compare to a model that averages neural word

vectors and ignores word order (VecAvg).

The sentences in the treebank were split into a train (8544), dev (1101) and test

splits (2210) and these splits are made available with the data release. I also analyze

performance on only positive and negative sentences, ignoring the neutral class. This

filters about 20% of the data with the three sets having 6920/872/1821 sentences.

Fine-grained Sentiment For All Phrases

The main novel experiment and evaluation metric analyze the accuracy of fine-grained

sentiment classification for all phrases. Fig. 4.12 showed that a fine grained classi-

fication into 5 classes is a reasonable approximation to capture most of the data

variation.

Fig. 4.16 shows the result on this new corpus. The RNTN gets the highest perfor-

mance, followed by the MV-RNN and RNN. The recursive models work very well on

shorter phrases, where negation and composition are important, while bag of features

baselines perform well only with longer sentences. The RNTN accuracy upper bounds

other models at most n-gram lengths.

Table 4.7 (left) shows the overall accuracy numbers for fine grained prediction at

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 126

5 10 15 20 25N-Gram Length
0.2
0.4
0.6
0.8
1.0

Accurac
y

5 10 15 20 25N-Gram Length
0.6
0.7
0.8
0.9
1.0

Cumula
tive Acc

uracy

ModelRNTNMV-RNNRNNbiNBNB

Figure 4.16: Accuracy curves for fine grained sentiment classification at each n-gram
lengths. Top: Accuracy separately for each set of n-grams. Bottom: Cumulative
accuracy of all ≤ n-grams.

all phrase lengths and full sentences.

Full Sentence Binary Sentiment

This setup is comparable to previous work on the original rotten tomatoes dataset

which only used full sentence labels and binary classification of positive/negative.

Hence, these experiments show the improvement even baseline methods can achieve

with the sentiment treebank. Table 4.7 shows results of this binary classification for

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 127

Model
Fine-grained Positive/Negative

All Root All Root

NB 67.2 41.0 82.6 81.8
SVM 64.3 40.7 84.6 79.4
BiNB 71.0 41.9 82.7 83.1

VecAvg 73.3 32.7 85.1 80.1
RNN 79.0 43.2 86.1 82.4

MV-RNN 78.7 44.4 86.8 82.9
RNTN 80.7 45.7 87.6 85.4

Table 4.7: Accuracy for fine grained (5-class) and binary predictions at the sentence
level (root) and for all nodes.

both all phrases and for only full sentences. The previous state of the art was below

80% (Socher et al., 2012b). With the coarse bag of words annotation for training,

many of the more complex phenomena could not be captured, even by more powerful

models. The combination of the new sentiment treebank and the RNTN pushes the

state of the art on short phrases up to 85.4%.

Model Analysis: Contrastive Conjunction

In this section, I use a subset of the test set which includes only sentences with

an ‘X but Y ’ structure: A phrase X being followed by but which is followed by a

phrase Y . The conjunction is interpreted as an argument for the second conjunct,

with the first functioning concessively (Lakoff, 1971; Blakemore, 1989; Merin, 1999).

Fig. 4.17 contains an example. I analyze a strict setting, where X and Y are phrases

of different sentiment (including neutral). The example is counted as correct, if the

classifications for both phrases X and Y are correct. Furthermore, the lowest node

that dominates both of the word but and the node that spans Y also have to have the

same correct sentiment. For the resulting 131 cases, the RNTN obtains an accuracy

of 41% compared to MV-RNN (37), RNN (36) and biNB (27).

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 128

+

+

–

–

–

0

There

–

0

are

–

–

0

–

slow

0

and

–

repetitive

0

parts

0

,

0

but

+

0

it

+

0

0

has

0

0

just
0

enough

+

+

spice

+

0

to

+

0

keep

+

0

it

+

interesting

0

.

Figure 4.17: Example of correct prediction for contrastive conjunction X but Y .

Model Analysis: High Level Negation

I investigate two types of negation. For each type, I use a separate dataset for

evaluation.

Set 1: Negating Positive Sentences. The first set contains positive sentences

and their negation. In this set, the negation changes the overall sentiment of a

sentence from positive to negative. Hence, I compute accuracy in terms of correct

sentiment reversal from positive to negative. Fig. 4.19 shows two examples of positive

negation the RNTN correctly classified, even if negation is less obvious in the case

of ‘least’. Table 4.8 (left) gives the accuracies over 21 positive sentences and their

negation for all models. The RNTN has the highest reversal accuracy, showing its

ability to structurally learn negation of positive sentences. But what if the model

simply makes phrases very negative when negation is in the sentence? The next

experiments show that the model captures more than such a simplistic negation rule.

Set 2: Negating Negative Sentences. The second set contains negative sen-

tences and their negation. When negative sentences are negated, the sentiment tree-

bank shows that overall sentiment should become less negative, but not necessarily

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 129

Model
Accuracy

Negated Positive Negated Negative

biNB 19.0 27.3
RNN 33.3 45.5

MV-RNN 52.4 54.6
RNTN 71.4 81.8

Table 4.8: Accuracy of negation detection. Negated positive is measured as correct
sentiment inversions. Negated negative is measured as increases in positive activa-
tions.

-0.6 -0.4 -0.2 0.0 0.2 0.4
biNBRRNMV-RNNRNTN -0.57

-0.34 -0.16
-0.5

 Negated Positive Sentences: Change in Activation

-0.6 -0.4 -0.2 0.0 0.2 0.4
biNBRRNMV-RNNRNTN +0.35+0.01-0.01-0.01 Negated Negative Sentences: Change in Activation

Figure 4.18: Change in activations for negations. Only the RNTN correctly captures
both types. It decreases positive sentiment more when it is negated and learns that
negating negative phrases (such as not terrible) should increase neutral and positive
activations.

positive. For instance, ‘The movie was terrible’ is negative but the ‘The movie was not

terrible’ says only that it was less bad than a terrible one, not that it was good (Horn,

1989; Israel, 2001). Hence, I evaluate accuracy in terms of how often each model was

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 130

+ +

0

0

Roger
0

Dodger

+

+

0

is

+

0

one
+

0

of

+

+

0

the

+

+

0

most

+

compelling

0

variations

0

0

on
0

0

this

0

theme

0

.

–

0

0

Roger
0

Dodger

–

–

0

is

–

0

one
–

0

of

–

–

0

the

–

–

–

least

+

compelling

0

variations

0

0

on
0

0

this

0

theme

0

.

+

0

I

+

+

+

liked

0

0

0

every

0

0

single

0

minute

0

0

of

0

0

this

0

film

0

.

–

0

I

–

–

0

0

did

0

n’t

0

0

like

0

0

0

a

0

0

single

0

minute

0

0

of

0

0

this

0

film

0

.

–

0

It

–

–

0

0

’s

0

just

–

+

incredibly

– –

dull

0

.

0

0

It

0

0

0

0

0

’s

+

definitely

–

not

– –

dull

0

.

Figure 4.19: RNTN prediction of positive and negative (bottom right) sentences and
their negation.

able to increase non-negative activation in the sentiment of the sentence. Table 4.8

(right) shows the accuracy. In over 81% of cases, the RNTN correctly increases the

positive activations. Fig. 4.19 (bottom right) shows a typical case in which sentiment

was made more positive by switching the main class from negative to neutral even

though both not and dull were negative. Fig. 4.18 shows the changes in activation

for both sets. Negative values indicate a decrease in average positive activation (for

set 1) and positive values mean an increase in average positive activation (set 2).

The RNTN has the largest shifts in the correct directions. Therefore I can conclude

that the RNTN is best able to identify the effect of negations upon both positive and

negative sentiment sentences.

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 131

n Most positive n-grams Most negative n-grams

1 engaging; best; powerful; love; beauti-
ful

bad; dull; boring; fails; worst; stupid;
painfully

2 excellent performances; A master-
piece; masterful film; wonderful movie;
marvelous performances

worst movie; very bad; shapeless
mess; worst thing; instantly forget-
table; complete failure

3 an amazing performance; wonderful
all-ages triumph; a wonderful movie;
most visually stunning

for worst movie; A lousy movie; a com-
plete failure; most painfully marginal;
very bad sign

5 nicely acted and beautifully shot; gor-
geous imagery, effective performances;
the best of the year; a terrific Amer-
ican sports movie; refreshingly honest
and ultimately touching

silliest and most incoherent movie;
completely crass and forgettable
movie; just another bad movie. A
cumbersome and cliche-ridden movie;
a humorless, disjointed mess

8 one of the best films of the year; A love
for films shines through each frame;
created a masterful piece of artistry
right here; A masterful film from a
master filmmaker,

A trashy, exploitative, thoroughly
unpleasant experience ; this sloppy
drama is an empty vessel.; quickly
drags on becoming boring and pre-
dictable.; be the worst special-effects
creation of the year

Table 4.9: Examples of n-grams for which the RNTN predicted the most positive and
most negative responses.

Model Analysis: Most Positive and Negative Phrases

I queried the model for its predictions on what the most positive or negative n-grams

are, measured as the highest activation of the most negative and most positive classes.

Table 4.9 shows some phrases from the dev set which the RNTN selected for their

strongest sentiment. Fig. 4.20 shows that the RNTN selects more strongly positive

phrases at most n-gram lengths compared to other models.

4.3.4 Related Work

This work is connected to five different areas of NLP research, each with their own

large amount of related work.

For related work on semantic vector spaces and compositionality in vector

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 132

1 2 3 4 5 6 7 8 9 10N-Gram Length
0.7
0.8
0.9
1.0

Average
 Ground

 Truth S
entimen

t ModelRNTNMV-RNNRNN

Figure 4.20: Average ground truth sentiment of top 10 most positive n-grams at
various n. The RNTN correctly picks the more negative and positive examples.

spaces see Sec. 4.2.5.

Logical Form. A related field that tackles compositionality from a very different

angle is that of trying to map sentences to logical form (Zettlemoyer and Collins,

2005). While these models are highly interesting and work well in closed domains

and on discrete sets, they could only capture sentiment distributions using separate

mechanisms beyond the currently used logical forms.

Deep Learning. Apart from the above mentioned work on RNNs, several com-

positionality ideas related to neural networks have been discussed by Bottou (2011)

and Hinton (1990). The idea to relate inputs through three way interactions, param-

eterized by a tensor have been proposed for relation classification (Sutskever et al.,

2009; Jenatton et al., 2012), extending Restricted Boltzmann machines (Ranzato and

Hinton, 2010) and as a special layer for speech recognition (Yu et al., 2012).

Sentiment Analysis. Apart from the above-mentioned work, most approaches

in sentiment analysis use bag of words representations (Pang and Lee, 2008). Snyder

and Barzilay (2007) analyzed larger reviews in more detail by analyzing the senti-

ment of multiple aspects of restaurants, such as food or atmosphere. Several works

CHAPTER 4. RECURSIVE COMPOSITION FUNCTIONS 133

have explored sentiment compositionality through careful engineering of features or

polarity shifting rules on syntactic structures (Polanyi and Zaenen, 2006; Nakagawa

et al., 2010). For more related prior work on sentiment analysis, see Sec. 3.2.4. Since

the publication of the Stanford Sentiment Treebank, many researchers have used this

dataset and improved performance (Le and Mikolov., 2014; Kiritchenko et al., 2014;

Dong et al., 2014).

This section introduced Recursive Neural Tensor Networks and the Stanford Sen-

timent Treebank. The combination of new model and data results in a system for

single sentence sentiment detection that pushes state of the art by 5.4% for posi-

tive/negative sentence classification. Apart from this standard setting, the dataset

also poses important new challenges and allows for new evaluation metrics. For in-

stance, the RNTN obtains 80.7% accuracy on fine-grained sentiment prediction across

all phrases and captures negation of different sentiments and scope more accurately

than previous models.

4.4 Conclusion

This concludes the exploration of composition functions. For linguistically well mo-

tivated problems with very large training data (such as adverb-adjective occurrence

prediction) the MV-RNN is suitable. When less data is available, one can use well

motivated untying schemes as in the SU-RNN. However, from my experience until

now, the composition most likely to be successful on a variety of tasks is the RNTN.

The next chapter will illustrate that not only can the objective and composition

functions be tuned for specific tasks and problems but also the tree structure itself.

Chapter 5

Compositional Tree Structures

Variants

Up until this chapter all RNN models of this thesis were based on constituency trees

and input-specific trees. This chapter shows that these are not mandatory constraints

but that various other tree structures can also be used. The first section explores

syntactically untied RNNs on dependency trees for image-sentence search. The second

section shows that for classifying 3d images, RNNs need not have an input-specific tree

structure but instead can use multiple, fixed-tree RNNs. This model also illustrates

interesting connections to widely used convolutional neural networks.

5.1 Dependency Tree RNNs - For Sentence-Image

Mapping

In this section, I introduce a model, illustrated in Fig. 5.1, which learns to map

sentences and images into a common embedding space in order to be able to retrieve

one from the other. I assume word and image representations are first learned in

their respective single modalities but finally mapped into a jointly learned multimodal

embedding space.

Similar to previous sections, the model for mapping sentences into multimodal

134

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 135

A man wearing a helmet jumps on his bike near a beach.

Compositional Sentence Vectors

Two airplanes parked in an airport.

A man jumping his downhill bike.

Image Vector Representation

A small child sits on a cement wall near white flower.

Multi-Modal
Representations

Figure 5.1: The DT-RNN learns vector representations for sentences based on their
dependency trees. I learn to map the outputs of convolutional neural networks applied
to images into the same space and can then compare both sentences and images. This
allows us to query images with a sentence and give sentence descriptions to images.

space is based on RNNs. However, unlike RNN models of previous sections, which

are based on constituency trees (CT-RNNs), the model in this section computes com-

positional vector representations inside dependency trees (de Marneffe et al., 2006), a

formalism I will illustrate below by means of an example. The compositional vectors

computed by this new dependency tree RNN (DT-RNN) better capture the meaning

of sentences, where I define meaning in terms of similarity to a “visual representation”

of the textual description. DT-RNN induced vector representations of sentences are

more robust to changes in the syntactic structure or word order than related mod-

els such as CT-RNNs or Recurrent Neural Networks since they naturally focus on a

sentence’s action and its agents.

I evaluate and compare DT-RNN induced representations on their ability to use

a sentence such as “A man wearing a helmet jumps on his bike near a beach.” to

find images that show such a scene. The goal is to learn sentence representations

that capture the visual scene being described and to find appropriate images in the

learned, multi-modal sentence-image space. Conversely, when given a query image,

I would like to find a description that goes beyond a single label by providing a

correct sentence describing it, a task that has recently garnered a lot of attention

(Farhadi et al., 2010; Ordonez et al., 2011; Kuznetsova et al., 2012). I use the dataset

introduced by Rashtchian et al. (2010) which consists of 1000 images, each with 5

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 136

descriptions. On all tasks, my model outperforms baselines and related models.

A man wearing a helmet jumps on his bike near a beach

det

nsubj

partmod det
dobj

root

prep poss
pobj

prep

det
pobj

Figure 5.2: Example of a full dependency tree for a longer sentence. The DT-RNN
will compute vector representations at every word that represents that word and an
arbitrary number of child nodes. The final representation is computed at the root
node, here at the verb jumps. Note that more important activity and object words
are higher up in this tree structure.

5.1.1 Dependency-Tree Recursive Neural Networks

I first focus on the DT-RNN model that - like all previous RNN models of this thesis

- computes compositional vector representations for phrases and sentences of variable

length and syntactic type. In subsequent section 5.1.3 the resulting vectors will

then become multimodal features by mapping images that show what the sentence

describes to the same space and learning both the image and sentence mapping jointly.

The most common way of building representations for longer phrases from single

word vectors is to simply linearly average the word vectors. While this bag-of-words

approach can yield reasonable performance in some tasks, it gives all the words the

same weight and cannot distinguish important differences in simple visual descriptions

such as The bike crashed into the standing car. vs. The car crashed into the standing

bike..

The RNN models of previous chapters provided a way of combining word vectors

for longer phrases that moved beyond simple averaging. They combine vectors with

an RNN in binary constituency trees which have potentially many hidden layers.

While the induced vector representations work very well on many tasks, they also

inevitably capture a lot of syntactic structure of the sentence. However, the task of

finding images from sentence descriptions requires us to be more invariant to syntactic

differences. One such example are active-passive constructions. In some formalisms

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 137

(de Marneffe et al., 2006), the “by” in a passive construction can be collapsed and

the semantic relationship of the following word will become “agent”. For instance,

The mother hugged her child. and The child was hugged by its mother. should map

to roughly the same visual space. Other recursive and recurrent neural networks do

not exhibit this behavior and even bag of words representations would be influenced

by the words was and by. The model I describe below focuses more on recognizing

actions and agents and has the potential to learn representations that are invariant

to active-passive differences.

DT-RNN Inputs: Word Vectors and Dependency Trees

In order for the DT-RNN to compute a vector representation for an ordered list of

m words (a phrase or sentence), I map the single words to a vector space and then

parse the sentence.

As outlined in section 2.3, I map each word to a d-dimensional vector. I initialize

these word vectors with the unsupervised model of Huang et al. (2012) which can

learn single word vector representations from both local and global contexts. I use

d = 50 in all experiments. The word embedding matrix X is used by finding the

column index i of each word: [w] = i and retrieving the corresponding column xw

from X. Henceforth, I represent an input sentence s as an ordered list of (word,vector)

pairs: s = ((w1, xw1), . . . , (wm, xwm)).

Next, the sequence of words (w1, . . . , wm) is parsed by the dependency parser

of de Marneffe et al. (2006). Fig. 5.1 shows an example tree. I can represent a

dependency tree d of a sentence s as an ordered list of (child,parent) indices: d(s) =

{(i, j)}, where every child word in the sequence i = 1, . . . ,m is present and has any

word j ∈ {1, . . . ,m} ∪ {0} as its parent. The root word has as its parent 0 and we

notice that the same word can be a parent between zero and m number of times.

Without loss of generality, I assume that these indices form a tree structure. To

summarize, the input to the DT-RNN for each sentence is the pair (s, d): the words

and their vectors and the dependency tree.

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 138

Students bikes night

ride
at x1

x2

x3

x4

x5

h1

h2

h3

h4

h5

Figure 5.3: Example of a DT-RNN tree structure for computing a sentence represen-
tation in a bottom up fashion.

Forward Propagation in DT-RNNs

Given these two inputs, I now illustrate how the DT-RNN computes parent vectors.

I will use the following sentence as a running example: Students1 ride2 bikes3 at4

night5. Fig. 5.3 shows its tree and computed vector representations. The dependency

tree for this sentence can be summarized by the following set of (child, parent) edges:

d = {(1, 2), (2, 0), (3, 2), (4, 2), (5, 4)}.
The DT-RNN model will compute parent vectors at each word that include all the

dependent (children) nodes in a bottom up fashion using a compositionality function

gθ which is parameterized by all the model parameters θ. To this end, the algorithm

searches for nodes in a tree that have either (i) no children or (ii) whose children have

already been computed and then computes the corresponding vector.

In my example, the words x1, x3, x5 are leaf nodes and hence, I can compute their

corresponding hidden nodes via:

hc = gθ(xc) = f(Wvxc) for c = 1, 3, 5, (5.1)

where I compute the hidden vector at position c via my general composition function

gθ. In the case of leaf nodes, this composition function becomes simply a linear layer,

parameterized by Wv ∈ Rn×d, followed by a nonlinearity. I cross-validate over using

no nonlinearity (f = id), tanh, sigmoid or rectified linear units (f = max(0, x), but

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 139

generally find tanh to perform best.

The final sentence representation I want to compute is at h2, however, since I still

do not have h4, I compute that one next:

h4 = gθ(x4, h5) = f(Wvx4 +Wr1h5), (5.2)

where I use the same Wv as before to map the word vector into hidden space but I now

also have a linear layer that takes as input h5, the only child of the fourth node. The

matrix Wr1 ∈ Rn×n is used because node 5 is the first child node on the right side of

node 4. Generally, I have multiple matrices for composing with hidden child vectors

from the right and left sides: Wr· = (Wr1, . . . ,Wrkr) and Wl· = (Wl1, . . . ,Wlkl). The

number of needed matrices is determined by the data by simply finding the maximum

numbers of left kl and right kr children any node has. If at test time a child appeared

at an even large distance (this does not happen in my test set), the corresponding

matrix would be the identity matrix.

Now that all children of h2 have their hidden vectors, I can compute the final

sentence representation via:

h2 = gθ(x2, h1, h3, h4) = f(Wvx2 +Wl1h1 +Wr1h3 +Wr2h4). (5.3)

Notice that the children are multiplied by matrices that depend on their location

relative to the current node.

Another modification that improves the mean rank by approximately 6 in image

search on the dev set is to weight nodes by the number of words underneath them

and normalize by the sum of words under all children. This encourages the intuitive

desideratum that nodes describing longer phrases are more important. Let `(i) be

the number of leaf nodes (words) under node i and C(i, y) be the set of child nodes

of node i in dependency tree y. The final composition function for a node vector hi

becomes:

hi = f

 1

`(i)

Wvxi +
∑
j∈C(i)

`(j)Wpos(i,j)hj

 , (5.4)

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 140

where by definition `(i) = 1 +
∑

j∈C(i) `(j) and pos(i, j) is the relative position of

child j with respect to node i, e.g. l1 or r2 in Eq. 5.3.

Semantic Dependency Tree RNNs

An alternative is to condition the weight matrices on the semantic relations given by

the dependency parser. I use the collapsed tree formalism of the Stanford dependency

parser (de Marneffe et al., 2006). With such a semantic untying of the weights, the

DT-RNN makes better use of the dependency formalism and could give active-passive

reversals similar semantic vector representation. The equation for this semantic DT-

RNN (SDT-RNN) is the same as the one above except that the matrices Wpos(i,j)

are replaced with matrices based on the dependency relationship. There are a total

of 141 unique such relationships in the dataset. However, most are very rare. For

examples of semantic relationships, see Fig. 5.1 and the model analysis section 5.1.4.

This forward propagation can be used for computing compositional vectors and

in Sec. 5.1.3 I will explain the objective function in which these are trained.

Comparison to Previous RNN Models

The DT-RNN has several important differences to the other RNN models of this thesis

which are based on constituency trees (CT-RNNs) and use the standard composition

function to compute a hidden parent vector h from exactly two child vectors (c1, c2)

in a binary tree: h = f

(
W

[
c1

c2

])
. This can be rewritten to show the similarity

to the DT-RNN as h = f(Wl1c1 + Wr1c2). However, there are several important

differences.

Note first that in previous RNN models the parent vectors were of the same dimen-

sionality to be recursively compatible and be used as input to the next composition.

In contrast, my new model first maps single words into a hidden space and then

parent nodes are composed from these hidden vectors. This allows a higher capacity

representation which is especially helpful for nodes that have many children.

Secondly, the DT-RNN allows for n-ary nodes in the tree. This is an improvement

that is possible even for constituency tree CT-RNNs but it has not been explored in

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 141

previous models.

Third, due to computing parent nodes in constituency trees, previous models had

the problem that words that are merged last in the tree have a larger weight or im-

portance in the final sentence representation. This can be problematic since these are

often simple non-content words, such as a leading ‘But,’. While such single words can

be important for tasks such as sentiment analysis, I argue that for describing visual

scenes the DT-RNN captures the more important effects: The dependency tree struc-

tures push the central content words such as the main action or verb and its subject

and object to be merged last and hence, by construction, the final sentence repre-

sentation is more robust to less important adjectival modifiers, word order changes,

etc.

Fourth, I allow some untying of weights depending on either how far away a

constituent is from the current word or what its semantic relationship is.

Now that I can compute compositional vector representations for sentences, the

next section describes how I represent images.

5.1.2 Learning Image Representations with Neural Networks

The image features that I use in my experiments are extracted from a deep convo-

lutional neural network, replicated from the one described in Le et al. (2012). The

network was trained using both unlabeled data (random web images) and labeled

data to classify 22,000 categories in ImageNet (Deng et al., 2009). I then used the

features at the last layer, before the classifier, as the feature representation in my ex-

periments. The dimension of the feature vector of the last layer is 4,096. The details

of the model and its training procedures are as follows.

The architecture of the network can be seen in Figure 5.4. The network takes

200x200 pixel images as inputs and has 9 layers. The layers consist of three se-

quences of filtering, pooling and local contrast normalization (Jarrett et al., 2009).

The pooling function is L2 pooling of the previous layer (taking the square of the

filtering units, summing them up in a small area in the image, and taking the square-

root). The local contrast normalization takes inputs in a small area of the lower layer,

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 142

Figure 5.4: The architecture of the visual model. This model has 3 sequences of
filtering, pooling and local contrast normalization layers. The learnable parameters
are the filtering layer. The filters are not shared, i.e., the network is nonconvolutional.

subtracts the mean and divides by the standard deviation.

The network was first trained using an unsupervised objective: trying to recon-

struct the input while keeping the neurons sparse. In this phase, the network was

trained on 20 million images randomly sampled from the web. Quoc Le resized a

given image so that its short dimension has 200 pixels. He then cropped a fixed size

200x200 pixel image right at the center of the resized image. This means a fraction

of the long dimension of the image may be discarded.

After unsupervised training, Quoc Le used ImageNet (Deng et al., 2009) to adjust

the features in the entire network. The ImageNet dataset has 22,000 categories and

14 million images. The number of images in each category is equal across categories.

The 22,000 categories are extracted from WordNet.

To speed up the supervised training of this network, Quoc Le made a simple

modification to the algorithm described in Le et al. (2012): adding a “bottleneck”

layer in between the last layer and the classifier to reduce the number of connections.

Quoc Le added one “bottleneck” layer which has 4,096 units in between the last layer

of the network and the softmax layer. This newly-added layer is fully connected to the

previous layer and has a linear activation function. The total number of connections

of this network is approximately 1.36 billion.

The network was trained again using the supervised objective of classifying the

22,000 classes in ImageNet. Most features in the networks are local, which allows

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 143

1. A woman and her dog watch the cameraman in their living with wooden floors.
2. A woman sitting on the couch while a black faced dog runs across the floor.
3. A woman wearing a backpack sits on a couch while a small dog runs on the hardwood floor next to her.
4. A women sitting on a sofa while a small Jack Russell walks towards the camera.
5. White and black small dog walks toward the camera while woman sits on couch, desk and computer seen
 in the background as well as a pillow, teddy bear and moggie toy on the wood floor.

1. A man in a cowboy hat check approaches a small red sports car.
2. The back and left side of a red Ferrari and two men admiring it.
3. The sporty car is admired by passer by.
4. Two men next to a red sports car in a parking lot.
5. Two men stand beside a red sports car.

Figure 5.5: Examples from the dataset of images and their sentence descriptions
Rashtchian et al. (2010). Sentence length varies greatly and different objects can be
mentioned first. Hence, models have to be invariant to word ordering.

model parallelism. Data parallelism by asynchronous SGD was also employed as in

Le et al. (2012). The entire training, both unsupervised and supervised, took 8 days

on a large cluster of machines. This network achieves 18.3% precision@1 on the full

ImageNet dataset (Release Fall 2011).

We will use the features at the bottleneck layer as the feature vector z of an

image. Each scaled and cropped image is presented to my network. The network

then performs a feedforward computation to compute the values of the bottleneck

layer. This means that every image is represented by a fixed length vector of 4,096

dimensions. Note that during training, no aligned sentence-image data was used and

the ImageNet classes do not fully intersect with the words used in the image-sentence

dataset.

5.1.3 Multimodal Mappings

The previous two sections described how I can map sentences into a d = 50-dimensional

space and how to extract high quality image feature vectors of 4096 dimensions. I

now define my final multimodal objective function for learning joint image-sentence

representations with these models. My training set consists of N images and their

feature vectors zi and each image has 5 sentence descriptions si1, . . . , si5 for which I

use the DT-RNN to compute vector representations. See Fig. 5.5 for examples from

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 144

the dataset. For training, I use a max-margin objective function which intuitively

trains pairs of correct image and sentence vectors to have high inner products and

incorrect pairs to have low inner products. Let vi = WIzi be the mapped image

vector and yij = DTRNNθ(sij) the composed sentence vector. I define S to be the

set of all sentence indices and S(i) the set of sentence indices corresponding to image

i. Similarly, I is the set of all image indices and I(j) is the image index of sentence

j. The set P is the set of all correct image-sentence training pairs (i, j). The ranking

cost function to minimize is then:

J(WI , θ) =
∑

(i,j)∈P

∑
c∈S\S(i)

max(0,∆− vTi yj + vTi yc)

+
∑

(i,j)∈P

∑
c∈I\I(j)

max(0,∆− vTi yj + vTc yj), (5.5)

where θ are the language composition matrices, and both second sums are over other

sentences coming from different images and vice versa. The hyperparameter ∆ is the

margin. The margin is found via cross validation on the dev set and usually around

1.

The final objective also includes the regularization term λ (‖θ‖2
2 + ‖WI‖F). Both

the visual model and the word vector learning require a very large amount of training

data and both have a huge number of parameters. Hence, to prevent overfitting, I

assume their weights are fixed and only train the DT-RNN parameters WI . If larger

training corpora become available in the future, training both jointly becomes feasible

and would present a very promising direction. I use a modified version of AdaGrad

(Duchi et al., 2011) for optimization of both WI and the DT-RNN as well as the

other baselines (except kCCA). I modify it by resetting all squared gradient sums to

1 every 5 epochs. With both images and sentences in the same multimodal space,

I can easily query the model for similar images or sentences by finding the nearest

neighbors in terms of negative inner products.

An alternative objective function is based on the squared loss

J(WI , θ) =
∑

(i,j)∈P

‖vi − yj‖2
2. (5.6)

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 145

This requires an alternating minimization scheme that first trains only WI , then fixes

WI and trains the DT-RNN weights θ and then repeats this several times. I find

that the performance with this objective function (paired with finding similar images

using Euclidean distances) is worse for all models than the margin loss of Eq. 5.5. In

addition kCCA should also be used with inner products in the multimodal space.

5.1.4 Experiments

I use the dataset of Rashtchian et al. (2010) which consists of 1000 images, each with

5 sentences. See Fig. 5.5 for examples.

I evaluate and compare the DT-RNN in three different experiments. First, I

analyze how well the sentence vectors capture similarity in visual meaning. Then I

analyze Image Search with Query Sentences : to query each model with a sentence in

order to find an image showing that sentence’s visual ‘meaning.’ The last experiment

Describing Images by Finding Suitable Sentences does the reverse search where I

query the model with an image and try to find the closest textual description in the

embedding space.

In my comparison to other methods I focus on those models that can also com-

pute fixed, continuous vectors for sentences. In particular, I compare to the RNN

model on constituency trees (as described in chapter 3), a standard recurrent neural

network; a simple bag-of-words baseline which averages the words. All models use the

word vectors provided by Huang et al. (2012) and do not update them as discussed

above. Models are trained with their corresponding gradients and backpropagation

techniques. A standard recurrent model is used where the hidden vector at word

index t is computed from the hidden vector at the previous time step and the current

word vector: ht = f(Whht−1 + Wxxt). During training, I take the last hidden vector

of the sentence chain and propagate the error into that. It is also this vector that is

used to represent the sentence.

Other possible comparisons are to the very different models mentioned in the

related work section. These models use a lot more task-specific engineering, such as

running object detectors with bounding boxes, attribute classifiers, scene classifiers,

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 146

CRFs for composing the sentences, etc. Another line of work uses large sentence-

image aligned resources (Kuznetsova et al., 2012), whereas I focus on easily obtainable

training data of each modality separately and a rather small multimodal corpus.

In the experiments I split the data into 800 training, 100 development and 100

test images. Since there are 5 sentences describing each image, I have 4000 training

sentences and 500 testing sentences. The dataset has 3020 unique words, half of

which only appear once. Hence, the unsupervised, pretrained semantic word vector

representations are crucial. Word vectors are not fine-tuned during training. Hence,

the main parameters are the DT-RNN’s Wl·,Wr· or the semantic matrices of which

there are 141 and the image mapping WI . For both DT-RNNs the weight matrices are

initialized to block identity matrices plus Gaussian noise. Word vectors and hidden

vectors are set o length 50. Using the development split, I found λ = 0.08 and the

learning rate of AdaGrad to 0.0001. The best model uses a margin of ∆ = 3.

Inspired by Socher and Fei-Fei (2010) and Hodosh et al. (2013) I also compare to

kernelized Canonical Correlation Analysis (kCCA). I use the average of word vectors

for describing sentences and the same powerful image vectors as before. I use the code

of Socher and Fei-Fei (2010). Technically, one could combine the recently introduced

deep CCA (Andrew et al., 2013) and train the recursive neural network architectures

with the CCA objective. I leave this to future work. With linear kernels, kCCA does

well for image search but is worse for sentence self similarity and describing images

with sentences close-by in embedding space. All other models are trained by replacing

the DT-RNN function in Eq. 5.5.

Similarity of Sentences Describing the Same Image

In this experiment, I first map all 500 sentences from the test set into the multi-modal

space. Then for each sentence, I find the nearest neighbor sentences in terms of inner

products. I then sort these neighbors and record the rank or position of the nearest

sentence that describes the same image. If all the images were very unique and the

visual descriptions close-paraphrases and consistent, I would expect a very low rank.

However, usually a handful of images are quite similar (for instance, there are various

images of airplanes flying, parking, taxiing or waiting on the runway) and sentence

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 147

Sentences Similarity for Image
Model Mean Rank
Random 101.1
BoW 11.8
CT-RNN 15.8
Recurrent NN 18.5
kCCA 10.7
DT-RNN 11.1
SDT-RNN 10.5

Image Search
Model Mean Rank
Random 52.1
BoW 14.6
CT-RNN 16.1
Recurrent NN 19.2
kCCA 15.9
DT-RNN 13.6
SDT-RNN 12.5

Describing Images
Model Mean Rank
Random 92.1
BoW 21.1
CT-RNN 23.9
Recurrent NN 27.1
kCCA 18.0
DT-RNN 19.2
SDT-RNN 16.9

Table 5.1: Top Left: Comparison of methods for sentence similarity judgments.
Lower numbers are better since they indicate that sentences describing the same image
rank more highly (are closer). The ranks are out of the 500 sentences in the test set.
Top Right: Comparison of methods for image search with query sentences. Shown
is the average rank of the single correct image that is being described. Bottom:
Average rank of a correct sentence description for a query image.

descriptions can vary greatly in detail and specificity for the same image.

Table 5.1 (top left) shows the results. Averaging the high quality word vectors

already captures a lot of similarity. The chain structure of a standard recurrent

neural net performs worst since its representation is dominated by the last words in

the sequence which may not be as important as earlier words.

Image Search with Query Sentences

This experiment evaluates how well I can find images that display the visual meaning

of a given sentence. I first map a query sentence into the vector space and then find

images in the same space using simple inner products. As shown in Table 5.1 (top

right), the new DT-RNN outperforms all other models.

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 148

A gray convertible sports car is parked in front of the trees.
A close-up view of the headlights of a blue old-fashioned car.
Black shiny sports car parked on concrete driveway.
Five cows grazing on a patch of grass between two roadways.

A jockey rides a brown and white horse in a dirt corral.
A young woman is riding a Bay hose in a dirt riding-ring.
A white bird pushes a miniature teal shopping cart.
A person rides a brown horse.

A motocross bike with rider flying through the air.
White propeller plane parked in middle of grassy field.
The white jet with its landing gear down flies in the blue sky.
An elderly woman catches a ride on the back of the bicycle.

A green steam train running down the tracks.
Steamy locomotive speeding thou the forest.
A steam engine comes down a train track near trees.
A double decker bus is driving by Big Ben in London.

People in an outrigger canoe sail on emerald green water.
Two people sailing a small white sail boat.
behind a cliff, a boat sails away
Tourist move in on Big Ben on a typical overcast London day.

A group of people sitting around a table on a porch.
A group of four people walking past a giant mushroom.
A man and women smiling for the camera in a kitchen.
A group of men sitting around a table drinking while a man behind
stands pointing.

Figure 5.6: Images and their sentence descriptions assigned by the DT-RNN. Green
sentences are correct, red ones are close to the image vector but incorrect.

Describing Images by Finding Suitable Sentences

Lastly, I repeat the above experiments but with roles reversed. For an image, I search

for suitable textual descriptions again simply by finding close-by sentence vectors in

the multi-modal embedding space. Table 5.1 (bottom) shows that the DT-RNN again

outperforms related models. Fig. 5.6 shows sentences that were found by using the

image vector for search. The average ranking of 25.3 for a correct sentence description

is out of 500 possible sentences. A random assignment would give an average ranking

of 100.

Analysis: Squared Error Loss vs. Margin Loss

I analyze the influence of the multimodal loss function on the performance. In addi-

tion, I compare using Euclidean distances instead of inner products. Table 5.2 shows

that performance is worse for all models in this setting.

Analysis: Recall at n vs Mean Rank

Hodosh et al. (2013) and other related work use recall at n as an evaluation measure.

Recall at n captures how often one of the top n closest vectors were a correct image or

sentence and gives a good intuition of how a model would perform in a ranking task

that presents n such results to a user. Below, I compare three commonly used and

high performing models: bag of words, kCCA and my SDT-RNN on this different

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 149

Image Search
Model mRank
BoW 24.7
CT-RNN 22.2
Recurrent NN 28.4
kCCA 13.7
DT-RNN 13.3
SDT-RNN 15.8

Describing Images
Model mRank
BoW 30.7
CT-RNN 29.4
Recurrent NN 31.4
kCCA 38.0
DT-RNN 26.8
SDT-RNN 37.5

Table 5.2: Results of multimodal ranking when models are trained with a squared
error loss and using Euclidean distance in the multimodal space. Better performance
is reached for all models when trained in a max-margin loss and using inner products
as in the previous table.

Image Search
Model mRank 4 R@1 5 R@5 5 R@10 5
BoW 14.6 15.8 42.2 60.0
kCCA 15.9 16.4 41.4 58.0
SDT-RNN 12.5 16.4 46.6 65.6

Describing Images
BoW 21.1 19.0 38.0 57.0
kCCA 18.0 21.0 47.0 61.0
SDT-RNN 16.9 23.0 45.0 63.0

Table 5.3: Evaluation comparison between mean rank of the closest correct image or
sentence (lower is better 4) with recall at different thresholds (higher is better, 5).
With one exception (R@5, bottom table), the SDT-RNN outperforms the other two
models and all other models I did not include here.

metric. Table 5.3 shows that the measures do correlate well and the SDT-RNN also

performs best on the multimodal ranking tasks when evaluated with this measure.

Error Analysis

In order to understand the main problems with the composed sentence vectors, I

analyze the sentences that have the worst nearest neighbor rank between each other.

I find that the main failure mode of the SDT-RNN occurs when a sentence that should

describe the same image does not use a verb but the other sentences of that image

do include a verb. For example, the following sentence pair has vectors that are very

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 150

far apart from each other even though they are supposed to describe the same image:

1. A blue and yellow airplane flying straight down while emitting white smoke

2. Airplane in dive position

Generally, as long as both sentences either have a verb or do not, the SDT-RNN is

more robust to different sentence lengths than bag of words representations.

Model Analysis: Semantic Composition Matrices

The best model uses composition matrices based on semantic relationships from the

dependency parser. I give some insights into what the model learns by listing the

composition matrices with the largest Frobenius norms. Intuitively, these matrices

have learned larger weights that are being multiplied with the child vector in the tree

and hence that child will have more weight in the final composed parent vector. In

decreasing order of Frobenius norm, the relationship matrices are: nominal subject,

possession modifier (e.g. their), passive auxiliary, preposition at, preposition in front

of, passive auxiliary, passive nominal subject, object of preposition, preposition in

and preposition on.

The model learns that nouns are very important as well as their spatial preposi-

tions and adjectives.

5.1.5 Related Work

The presented model is connected to several areas of NLP and vision research, each

with a large amount of related work.

Semantic Vector Spaces and Their Compositionality. For related work in

this area, see Sec. 4.2.5. In this section, I compared to supervised compositional

models that can learn task-specific vector representations such as constituency tree

recursive neural networks (see chapter 3), chain structured recurrent neural networks

and other baselines.

Multimodal Embeddings. Multimodal embedding methods project data from

multiple sources such as sound and video (Ngiam et al., 2011) or images and text.

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 151

Socher and Fei-Fei (2010) project words and image regions into a common space

using kernelized canonical correlation analysis to obtain state of the art performance

in annotation and segmentation. Similar to my work, they use unsupervised large

text corpora to learn semantic word representations. Among other recent work is that

by Srivastava and Salakhutdinov (2012) who developed multimodal Deep Boltzmann

Machines. Similar to their work, I use techniques from the broad field of deep learning

to represent images and words.

Recently, single word vector embeddings have been used for zero shot learning

(Socher et al., 2013c). Mapping images to word vectors enabled this system to classify

images as depicting objects such as “cat” without seeing any examples of this class.

Related work has also been presented at NIPS (Socher et al., 2013b; Frome et al.,

2013). The model in this section moves zero-shot learning beyond single categories

per image and extends it to unseen phrases and full length sentences, making use of

similar ideas of semantic spaces grounded in visual knowledge.

Detailed Image Annotation. Interactions between images and texts is a grow-

ing research field. Early work in this area includes generating single words or fixed

phrases from images (Duygulu et al., 2002; Barnard et al., 2003) or using contextual

information to improve recognition (Gupta and Davis, 2008; Torralba et al., 2010).

Apart from a large body of work on single object image classification (Le et al.,

2012), there is also work on attribute classification and other mid-level elements

(Kumar et al., 2009), some of which I hope to capture with my approach as well.

My work is close in spirit to recent work on describing images with more detailed,

longer textual descriptions. In particular, Yao et al. (2010) describe images using

hierarchical knowledge and humans in the loop. In contrast, my work does not re-

quire human interactions. Farhadi et al. (2010) and Kulkarni et al. (2011), on the

other hand, use a more automatic method to parse images. For instance, the former

approach uses a single triple of objects estimated for an image to retrieve sentences

from a collection written to describe similar images. It forms representations to de-

scribe 1 object, 1 action, and 1 scene. Kulkarni et al. (2011) extends their method

to describe an image with multiple objects. None of these approaches have used a

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 152

compositional sentence vector representation and they require specific language gen-

eration techniques and sophisticated inference methods. Since my model is based on

neural networks inference it is fast and simple. Kuznetsova et al. (2012) use a very

large parallel corpus to connect images and sentences. Feng and Lapata (2013) use a

large dataset of captioned images and experiments with both extractive (search) and

abstractive (generation) models.

Most related is the very recent work of Hodosh et al. (2013). They too evaluate

using a ranking measure. In my experiments, I compare to kernelized Canonical

Correlation Analysis which is the main technique in their experiments. Karpathy

et al. (2014) also use CNNs and deep learning but embed dependency tree fragments

and use a max-margin objective to find corresponding bounding boxes in the image.

The next section is the last section to introduce another type of RNN model: One

that is based on fixed, input-independent tree structures.

5.2 Multiple Fixed Structure Trees - For 3d Ob-

ject Recognition

All RNN models so far in this thesis assumed that tree structures are input dependent

and that there is only a single forward tree. Unfortunately, the input dependence and

different tree structures prevent the models from being implemented in a very efficient

manner and (in the language case) require a parser. Taking inspiration from convo-

lutional neural networks (LeCun et al., 1998), I extend the RNN family by allowing

multiple RNNs, each acting essentially as a filter to capture certain phenomena.

In this section, I use 3d object recognition as a motivating application to develop

a fixed tree RNN. Object recognition is one of the hardest problems in computer

vision and important for making robots useful in home environments. New sensing

technology, such as the Kinect, that can record high quality RGB and depth images

(RGB-D) has now become affordable and could be combined with standard vision

systems in household robots. The depth modality provides useful extra information to

the complex problem of general object detection since depth information is invariant

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 153

to lighting or color variations, provides geometrical cues and allows better separation

from the background. Most recent methods for object recognition with RGB-D images

use hand-designed features such as SIFT for 2d images (Lai et al., 2011), Spin Images

(Johnson, 1997) for 3D point clouds, or specific color, shape and geometry features

(Koppula et al., 2011). In this section, I introduce a convolutional-recursive deep

learning model for object recognition that can learn from raw RGB-D (color and

depth) images. Fig. 5.7 outlines the approach.

My model starts with raw RGB and depth images and first separately extracts

features from them. Each modality is first given to a single convolutional neural net

layer (CNN, LeCun and Bengio (1995)) which provides useful translational invariance

of low level features such as edges and allows parts of an object to be deformable to

some extent. The pooled filter responses are then given to an RNN which can learn

compositional features and part interactions.

My previous work on RNNs in natural language processing and computer vision

(as described in Sec. 3.1) (i) used a different tree structure for each input, (ii) em-

ployed a single RNN with one set of weights, (iii) restricted tree structures to be

strictly binary, and (iv) trained the RNN with backpropagation through structure

(see Sec. 3.1.4 for details). I expand and investigate the space of possible RNN-based

architectures in these four dimensions by using fixed tree structures across all images,

using multiple RNNs on the same input and allowing n-ary trees. I show that because

of the CNN layer, fixing the tree structure does not hurt performance and it allows

us to speed up recognition. Similar to other work in deep learning (Coates and Ng,

2011; Le et al., 2012), I show that performance of RNN models can improve with an

increasing number of features. The hierarchically composed RNN features of each

modality are concatenated and given to a joint softmax classifier.

I further demonstrate that RNNs with random weights can also produce high

quality features. So far, random weights have only been shown to work for convolu-

tional neural networks (Jarrett et al., 2009; Saxe et al., 2011). Because the supervised

training reduces to optimizing the weights of the final softmax classifier, a large set of

RNN architectures can quickly be explored. By combining the above ideas, I obtain a

state of the art system for classifying 3D objects which is extremely fast to train and

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 154

highly parallelizable at test time. The main bottleneck of my method is the single

CNN layer. However, fast GPU implementations for CNNs exist (Ciresan et al., 2011;

Farabet et al., 2010; Krizhevsky et al., 2012).

Multiple RNNs Multiple RNNs

Convolution

Label: Coffee Mug

Filter Responses get pooled

K
K

K filters
4 pooling regions

RGB CNN

Merging of pooled vectors Merging of pooled vectors

K

Depth CNN

Convolution

K

Softmax Classifier

Figure 5.7: An overview of the model: A single CNN layer extracts low level features
from RGB and depth images. Both representations are given as input to a set of RNNs
with random weights. Each of the many RNNs then recursively maps the features
into a lower dimensional space. The concatenation of all the resulting vectors forms
the final feature vector for a softmax classifier.

I first briefly describe the unsupervised learning of filter weights and their convo-

lution to obtain low level features. Next I give details of how multiple random RNNs

can be used to obtain high level features of the entire image. In my experiments

I show quantitative comparisons of different models, analyze model ablations and

describe my state of the art results on the RGB-D dataset of Lai et al. (2011).

5.2.1 Convolutional-Recursive Neural Networks

I focus on the RGB-D dataset of Lai et al. (2011) which consists of 51 object classes.

Each class has about 5 instances and each instance has roughly 600 images from

different viewpoints. All images are resized to dI × dI = 148 × 148 pixels. More

details on the dataset and pre-processing are in the experiments section.

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 155

Filters: RGB Depth Gray
scale

Figure 5.8: Visualization of the k-means filters used in the CNN layer after unsuper-
vised pre-training: (left) Standard RGB filters (best viewed in color) capture edges
and colors. When the method is applied to depth images (center) the resulting filters
have sharper edges which arise due to the strong discontinuities at object boundaries.
The same is true, though to a lesser extent, when compared to filters trained on gray
scale versions of the color images (right).

Unsupervised Pre-training of CNN Filters

I follow the procedure described by Coates and Ng (2011). First, random patches

are extracted into two sets, one for each modality (RGB and depth). Each set of

patches is then normalized and whitened. The pre-processed patches are clustered

by simply running k-means. Fig. 5.8 shows the resulting filters for both modalities.

They capture standard edge and color features. One interesting result when applying

this method to the depth channel is that the edges are much sharper. This is due to

the large discontinuities between object boundaries and the background. While the

depth channel is often quite noisy most of the features are still smooth.

A Single CNN Layer

To generate features for the RNN layer, a CNN architecture is chosen for its trans-

lational invariance properties. The main idea of CNNs is to convolve filters over the

input image in order to extract features. My single layer CNN is similar to the one

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 156

proposed by Jarrett et al. (2009) and consists of a convolution, followed by rectifi-

cation and local contrast normalization (LCN). LCN was inspired by computational

neuroscience and is used to contrast features within a feature map, as well as across

feature maps at the same spatial location (Jarrett et al., 2009; Pinto et al., 2008; Le

et al., 2012).

I convolve each image of size (height and width) dI with K square filters of size

dP , resulting in K filter responses, each of dimensionality dI − dP + 1. I then average

pool them with square regions of size dl = 10 and a stride size of s = 5, to obtain

a pooled response with width and height equal to r = (dI − dl)/s + 1 = 27. So the

output X of the CNN layer applied to one image is a K × r × r dimensional 3D

matrix. I apply this same procedure to both color and depth images separately.

Fixed-Tree Recursive Neural Networks

The idea of RNNs in this thesis is to learn hierarchical feature representations by

applying the same neural network recursively in a tree structure. In the case of this

section, the leaf nodes of the tree are K-dimensional vectors (the result of the CNN

pooling over an image patch repeated for all K filters) and there are r2 many of them.

In all previous sections, the RNN tree structures depended on the input. While

this allows for more flexibility, I found that for the task of object classification and in

conjunction with a CNN layer it was not necessary for obtaining high performance.

Furthermore, the search over optimal trees slows down the method considerably as

one can not easily parallelize the search or make use of parallelization of large matrix

products. The latter could benefit immensely from new multicore hardware such as

GPUs. In this section, I focus on fixed-trees which I design to be balanced. Previous

work also only combined pairs of vectors. I generalize my RNN architecture to allow

each layer to merge blocks of adjacent vectors instead of only pairs.

I start with a 3D matrix X ∈ RK×r×r for each image (the columns are K-

dimensional). I define a block to be a list of adjacent column vectors which are

merged into a parent vector p ∈ RK . In the following I use only square blocks for

convenience. Blocks are of size b× b×K. For instance, if I merge vectors in a block

with b = 3, I get a total size 3× 3× 128 and a resulting list of vectors (x1,
..., x9). In

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 157

general, I have b2 many vectors in each block. The neural network for computing the

parent vector is

p = f

W

x1

. . .

xb2


 , (5.7)

where the parameter matrix W ∈ RK×b2K , f is a nonlinearity such as tanh. I omit

the bias term which turns out to have no effect in the experiments below. Eq. 5.7

will be applied to all blocks of vectors in X until I have a new set of vectors which

are now one layer above the leaf nodes. Generally, there will be (r/b)2 many parent

vectors p, forming a new matrix P1. The vectors in P1 will again be merged in form

blocks just as those in matrix X using Eq. 5.7 with the same tied weights resulting

in matrix P2. This procedure continues until only one parent vector remains.

Fig. 5.9 shows an example of a pooled CNN output of size 4× 4×K and a RNN

tree structure with blocks of 4 children.

The model so far has been unsupervised. However, my original task is to classify

each block into one of many object categories. Therefore, I use the top vector Ptop

as the feature vector to a softmax classifier. In order to minimize the cross entropy

error of the softmax, I could backpropagate through the recursive neural network (see

Sec. 3.1.4) and convolutional layers (LeCun and Bengio, 1995). In practice, this is

very slow and I will discuss alternatives in the next section.

Multiple Random RNNs

Previous work used only a single RNN. I can actually use the 3D matrix X as

input to a number of RNNs. Each of N RNNs will output a K-dimensional vector.

After I forward propagate through all the RNNs, I concatenate their outputs to a

NK-dimensional vector which is then given to the softmax classifier.

Instead of taking derivatives of the W matrices of the RNNs which would require

backprop through structure as described in Sec. 3.1.4 and used in all previous sections,

I found that even RNNs with random weights produce high quality feature vectors.

Similar results have been found for random weights in the closely related CNNs (Saxe

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 158

x1 x2

x3 x4

p1 p2

p3 p4

p

W WWW

W

K
filters

Figure 5.9: Recursive Neural Network applied to blocks: At each node, the same
neural network is used to compute the parent vector of a set of child vectors. The
original input matrix is the output of a pooled convolution.

et al., 2011).

5.2.2 Experiments

All experiments of this section are carried out on the recent RGB-D dataset of Lai

et al. (2011). There are 51 different classes of household objects and 300 instances

of these classes. Each object instance is imaged from 3 different angles resulting in

roughly 600 images per instance. The dataset consists of a total of 207,920 RGB-D

images. I subsample every 5th frame of the 600 images resulting in a total of 120

images per instance.

In this experiment, I focus on the problem of category recognition and I use the

same setup as Lai et al. (2011) and the 10 random splits they provide. All development

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 159

is carried out on a separate split and model ablations are run on one of the 10 splits.

For each split’s test set I sample one object from each class resulting in 51 test objects,

each with about 120 independently classified images. This leaves about 34,000 images

for training my model. Before the images are given to the CNN they are resized to

be dI = 148.

Unsupervised pre-training for CNN filters is performed for all experiments by

using k-means on 500,000 image patches randomly sampled from each split’s training

set. Before unsupervised pre-training, the 9 × 9 × 3 patches for RGB and 9 × 9

patches for depth are individually normalized by subtracting the mean and divided

by the standard deviation of its elements. In addition, ZCA whitening is performed

to de-correlate pixels and get rid of redundant features in raw images (Hyvärinen and

Oja, 2000). A valid convolution is performed with filter bank size K = 128 and filter

width and height of 9. Average pooling is then performed with pooling regions of size

10 and stride size 5 to produce a 3D matrix of size 27× 27× 128 for each image.

Each RNN has non-overlapping child sizes of 3 × 3 applied spatially. This leads

to the following matrices at each depth of the tree: X ∈ R128×27×27 to P1 ∈ R128×9×9

to P1 ∈ R128×3×3 to finally P3 ∈ R128.

This is repeated for a depth of 3 which produces a 128 dimensional feature vector

at the top of each RNN. I use 128 randomly initialized RNNs in both modalities.

The combination of RGB and depth is done by concatenating the final features which

have 2× 1282 = 32, 768 dimensions.

Comparison to Other Methods

In this section I compare my model to related models in the literature. Table 5.4

lists the main accuracy numbers and compares to the published results in Lai et al.

(2011). Recent work by Bo et al. (2011) investigates multiple kernel descriptors on

top of various features, including 3D shape, physical size of the object, depth edges,

gradients, kernel PCA, local binary patterns,etc. In contrast, all my features are

learned in an unsupervised way from the raw color and depth images. I outperform

all but one method (Bo et al., 2012) which makes additional use of surface normals

and gray scale as additional inputs on top of RGB and depth.

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 160

Classifier Extra Features for 3D;RGB 3D RGB Both
Linear SVM
(Lai et al.,
2011)

Spin Images, efficient match kernel
(EMK), random Fourier sets, width,
depth, height; SIFT, EMK, texton his-
togram, color histogram

53.1±1.7 74.3±3.3 81.9±2.8

Kernel SVM
(Lai et al.,
2011)

same as above 64.7±2.2 74.5±3.1 83.9±3.5

Random Forest
(Lai et al.,
2011)

same as above 66.8±2.5 74.7±3.6 79.6±4.0

SVM (Bo et al.,
2011)

3D shape, physical size of the object,
depth edges, gradients, kernel PCA,
local binary patterns,multiple depth
kernels

78.8±2.7 77.7±1.9 86.2±2.1

CKM (Blum
et al., 2012)

SURF interest points – – 86.4±2.3

SP+HMP (Bo
et al., 2012)

surface normals 81.2±2.3 82.4±3.1 87.5±2.9

CNN-RNN – 78.9±3.8 80.8±4.2 86.8±3.3

Table 5.4: Comparison to multiple related approaches. While other approaches use
significantly more information (including the actual physical size of the object), my
fully learned features and model perform competitively.

Model Analysis

I analyze my model through several ablations. I picked one of the splits as my

development fold and I focus on depth data only. Most results carry over to the RGB

case.

Two Layer CNN vs. CNN-RNN. Fig. 5.10 (left) shows a comparison of

two different pre-training options for the first layer CNN filter. The two layer CNN

does not benefit from filters initialized with k-means. The table also shows that the

combination of a single layer CNN with multiple random RNNs outperforms a 2 layer

CNN architecture.

Number of random RNNs: Fig. 5.10 (center) shows that increasing the number

of random RNNs improves performance.

RGB & depth combinations and features: Fig. 5.10 (right) shows that com-

bining RGB and depth features from RNNs improves performance. The two modal-

ities complement each other and produce features that are independent enough so

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 161

that the classifier can benefit from their combination.

Global autoencoder on voxels (leaf nodes only, no RAE). In this experi-

ment I investigate whether the recursive structure learns better features than simply

using a single layer of features on raw pixels. Many methods such as those of Coates

and Ng (2011) show remarkable results with a single very wide layer. The global

autoencoder achieves only 61.1%, (it is overfitting at 93.3% training accuracy and I

cross validated over the number of hidden units and sparsity parameters). This shows

that even random recursive neural nets can clearly capture more of the underlying

class structure in its learned vector representations than a single layer autoencoder.

Filters 2nd
Layer

Acc.

Jarrett et al.
(2009)

CNN 77.66

k-means
(Coates and
Ng, 2011)

CNN 78.65

k-means
(Coates and
Ng, 2011)

RNN 80.15

1816 32 64 128
40

50

60

70

80

90

Number of RNNs

A
cc

ur
ac

y
(%

)

RGB DepthRGB+Depth
70

75

80

85

90

Figure 5.10: Model analysis on the development split (left and center use rgb only).
Left: Comparison of variants for filters of the first CNN layer and of choices of the
second layer. The best performance is achieved with filters trained by k-means and
when RNNs are used on top of the first CNN layer. Center: Increasing the number of
random RNNs improves performance. Right: Combining both modalities improves
performance to 88% on the development split.

Error Analysis

Fig. 5.11 shows my confusion matrix across all 51 classes. Most model confusions

are very reasonable showing that recursive deep learning methods on raw pixels and

point clouds can give interpretable results.

Fig. 5.12 shows 4 pairs of often confused classes. Both garlic and mushrooms

have very similar appearances and colors. Water bottles and shampoo bottles in

particular are problematic because the IR sensors do not properly reflect from see

through surfaces.

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 162

ap
pl

e
ba

ll
ba

na
na

be
ll

pe
pp

er
bi

nd
er

bo
w

l
ca

lc
ul

at
or

ca
m

er
a

ca
p

ce
llp

ho
ne

ce
re

al
 b

ox
co

ffe
e

m
ug

co
m

b
dr

y
ba

tte
ry

fla
sh

lig
ht

fo
od

 b
ag

fo
od

 b
ox

fo
od

 c
an

fo
od

 c
up

fo
od

 ja
r

ga
rli

c
gl

ue
 s

tic
k

gr
ee

ns
ha

nd
 to

w
el

in
st

an
t n

oo
dl

es
ke

yb
oa

rd
kl

ee
ne

x
le

m
on

lig
ht

bu
lb

lim
e

m
ar

ke
r

m
us

hr
oo

m
no

te
bo

ok
on

io
n

or
an

ge
pe

ac
h

pe
ar

pi
tc

he
r

pl
at

e
pl

ie
rs

po
ta

to
ru

bb
er

 e
ra

se
r

sc
is

so
rs

sh
am

po
o

so
da

 c
an

sp
on

ge
st

ap
le

r
to

m
at

o
to

ot
hb

ru
sh

to
ot

hp
as

te
w

at
er

 b
ot

tle

apple
ball

banana
bell pepper

binder
bowl

calculator
camera

cap
cellphone

cereal box
coffee mug

comb
dry battery

flashlight
food bag
food box
food can
food cup
food jar

garlic
glue stick

greens
hand towel

instant noodles
keyboard

kleenex
lemon

lightbulb
lime

marker
mushroom

notebook
onion

orange
peach

pear
pitcher

plate
pliers

potato
rubber eraser

scissors
shampoo
soda can

sponge
stapler
tomato

toothbrush
toothpaste

water bottle

Figure 5.11: Confusion Matrix of my full RAE model on images and 3D data. The
ground truth labels are on the y-axis and the predicted labels on the x-axis. The
largest mistakes are between (a) garlic and mushroom (b) marker and toothpaste
and (c) water bottle and shampoo.

5.2.3 Related Work

There has been great interest in object recognition and scene understanding using

RGB-D data. Silberman and Fergus (2011) have published a 3D dataset for full

scene understanding. Koppula et al. (2011) also recently provided a new dataset for

indoor scene segmentation. The dataset I am using was introduced by Lai et al.

(2011).

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 163

Figure 5.12: Examples of confused classes: Shampoo bottle and water bottle, mush-
rooms labeled as garlic, pitchers classified as caps due to shape and color similarity,
white caps classified as kleenex boxes at certain angles.

The most common approach today for standard object recognition is to use well-

designed features based on orientation histograms such as SIFT, SURF (Bay et al.,

2008) or textons and give them as input to a classifier such as a random forest.

Despite their success, they have several shortcomings such as being only applicable

to one modality (grey scale images in the case of SIFT), not adapting easily to new

modalities such as RGB-D or to varying image domains. There have been some

attempts to modify these features to colored images via color histograms (Abdel-

Hakim and Farag, 2006) or simply extending SIFT to the depth channel (Lai et al.,

2011). More advanced methods that generalize these ideas and can combine several

important RGB-D image characteristics such as size, 3D shape and depth edges are

kernel descriptors (Bo et al., 2011).

Another solution to the above mentioned problems is to employ unsupervised

feature learning methods (Hinton and Salakhutdinov, 2006; Bengio, 2009; Ranzato

et al., 2007) (among many others) which have made large improvements in object

recognition. While many deep learning methods exist for learning features from

images, no neural network architectures have yet been investigated for 3D point cloud

data. Very recently, Blum et al. (2012) introduced convolutional k-means descriptors

CHAPTER 5. COMPOSITIONAL TREE STRUCTURES VARIANTS 164

(CKM) for RGB-D data. They use SURF interest points and learn features using k-

means similar to Coates and Ng (2011). Their work is similar to ours in that they also

learn features in an unsupervised way. One of the main advantages of my algorithm

is speed. Unfortunately, they do not provide running times for their algorithm but

due to the necessity to find interest points and running convolution with hundreds of

filters, it is likely slower than the RAE proposed here.

Another related line of work is about spatial pyramids in object classification, in

particular the pyramid matching kernel (Grauman and Darrell, 2005). The similarity

is mostly in that my model also learns a hierarchical image representation that can

be used to classify objects.

Recent work by Bo et al. (2012) uses sparse coding to learn dictionaries from

8 different channels including grayscale intensity, RGB, depth scalars, and surface

normals. Features are then used in a hierarchal matching pursuit algorithm which

consists of two layers, each with three modules: batch orthogonal matching pursuit,

pyramid max pooling, and contrast normalization. This results in a feature vector

size of 188,300 dimensions which is used for classification.

Lastly, I compared to the related RNN models of this thesis.

5.3 Conclusion

This concludes the chapter on tree structure variants for RNNs. Technically, RNNs

can be used on any acyclic directed graph but I have focused here on the more common

subtype of trees. Dependency trees are particularly well suited for many downstream

semantic tasks and can be computed very efficiently. The DT-RNNs can also deal

with multiple children instead of only working on binary trees. Having the same

tree structure for multiple RNNs has worked well for 3d object classification. Recent

success with convolutional neural networks (Kalchbrenner et al., 2014) for language

problems suggest that this route is also potentially promising for sentence processing.

Chapter 6

Conclusions

In this dissertation I introduced a new family of recursive deep learning algorithms

for accurate, large scale natural language processing. Chapter 3 introduced various

objective functions. The choice of objective function is the first of three explored axes

of variation for this model family. As in most machine learning models, an objective,

or cost function is optimized in order to improve a certain prediction on the training

data. The proposed objective functions solved general tasks such as structure predic-

tion, structured classification or structure compression (with unfolding recursive auto

encoders). The specific tasks that these models obtained state of the art performance

on included scene image parsing, sentiment analysis and paraphrase detection. After

additional analysis, I believe that the Euclidean-distance-based reconstruction objec-

tives act largely as a regularizer and other supervised objective functions that guide

the learning process are very important. However, this objective function can be very

usefully employed when vectors that are not the same as the inputs are reconstructed.

This is the case for machine translation (Li et al., 2013).

Chapter 4 turned to the second major design choice for RNNs: the composition

function. There are different motivations for the various choices. The matrix vector

RNN (MV-RNN) has the most parameters and is largely linguistically motivated,

giving each word the power to modify the meaning of its neighboring words. It requires

a large dataset and learning is slower because each parent computation requires 3

matrix-vector products. Since there is no good way to initialize word matrices in

165

CHAPTER 6. CONCLUSIONS 166

an unsupervised way this model will require more future work. Another variant of

the idea to use different compositions depending on the words being combined is

the syntactically untied RNN (SU-RNN). In that model the composition function

depends on the syntactic category of the children being combined. This can be seen

as a group prior over the composition function, essentially tying the composition

functions of multiple words in the MV-RNN model. Both of these are linguistically

motivated models. The last model, the recursive neural tensor network (RNTN) on

the other hand is based on the assumption that there can be a single, albeit very

powerful, composition function. The idea of the tensor is to allow multiple, mediated

multiplicative interactions between word vectors. This has the huge advantage of

being able to use unsupervised learned word vectors. Each slice has the ability to

pick up on different aspects of the word vector composition. I believe that this model

is the most promising model put forward in my thesis.

Finally, chapter 5 explored different types of tree structures. All but one of the

models in this thesis are based on constituency trees. However, the dependency tree

model has the main advantage of capturing more semantic structure and being less de-

pendent on the syntactic form of a sentence. The dependency tree model (DT-RNN)

is also not restricted to only binary trees nor is it forcing the hidden nonterminal

layers to be of the same size as the word vectors. These are small but useful im-

provements over previous models. While the RNN for scene image parsing and all

the language RNNs have input-specific (parse) tree structures, I show in Sec. 5.2 that

using the same tree structure for every input can also work well in RNNs. Similar to

having multiple filters in a CNN, one can also have multiple RNN “filters.” Similar

ideas have shown recent improvements in convolutional architectures (Kalchbrenner

et al., 2014). However, the main drawback is that a detailed understanding of how

each word influences the meaning of the phrase is lost and more semantic analyses

such as those historically performed by lambda calculus based approaches cannot in-

tuitively be solved in CNN or fixed tree frameworks. I will discuss this in the outlook

below. In summary, I believe that for many natural language tasks, dependency trees

provide the most suitable structures for semantic understanding with RNN models.

I believe that the most promising future model is to combine the ideas of the RNTN

CHAPTER 6. CONCLUSIONS 167

the use of dependency tree structures.

Table 6.1 summarizes the composition functions and training objective functions

for all RNN models of this thesis. Table 6.2 gives an overview of RNN model prop-

erties such as whether they are used for parsing (finding the tree structure); whether

they use trees that are input dependent; have only been explored with binary trees; are

supervised, semi-supervised or unsupervised; and how many parameters they have.

The variables that determine the total number of parameters are: n - the dimension-

ality of word and phrase vectors (usually around 50), V - the size of the vocabulary

(usually around 100,000), C - the number of classes (2-50), S - the number of syn-

tactic category pairs (882 in the case of the SU-RNN), r - the rank of all the word

matrices (only applicable for the MV-RNN, set to around 3 in the experiments), D

- the set of all syntactic dependency relationships (around 42), R - the number of

random RNNs (only applicable for the CRNN which used multiple random RNNs to

extract features). Lastly, Table 6.3 lists the tasks each model has been applied to as

well as advantages and disadvantages of all the models.

One major disadvantage that all the RNN models for NLP share is that they

require parsing which can be slow and is not always accurate. I have not extensively

analyzed how much parsing errors affect the overall performance. However, the models

are surprisingly robust and accurate even when using trees from older parsers with a

labeled F1 several per cent below 90%. Another disadvantage caused by input-specific

tree structures is that the model is not easily parallelizable on current graphics cards.

A potential avenue to remedy this is to use the same tree structure for all sentences

of the same length as described in the previous paragraph.

One can also argue that a single vector may be insufficient to store all the infor-

mation of multiple word vectors. However, if the nonterminal vectors can be of a

higher dimensionality than the word vectors, this can easily be fixed. A more funda-

mental question is whether meaning should be represented in terms of vectors in Rn

at all. There are many apparent advantages for vector space semantics: great em-

pirical performance across multiple different tasks, the ability to capture similarity

judgments that correlate well with those of humans, sharing of statistical strength

because similar words can lead to similar predictions (which is an effect that cannot

CHAPTER 6. CONCLUSIONS 168

Model Composition p(a, b) = f(·) Objective

RNN Sec. 3.1 W

[
a

b

]
max-margin structure pre-
diction with linear scores

RAE Sec. 3.2 W

[
a

b

]
tree construction with re-
construction of child nodes
+ cross-entropy error for
classification

URAE Sec. 3.3 W

[
a

b

]
reconstruction of all leafs
below node p

SU-RNN
Sec. 4.1

W syn(a,b)

[
a

b

]
max-margin structure pre-
diction with linear scores

MV-RNN
Sec. 4.2

W

[
Ba

Ab

]
cross-entropy error for clas-
sification

RNTN Sec. 4.3 W

[
a

b

]
+

[
a

b

]T
V [1:d]

[
a

b

]
cross-entropy error for clas-
sification

DT-RNN
Sec. 5.1

1
`(i)

(
Wvxi +

∑
j∈C(i) `(j)Wpos(i,j)hj

)
inner product with image
vector

CRNN Sec. 5.2 W

x1

. . .

xb2

 cross-entropy error for clas-
sification

Table 6.1: Comparison of all RNNs in this thesis: composition and objective function.
Note that both pieces are independent and all composition functions could be used for
all objective functions. Several of these combinations have been explored but there
is room for a more complete comparison across different tasks.

be achieved with simple discrete word counts).

The models have not yet been shown to be able to capture complex reasoning

patterns that would require first-order logic over a set of entities. Despite the lack

of such a general result, first steps in the direction of capturing logical semantics

have been taken by Bowman et al. (2014). This is one of the most promising future

directions that I will outline below.

CHAPTER 6. CONCLUSIONS 169

Model Structure
prediction

Input
dependent
tree

Binary
trees

Super-
vised

parameters

RNN Sec. 3.1 Yes Yes Yes Yes n+ 2n2 + nV

RAE Sec. 3.2 Yes Yes Yes Semi nC+4n2+nV

URAE Sec. 3.3 No Yes Yes No 4n2

SU-RNN
Sec. 4.1

Yes Yes Yes Yes Sn+ 2Sn2

MV-RNN
Sec. 4.2

No Yes Yes Yes 2n2 + rnV +
nC

RNTN Sec. 4.3 No Yes Yes Yes 4n3+nC+nV

DT-RNN
Sec. 5.1

No Yes No Yes (D + 1)n2

CRNN Sec. 5.2 No No No Yes RnC

Table 6.2: Comparison of all RNNs in this thesis: Structure prediction (whether this
model was used for parsing), input dependent tree (whether the tree structure is input
dependent or the same for every input), binary trees (whether I only experimented
with binary versions of this model), supervised (whether the model was trained with
labeled training data or unsupervised), number of trainable parameters (see text for
details).

Apart from the unfolding recursive autoencoder, which can encode phrases of

length up to 7 with high accuracy, there is still no perfect unsupervised objective

function for RNNs that could learn compositional and noncompositional meaning of

longer phrases. This is another contentious direction for potential future research

since the meaning of a sentence can arguably be very broad. A sentence can have a

multitude of potential meanings anywhere from a question (in which case its meaning

is closely related to an answer) to a simple statement expressing a sentiment about a

movie or a call to action. It is still unclear whether a single vector can express these

various relationships between language and its varied social uses and functions.

One long-term goal is to develop a general model of natural language which jointly

captures both the continuous, fuzzy and discrete, logical nature of language and which

can connect to a set of facts. Capturing the fuzzy nature of language is required for

CHAPTER 6. CONCLUSIONS 170

understanding vague sentiment descriptions like “The movie started out funny but

I wasn’t really happy with most of the rest.” The latter is necessary for semantic

parsing to retrieve information from knowledge bases. Solving such a task requires

understanding precise, logical language and connecting it to specific entities as in the

following question: “Which companies did Google acquire in 2013?”

In this thesis, I showed that recursive deep learning models can solve multiple

language tasks involving word and sentence-level predictions of both continuous and

discrete nature. However, in order to provide a general model for the complete fuzzy

to logical language spectrum, there are two crucial pieces missing which cannot yet

be captured by my deep learning models. The first is inter-sentence information flow

for understanding discourse structure or solving concrete tasks such as coreference

and anaphora resolution. Coreference resolution attempts to find all mentions that

refer to the same real world entity while anaphora resolution tries to find the correct

antecedents of pronouns in previous sentences. One of the many possible solutions

towards this goal is to apply recursive or recurrent techniques to compute paragraph

or document level representations. The second challenge for deep models is first

order logical reasoning, which may be required for retrieving the right information

from knowledge bases using natural language questions. Question answering is a real

task and a great way to verify models of grounding semantics in world knowledge.

I hope that the models in this thesis can be extended to eventually jointly model

language, images and knowledge bases in one coherent semantic framework.

CHAPTER 6. CONCLUSIONS 171

Model Tasks & Inputs Pros/Cons

RNN
Sec. 3.1

image and sentence parsing
from unlabeled parse trees or
segmented images

pro: simple, fast with greedy search;
con: not powerful enough for longer sen-
tence parsing

RAE
Sec. 3.2

sentiment analysis from sen-
tences with global label

pro: no parser required, simple; con:
nonstandard trees, not very powerful

URAE
Sec. 3.3

paraphrase detection from un-
labeled sentences and para-
phrase pairs

pro: unsupervised, better reconstruc-
tion ability; con: unclear if reconstruc-
tion captures the right linguistic phe-
nomena

SU-RNN
Sec. 4.1

sentence parsing from labeled
parses

pro: very powerful, minimal linguistic
knowledge + RNN gives good parser;
con: requires linguistic knowldege, con-
stituency parsing very slow compared to
dependency parsing

MV-
RNN
Sec. 4.2

adverb-adjective predic-
tion, sentiment analysis,
simple logic, relationship
classification from adv-adj
distributions, the logical
outputs, labeled words and
sentences with global label,
respectively

pro: very powerful model, great per-
formance on variety of tasks; con: too
many parameters for most datasets

RNTN
Sec. 4.3

sentiment analysis from sen-
tences with all subphrases la-
beled

pro: best performance on sentiment,
very powerful model, allows immedi-
ate multiplicative interactions without
many hidden layers; con: not much, still
requires parser

DT-RNN
Sec. 5.1

sentence-image search from
matched image sentence pairs

pro: less dependent on surface form,
more focus on semantics, fast; con: not
much, requires Stanford typed depen-
dencies for best performance

CRNN
Sec. 5.2

3d object classification from
labeled RGBD images

pro: very fast to train, simple, no back-
prop through structure due to multiple
random RNNs; con: not much, more ex-
ploration needed

Table 6.3: Comparison of all RNN models. The first column describes the tasks that
each model has been applied to in this thesis (several of these models have since
been applied to numerous other tasks by other researchers), the second columns lists
advantages and disadvantages.

Bibliography

A. E. Abdel-Hakim and A. A. Farag. 2006. CSIFT: A SIFT descriptor with color

invariant characteristics. In CVPR.

G. Andrew, R. Arora, K. Livescu, and J. Bilmes. 2013. Deep canonical correlation

analysis. In ICML. Atlanta, Georgia.

K. Barnard, P. Duygulu, N. de Freitas, D. Forsyth, D. Blei, and M. Jordan. 2003.

Matching words and pictures. JMLR.

M. Baroni and A. Lenci. 2010. Distributional memory: A general framework for

corpus-based semantics. Computational Linguistics, 36(4):673–721.

M. Baroni and Roberto Zamparelli. 2010. Nouns are vectors, adjectives are matrices:

Representing adjective-noun constructions in semantic space. In EMNLP.

R. Barzilay and L. Lee. 2003. Learning to paraphrase: an unsupervised approach

using multiple-sequence alignment. In NAACL.

H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool. 2008. Speeded-Up Robust Features

(SURF). Computer Vision and Image Understanding, 110(3).

P. Beineke, T. Hastie, C. D. Manning, and S. Vaithyanathan. 2004. Exploring senti-

ment summarization. In AAAI Spring Symposium on Exploring Attitude and Affect

in Text: Theories and Applications.

Y. Bengio. 2009. Learning deep architectures for AI. Foundations and Trends in

Machine Learning.

172

BIBLIOGRAPHY 173

Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. 2003. A neural probabilistic

language model. JMLR, 3:1137–1155.

Y. Bengio, J. Louradour, Collobert R, and J. Weston. 2009. Curriculum learning. In

ICML.

D. Blakemore. 1989. Denial and contrast: A relevance theoretic analysis of ‘but’.

Linguistics and Philosophy, 12:15–37.

D.M. Blei, A.Y. Ng, and M.I. Jordan. 2003. Latent Dirichlet allocation. JMLR,

3:993–1022.

M. Blum, J. T. Springenberg, J. Wuelfing, and M. Riedmiller. 2012. A Learned

Feature Descriptor for Object Recognition in RGB-D Data. In IEEE International

Conference on Robotics and Automation (ICRA).

L. Bo, X. Ren, and D. Fox. 2011. Depth kernel descriptors for object recognition. In

IROS.

L. Bo, X. Ren, and D. Fox. 2012. Unsupervised Feature Learning for RGB-D Based

Object Recognition. In ISER.

L. Bottou. 2011. From machine learning to machine reasoning. CoRR, abs/1102.1808.

S. R. Bowman, C. Potts, and C. D. Manning. 2014. Recursive neural networks for

learning logical semantics. CoRR, abs/1406.1827.

P. F. Brown, P. V. deSouza, R. L. Mercer, V. J. Della Pietra, and J. C. Lai. 1992.

Class-based n-gram models of natural language. Computational Linguistics, 18.

A. E. Bryson, W. F. Denham, and S. E. Dreyfus. 1963. Optimal programming

problems with inequality constraints I: necessary conditions for extremal solutions.

AIAA Journal, 1:2544–2550.

C. Callison-Burch. 2008. Syntactic constraints on paraphrases extracted from parallel

corpora. In EMNLP, pages 196–205.

BIBLIOGRAPHY 174

E. Charniak. 2000. A maximum-entropy-inspired parser. In ACL, pages 132–139.

E. Charniak and M. Johnson. 2005. Coarse-to-fine n-best parsing and maxent dis-

criminative reranking. In ACL.

Y. Choi and C. Cardie. 2008. Learning with compositional semantics as structural

inference for subsentential sentiment analysis. In EMNLP.

M. Ciaramita and Y. Altun. 2006. Broad-coverage sense disambiguation and infor-

mation extraction with a supersense sequence tagger. In EMNLP.

D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella, and J. Schmidhuber. 2011.

Flexible, high performance convolutional neural networks for image classification.

In IJCAI.

S. Clark and S. Pulman. 2007. Combining symbolic and distributional models of

meaning. In AAAI Spring Symposium on Quantum Interaction, pages 52–55.

P. Clough, R. Gaizauskas, S. S. L. Piao, and Y. Wilks. 2002. METER: MEasuring

TExt Reuse. In ACL.

A. Coates and A. Ng. 2011. The Importance of Encoding Versus Training with Sparse

Coding and Vector Quantization. In ICML.

M. Collins. 1997. Three generative, lexicalised models for statistical parsing. In ACL.

M. Collins. 2003. Head-driven statistical models for natural language parsing. Com-

putational Linguistics, 29(4):589–637.

R. Collobert and J. Weston. 2008. A unified architecture for natural language pro-

cessing: deep neural networks with multitask learning. In ICML, pages 160–167.

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. 2011.

Natural Language Processing (Almost) from Scratch. JMLR, 12:2493–2537.

D. Comaniciu and P. Meer. 2002. Mean shift: a robust approach toward feature space

analysis. IEEE PAMI, 24(5):603–619.

BIBLIOGRAPHY 175

F. Costa, P. Frasconi, V. Lombardo, and G. Soda. 2003. Towards incremental parsing

of natural language using recursive neural networks. Applied Intelligence.

J. Curran. 2004. From Distributional to Semantic Similarity. Ph.D. thesis, University

of Edinburgh.

G. E. Dahl, M. A. Ranzato, A. Mohamed, and G. E. Hinton. 2010. Phone recognition

with the mean-covariance restricted Boltzmann machine. In NIPS.

D. Das and N. A. Smith. 2009. Paraphrase identification as probabilistic quasi-

synchronous recognition. In ACL-IJCNLP.

S. Das and M. Chen. 2001. Yahoo! for Amazon: Extracting market sentiment from

stock message boards. In Asia Pacific Finance Association Annual Conference

(APFA).

K. Dave, S. Lawrence, and D. M. Pennock. 2003. Mining the peanut gallery: Opinion

extraction and semantic classification of product reviews. In WWW, pages 519–528.

M. de Marneffe, B. MacCartney, and C. D. Manning. 2006. Generating typed depen-

dency parses from phrase structure parses. In LREC.

S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R. Harshman.

1990. Indexing by latent semantic analysis. Journal of the American Society for

Information Science, 41.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. 2009. ImageNet: A

Large-Scale Hierarchical Image Database. In CVPR.

X. Ding, B. Liu, and P. S. Yu. 2008. A holistic lexicon-based approach to opinion

mining. In Conference on Web Search and Web Data Mining (WSDM).

B. Dolan, C. Quirk, and C. Brockett. 2004. Unsupervised construction of large para-

phrase corpora: exploiting massively parallel news sources. In COLING.

L. Dong, F. Wei, M. Zhou, and K. Xu. 2014. Adaptive multi-compositionality for

recursive neural models with applications to sentiment analysis. In AAAI.

BIBLIOGRAPHY 176

J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive subgradient methods for online

learning and stochastic optimization. JMLR, 12.

P. Duygulu, K. Barnard, N. de Freitas, and D. Forsyth. 2002. Object recognition as

machine translation. In ECCV.

J. L. Elman. 1991. Distributed representations, simple recurrent networks, and gram-

matical structure. Machine Learning, 7(2-3):195–225.

D. Erhan, A. Courville, Y. Bengio, and P. Vincent. 2010. Why does unsupervised

pre-training help deep learning? JMLR, 11.

K. Erk and S. Padó. 2008. A structured vector space model for word meaning in

context. In EMNLP.

A. Esuli and F. Sebastiani. 2007. Pageranking wordnet synsets: An application to

opinion mining. In ACL.

C. Farabet, C. Couprie, L. Najman, and Y. LeCun. 2012. Scene parsing with multi-

scale feature learning, purity trees, and optimal covers. In ICML.

C. Farabet, B. Martini, P. Akselrod, S. Talay, Y. LeCun, and E. Culurciello. 2010.

Hardware accelerated convolutional neural networks for synthetic vision systems.

In Proc. International Symposium on Circuits and Systems (ISCAS’10).

A. Farhadi, M. Hejrati, M. A. Sadeghi, P. Young, C. Rashtchian, J. Hockenmaier, and

D. Forsyth. 2010. Every picture tells a story: Generating sentences from images.

In ECCV.

Y. Feng and M. Lapata. 2013. Automatic caption generation for news images. IEEE

Trans. Pattern Anal. Mach. Intell., 35.

S. Fernando and M. Stevenson. 2008. A semantic similarity approach to paraphrase

detection. 11th Annual Research Colloquium of the UK Special Interest Group for

Computational Linguistics.

BIBLIOGRAPHY 177

J. R. Finkel, A. Kleeman, and C. D. Manning. 2008. Efficient, feature-based, condi-

tional random field parsing. In ACL, pages 959–967.

J.R. Firth. 1957. A synopsis of linguistic theory 1930-1955. Studies in linguistic

analysis, pages 1–32.

G. Frege. 1892. Über Sinn und Bedeutung. In Zeitschrift für Philosophie und

philosophische Kritik, 100.

A. Frome, G. Corrado, J. Shlens, S. Bengio, J. Dean, M. Ranzato, and T. Mikolov.

2013. Devise: A deep visual-semantic embedding model. In NIPS.

D. Garrette, K. Erk, and R. Mooney. 2011. Integrating Logical Representations

with Probabilistic Information using Markov Logic. In International Conference

on Computational Semantics.

D. Gildea and M. Palmer. 2002. The necessity of parsing for predicate argument

recognition. In ACL, pages 239–246.

C. Goller and A. Küchler. 1996. Learning task-dependent distributed representations

by backpropagation through structure. In International Conference on Neural Net-

works.

J. Goodman. 1998. Parsing Inside-Out. Ph.D. thesis, MIT.

S. Gould, R. Fulton, and D. Koller. 2009. Decomposing a Scene into Geometric and

Semantically Consistent Regions. In ICCV.

K. Grauman and T. Darrell. 2005. The Pyramid Match Kernel: Discriminative Clas-

sification with Sets of Image Features. In ICCV.

E. Grefenstette, G. Dinu, Y.-Z. Zhang, M. Sadrzadeh, and M. Baroni. 2013. Multi-

step regression learning for compositional distributional semantics. In IWCS.

E. Grefenstette and M. Sadrzadeh. 2011. Experimental support for a categorical

compositional distributional model of meaning. In EMNLP.

BIBLIOGRAPHY 178

G. Grefenstette, Y. Qu, J. G. Shanahan, and D. A. Evans. 2004. Coupling niche

browsers and affect analysis for an opinion mining application. In Recherche

d’Information Assistée par Ordinateur (RIAO).

T. L. Griffiths, J. B. Tenenbaum, and M. Steyvers. 2007. Topics in semantic repre-

sentation. Psychological Review, 114.

A. Gupta and L. S. Davis. 2008. Beyond nouns: Exploiting prepositions and com-

parative adjectives for learning visual classifiers. In ECCV.

D. Hall and D. Klein. 2012. Training factored pcfgs with expectation propagation.

In EMNLP.

J. Henderson. 2003. Neural network probability estimation for broad coverage parsing.

In EACL.

J. Henderson. 2004. Discriminative training of a neural network statistical parser. In

ACL.

I. Hendrickx, S.N. Kim, Z. Kozareva, P. Nakov, D. Ó Séaghdha, S. Padó, M. Pen-

nacchiotti, L. Romano, and S. Szpakowicz. 2010. Semeval-2010 task 8: Multi-way

classification of semantic relations between pairs of nominals. In 5th International

Workshop on Semantic Evaluation.

G. E. Hinton. 1990. Mapping part-whole hierarchies into connectionist networks.

Artificial Intelligence, 46(1-2).

G. E. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Van-

houcke, P. Nguyen, T. N. Sainath, and B. Kingsbury. 2012. Deep neural networks

for acoustic modeling in speech recognition: The shared views of four research

groups. IEEE Signal Process. Mag., 29(6):82–97.

G. E. Hinton and R. R. Salakhutdinov. 2006. Reducing the dimensionality of data

with neural networks. Science, 313(5786):504–507.

BIBLIOGRAPHY 179

M. Hodosh, P. Young, and J. Hockenmaier. 2013. Framing image description as a

ranking task: Data, models and evaluation metrics. JAIR, 47:853–899.

D. Hoiem, A.A. Efros, and M. Hebert. 2006. Putting Objects in Perspective. CVPR.

L. R. Horn. 1989. A natural history of negation, volume 960. University of Chicago

Press Chicago.

E. H. Huang, R. Socher, C. D. Manning, and A. Y. Ng. 2012. Improving Word

Representations via Global Context and Multiple Word Prototypes. In ACL.

L. Huang and D. Chiang. 2005. Better k-best parsing. In 9th International Workshop

on Parsing Technologies (IWPT 2005).

A. Hyvärinen and E. Oja. 2000. Independent component analysis: algorithms and

applications. Neural Networks, 13.

D. Ikeda, H. Takamura, L. Ratinov, and M. Okumura. 2008. Learning to shift the

polarity of words for sentiment classification. In IJCNLP.

A. Islam and D. Inkpen. 2007. Semantic Similarity of Short Texts. In International

Conference on Recent Advances inNatural Language Processing (RANLP 2007).

M. Israel. 2001. Minimizers, maximizers, and the rhetoric of scalar reasoning. Journal

of Semantics, 18(4):297–331.

K. Jarrett, K. Kavukcuoglu, M. Ranzato, and Y. LeCun. 2009. What is the best

multi-stage architecture for object recognition? In ICCV.

R. Jenatton, N. Le Roux, A. Bordes, and G. Obozinski. 2012. A latent factor model

for highly multi-relational data. In NIPS.

A. Johnson. 1997. Spin-Images: A Representation for 3-D Surface Matching. Ph.D.

thesis, Robotics Institute, Carnegie Mellon University.

N. Kalchbrenner, E. Grefenstette, and P. Blunsom. 2014. A convolutional neural

network for modelling sentences. In ACL.

BIBLIOGRAPHY 180

A. Karpathy, A. Joulin, and L. Fei-Fei. 2014. Deep fragment embeddings for bidirec-

tional image sentence mapping. Technical report, Stanford University.

D. Kartsaklis, M. Sadrzadeh, and S. Pulman. 2012. A unified sentence space for

categorical distributional-compositional semantics: Theory and experiments. Con-

ference on Computational Linguistics (COLING).

S. Kim and E. Hovy. 2007. Crystal: Analyzing predictive opinions on the web. In

EMNLP-CoNLL.

S. Kiritchenko, X. Zhu, and S. M. Mohammad. 2014. Sentiment analysis of short

informal texts. JAIR.

D. Klein and C. D. Manning. 2003a. Accurate unlexicalized parsing. In ACL, pages

423–430.

D. Klein and C.D. Manning. 2003b. Fast exact inference with a factored model for

natural language parsing. In NIPS.

P. Blunsom. K.M. Hermann. 2013. The role of syntax in vector space models of

compositional semantics. In ACL.

H.S. Koppula, A. Anand, T. Joachims, and A. Saxena. 2011. Semantic labeling of

3D point clouds for indoor scenes. In NIPS.

Z. Kozareva and A. Montoyo. 2006. Paraphrase Identification on the Basis of Super-

vised Machine Learning Techniques. In Advances in Natural Language Processing,

5th International Conference on NLP, FinTAL.

A. Krizhevsky, I. Sutskever, and G. E. Hinton. 2012. Imagenet classification with

deep convolutional neural networks. In NIPS.

G. Kulkarni, V. Premraj, S. Dhar, S. Li, Y. Choi, A. C. Berg, and T. L. Berg. 2011.

Baby talk: Understanding and generating image descriptions. In CVPR.

N. Kumar, A. C. Berg, P. N. Belhumeur, , and S. K. Nayar. 2009. Attribute and

simile classifiers for face verification. In ICCV.

BIBLIOGRAPHY 181

J. K. Kummerfeld, D. Hall, J. R. Curran, and D. Klein. 2012. Parser showdown at

the wall street corral: An empirical investigation of error types in parser output.

In EMNLP.

P. Kuznetsova, V. Ordonez, A. C. Berg, T. L. Berg, and Yejin Choi. 2012. Collective

generation of natural image descriptions. In ACL.

K. Lai, L. Bo, X. Ren, and D. Fox. 2011. A Large-Scale Hierarchical Multi-View

RGB-D Object Dataset. In IEEE International Conference on on Robotics and

Automation.

R. Lakoff. 1971. If’s, and’s, and but’s about conjunction. In Charles J. Fillmore and

D. Terence Langendoen, editors, Studies in Linguistic Semantics, pages 114–149.

Holt, Rinehart, and Winston, New York.

Thomas K. Landauer and Susan T. Dumais. 1997. A solution to Plato’s problem:

the Latent Semantic Analysis theory of acquisition, induction and representation

of knowledge. Psychological Review, 104(2):211–240.

H. Larochelle, Y. Bengio, J. Louradour, and P. Lamblin. 2009. Exploring strategies

for training deep neural networks. JMLR, 10.

Q.V. Le and T. Mikolov. 2014. Distributed representations of sentences and docu-

ments. In ICML.

Q.V. Le, M.A. Ranzato, R. Monga, M. Devin, K. Chen, G.S. Corrado, J. Dean, and

A.Y. Ng. 2012. Building high-level features using large scale unsupervised learning.

In ICML.

Y. LeCun and Y. Bengio. 1995. Convolutional networks for images, speech, and

time-series. The Handbook of Brain Theory and Neural Networks.

Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning

applied to document recognition. IEEE, 86(11):2278–2324.

BIBLIOGRAPHY 182

H. Lee, A. Battle, R. Raina, and Andrew Y. Ng. 2007. Efficient sparse coding algo-

rithms. In NIPS.

H. Lee, R. Grosse, R. Ranganath, and A. Ng. 2009. Convolutional deep belief networks

for scalable unsupervised learning of hierarchical representations. In ICML.

L-J. Li, R. Socher, and L. Fei-Fei. 2009. Towards total scene understand-

ing:classification, annotation and segmentation in an automatic framework. In

CVPR.

P. Li, Y. Liu, and M. Sun. 2013. Recursive autoencoders for ITG-based translation.

In EMNLP.

D. Lin. 1998. Automatic retrieval and clustering of similar words. In COLING-ACL,

pages 768–774.

M. Luong, R. Socher, and C. D. Manning. 2013. Better word representations with

recursive neural networks for morphology. In CoNLL.

A. L. Maas, A. Y. Ng, and C. Potts. 2011. Multi-Dimensional Sentiment Analysis

with Learned Representations. Technical Report.

C. D. Manning and H. Schütze. 1999. Foundations of Statistical Natural Language

Processing. The MIT Press.

Y. Mao and G. Lebanon. 2007. Isotonic Conditional Random Fields and Local Sen-

timent Flow. In NIPS.

E. Marsi and E. Krahmer. 2005. Explorations in sentence fusion. In European Work-

shop on Natural Language Generation.

T. Matsuzaki, Y. Miyao, and J. Tsujii. 2005. Probabilistic cfg with latent annotations.

In ACL.

D. McClosky, E. Charniak, and M. Johnson. 2006. Effective self-training for parsing.

In NAACL.

BIBLIOGRAPHY 183

S. Menchetti, F. Costa, P. Frasconi, and M. Pontil. 2005. Wide coverage natural

language processing using kernel methods and neural networks for structured data.

Pattern Recognition Letters, 26(12):1896–1906.

A. Merin. 1999. Information, relevance, and social decisionmaking: Some princi-

ples and results of decision-theoretic semantics. In Lawrence S. Moss, Jonathan

Ginzburg, and Maarten de Rijke, editors, Logic, Language, and Information, vol-

ume 2. CSLI, Stanford, CA.

E. J. Metcalfe. 1990. A compositive holographic associative recall model. Psychological

Review, 88:627–661.

R. Mihalcea, C. Corley, and C. Strapparava. 2006. Corpus-based and Knowledge-

based Measures of Text Semantic Similarity. In 21st National Conference on Arti-

ficial Intelligence - Volume 1.

T. Mikolov, W. Yih, and G. Zweig. 2013. Linguistic regularities in continuous space-

word representations. In HLT-NAACL.

T. Mikolov and G. Zweig. 2012. Context dependent recurrent neural network language

model. In SLT, pages 234–239. IEEE.

P. Mirowski, M. Ranzato, and Y. LeCun. 2010. Dynamic auto-encoders for semantic

indexing. In NIPS 2010 Workshop on Deep Learning.

J. Mitchell and M. Lapata. 2010. Composition in distributional models of semantics.

Cognitive Science, 34(8):1388–1429.

R. Montague. 1974. English as a formal language. Linguaggi nella Societa e nella

Tecnica, pages 189–224.

T. Nakagawa, K. Inui, and S. Kurohashi. 2010. Dependency tree-based sentiment

classification using CRFs with hidden variables. In NAACL, HLT.

J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A.Y. Ng. 2011. Multimodal deep

learning. In ICML.

BIBLIOGRAPHY 184

A. Oliva and A. Torralba. 2001a. Modeling the shape of the scene: a holistic repre-

sentation of the spatial envelope. IJCV, 42.

A. Oliva and A. Torralba. 2001b. Modeling the Shape of the Scene: A Holistic

Representation of the Spatial Envelope. IJCV, 42.

V. Ordonez, G. Kulkarni, and T. L. Berg. 2011. Im2text: Describing images using 1

million captioned photographs. In NIPS.

S. Pado and M. Lapata. 2007. Dependency-based construction of semantic space

models. Computational Linguistics, 33(2):161–199.

B. Pang and L. Lee. 2004. A sentimental education: Sentiment analysis using sub-

jectivity summarization based on minimum cuts. In ACL.

B. Pang and L. Lee. 2005. Seeing stars: Exploiting class relationships for sentiment

categorization with respect to rating scales. In ACL, pages 115–124.

B. Pang and L. Lee. 2008. Opinion mining and sentiment analysis. Foundations and

Trends in Information Retrieval, 2(1-2):1–135.

B. Pang, L. Lee, and S. Vaithyanathan. 2002. Thumbs up? Sentiment classification

using machine learning techniques. In EMNLP.

J. W. Pennebaker, R.J. Booth, and M. E. Francis. 2007. Linguistic inquiry and word

count: Liwc2007 operator?s manual. University of Texas.

J. Pennington, R. Socher, and C. D. Manning. 2014. Glove: Global vectors for word

representation. In EMNLP.

S. Petrov, L. Barrett, R. Thibaux, and D. Klein. 2006. Learning accurate, compact,

and interpretable tree annotation. In ACL, pages 433–440.

S. Petrov and D. Klein. 2007. Improved inference for unlexicalized parsing. In

NAACL.

BIBLIOGRAPHY 185

N. Pinto, D. D. Cox, and J. J. DiCarlo. 2008. Why is real-world visual object recog-

nition hard? PLoS Computational Biology.

T. A. Plate. 1995. Holographic reduced representations. IEEE Transactions on Neural

Networks, 6(3):623–641.

L. Polanyi and A. Zaenen. 2006. Contextual valence shifters. Computing Attitude

and Affect in Text: Theory and Applications.

J. B. Pollack. 1990. Recursive distributed representations. Artificial Intelligence, 46.

C. Potts. 2010. On the negativity of negation. In David Lutz and Nan Li, editors,

Semantics and Linguistic Theory 20. CLC Publications, Ithaca, NY.

L. Qiu, M. Kan, and T. Chua. 2006. Paraphrase recognition via dissimilarity signifi-

cance classification. In EMNLP.

A. Rabinovich, A. Vedaldi, C. Galleguillos, E. Wiewiora, and S. Belongie. 2007. Ob-

jects in context. In ICCV.

M. Ranzato and A. Krizhevsky G. E. Hinton. 2010. Factored 3-Way Restricted Boltz-

mann Machines For Modeling Natural Images. AISTATS.

M. Ranzato, F. J. Huang, Y. Boureau, and Y. LeCun. 2007. Unsupervised learning of

invariant feature hierarchies with applications to object recognition. CVPR, 0:1–8.

C. Rashtchian, P. Young, M. Hodosh, and J. Hockenmaier. 2010. Collecting image

annotations using Amazon’s Mechanical Turk. In Workshop on Creating Speech

and Language Data with Amazon’s MTurk.

N. Ratliff, J. A. Bagnell, and M. Zinkevich. 2007. (Online) subgradient methods for

structured prediction. In AIStats.

B. Rink and S. Harabagiu. 2010. UTD: Classifying semantic relations by combin-

ing lexical and semantic resources. In 5th International Workshop on Semantic

Evaluation.

BIBLIOGRAPHY 186

S. Rudolph and E. Giesbrecht. 2010. Compositional matrix-space models of language.

In ACL, pages 907–916.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. 1986. Learning representations

by back-propagating errors. Nature.

V. Rus, P. M. McCarthy, M. C. Lintean, D. S. McNamara, and A. C. Graesser. 2008.

Paraphrase identification with lexico-syntactic graph subsumption. In FLAIRS

Conference.

A. Saxe, P.W. Koh, Z. Chen, M. Bhand, B. Suresh, and A.Y. Ng. 2011. On random

weights and unsupervised feature learning. In ICML.

C. Schmid. 2006. Beyond bags of features: Spatial pyramid matching for recognizing

natural scene categories. In CVPR.

H. Schütze. 1998. Automatic word sense discrimination. Computational Linguistics,

24:97–124.

J. Shotton, J. Winn, C. Rother, and A. Criminisi. 2006. Textonboost: Joint appear-

ance, shape and context modeling for multi-class object recognition and segmenta-

tion. In ECCV.

N. Silberman and R. Fergus. 2011. Indoor scene segmentation using a structured

light sensor. In International Conference on Computer Vision - Workshop on 3D

Representation and Recognition.

N. A. Smith and J. Eisner. 2005. Contrastive estimation: Training log-linear models

on unlabeled data. In ACL. Association for Computational Linguistics, Strouds-

burg, PA, USA.

B. Snyder and R. Barzilay. 2007. Multiple aspect ranking using the Good Grief

algorithm. In HLT-NAACL, pages 300–307.

R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng. 2013a. Parsing With Composi-

tional Vector Grammars. In ACL.

BIBLIOGRAPHY 187

R. Socher and L. Fei-Fei. 2010. Connecting modalities: Semi-supervised segmentation

and annotation of images using unaligned text corpora. In CVPR.

R. Socher, M. Ganjoo, C. D. Manning, and A. Y. Ng. 2013b. Zero-Shot Learning

Through Cross-Modal Transfer. In NIPS.

R. Socher, M. Ganjoo, H. Sridhar, O. Bastani, and A. Y. Ng. C. D. Manning and.

2013c. Zero-shot learning through cross-modal transfer. In International Confer-

ence on Learning Representations (ICLR, Workshop Track).

R. Socher, E. H. Huang, J. Pennington, A. Y. Ng, and C. D. Manning. 2011a. Dynamic

Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection. In NIPS.

R. Socher, B. Huval, B. Bhat, C. D. Manning, and A. Y. Ng. 2012a. Convolutional-

Recursive Deep Learning for 3D Object Classification. In NIPS.

R. Socher, B. Huval, C. D. Manning, and A. Y. Ng. 2012b. Semantic Compositionality

Through Recursive Matrix-Vector Spaces. In EMNLP.

R. Socher, A. Karpathy, Q. V. Le, C. D. Manning, and A. Y. Ng. 2014. Grounded

compositional semantics for finding and describing images with sentences. Trans-

actions of the Association for Computational Linguistics.

R. Socher, C. Lin, A. Y. Ng, and C.D. Manning. 2011b. Parsing Natural Scenes and

Natural Language with Recursive Neural Networks. In ICML.

R. Socher, C. D. Manning, and A. Y. Ng. 2010. Learning continuous phrase represen-

tations and syntactic parsing with recursive neural networks. In NIPS-2010 Deep

Learning and Unsupervised Feature Learning Workshop.

R. Socher, J. Pennington, E. H. Huang, A. Y. Ng, and C. D. Manning. 2011c. Semi-

Supervised Recursive Autoencoders for Predicting Sentiment Distributions. In

EMNLP.

R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning, A. Ng, and C. Potts. 2013d.

Recursive deep models for semantic compositionality over a sentiment treebank. In

EMNLP.

BIBLIOGRAPHY 188

N. Srivastava and R. Salakhutdinov. 2012. Multimodal learning with deep boltzmann

machines. In NIPS.

P. J. Stone. 1966. The General Inquirer: A Computer Approach to Content Analysis.

The MIT Press.

I. Sutskever, R. Salakhutdinov, and J. B. Tenenbaum. 2009. Modelling relational

data using Bayesian clustered tensor factorization. In NIPS.

B. Taskar, D. Klein, M. Collins, D. Koller, and C. Manning. 2004. Max-margin

parsing. In EMNLP.

J. Tighe and S. Lazebnik. 2010. Superparsing: scalable nonparametric image parsing

with superpixels. In ECCV.

I. Titov and J. Henderson. 2006. Porting statistical parsers with data-defined kernels.

In CoNLL-X.

I. Titov and J. Henderson. 2007. Constituent parsing with incremental sigmoid belief

networks. In ACL.

A. Torralba, K. P. Murphy, and W. T. Freeman. 2010. Using the forest to see the trees:

exploiting context for visual object detection and localization. Communications of

the ACM.

J. Turian, L. Ratinov, and Y. Bengio. 2010. Word representations: a simple and

general method for semi-supervised learning. In ACL.

P. Turney. 2002. Thumbs up or thumbs down? Semantic orientation applied to

unsupervised classification of reviews. In ACL, pages 417–424.

P. D. Turney and P. Pantel. 2010. From frequency to meaning: Vector space models

of semantics. JAIR, 37:141–188.

L. Velikovich, S. Blair-Goldensohn, K. Hannan, and R. McDonald. 2010. The viability

of web-derived polarity lexicons. In NAACL, HLT.

BIBLIOGRAPHY 189

P. Vincent, H. Larochelle, Y. Bengio, and P. A. Manzagol. 2008. Extracting and

composing robust features with denoising autoencoders. In ICML.

T. Voegtlin and P. Dominey. 2005. Linear Recursive Distributed Representations.

Neural Networks, 18(7).

S. Wan, M. Dras, R. Dale, and C. Paris. 2006. Using dependency-based features

to take the “para-farce” out of paraphrase. In Australasian Language Technology

Workshop 2006.

H. Wang, D. Can, A. Kazemzadeh, F. Bar, and S. Narayanan. 2012. A system for

real-time twitter sentiment analysis of 2012 u.s. presidential election cycle. In ACL

2012 System Demonstrations.

P. J. Werbos. 1974. Beyond Regression: New Tools for Prediction and Analysis in

the Behavioral Sciences. Ph.D. thesis, Harvard University.

D. Widdows. 2008. Semantic vector products: Some initial investigations. In Second

AAAI Symposium on Quantum Interaction.

J. Wiebe, T. Wilson, and Claire Cardie. 2005. Annotating expressions of opinions

and emotions in language. Language Resources and Evaluation, 39.

T. Wilson, J. Wiebe, and P. Hoffmann. 2005. Recognizing contextual polarity in

phrase-level sentiment analysis. In HLT/EMNLP.

B. Yao, X. Yang, L. Lin, M. W. Lee, and S.-C. Zhu. 2010. I2t:image parsing to text

description. IEEE Xplore.

A. Yessenalina and C. Cardie. 2011. Compositional matrix-space models for sentiment

analysis. In EMNLP.

D. Yu, L. Deng, and F. Seide. 2012. Large vocabulary speech recognition using deep

tensor neural networks. In INTERSPEECH.

BIBLIOGRAPHY 190

H. Yu and V. Hatzivassiloglou. 2003. Towards answering opinion questions: Sep-

arating facts from opinions and identifying the polarity of opinion sentences. In

EMNLP.

F.M. Zanzotto, I. Korkontzelos, F. Fallucchi, and S. Manandhar. 2010. Estimating

linear models for compositional distributional semantics. In COLING.

L. Zettlemoyer and M. Collins. 2005. Learning to map sentences to logical form:

Structured classification with probabilistic categorial grammars. In UAI.

Y. Zhang and J. Patrick. 2005. Paraphrase identification by text canonicalization. In

Australasian Language Technology Workshop 2005.

F. Zhu and X. Zhang. 2006. The influence of online consumer reviews on the demand

for experience goods: The case of video games. In International Conference on

Information Systems (ICIS).

	Abstract
	Acknowledgments
	Introduction
	Overview
	Contributions and Outline of This Thesis

	Deep Learning Background
	Why Now? The Resurgence of Deep Learning
	Neural Networks: Definitions and Basics
	Word Vector Representations
	Window-Based Neural Networks
	Error Backpropagation
	Optimization and Subgradients

	Recursive Objective Functions
	Max-Margin Structure Prediction with Recursive Neural Networks
	Mapping Words and Image Segments into Semantic Space
	Recursive Neural Networks for Structure Prediction
	Learning
	Backpropagation Through Structure
	Experiments
	Related Work

	Semi-Supervised Reconstruction-Classification Error - For Sentiment Analysis
	Semi-Supervised Recursive Autoencoders
	Learning
	Experiments
	Related Work

	Unfolding Reconstruction Errors - For Paraphrase Detection
	Recursive Autoencoders
	An Architecture for Variable-Sized Matrices
	Experiments
	Related Work

	Conclusion

	Recursive Composition Functions
	Syntactically Untied Recursive Neural Networks - For Natural Language Parsing
	Compositional Vector Grammars
	Experiments
	Related Work

	Matrix Vector Recursive Neural Networks - For Relation Classification
	MV-RNN: A Recursive Matrix-Vector Model
	Model Analysis
	Predicting Movie Review Ratings
	Classification of Semantic Relationships
	Related work

	Recursive Neural Tensor Layers - For Sentiment Analysis
	Stanford Sentiment Treebank
	RNTN: Recursive Neural Tensor Networks
	Experiments
	Related Work

	Conclusion

	Compositional Tree Structures Variants
	Dependency Tree RNNs - For Sentence-Image Mapping
	Dependency-Tree Recursive Neural Networks
	Learning Image Representations with Neural Networks
	Multimodal Mappings
	Experiments
	Related Work

	Multiple Fixed Structure Trees - For 3d Object Recognition
	Convolutional-Recursive Neural Networks
	Experiments
	Related Work

	Conclusion

	Conclusions

