
EFFECTIVE STATISTICAL MODELS FOR SYNTACTIC

AND SEMANTIC DISAMBIGUATION

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

Kristina Nikolova Toutanova

September 2005

c© Copyright by Kristina Nikolova Toutanova 2005

All Rights Reserved

ii

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Christopher D. Manning
(Principal Adviser)

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Andrew Y. Ng

I certify that I have read this dissertation and that, in

my opinion, it is fully adequate in scope and quality as a

dissertation for the degree of Doctor of Philosophy.

Daniel Jurafsky

Approved for the University Committee on Graduate

Studies.

iii

iv

Abstract

This thesis focuses on building effective statistical models for disambiguation of so-

phisticated syntactic and semantic natural language (NL) structures. We advance

the state of the art in several domains by (i) choosing representations that encode

domain knowledge more effectively and (ii) developing machine learning algorithms

that deal with the specific properties of NL disambiguation tasks – sparsity of training

data and large, structured spaces of hidden labels.

For the task of syntactic disambiguation, we propose a novel representation of

parse trees that connects the words of the sentence with the hidden syntactic struc-

ture in a direct way. Experimental evaluation on parse selection for a Head Driven

Phrase Structure Grammar shows the new representation achieves superior perfor-

mance compared to previous models. For the task of disambiguating the semantic

role structure of verbs, we build a more accurate model, which captures the knowledge

that the semantic frame of a verb is a joint structure with strong dependencies be-

tween arguments. We achieve this using a Conditional Random Field without Markov

independence assumptions on the sequence of semantic role labels.

To address the sparsity problem in machine learning for NL, we develop a method

for incorporating many additional sources of information, using Markov chains in the

space of words. The Markov chain framework makes it possible to combine multiple

knowledge sources, to learn how much to trust each of them, and to chain inferences

together. It achieves large gains in the task of disambiguating prepositional phrase

attachments.

v

Acknowledgements

My thesis work would not have been possible without the help of my advisor, other

collaborators, and fellow students. I am especially fortunate to have been advised

by Chris Manning. Firstly, I am grateful to him for teaching me almost everything

I know about doing research and being part of the academic community. Secondly, I

deeply appreciate his constant support and advice on many levels. The work in this

thesis was profoundly shaped by numerous insightful discussions with him.

I am also very happy to have been able to collaborate with Andrew Ng on random

walk models for word dependency distributions. It has been a source of inspiration to

interact with someone having such far-reaching research goals and being an endless

source of ideas. He also gave me valuable advice on multiple occasions. Many thanks

to Dan Jurafsky for initially bringing semantic role labeling to my attention as an

interesting domain my research would fit in, contributing useful ideas, and helping

with my dissertation on a short notice. Thanks also to the other members of my

thesis defense committee – Trevor Hastie and Francine Chen. I am also grateful to

Dan Flickinger and Stephan Oepen for numerous discussions on my work in hpsg

parsing.

Being part of the NLP and the greater AI group at Stanford has been extremely

stimulating and fun. I am very happy to have shared an office with Dan Klein and

Roger Levy for several years, and with Bill McCartney for one year. Dan taught

me, among other things, to always aim to win when entering a competition, and

to understand things from first principles. Roger was an example of how to be an

excellent researcher while maintaining a balanced life with many outside interests.

vi

I will miss the heated discussions about research and the fun at NLP lunch. And

thanks to Jenny for the Quasi-Newton numerical optimization code. Thanks to Aria

Haghighi for collaborating on semantic role labeling models and for staying up very

early in the morning to finish writing up papers.

I would also like to take the chance to express my gratitude to my undergraduate

advisor Galia Angelova and my high-school math teacher Georgi Nikov. Although

they did not contribute directly to the current effort, I wouldn’t be writing this

without them.

I am indebted in many ways to Penka Markova – most importantly, for being

my friend for many years and for teaching me optimism and self-confidence, and

additionally, for collaborating with me on the hpsg parsing work. I will miss the

foosball games and green tea breaks with Rajat Raina and Mayur Naik. Thanks also

to Jason Townsend and Haiyan Liu for being my good friends.

Thanks to Galen Andrew for making my last year at Stanford the happiest. Fi-

nally, many thanks to my parents Diana and Nikola, my sister Maria, and my nieces

Iana and Diana, for their support, and for bringing me great peace and joy.

I gratefully acknowledge the financial support through the ROSIE project funded

by Scottish Enterprise under the Stanford-Edinburgh link programme and through

ARDA’s Advanced Question Answering for Intelligence (AQUAINT) program.

vii

Contents

Abstract v

Acknowledgements vi

1 Introduction 1

1.1 A New Representation for Parse Trees 6

1.1.1 Motivation . 6

1.1.2 Representation . 8

1.1.3 Summary of Results . 8

1.2 Mapping Syntactic to Semantic Structures 9

1.2.1 General Ideas . 9

1.2.2 Summary of Results . 11

1.3 Lexical Relations . 12

1.3.1 General Ideas . 13

1.3.2 Summary of Results . 14

2 Leaf Path Kernels 16

2.1 Preliminaries . 17

2.1.1 Support Vector Machines . 18

2.1.2 Kernels . 19

2.2 The Redwoods Corpus . 21

viii

2.2.1 Data Characteristics . 24

2.3 Related Work . 25

2.3.1 Penn Treebank Parsing Models 25

2.3.2 Models for Deep Grammars 27

2.3.3 Kernels for Parse Trees . 29

2.4 Our Approach . 30

2.5 Proposed Representation . 31

2.5.1 Representing HPSG Signs . 31

2.5.2 The Leaf Projection Paths View of Parse Trees 32

2.6 Tree and String Kernels . 34

2.6.1 Kernels on Trees Based on Kernels on Projection Paths 34

2.6.2 String Kernels . 36

2.7 Experiments . 40

2.7.1 SVM Implementation . 41

2.7.2 The Leaf Projection Paths View versus the Context-Free Rule

View . 43

2.7.3 Experimental Results using String Kernels on Projection Paths 46

2.7.4 A Note on Application to Penn Treebank Parse Trees 50

2.8 Discussion and Conclusions . 51

3 Shallow Semantic Parsing 52

3.1 Description of Annotations . 53

3.2 Previous Approaches to Semantic Role Labeling 56

3.3 Ideas of This Work . 66

3.4 Data and Evaluation Measures . 68

3.5 Local Classifiers . 76

3.5.1 Additional Features for Displaced Constituents 77

ix

3.5.2 Enforcing the Non-overlapping Constraint 80

3.5.3 On Split Constituents . 83

3.6 Joint Classifiers . 85

3.6.1 Joint Model Results . 92

3.7 Automatic Parses . 95

3.7.1 Using Multiple Automatic Parse Guesses 96

3.7.2 Evaluation on the CoNLL 2005 Shared Task 99

3.8 Conclusions . 102

4 Estimating Word Dependency Distributions 105

4.1 Introduction . 105

4.2 Markov Chain Preliminaries . 108

4.3 Related Work on Smoothing . 111

4.3.1 Estimating Distributions as Limiting Distributions of Markov

Chains . 113

4.4 The Prepositional Phrase Attachment Task 114

4.4.1 Dataset . 115

4.4.2 Previous Work on PP Attachment 116

4.5 The PP Attachment Model . 119

4.5.1 Baseline Model . 122

4.5.2 Baseline Results . 124

4.6 Random Walks for PP Attachment 126

4.6.1 Formal Model . 130

4.6.2 Parameter Estimation . 134

4.6.3 Link Types for PP Attachment 140

4.6.4 Random Walk Experiments 143

4.6.5 Extended Example . 147

x

4.7 Discussion . 152

4.7.1 Relation to the Transformation Model of Jason Eisner 152

4.7.2 Relation to Other Models and Conclusions 154

Bibliography 156

xi

List of Figures

1.1 An hpsg derivation and a schematic semantic representation corre-

sponding to it for the sentence Stanford offers a distance-learning course

in Artificial Intelligence. 2

1.2 A syntactic Penn Treebank-style parse tree and Propbank-style se-

mantic annotation for the sentence Stanford offers a distance-learning

course in Artificial Intelligence. 3

1.3 An example word space with similarities for the relation in(noun1, noun2). 13

2.1 A grammar rule and lexical entries in a toy unification-based grammar. 22

2.2 Native and derived Redwoods representations for the sentence Do you

want to meet on Tuesday? — (a) derivation tree using unique rule

and lexical item (in bold) identifiers of the source grammar (top), (b)

phrase structure tree labelled with user-defined, parameterizable cat-

egory abbreviations (center), and (c) elementary dependency graph

extracted from the mrs meaning representation (bottom). 23

2.3 Annotated ambiguous sentences used in experiments: The columns

are, from left to right, the total number of sentences, average length,

and structural ambiguity. 24

2.4 Characteristics of the Redwoods corpus Version 1.5. The sentence

length distribution and a histogram of numbers of possible analyses

are shown. 25

xii

2.5 Derivation tree for the sentence Let us plan on that. The head child of

each node is shown in bold. 33

2.6 Paths to top for three leaves. The nodes in bold are head nodes for

the leaf word and the rest are non-head nodes. 33

2.7 Feature map for 1-gram kernel for the string x=“SOP LET V1:verb

HCOMP:verb HCOMP:verb IMPER:verb EOP”. 37

2.8 Feature map for Repetition kernel for the string x=“SOP LET V1:verb

HCOMP:verb HCOMP:verb IMPER:verb EOP”, λ1 = .5, λ2 = .3. 38

2.9 Feature map for a (2,2) Wildcard kernel for the string x=“SOP LET V1:verb

HCOMP:verb HCOMP:verb IMPER:verb EOP”, λ = .5. 40

2.10 Feature map for a (2,3) Subsequence kernel for the string x=“SOP

LET V1:verb HCOMP:verb HCOMP:verb IMPER:verb EOP”, λ1 = .5, λ2 =

3. 41

2.11 Accuracy of models using the leaf projection path and rule represen-

tations. 46

2.12 Annotated features of derivation tree nodes. The examples are from

one node in the head path of the word let in Figure 2.5. 46

2.13 Comparison of the Repetition kernel to 1-gram and 2-gram. 47

2.14 Comparison of the un-weighted and distance-weighted 1-gram. 47

2.15 Accuracy of models using projection paths keyed by le-type or both

word and le-type. Numbers of features are shown in thousands. 49

3.1 Labels of modifying arguments occurring in PropBank. 56

3.2 An example tree from PropBank with semantic role annotations, for

the sentence Final-hour trading accelerated to 108.1 million shares yes-

terday. 56

xiii

3.3 The relevant part of an example tree with semantic roles filled by mul-

tiple constituents, for the sentence Rosie reinvented this man, who may

or may not have known about his child, as a war hero for Lily’s benefit.

When multiple constituents are fillers of the same semantic role argx,

the left-most constituent is labeled argx, and the rest are labeled

c-argx. 57

3.4 Features used in the Gildea & Jurafsky model. The feature values

shown are for the node NP1 in Figure 3.2. 60

3.5 Constituent-based and argument-based scoring measures for the guessed

labeling. 72

3.6 Baseline Features . 78

3.7 Example of displaced arguments . 79

3.8 Performance of local classifiers on all arguments, using the features

in Figure 3.6 only and using the additional local features. Argument-

based scoring using gold standard parse trees on section 23. 80

3.9 Performance of local model on all arguments when enforcing the non-

overlapping constraint or not. 82

3.10 Performance measures for local model using all local features and en-

forcing the non-overlapping constraint. Results are on Section 23 using

gold standard parse trees and argument-based scoring. 84

3.11 Oracle upper bounds for top N non-overlapping assignments from local

model on core and all arguments. Using gold standard parse trees

and argument-based scoring. 86

3.12 An example tree from PropBank with semantic role annotations, for

the sentence Final-hour trading accelerated to 108.1 million shares yes-

terday. 88

3.13 Performance of local and joint models on Id&Cls on section 23, using

gold standard parse trees. The number of features of each model is

shown in thousands. 93

xiv

3.14 Performance measures for joint model using all features (AllJoint).

Results are on Section 23 using gold standard parse trees and argument-

based scoring. 94

3.15 Percentage of test set propositions for which each of the top ten assign-

ments from the Local model was selected as best by the joint model

AllJoint. 95

3.16 Percentage of argument constituents that are not present in the auto-

matic parses of Charniak’s parser. Constituents shows the percent-

age of missing constituents and Propositions shows the percentage of

propositions that have missing constituents. 96

3.17 Comparison of local and joint model results on Section 23 using Char-

niak’s automatic parser and argument-based scoring. 97

3.18 coarseargm argument confusion matrices for local and joint model us-

ing Charniak’s automatic parses. 98

3.19 Performance of the joint model using top ten parses from Charniak’s

parser. Results are on Section 23 using argument-based scoring. . . . 99

3.20 Results on the CoNLL WSJ Test set, when using gold standard parse

trees. 101

3.21 Results on the CoNLL dataset, when using Charniak automatic parse

trees as provided in the CoNLL 2005 shared task data. 101

3.22 Results on the CoNLL dataset, when using Charniak automatic parse

trees, version of the Charniak parser from May 2005 with correct treat-

ment of forward quotes. 102

3.23 Per-label performance of joint model using top five Charniak automatic

parse trees on the Test WSJ test set. 103

4.1 Dataset characteristics. 116

xv

4.2 Bayesian network of the PP attachment generative model over the four

head word variables and the attachment class variable. Only context-

specific independence assumptions are made for the variable N2 de-

scribed in Equation 4.6. 120

4.3 The sparsity of the data: the percent of times tuples in the test set

had appeared in the training set. 121

4.4 Form of factors for Baseline model. Each factor is estimated as a

linear interpolation of the listed empirical distributions. 122

4.5 Performance of the Baseline model when trained to maximize the

joint or the conditional likelihood of the development set. Accuracy, av-

erage joint, and scaled conditional log-likelihood on test set PreTest are

shown for varying values of the regularization parameter sigmaSquared . 125

4.6 Baseline results on the final test set of 3,097 samples, compared to

previous work. In the significance column > means at level .05 and �
means at level .005. 127

4.7 A small words state space for learning the distribution Pwith(n2|v). . 129

4.8 Summary of results on the final test set of 3,097 samples. In the sig-

nificance column > means at level .05 and � means at level .005. . . 144

4.9 Link types and estimated parameters for p(V |Att , P) random walks. . 148

4.10 Link types and estimated parameters for p(N1|Att , P, V) random walks. 149

4.11 Link types and estimated parameters for p(N2|va, P, V) and p(N2|na, P, N1)

random walks. 150

4.12 The relevant part of the state space for estimating P (N1 = fight |Att , P =

against, V = carry). The solid lines are link type L1 (empirical). The

dotted lines are verb synonyms and the dashed lines are SimJSβ
. . . 151

xvi

Chapter 1

Introduction

In recent years many natural language processing tasks have reached levels of wider

applicability and demand. For example, in Information Extraction, instances of a

specific relation – e.g., books and their authors, are automatically extracted from

a collection of documents. The ability to collect such information is very desirable

because of the huge document collections available in digital form. Another appli-

cation which is gaining importance is answering questions from text. A multitude

of information is accessible online, but current Information Retrieval technology is

sometimes helpless in giving us the answers we seek.

Domain-specific heuristics have been developed to achieve acceptable levels of

performance for information extraction in limited domains. However, to build broad

coverage systems, we need to have ways of solving more general disambiguation prob-

lems of natural language syntax and semantics. For example, consider a system that

aims to answer a broad range of questions about actions and their participants, such

as:

Which universities offer distance-learning courses in Artificial Intelligence?

Evidently such a system needs broad-coverage semantic representation of English

sentences.

One approach to coming up with semantic representations for sentences has been

1

2 CHAPTER 1. INTRODUCTION

SUBJH

PROPER NP

Stanford

HCOMP

OFFER-V3 (v np trans le)

offers

NADJ RR NT

HSPEC

a distance-learning course

HCOMP

in Artificial Intelligence

(a) hpsg derivation representation.

{ e2:
x4:named rel[CONST VALUE:Stanford]
1:def np rel[BV x4:named rel]

e2: offer v rel[ARG1 x4:named rel,ARG3 x13: course rel]
2: a quant rel[BV x13:course rel]

e19: distance learning rel[ARG x13:course rel]
e24: in rel[ARG x13:course rel ARG3 x22:intelligence rel]
e26: artificial rel[ARG x22:intelligence rel]
4:prpstn rel[SOA e2: offer v rel]
}

(b) hpsg semantic representation

Figure 1.1: An hpsg derivation and a schematic semantic representation correspond-
ing to it for the sentence Stanford offers a distance-learning course in Artificial In-
telligence.

to hand-construct a grammar, which can map each sentence to a set of possible struc-

tures. The structures contain both syntactic and semantic information, in enough

detail to provide the basis for semantic inference for the natural language task at

hand. Examples of this approach are precise grammars, such as Lexical Functional

Grammar (Bresnan, 2001), Combinatory Categorial Grammar (Steedman, 1996), and

Head-Driven Phrase Structure Grammar (hpsg) (Pollard and Sag, 1994). Figure 1.1

shows an hpsg analysis of the sentence “Stanford offers a distance-learning course in

Artificial Intelligence”, which if understood, would give a useful piece of information

to the question answering system. The semantic representation which is specified as

part of the hpsg analysis is shown in 1.1(b).

3

S

NP

Stanford

VP

VBZ

offers

NP

NP

a distance-learning course

PP

in Artificial Intelligence

(a) Penn Treebank syntactic representation.

S

NP-agent

Stanford

VP

VBZ-pred

offers

NP-theme

NP

a distance-learning course

PP

in Artificial Intelligence

(b) Propbank semantic representation as an additional layer.

Figure 1.2: A syntactic Penn Treebank-style parse tree and Propbank-style semantic
annotation for the sentence Stanford offers a distance-learning course in Artificial
Intelligence.

Another approach has been to annotate a large collection of sentences with struc-

tural information which is thought to be useful for general NL tasks. In this way we

do not have an explicit grammar but only a corpus grammar – examples of sentences

with their corresponding structures. The most widely used structurally annotated

corpora of this form is the Penn Treebank (Marcus et al., 1993). The parsed ver-

sion consists of about 1 million words of newswire, which were initially annotated

with primarily syntactic information. Subsequently, an additional layer of (shallow)

semantics – the PropBank annotation (Palmer et al., 2005) – was added starting in

2002. Figures 1.2(a) and 1.2(b) show a Penn Treebank-style syntactic and semantic

analysis of the same sentence.

For both approaches, we need to solve an enormous disambiguation problem –

4 CHAPTER 1. INTRODUCTION

to decide, for a given sentence, which of the many possible structures represents

the meaning of the sentence correctly. The disambiguation problem is easier for

hand-built precise grammars, because the grammar limits the number of possible

analyses; however, even for them a sentence often has hundreds or thousands of

possible analyses. Additionally, a problem with such grammars is that they are

difficult to maintain and grow to cover broad enough domains.

The past 20 years of NLP research have shown that the best performing dis-

ambiguation systems have been based on learning from annotated data. In this

work, we are concerned with learning statistical disambiguation models for syntax

and semantics in both settings – for hand-built precise grammars, and for treebank

grammars. In the first setting, given a sentence s and a set of possible analyses

T (s) = {t1(s), t2(s), . . . , tm(s)}, and training data D annotated with sentences and

their correct analyses, the task is to come up with a function f(s, T (s)) 7→ ti(s) that

decides which of the possible analyses is correct. The analyses can be very complex

structures such as hpsg signs.

In the second setting, given a sentence s and a set of annotated data D, which spec-

ifies syntactic and semantic analyses for a collection of sentences [si, t(si), sem(si, t(si))],

the task is to come up with a function f(s) 7→ [t(s), sem(s, t(s))], which decides the

correct syntactic and semantic analyses of s. For Penn Treebank annotations, there

has already been a large amount of work on machine learning for syntactic parsing,

i.e., learning functions fsyn(s) 7→ t(s), for example, (Magerman, 1995; Collins, 1997;

Charniak, 2000). Therefore, to solve the task of finding function f , it suffices to learn

a function fsem(s, t(s)) 7→ sem(s, t(s)). This is the approach we take in this work.

We only learn a function that maps from syntactic to semantic analyses, and reuse

existing state of the art models for syntactic parsing.

For both setting, the disambiguation task is very different from standard machine

learning classification tasks. The hidden labels are large structured objects. Choosing

a good feature representation of the target classes is crucial. These issues have been

extensively explored in previous work on parsing.

However, for disambiguating new kinds of syntactic analyses, such as hpsg signs,

5

existing statistical models may be less appropriate. In addition, even though multiple

schemes for decomposing trees into features have been proposed, the space of possible

decompositions is far from fully explored. New advances in machine learning allowing

novel representations of structured objects using kernels have been under-explored as

well. One of the major contributions of this thesis is a representation of parse trees

and a method for defining tree kernels, applied to hpsg disambiguation. We briefly

sketch the ideas and results in §1.1, and present the models in depth in Chapter 2.

Even though the representation was developed for hpsg signs, it is likely to bring

gains to Penn Treebank parsing models as well, because it contains several novel

aspects which capture general properties of syntax.

The problem of learning a mapping from syntactic to sematic representations,

such as Penn Treebank syntax and PropBank semantics, has been extensively stud-

ied in the past 5 years. Similar work includes work on FrameNet (Baker et al.,

1998), which has a related corpus and annotation scheme. Even if it turns out that

it is advantageous to learn models performing simultaneous syntactic and semantic

disambiguation, the problem of learning to map from syntactic to semantic represen-

tations, or more generally, from one structural representation to another, will still be

very important. The reason is that as we come closer to the exact form of semantic

annotations we need for particular NLP tasks, it will be advantageous to be able

to annotate some small amount of data for the particular annotation type needed,

and still be able to reuse the large amounts of data already annotated for previously

defined representations. That is, we wouldn’t need to annotate all previously existing

corpora that researchers have used with the new annotation scheme. The problem

of mapping from one complex representation to another is fascinating and broadly

applicable in NLP. We sketch the main ideas and results in our work on syntax to

semantics mapping in §1.2. Chapter 3 discusses this work in detail.

The problems of syntactic and semantic disambiguation are so hard because of the

exponential number of possible structures and the idiosyncracies of individual words

and phrases. Since every word has its own different semantics and often very specific

syntax, the more reliable knowledge we can collect for individual words, the better our

models will perform. The data sparsity problems in collecting word-specific statistics

6 CHAPTER 1. INTRODUCTION

are enormous. We propose a method of improving the estimation of word specific

distributions through the use of multiple outside sources of knowledge that allow us

to follow chains of inference and derive estimates for data-poor words. We sketch the

main ideas and results in §1.3. Chapter 4 discusses this work in detail.

The three major chapters of the thesis are self-contained and can also be read

independently if the reader is interested in only some of the topics.

1.1 A New Representation for Natural Language

Parse Trees

1.1.1 Motivation

Our new representation for parse trees is motivated through multiple factors.

Increasing the connection of features with words and localizing broader

structural context

Most feature representation of parse trees for learning statistical models are cen-

tered around context free rules of the form A → α. Most of the features active for

a particular parse tree contain only non-terminal or hidden-structure symbols, and

make no reference to the input sentence. This is counter-intuitive for disambiguation

tasks, where the problem is to decide the correct structure t for a given input sen-

tence s. Multiple annotation schemes where features are annotated with constituent

head-words have resulted in more accurate models (Charniak, 1997; Collins, 1999;

Charniak, 2000). However there are many instances of important non-head depen-

dencies (Bod, 1998). Our proposed representation increases further the connection of

the features with the input words in an intuitive fashion.

Previous work on statistical parsing has shown that structural, in addition to

lexical annotation of the basic context-free rule features, is very useful to improve the

performance of learned models. For example, using several ancestors (Charniak, 1997;

Collins, 1997; Johnson, 1998) or other internal and external category splitting schemes

(Klein and Manning, 2003) have increased performance dramatically. However, the

1.1. A NEW REPRESENTATION FOR PARSE TREES 7

number of ancestors is still fixed and limited and some important longer-distance

dependencies may be missed.

Developing representations suitable for hpsg analyses

As we can see from Figure 1.1(a), the derivation tree structure of an hpsg analy-

sis, which shows the sequence of applied rule schema looks quite different from Penn

Treebank parse trees. Most existing statistical models have been developed for the

latter, with a few notable exceptions such as models for LFG (Johnson et al., 1999;

Riezler et al., 2000), Combinatory Categorial Grammar (Hockenmaier, 2003b; Clark

and Curran, 2004), Tree-Adjoining Grammar (Chiang, 2000), and previous work on

hpsg parsing (Toutanova and Manning, 2002; Osborne and Baldbridge, 2004). Pre-

viously proposed models for hpsg parsing were mainly adaptations of Penn Treebank

models.

An important characteristic of an hpsg grammar is that it is very lexicalized. The

node labels, showing the rule schema, indicate the type of relationship of the head

and non-head constituents which join at each node. Therefore it is worth exploring

feature representations which are word-centered as well and depart to a larger extent

from the context-free rule paradigm.

Permitting efficient computation with a very expressive feature set

Recent advances in machine learning and in particular the development of kernels

for structured data, have made it possible to do efficient computation with exponential

or even infinite feature spaces. Many kernels for strings have been developed and

applied to text and other domains. Some kernels for graphs and trees have also been

developed (see (Gärtner et al., 2002) for an overview). However, few of them are

specifically motivated by natural language trees and more appropriate kernels could

be defined. Our proposed linguistically motivated representation naturally extends

to defining kernels which are centered around lexicalized broad structural fragments,

and can build on previous work on string kernels.

8 CHAPTER 1. INTRODUCTION

1.1.2 Representation

The basic features we propose are paths from words to the top level of the tree, which

we call “leaf projection paths”. In hpsg such a path from a word will have one node

for every modifier that the word takes (because the trees are binary).

As is always true for a grammar with non-crossing lexical dependencies, there is

an initial segment of the projection path for which the leaf word is a syntactic head

(called the head path from here on), and a final segment for which the word is not a

syntactic head (called the non-head path from here on).

In traditional parsing models that have as features head word lexicalized local

rules, some information present in the word projection paths can be recovered. Still,

this is only the information in the head path part of the projection path. Our ex-

periments show that the non-head part of the projection path is very helpful for

disambiguation.

Using this representation of trees, we can apply string kernels to the leaf projec-

tion paths and combine those to obtain kernels on trees. The strings are sequences of

nodes (with possible annotations), which are concatenated with either a word they

correspond to, or its lexical type (part of speech). Using string kernels is even more

advantageous when we have a multitude of features available to annotate each node.

In hpsg analyses, each derivation tree node has an associated feature structure con-

taining many features which could be useful for disambiguation. A kernel allows the

fast computation of similarity measures based on the sub-features of nodes.

1.1.3 Summary of Results

Our experimental results are summarized below. We tested the models on the Red-

woods corpus (Oepen et al., 2002) of hpsg-analysed sentences. The cited accuracy

error reductions are for whole sentence accuracy – fraction of sentences for which the

guessed analysis exactly matched the correct one.

• Models using non-head paths and head-paths had a 12.9% error reduction over

models using only head-paths.

1.2. MAPPING SYNTACTIC TO SEMANTIC STRUCTURES 9

• Models using the leaf paths representation using tree kernels resulted in 13.8%

error reduction over a model based on context free rules with an optimal level

of parent annotation.

• The gain due to incorporating more sophisticated kernels as compared to simple

n-gram kernels was 4.6%.

1.2 Mapping Syntactic to Semantic Structures

Semantic annotations for a large collection of sentences have only recently become

available. Examples are the annotations produced by the FrameNet and PropBank

projects. Even though the previously existing Penn Treebank provides syntactic

information in the from of phrase structure annotations as exemplified in Figure

1.2(a), it is insufficient to capture information about actions and their participants.

For example, the sentences “A distance-learning course in Artificial Intelligence is

offered by Stanford” and “Stanford offers the general public a distance-learning course

in Artificial Intelligence”, are alternative ways of expressing the information that

Stanford is the agent of offering with a theme “long-distance course in Artificial

Intelligence”. Yet Penn Treebank syntactic analyses alone are insufficient to allow

the deduction of this information from the different realizations. The PropBank

project defined an annotation scheme for representing shallow semantics of verbs,

and labeled the parsed Wall Street Journal section of the Penn Treebank with an

additional layer representing semantics of actions. An example annotation can be

seen in Figure 1.2(b). If a parse tree node is labeled with a particular argument label

– for example, theme – this indicates that the phrase dominated by that node is

a filler of the indicated semantic role for the verb marked pred. For example, “a

long-distance course in Artificial Intelligence” is a theme of “offers”.

1.2.1 General Ideas

Previous work on mapping from syntactic to semantic annotations has identified

many useful features (Gildea and Jurafsky, 2002; Pradhan et al., 2005a; Carreras and

10 CHAPTER 1. INTRODUCTION

Màrquez, 2005). Tremendous progress has been made in the performance achieved

by such systems. The predominant approach has been to look at the mapping task

as one of independent classification – assigning a semantic label to each node of a

syntactic parse tree. We call such classifiers independent or local.

Linguistic intuition tells us that a core argument frame of a verb is a joint struc-

ture, with strong dependencies between arguments. For example, it is unlikely that

multiple nodes will be labeled with the same semantic label, such as agent. In a

typical parse tree, most of the parse tree nodes will not have a semantic label, but

independent classification cannot explicitly model the count of argument labels. Also,

it is never the case that nodes bearing argument labels are in a domination relation-

ship. This is because of the natural constraint that the fillers of different semantic

roles are different phrases. A local classifier cannot model this constraint and it must

be externally enforced at test time. There are also strong statistical tendencies for the

sequence of realized arguments. Even though previous work has modeled some corre-

lations between the labels of parse tree nodes (Gildea and Jurafsky, 2002; Thompson

et al., 2003; Punyakanok et al., 2005), many of the phenomena that it seems very

important to capture are not modeled.

The main goal of our work is to look at the problem as one of learning a mapping

from a syntactic to a joint semantic structure, which models correlations among

multiple parts of the semantic structure. We ask the following questions:

1. What kind of global information can be usefully incorporated in models for

mapping syntactic to shallow semantic structures?

2. How can such models be learned so as to overcome the computational complexity

of learning and search?

We explore joint log-linear models incorporating novel global features connecting

the syntactic tree to the complete semantic structure. Our proposed model is a

Conditional Random Field (CRF) (Lafferty et al., 2001) with a very rich graphical

structure. In contrast to previous work on CRFs for sequence classification tasks,

1.2. MAPPING SYNTACTIC TO SEMANTIC STRUCTURES 11

which has made strong markov independence assumptions on the label sequence, we

build and do inference in a CRF without independence assumptions among labels.

To overcome computational complexity issues, we employ a re-ranking approach

similar to (Collins, 2000). We also describe using dynamic programming to produce

top N possible consistent semantic structures1 according to the simpler local model.

The key properties of our proposed approach are: (i) no finite Markov horizon

assumption for dependencies among node labels, (ii) features looking at the labels of

multiple argument nodes and internal features of these nodes, and (iii) a statistical

model capable of incorporating these long-distance dependencies and generalizing

well.

1.2.2 Summary of Results

We compared our model to previous work on PropBank semantic role labeling. We

mainly worked with the February 2004 preliminary version of the data. As it turns

out, there are multiple issues in scoring the performance of such systems and the most

reliable comparisons with previous work can be made using the CoNLL 2005 shared

task evaluation (Carreras and Màrquez, 2005), where systems are trained using the

same data and tested using the same evaluation measure. We also compare the results

of our system to a local model, which classifies nodes in the parse tree independently

and uses most of the features used in previous work. The only difference between the

local and joint model is that the joint model incorporates dependencies among labels

of multiple nodes. We obtain the following results:

• When the correct (gold-standard) syntactic parse trees are given, our joint

model achieves an error reduction in F-Measure of 17% on all arguments and

36.8% on core arguments as compared to our local model.

• When automatic parse trees are used, our joint model achieves an error reduc-

tion in F-Measure of 8.3% on all arguments and 10.3% on core arguments as

1Consistent structures are ones that satisfy the constraint that argument labeled nodes are not
in a domination relationship.

12 CHAPTER 1. INTRODUCTION

compared to our local model.

• On the CoNLL 2005 evaluation the error reductions of our joint compared to

our local model are 18.4% on all arguments for gold-standard parse trees, and

7.8% on all arguments when using the best Charniak parse tree.

• The results of our submission to the CoNLL 2005 shared task were lower because

of multiple issues discussed in Chapter 3, but our current results are 78.6%,

80.3%, and 68.8% on the development, Wall Street Journal test and Brown test

set sets, respectively. These results on the test sets are about 1 F-measure point

higher than the results of the winning system.2

1.3 Lexical Relations

A classic example of a kind of structural ambiguity that requires knowledge about

lexical relations is prepositional phrase (PP) attachment. PP attachment decisions

are also one of the major sources of ambiguity explosion in parsing. For example,

in our sentence introduced above “Stanford offers a long-distance course in Artificial

Intelligence”, the prepositional phrase “in Artificial Intelligence” can either modify

“course” (correct attachment), or it could modify “offers” as if it were specifying the

location of offering (incorrect). Clearly, we need to have word-specific knowledge to

decide the attachment – we need to know that “in Artificial Intelligence” is more

likely to be a property of a course rather than a location or some other property of

an offering event.

For many natural language tasks, the sparsity problems are severe as exemplified

by work on language modeling and syntactic parsing. Multiple smoothing techniques

have been developed and applied for language modeling ((Chen and Goodman, 1998)

contains on overview). One of the insights for attacking the sparsity problem has

been that it must be possible to use statistics about similar or related words, when

information about a particular word is non-existent. There are multiple ways of

2It is possible that other teams have also improved their numbers in the meantime.

1.3. LEXICAL RELATIONS 13

course AI

class Physics

Figure 1.3: An example word space with similarities for the relation in(noun1, noun2).

defining similarities among words. One source is knowledge about word morphology,

which tells us that words sharing the same lemma or stem are similar. Another source

is manually constructed thesauri or word taxonomies, such as WordNet (Miller, 1990).

These contain some very general knowledge about relationships among words, but do

not have complete coverage. Additional sources could include statistics based on

separate corpora, perhaps built for different tasks, but which could be the basis for

useful sources of similarity measures.

Previous work has applied similarity measures in isolation and evaluated their

contribution to particular tasks. Stemming and WordNet, for example, have been

found helpful for some tasks and harmful for others.

1.3.1 General Ideas

We go a step further and propose a framework in which multiple similarity measures

can be incorporated, and inferences based on them can be chained in multi-step

chains of inference. Figure 1.3 illustrates an example chain of inference we may

follow. Suppose that we want to estimate the probability that AI modifies course

via the preposition in. In other words, we want to estimate the probability that

14 CHAPTER 1. INTRODUCTION

a word dependency relationship of the form in(course, AI) occurs. Suppose also

that we have access to WordNet, which tells us that course is a synonym to class.

We have also observed the word dependency relationship in(class, Physics) in our

annotated corpus. Additionally, we have seen Physics co-occurring with AI in some

type of documents on the web, which gives us another similarity measure. If we take

these three inference steps starting from course, we will be able to conclude that

in(course, AI) is likely.

We propose to achieve such inferences via constructing a Markov chain in the state

space of words. The target word dependency distribution is estimated as the limiting

distribution of the Markov chain. The words are connected via different similarity

measures. We automatically learn weights for the different similarity measures, in

accordance with their usefulness for the task at hand.

The example in Figure 1.3 can be seen as a small state space of a Markov chain with

only 3 types of links between words – synonym links from WordNet, co-occurrence

links, and observed frequency links.

1.3.2 Summary of Results

Following most of the literature on PP attachment, starting with the work of Hindle

and Rooth (1993), we focus on the most common configuration that leads to ambi-

guities: V NP PP. Here, we are given a verb phrase with a following noun phrase

and a prepositional phrase. The goal is to determine if the PP should be attached to

the verb or to the object noun phrase. For example, in the sentence “Stanford offers

a long-distance course in Artificial Intelligence”, this configuration occurs as:

[offers]V [a long-distance course]NP [in Artificial Intelligence]PP .

We evaluate our model on the standard IBM dataset (Ratnaparkhi et al., 1994)

used in previous work on PP attachment. We incorporate several knowledge sources,

in addition to the standard training set of annotated attachments.

1.3. LEXICAL RELATIONS 15

Our baseline is a well-smoothed generative model for the word dependency re-

lations involved in the ambiguity, trained using only the standard training and de-

velopment sets. It is already significantly superior to previously proposed machine

learning models, trained using only this information. The accuracy of our baseline

model is 85.89%, and the best previous comparable result is 84.8% (Vanschoenwinkel

and Manderick, 2003).

Incorporating additional knowledge sources in our Markov chain model resulted

in significant gains in accuracy. The sources used were morphology, WordNet, and

similarities extracted from an additional set of noisy prepositional phrase attachment

examples. The additional set was constructed using a 30 million word text collection,

parsed by the parser of Charniak (2000), and known as the BLIPP corpus. We

extracted examples in the same form as the IBM training set from the parse trees of

the BLIPP corpus. We refer to this set of examples as BLIPP-PP. In summary, our

results were:

• Adding noun and verb morphology, and WordNet synonymy links for nouns

and verbs improved the accuracy from 85.89% to 86.53%.

• Adding verb morphology, several types of distributional similarity links from

BLIPP-PP, and empirical frequency links from BLIPP-PP improved the accu-

racy from 85.89% to 87.54%.

The upper bound in accuracy, estimated using human annotator agreement is

88.2% and the best reported result on this dataset is 88.1% (Stetina and Nagao,

1997). Our results are very close to these figures; additionally, differences of this size

(about .6) were found not to be statistically significant for our models, as detailed in

Chapter 4.

Chapter 2

Leaf Path Kernels for Natural

Language Parse Trees

In this chapter we are concerned with building statistical models for parse disam-

biguation – choosing a correct analysis out of the possible analyses for a sentence.

Many machine learning algorithms for classification and ranking require data to be

represented as real-valued vectors of fixed dimensionality. Natural language parse

trees are not readily representable in this form, and the choice of representation is

extremely important for the success of machine learning algorithms. Here we concen-

trate on coming up with a good representation. In particular, we study the problem

in the context of disambiguation for sentence analyses produced by a Head-driven

Phrase Structure Grammar (hpsg). hpsg is a modern constraint-based lexicalist

(or “unification”) grammar formalism.1 We evaluate our models on the Redwoods

corpus of hpsg analyses (Oepen et al., 2002). Parts of this work were done in col-

laboration with Penka Markova and published in (Toutanova et al., 2004b). Previous

work leading to the present models was described in (Toutanova and Manning, 2002;

Toutanova et al., 2003; Toutanova et al., 2005b).

The main goals of our work are:

• Come up with a feature representation for syntactic analyses, which is well

1For an introduction to hpsg, see (Pollard and Sag, 1994).

16

2.1. PRELIMINARIES 17

suited to hpsg grammars.

• Improve the accuracy of models by incorporating more expressive and discrim-

inative features.

• Incorporate large and even infinite-dimensional feature spaces to model prop-

erties of syntactic analyses, through the use of kernels.

We start with a brief introduction of preliminaries on statistical parsing and ker-

nels.

2.1 Preliminaries

From a machine learning point of view, the parse selection problem can be formulated

as follows:

The training set is given as m training examples of the form (si, ti0, . . . , t
i
pi−1).

The number of possible parses for sentence si is pi. For each sentence si, we also

know the correct analysis; we will assume, without loss of generality, that the correct

analysis for si is ti0. We are also given a feature representation Φ(ti
j) for the syntactic

analyses tij. Most often, the feature representations are vectors in a finite-dimensional

Euclidean space Rn.

The goal is to learn a classifier that can select the correct analyses for unseen

sentences, that is, learn a function f(s, t0, . . . , tp−1) 7→ {t0, . . . , tp−1}. The problem

is usually solved by learning a discriminant function g(Φ(tj)) 7→ R and the analysis

that maximizes that function for a given sentence is chosen as the guessed analysis:

f(s, t0, . . . , tp−1) = arg max
j

g(Φ(tj))

This problem differs from standard classification problems, because in classifica-

tion a finite set of atomic classes is usually specified and these classes are possible for

all inputs. In contrast, in parsing the possible analyses are completely disjoint across

different sentences.

18 CHAPTER 2. LEAF PATH KERNELS

Both generative and discriminative models have been proposed for parse selection.

In generative models, the joint distribution P (s, tj) is modelled and the discriminant

function is g = P (s, tj). In discriminative models, the function g either models

the conditional probability P (tj|s) or directly tries to maximize the accuracy of the

resulting classifier f .

One class of models, widely used in parsing and other applications, is the class of

linear models. In these models, the discriminant function is linear in the features.,

i.e., it is specified by a vector W , and the function g(tj) = 〈W, Φ(tj)〉, where 〈X, Y 〉 is

the inner product of two vectors. The space of linear models is very general because

by expanding the feature representation Φ we can obtain a very expressive hypothesis

space. An excellent treatment of linear models for parsing can be found in (Collins,

2001). There are multiple machine learning methods for linear models, differing in

the way they select the parameter vector W given a training set of disambiguated

instances. Logistic regression, Probabilistic Context Free Grammars, Support Vector

Machines, Perceptron, and Boosting are all examples of linear models.

Support Vector Machines (SVMs) are a type of linear models, which have been

demonstrated to be highly competitive across many domains. SVMs also have the

advantage of allowing efficient computation with very large feature maps Φ through

the use of kernels (similarity measures), which we define in §2.1.2. The following

subsection gives more details on SVM learning.

2.1.1 Support Vector Machines

The training criterion in SVMs (Vapnik, 1998) selects a linear hyperplane, which

roughly maximizes the difference in scores of the correct and incorrect analyses. In

particular, it maximizes the following quantity, called the margin:

γ̂ = min
i,j>0

〈W, Φ(ti0)〉 − 〈W, Φ(tij)〉
||W ||2

We introduce the formulation of SVMs for parsing of (Collins, 2001), which is very

similar to the multi-class SVM formulations of (Weston and Watkins, 1998; Crammer

2.1. PRELIMINARIES 19

and Singer, 2001). The optimization problem to be solved is as follows:

min
1

2
〈W, W 〉 + C

∑

ξi,j

∀i∀j > 0 : 〈W, (Φ(ti0) − Φ(tij))〉 ≥ 1 − ξi,j

∀i∀j > 0 : ξi,j ≥ 0

The ξi,j are slack variables used to handle the case where a linear hyperplane that

classifies the training set correctly does not exit. The same formulation has been used

for natural language parsing in (Collins, 2001; Shen and Joshi, 2003; Taskar et al.,

2004).

SVMs belong to the large class of machine learning algorithms which only need

inner products between examples and thus can be solved without explicitly specifying

the feature vectors Φ(tij). The optimization problem can be solved in the dual formu-

lation and it requires only the inner products 〈Φ(ti1
j1

), Φ(ti2j2)〉. Equivalently, it requires

the specification of a kernel. The next subsection gives background on kernels.

2.1.2 Kernels

Let X be a set of objects (syntactic analyses in our case). A Kernel K is a function

X × X 7→ R, with the following properties:

1. K is symmetric, i.e., ∀x, y ∈ X , K(x, y) = K(y, x).

2. K is positive definite, in the sense that for any N ≥ 1 and any x1, . . . , xN ∈ X ,

the matrix Kij = K(xi, xj) is positive definite, i.e.,
∑

ij cicjKij ≥ 0 for all

c1, . . . , cN ∈ R.

Note that if there exists a mapping Φ : X 7→ Rd, Φ(x) = {φi(x)}i=1,...,d, such that

K is the inner product in Rn, i.e., for every x and y, K(x, y) = 〈Φ(x), Φ(y)〉, then it

is easily verifiable that K is a kernel. The same holds if K is the inner product for

20 CHAPTER 2. LEAF PATH KERNELS

a mapping Φ : X 7→ l2 instead, where l2 is the Hilbert space of all square-summable

sequences, i.e.
∑∞

i=1 φi(x)2 < ∞.

Conversely, for a broad range of kernels it can be shown that such a mapping

exists (Haussler, 1999). In particular, this is always true for countable sets X , which

is the case for syntactic analyses.

Therefore, if we come up with such a mapping Φ for a function K, we can be

sure it is a kernel. We will mostly define kernels in this way. Additionally, the class

of kernels has nice closure properties which allow us to construct new kernels from

existing ones, using addition, product, etc. (Berg et al., 1984).

In this chapter we will use the construction of kernels using a convolution, which

is useful for structured objects. This method was introduced in (Haussler, 1999). We

will describe the construction, following Haussler (1999), without proof.

We only state the construction for countable sets, because this is sufficient for our

purposes. Suppose x ∈ X is a composite structure and one decomposition into its

parts is ~x = x1, . . . , xD, where each part xd ∈ Xd, for 1 ≤ d ≤ D. Each of the sets

Xd is countable, as is X . Let R represent the relation on X1 × · · ·XD ×X defined as

follows: R(x1, . . . , xD, x) is true iff x1, . . . , xD is a decomposition of x into parts. Let

R−1(x)
def
= {~x : R(~x, x)}. The relation R is finite if R−1(x) is finite for all x ∈ X .

To give a concrete example, suppose that X is the set of pairs of natural numbers

X = N ×N . Then R(i, j, x) is true iff x is the pair of natural numbers [i, j]. We will

later define a relation that decomposes trees into their parts.

Suppose we have kernels K1, . . . , KD, defined on X1 × X1,. . . , XD ×XD, respec-

tively. We define the similarity K(x, y) as the following generalized convolution:

K(x, y)
def
=

∑

~x∈R−1(x),~y∈R−1(y)

D
∏

d=1

Kd(xd, yd)

K is defined on S × S, where S is the subset of X for which R−1 is non-empty.

An R-convolution of K1,. . . , KD, denoted by K1 ? · · · ? KD is defined on X × X as

the zero extension of K(x, y) to X ×X . The zero extension of K(x, y) is the same as

2.2. THE REDWOODS CORPUS 21

K(x, y) on S × S, and is defined to be 0 whenever x or y is not in S.

The version of the theorem for convolution kernels we will use is as follows: If

K1, . . .KD are kernels on the countable sets X1 ×X1, . . . , XD ×XD, respectively, and

R is a finite relation on X1 × · · ·XD × X , where X is countable, then K1 ? · · · ? KD

is a kernel on X × X .

2.2 The Redwoods Corpus

The dataset of this work is the Redwoods corpus (Oepen et al., 2002). The grammar

formalism underlying the Redwoods corpus is Head Driven Phrase Structure Gram-

mar, which is a kind of lexicalist unification-based grammar. In unification-based

grammar, the lexical entries for words and the rules are represented as feature struc-

tures, or attribute-value matrices, which form a flexible mechanism for succinctly

expressing linguistic constraints.

Figure 2.1 shows a simple example of a grammar rule and two lexical entries rep-

resented in a unification-based grammar. We can see that agreement is achieved very

naturally without having to specify multiple context free rules for each combination

of feature values.

The hpsg grammar used to parse the sentences in the Redwoods corpus is the

LinGO erg (English Resource Grammar). Information in hpsg is represented by a

sign, a typed feature structure which represents phonological, syntactic, and semantic

information about a word or phrase. This information is built up for a sentence

compositionally from the signs of sentence parts. We have not used the full hpsg

sign in our current models, but rather a number of simpler projections of the sign

and how it was composed, which are available in the Redwoods corpus. Most similar

to Penn Treebank parse trees are phrase structure trees projected from the sign

(Figure 2.2(b)), but in this work we have concentrated on use of derivation trees

(Figure 2.2(a)), which record the combining rule schemas of the hpsg grammar which

were used to license the sign by combining initial lexical types.2 The internal nodes

2This derivation tree is also the fundamental data stored in the Redwoods treebank, since the

22 CHAPTER 2. LEAF PATH KERNELS

S ⇒ NP VP






cat noun

num x

pers y













cat verb

num x

pers y







am 





cat verb

num sg

pers 1







I






cat noun

num sg

pers 1







Figure 2.1: A grammar rule and lexical entries in a toy unification-based grammar.

represent, for example, head-complement, head-specifier, and head-adjunct schemas,

which were used to license larger signs out of component parts. These derivation trees

hence provide significantly different information from conventional phrase structure

trees, but have proven to be quite effective for disambiguation. These representations

are more fine-grained than those familiar from the Penn Treebank: for example, rather

than 45 part-of-speech tags and 27 phrasal node labels, we have about 8,000 lexical

item identifiers, and 70 derivational schemas. The lexical types are more similar to

those employed in Lexicalized Tree-Adjoining Grammar work (Srinivas and Joshi,

1999), encoding information such as verbal subcategorization.

Additionally, the (implicit) Penn Treebank grammar and the LinGO erg differ in

that the Penn Treebank often uses quite flat grammatical analyses while the erg is

maximally binary, with extensive use of unary schemas for implementing morphology

and type-changing operations. Much common wisdom that has been acquired for

building probabilistic models over Penn Treebank parse trees is implicitly conditioned

on the fact that the flat representations of the Penn Treebank trees mean that most

full sign can be reconstructed from it by reference to the grammar.

2.2. THE REDWOODS CORPUS 23

yesno

hcomp

hcomp

sailr

do1 pos

do

you

you

hcomp

bse vrb

want v2

want

hcomp

to c prop

to

hadj i uns

bse verb

meet v1

meet

hcomp

on day

on

proper np

noptcomp

sing noun

tuesday1

Tuesday

S

S

V

V

V

do

NP

you

S

V

V

want

VP

COMP

to

S

S

S

meet

PP

P

on

NP-T

N

N

N

Tuesday

4:{
4:int rel[SOA e2: want2 rel]

e2: want2 rel[ARG1 x4:pron rel, ARG4 2:hypo rel]
1:def rel[BV x4:pron rel]
2:hypo rel[SOA e18: meet v rel]

e18: meet v rel[ARG1 x4:pron rel]
e19: on temp rel[ARG e18: meet v rel, ARG3 x21:dofw rel]
x21:dofw rel[NAMED :tue]
3:def np rel[BV x21:dofw rel] }

Figure 2.2: Native and derived Redwoods representations for the sentence Do you
want to meet on Tuesday? — (a) derivation tree using unique rule and lexical item
(in bold) identifiers of the source grammar (top), (b) phrase structure tree labelled
with user-defined, parameterizable category abbreviations (center), and (c) elemen-
tary dependency graph extracted from the mrs meaning representation (bottom).

24 CHAPTER 2. LEAF PATH KERNELS

sentences length struct ambiguity
3829 7.8 10.8

Figure 2.3: Annotated ambiguous sentences used in experiments: The columns are,
from left to right, the total number of sentences, average length, and structural am-
biguity.

important dependencies are represented jointly in a local tree. Thus lessons learned

there may not be applicable to our problem (see Collins (1999) for a careful discussion

of this issue).

Finally, the hpsg signs provide deep semantic representations for sentences: to-

gether with the syntactic analyses of constituents, an underspecified minimal recursion

semantics (mrs) representation (Copestake et al., 1999) is built up. This semantic

information, unavailable in the Penn Treebank, may provide a useful source of addi-

tional features, at least partially orthogonal to syntactic information, for aiding parse

disambiguation.

2.2.1 Data Characteristics

The Redwoods corpus sentences are taken from VerbMobil (Wahlster, 2000) tran-

scribed spoken dialogues in the appointment scheduling and travel arrangements do-

main. Here, we use Version 1.5 of the Redwoods corpus. It dates from June 2002.

This version of the data was also used in (Oepen et al., 2002; Toutanova et al., 2002;

Toutanova et al., 2003). Newer versions of the corpus exist, the next one being Ver-

sion 3.0 from August 2003. The experiments reported in (Toutanova et al., 2005b)

are performed on Version 3.0.

We list important statistics on the composition and ambiguity of the corpus used

here. Figure 2.3 shows the total number of ambiguous sentences, average sentence

length, and average number of possible parses per sentence. The total number of

sentences in this version of the corpus, including unambiguous ones, is 5307.

Figure 2.4 shows the percentage of sentences by length in 2.4(a) and percentage

of sentences by number of possible analyses in 2.4(b).

2.3. RELATED WORK 25

Percent Sentences by Length

0%

2%

4%

6%

8%

10%

12%

14%

16%

0
 5
 10
 15
 20
 25
 30

Sentence Length

P
e

rc
e

n
t

o
f

S
e

n
te

n
c

e
s

(a) Length Distribution.

Ambiguity Histogram

0%

5%

10%

15%

20%

25%

30%

35%

2
 3 to 5
 6 to 10
 11 to 25
 26 to 40
 41 to 99
 100 to 8,000

Ambiguity

P
e
rc

e
n

t
o

f
S

e
n

te
n

c
e
s

(b) Ambiguity Histogram.

Figure 2.4: Characteristics of the Redwoods corpus Version 1.5. The sentence length
distribution and a histogram of numbers of possible analyses are shown.

2.3 Related Work

Most recent machine learning parsing models have been proposed for parsing into

Penn Treebank (Marcus et al., 1993) analyses. Additionally, a growing number of

models for deeper grammars are being developed. We overview both types of models

as they relate to our work. The parsing models differ in the feature representations

of syntactic analyses and machine learning methods used. In the discussion here, we

will mainly emphasize the feature representations, even though we also specify the

learning methods.

2.3.1 Penn Treebank Parsing Models

After generative Probabilistic Context Free Grammars (PCFG) were first applied to

Penn Treebank parsing, many ways of improving the feature representation of parsing

models have been found. For example, by incorporating more structural context in

the features in the form of parent annotation of parse tree nodes, the performance of

26 CHAPTER 2. LEAF PATH KERNELS

PCFG models was greatly improved (Johnson, 1998): labeled precision/recall went

up from 73.5/69.7 to 80.0/79.2.

Models including more structural information and lexicalization of each rule with

the lexical head, sophisticated smoothing, annotation and rule decomposition schemes

led to further improvements in performance (Magerman, 1995; Collins, 1997; Char-

niak, 2000). The generative model of Charniak (Charniak, 2000) was the best per-

forming one for several years with performance around 90 F-Score.

Klein and Manning (2003) showed that un-lexicalized models, based on markovized

annotated context-free rules can perform much better than previously believed. The

proposed annotations of parse tree nodes were both internal, in the sense that they

are based on structure within a constituent, and external, in the sense that they look

at external structure.

Eisner (2002) shows that it is advantageous to use joint representation of all

expansions headed by a verb, i.e., to model the sentence (S) and verb phrase (VP)

levels jointly, rather than separately. This is relevant to our work because we also

model jointly the modifiers and complements of words and take the joint modeling

idea even further.

Discriminative models have also been recently applied to Penn Treebank parsing.

Such models often have superior performance, due to their properties of more closely

optimizing the target accuracy measure and allowing the seamless incorporation of

arbitrary non-independent features.

The problem with discriminative models is the computational complexity of train-

ing. Because such models need to consider all possible analyses in multiple iterations,

training can be prohibitively slow. Various approaches have been proposed to deal

with the problem, when the number of possible analyses is too large to deal with ex-

plicitly. Examples include re-ranking (Collins, 2000), dynamic programming (Taskar

et al., 2004), online learning (Crammer and Singer, 2003) combined with top k re-

ranking (McDonald et al., 2005) and approximation techniques (Tsochantaridis et al.,

2004).

2.3. RELATED WORK 27

Currently, the best performing model for Penn Treebank parsing is due to (Char-

niak and Johnson, 2005). It is a discriminative re-ranking model, which re-ranks the

top 50 parse trees according to the generative parser described in (Charniak, 2000).

In the terminology of §2.1, it is a linear model which selects a parse tree from among

50 possible ones, proposed by the generative model. Many types of features are in-

corporated in this model and we only briefly mention the most notable kinds here.

In addition to standard features types, such as context-free rules with ancestor an-

notation and bi-lexical dependencies, the following features are included: a limited

number of subtree features, n-gram features connecting the leaves of the tree with l

internal nodes, head word projections which achieve joint representation of all rules

having the same head, and features measuring parallelism for coordination and heav-

iness of constituents. The F-Measure of this model is 91 on sentences of length ≤
100.

A different and well-performing representation is the all subtrees representation

of Bod (1998). Subtrees of large size and containing many words are incorporated as

features and shown to lead to gains in accuracy.

2.3.2 Models for Deep Grammars

Unification-based Grammars

A problem with building generative models for unification-based grammars is that

it is difficult to make sure probability mass is not lost to trees which violate the con-

straints of the grammar. For example, a relative frequency estimator for a probabilis-

tic context-free grammar is not a maximum likelihood estimator for unification-based

grammars in the general case. A machine-learning model for unification-based gram-

mars was first proposed in (Abney, 1997). The goal of the work was not to maximize

performance but to propose a statistically sound technique for estimation of weighted

context-free rule models; the proposed model class was Markov Random Fields. The

first model applied to disambiguation for a unification-based grammar on real data

was proposed in (Johnson et al., 1999). It is a discriminative log-linear model in the

28 CHAPTER 2. LEAF PATH KERNELS

terminology of §2.1. The proposed features are specific to lfg, the grammar formal-

ism of the data set used. In addition to local context-free rule features, there are

features indicating grammatical function, high and low attachment, parallelism for

coordinates structures, and f-structure atomic attribute-value pairs. A similar model

was applied to a larger corpus containing lfg parses of Penn Treebank trees (Riezler

et al., 2002).

Previous work on hpsg for the Redwoods corpus includes our work (Oepen et

al., 2002; Toutanova and Manning, 2002; Toutanova et al., 2003; Toutanova et al.,

2005b) and work by other researchers (Baldridge and Osborne, 2003; Osborne and

Baldbridge, 2004; Baldridge and Osborne, 2004). We studied generative and discrim-

inative models for hpsg parsing, the generative models being deficient and inconsis-

tent. We found that discriminative models consistently outperformed corresponding

generative models (Toutanova et al., 2005b). We applied context-free rule based

models with lexicalization and ancestor annotation to derivation trees, and combined

these with models using semantic representations. The best result we obtained via

combining features derived from multiple representations of hpsg signs was 82.7% on

Version 1.5 of the Redwoods treebank. Later we will show that the present models

outperform the previous ones considerably. The model most relevant to our work is

the one described in (Osborne and Baldbridge, 2004); it is a voted combination of

several log-linear models based on different parts of the representations available in

the Redwoods corpus. The emphasis of that work was on active learning and not so

much on developing good representations for hpsg analyses. The features were local

rule features with ancestors, and features form the semantic representations, similar

to our features in (Toutanova et al., 2005b). The voted model achieved an accuracy

of 84.2% on Version 1.5 of Redwoods. We show that our present model outperforms

this model as well.

Miyao and Tsujii (2005) propose a log-linear model for hpsg parsing, which they

apply to parsing Penn Treebank sentences. The group constructed a corpus of hpsg

parses semi-automatically using the existing parses in the Penn Treebank (Miyao et

al., 2004). The model used has only features based on lexicalized local rules, including

counting the number of words spanned, distance between a head and dependent word,

2.3. RELATED WORK 29

and POS tags and lexical entry types for these words. Because the grammar is wide

coverage and highly ambiguous, two techniques are applied to deal with the com-

putational complexity issues: pre-filtering by limiting the possible lexical types and

dynamic programming to compute feature expectations on a packed feature forest.

Other Deep Grammars

Statistical models have also been defined for other deep grammars, such as Lexical-

ized Tree-Adjoining Grammar (Srinivas and Joshi, 1999) and Combinatory Categorial

Grammar (CCG) (Steedman, 1996). Such grammars and corpora for them have been

developed semi-automatically using the annotated Penn Treebank corpus (Xia, 1999;

Chen and Vijay-Shanker, 2000; Hockenmaier and Steedman, 2002a). A generative

model for CCG, using context-free rule expansions with lexicalization, grand-parent

annotation, distance measures and lexicalization was proposed in (Hockenmaier and

Steedman, 2002b), and found to perform well. The model was further improved in

(Hockenmaier, 2003b) to model word-word dependencies in the underlying predicate-

argument structure. A discriminative log-linear model for CCG was proposed in

(Clark and Curran, 2004), achieving better performance.

2.3.3 Kernels for Parse Trees

An example of a kernel used for natural language parsing is the all subtrees ker-

nel of Collins and Duffy (2001). This kernel effectively implements the all-subtrees

representation of parse trees (Bod, 1998) by the application of a fast dynamic pro-

gramming algorithm for computing the number of common subtrees of two trees. The

features correspond to arbitrary subtrees of a parse tree, with the restriction that,

if any children of a node are included in the subtree, then all children of that node

are included. Collins and Duffy (2002) reported an experiment using this kernel to

re-rank the top n parse trees produced by the generative parser of Collins (1999). The

machine learning method used was a voted perceptron. The improvement in average

precision and recall was 0.6 absolute (from 88.2 to 88.8) on sentences of length ≤ 100

words, which is a 5.1% relative reduction in error. Shen and Joshi (2003) achieved a

similar result using an SVM rather than a voted perceptron and using the same tree

30 CHAPTER 2. LEAF PATH KERNELS

kernel; however, they trained on only about a quarter of the training set because of

computational complexity.

Overall, the tree kernel has not been shown to have superior performance to

context-free rule based representations. For example, the re-ranking model of (Collins,

1999), using boosting and a feature representation based on local rule features plus

additional lexicalization, achieves better performance – 89.6 recall and 89.9 precision

on sentences of length ≤ 100. A reason for this could be the large space of possible

features, which may result in overfitting. In Collins and Duffy (2001), larger subtrees

are discounted and an it does not hurt to limit the maximum depth of the used

subtrees to a small number.

Another tree kernel, more broadly applicable to Hierarchical Directed Graphs, was

proposed in (Suzuki et al., 2003). Many other interesting kernels have been devised

for sequences and trees, with application to sequence classification and parsing. A

good overview of kernels for structured data can be found in (Gärtner et al., 2002).

2.4 Our Approach

In line with previous work on unification-based grammars, we build discriminative

models for parse disambiguation. Because the number of analyses is quite limited, as

seen from the corpus statistics in §2.2, we do not need to worry about computational

complexity when defining the features of our models.

Compared to the usual notion of discriminative models (placing classes on rich

observed data) discriminative PCFG parsing with plain context-free rule features may

look naive, since most of the features (in a particular tree) make no reference to

observed input at all. Lexicalization, which puts an element of the input on each tree

node, so all features do refer to the input, addresses this problem to some extent, but

this may not be sufficient. This is even more true for an hpsg grammar, because it is

very lexicalized. The node labels in derivation trees indicate the type of relationship

of the head and non-head constituents which join at each node. Therefore it is worth

exploring feature representations which are word-centered and depart to a larger

2.5. PROPOSED REPRESENTATION 31

extent from the context-free rule paradigm.

We propose a linguistically motivated representation centered around lexicalized

broad structural fragments. This representation naturally extends to defining tree

kernels, by building on previous work on string kernels. By using kernels, we effec-

tively include novel types of features, previously unexplored for parsing.

We represent parse trees as lists of paths (leaf projection paths) from words to

the top level of the tree, which includes both the head-path (where the word is a

syntactic head) and the non-head path. This allows us to capture, for example,

cases of non-head dependencies which were also discussed by (Bod, 1998) and were

used to motivate large subtree features, such as “more careful than his sister” where

“careful” is analyzed as head of the adjective phrase, but “more” licenses the “than”

comparative clause. This representation of trees as lists of projection paths (strings)

allows us to explore string kernels on these paths and combine them into tree kernels.

We use SVM models for parse selection, as they are a high-performance machine

learning method and allow for the use of kernels. We reviewed the formulation of

SVM models in the parse selection setting in §2.1.1.

2.5 Proposed Representation

In this section, after describing in more detail the form of syntactic analyses of hpsg

used, we introduce the representation of parse trees as leaf projection paths.

2.5.1 Representing HPSG Signs

As mentioned in §2.2, we have not used the complete hpsg signs for defining statistical

disambiguation models. The main representation for our models is the derivation

tree representation, shown in Figure 2.2(a). This representation has also been used

in previous work on the Redwoods corpus (Toutanova et al., 2002; Toutanova and

Manning, 2002; Osborne and Baldbridge, 2004). Another example of a derivation

32 CHAPTER 2. LEAF PATH KERNELS

tree, for the sentence Let us plan on that, is shown in Figure 2.5.3

Additionally, we annotate the nodes of the derivation trees with information ex-

tracted from the hpsg sign. The annotation of nodes is performed by extracting

values of feature paths from the feature structure or by propagating information from

children or parents of a node. In theory with enough annotation at the nodes of the

derivation trees, we can recover the whole hpsg signs.

Here we describe three node annotations that proved very useful for disambigua-

tion. One is annotation with the values of the feature path synsem.local.cat.head –

its values are basic parts of speech such as noun, verb, prep, adj, adv. Another is

phrase structure category information associated with the nodes, which summarizes

the values of several feature paths and is available in the Redwoods corpus as Phrase-

Structure trees (an example Phrase-Structure tree is shown in Figure 2.2(b)). The

third is annotation with lexical type (le-type), which is the type of the head word at

a node. The preterminals in Figure 2.5 are lexical item identifiers — identifiers of

the lexical entries used to construct the parse. The le-types are about 500 types in

the hpsg type hierarchy and are the direct super-types of the lexical item identifiers.

The le-types are not shown in this figure, but can be seen at the leaves in Figure 2.6.

For example, the lexical type of LET V1 in the figure is v sorb, a subtype of subject

to object raising verbs. In Figure 2.5, the only annotation shown is with the values

of synsem.local.cat.head.

2.5.2 The Leaf Projection Paths View of Parse Trees

We define our representation of parse trees, applied to derivation trees.

The projection path of a leaf is the sequence of nodes from the leaf to the root of

the tree. In Figure 2.6, the leaf projection paths for three of the words are shown.

We can see that a node in the derivation tree participates in the projection paths

of all words dominated by that node. The original local rule configurations — a

node and its children, do not occur jointly in the projection paths; thus, if special

3This sentence has three possible analyses depending on the attachment of the preposition “on”
and whether “on” is an adjunct or complement of “plan”.

2.5. PROPOSED REPRESENTATION 33

IMPER

HCOMP verb

HCOMP verb

LET V1

let

US

us

HCOMP verb

PLAN ON V2

plan

HCOMP prep

ON

on

THAT

that

Figure 2.5: Derivation tree for the sentence Let us plan on that. The head child of
each node is shown in bold.

IMPER verb

HCOMP verb

HCOMP verb

LET V1

let (v sorb)

IMPER verb

HCOMP verb

HCOMP verb

PLAN ON V2

plan (v e p itrs)

IMPER verb

HCOMP verb

HCOMP verb

HCOMP verb

ON

on (p reg)

Figure 2.6: Paths to top for three leaves. The nodes in bold are head nodes for the
leaf word and the rest are non-head nodes.

annotation is not performed to recover it, this information is lost.

As seen in Figure 2.6, and as is always true for a grammar that produces non-

crossing lexical dependencies, there is an initial segment of the projection path for

which the leaf word is a syntactic head (called head path from here on), and a final

segment for which the word is not a syntactic head (called non-head path from here

on).

If, in a traditional parsing model that estimates the likelihood of a local rule ex-

pansion given a node (such as e.g. (Collins, 1997)), the tree nodes are annotated with

the word of the lexical head, some information present in the word projection paths

can be recovered. However, this is only information in the head projection paths,

34 CHAPTER 2. LEAF PATH KERNELS

and it is broken across multiple bar levels. Other models, such as (Eisner, 2002) and

(Charniak and Johnson, 2005) use explicit representation of complete maximal head

projections, and thus model jointly complete head paths. In further experiments we

show that the non-head part of the projection path is very helpful for disambiguation,

and that the head and non-head paths can be modelled better by the application of

kernels.

Using this representation of derivation trees, we apply string kernels to the leaf

projection paths and combine those to obtain kernels on trees. In the rest of this

chapter we explore the application of string kernels to this task, comparing the per-

formance of the new models to models using more standard rule features.

2.6 Tree and String Kernels

2.6.1 Kernels on Trees Based on Kernels on Projection Paths

So far we have defined a representation of parse trees as lists of strings corresponding

to projection paths of words. Now we formalize this representation and show how

string kernels on projection paths extend to tree kernels.

We introduce the notion of a keyed string — a string that has a key, which is

some letter from an alphabet ΣKeys . We can denote a keyed string by a pair (a, x),

where a ∈ ΣKeys is a key, and x is a string. In our application, the strings x are

representations of head and non-head word projection paths, and the keys w are

words. More specifically, for every word w, if xh is the string representation of the

head projection path of w as a sequence of annotated derivation tree nodes, and xnh

is the string representation of the non-head projection path of w, then the keyed

strings (hw, xh) and (nhw, xnh) represent the two parts of the word projection path of

w. The keys have the form locw where loc (from location) indicates whether the keyed

string represents a head path (loc = h) or a non-head path (loc = nh). Additionally,

for reducing sparsity, for each keyed string (locw, xloc), we also include a keyed string

(loclew, xloc), where lew is the le-type of the word w. Thus each projection path occurs

2.6. TREE AND STRING KERNELS 35

twice in the list representation of the tree – once keyed by the word, and once by

its le-type. For example, for the word let in Figure 2.6, the head path of the word

is xh=“SOP LET V1:verb HCOMP:verb HCOMP:verb IMPER:verb EOP”, the non-head

path is xnh=“SOP EOP”, and the le-type of let is v sorb. Here the symbols SOP and

SOP represent start and end of path. This information about the word let will be

represented in the form of keyed strings as follows:

(hlet, SOP LET V1:verb HCOMP:verb HCOMP:verb IMPER:verb EOP)

(nhlet, SOP EOP)

(hv sorb, SOP LET V1:verb HCOMP:verb HCOMP:verb IMPER:verb EOP)

(nhv sorb, SOP EOP)

For a given kernel Kp on strings, we define its extension to keyed strings as follows:

K((a, x), (b, y)) = Kp(x, y), if a = b, and K((a, x), (b, y)) = 0, otherwise. We use this

construction for all string kernels applied in this work. It is easy to show that if Kp is

a kernel, then K is a kernel as well, using a tensor product of the kernels Kδ(a, b) and

Kp(x, y), where Kδ(a, b) is defined as follows: Kδ(a, b) = 1 if a = b, and Kδ(a, b) = 0,

otherwise (Berg et al., 1984).

Given a tree t1 = ((a1, x1), . . . , (an, xn)) and a tree t2 = ((b1, y1), . . . , (bm, ym)),

and a kernel K on keyed strings, we define a kernel KT on trees as follows:

KT (t1, t2) =

n
∑

i=1

m
∑

j=1

K((ai, xi), (bj, yj))

This can be viewed as a convolution kernel (Haussler, 1999) and therefore KT

is a valid kernel (positive definite symmetric), if K is a valid kernel. In particular,

following the definitions in §2.1.2, we can define KT as an R-convolution with respect

to the following relation R: R(i, (a, x), t) is true, iff (a, x) is the i-th keyed string in

the representation of the tree t. KT is an R-convolution of K and the constant unity

kernel K1(i, j) = 1, for all i, j ∈ N .

36 CHAPTER 2. LEAF PATH KERNELS

2.6.2 String Kernels

We experimented with some of the string kernels proposed in (Lodhi et al., 2000; Leslie

and Kuang, 2003), which have been shown to perform very well for indicating string

similarity in other domains. In particular we applied the N-gram kernel, Subsequence

kernel, and Wildcard kernel. We refer the reader to (Lodhi et al., 2000; Leslie and

Kuang, 2003) for detailed formal definition of these kernels, and restrict ourselves to

an intuitive description here. In addition, we devised two new kernels – the Repetition

kernel, and the Distance-weighted n-gram kernel, which we describe in detail.

The n-gram kernel has been used widely in previous work on parse disambigua-

tion, even if it has not been explicitly given this name. For example, when order n

markovization is used for local rule features, this is an implicit use of an n-gram string

kernel. The other kernels we introduce have not been commonly used for parsing.

The kernels used here can be defined as the inner product of appropriately defined

feature vectors for the two strings K(x, y) = 〈Φ(x), Φ(y)〉. For most kernels, there

exists a feature map Φ which maps the strings into a finite dimensional Euclidean

space. We will define all kernels, expect for the new Distance-weighted n-gram kernel,

using such a map into a finite dimensional vector space. We will define the Distance-

weighted n-gram kernel through a convolution and not through an explicit map (for

convenience and because we would need to use an infinite dimensional space to define

it otherwise).

The maps Φ(x) defining a string kernel will be maps from all finite sequences from

a string alphabet Σ to a Euclidean space Rm, indexed by an appropriately defined

set of subsequences from Σ. As a simple example, the 1-gram string kernel maps

each string x ∈ Σ∗ to a vector with dimensionality |Σ| and each element in the vector

indicates the number of times the corresponding symbol from Σ occurs in x. For

example, the head path of let in Figure 2.6 is represented by the string x=“SOP

LET V1:verb HCOMP:verb HCOMP:verb IMPER:verb EOP” . The symbols SOP and

EOP represent start and end of path, respectively. Each dimension in Φ(x) is indexed

by a letter of the alphabet of the string, namely, the set of annotated node labels. If

the letters are indexed in alphabetical order, the feature representation of x will be

2.6. TREE AND STRING KERNELS 37

the following (only the non-zero valued coordinates are shown):

α Φα(x)
EOP 1
HCOMP:verb 2
IMPER 1
LET V1:verb 1
SOP 1

Figure 2.7: Feature map for 1-gram kernel for the string x=“SOP LET V1:verb

HCOMP:verb HCOMP:verb IMPER:verb EOP”.

Repetition Kernel

The Repetition kernel is similar to the 1-gram kernel. It improves on the 1-gram kernel

by better handling cases with repeated occurrences of the same symbol. Intuitively,

in the context of our application, this kernel captures the tendency of words to take

(or not take) repeated modifiers of the same kind. For example, it may be likely for

a certain verb to take one PP-modifier, but less likely for it to take two or more.

More specifically, the Repetition kernel is defined such that its vector space is

indexed by all sequences from Σ composed of the same symbol. The feature map

obtains matching of substrings of the input string to features, allowing the occurrence

of gaps. There are two discount parameters λ1 and λ2. λ1 serves to discount features

for the occurrence of gaps, and λ2 discounts longer symbol sequences.

Formally, for an input string x, the value of the feature vector for the feature

index sequence α = a . . . a, |α| = k, is defined as follows: Let s be the left-most

minimal contiguous substring of x that contains α, s = s1 . . . sl, where for indices

i1 = 1, i2, . . . ik = l, si1 = a = si2 = . . . = sik . Then ΦRepetition
α (x)=λl−k

1 λk
2.

For example, if λ1 = .5, λ2 = .3, Φa(abcadaf) = .3, Φaa(abcadaf) = .3 × .3 × .5 ×
.5 = 0.0225, and Φaaa(abcadaf) = .3×.3×.3×.5×.5×.5 = 0.003375. For our previous

example with the head path of let, its feature representation for λ1 = .5, λ2 = .3 is

shown in Figure 2.8.

38 CHAPTER 2. LEAF PATH KERNELS

α Φα(x)
EOP 0.3
HCOMP:verb 0.3
HCOMP:verb HCOMP:verb 0.09
IMPER 0.3
LET V1:verb 0.3
SOP 0.3

Figure 2.8: Feature map for Repetition kernel for the string x=“SOP LET V1:verb

HCOMP:verb HCOMP:verb IMPER:verb EOP”, λ1 = .5, λ2 = .3.

Distance-weighted N-gram Kernel

In estimating the probability of occurrence of complements and modifiers given a

head, the distance of the those modifiers has been shown to be very useful. This is

evidenced, for example, in the work of (Collins, 1997), for estimating the probability of

lexicalized rule expansions. However, the addition of a distance feature with D values

introduces some additional sparsity and the gain from the additional information may

not always be large enough to outweigh it.

Here we propose a different way of taking distance into account by a distance-

weighted n-gram kernel. This method for distance weighting can also be incorporated

in many other string kernels such as the Wildcard and Subsequence kernels which

we describe shortly. For concreteness, we will describe our definition of a distance-

weighted 1-gram kernel. The extension to higher k-grams and other kernels will

be obvious. The 1-gram kernel for strings a1, a2, . . . , an and b1, b2, . . . , bm can be

represented as a convolution kernel in the following manner. Let R be a four-place

relation on strings defined as follows: (x0, x1, x2, x) ∈ R iff x0 ◦ x1 ◦ x2 = x, and

|x1| = 1. Here ◦ denotes string concatenation and |x| denotes the length of x.

The 1-gram string kernel can be defined as an R-convolution of the kernels on

strings K1(x, y) = 1 ∀x, y, K2(x, y) = 1 iff x = y and 0 otherwise, and K3(x, y) =

K1(x, y). The 1-gram kernel is defined as the zero extension of the generalized con-

volution: K(x, y) =
∑

R(x0,x1,x2,x)

∑

R(y0 ,y1,y2,y)

K1(x0, y0) × K2(x1, y1) × K3(x2, y2). This di-

rectly follows the definitions in §2.1.2.

2.6. TREE AND STRING KERNELS 39

To obtain a distance weighted 1-gram kernel we propose to substitute the constant

kernels K1 and/or K3 by a Gaussian kernel on the lengths of the strings. K1(x, y) =

e(−(dx−dy)2/σ2), where dx = |x| and dy = |y|. Thus the common 1-grams which occur

an equal distance form the beginning in the two strings will contribute most weight

to the similarity, and 1-grams that occur at hugely different locations will contribute

much less.

By using the convolution kernel representation, we can see how the distance

weighting extends to many other string kernels. Additionally, it can be adapted

to tree kernels to compare the depths at which common subtrees occur or the weights

of constituents.

Previously Proposed Kernels

The weighted Wildcard kernel performs matching by permitting a restricted number

of matches to a wildcard character. A (k, m) wildcard kernel has as feature indices

k-grams with up to m wildcard characters. Any character matches a wildcard. For

example the 3-gram aab will match the feature index a ∗ b in a (3,1) wildcard kernel.

The weighting is based on the number of wildcard characters used – the weight is

multiplied by a discount λ for each wildcard.

As a specific example, Figure 2.9 shows the feature representation of the head

path of let in (2,2) wildcard card with λ = .5. The feature index strings are bi-grams

with up to 2 wildcards.

The Subsequence kernel was defined in (Lodhi et al., 2000). We used a variation

where the kernel is defined by two integers (k, g) and two discount factors λ1 and

λ2 for gaps and characters. A subseq(k,g) kernel has as features all n-grams with

n ≤ k. The g is a restriction on the maximal span of the n-gram in the original string

– e.g. if k = 2 and g = 4, the two letters of a 2-gram can be at most g − k = 2

letters apart in the original string. The weight of a feature is multiplied by λ1 for

each gap, and by λ2 for each non-gap. For example, if λ1 = .5, λ2 = 3, k = 2, g = 3,

Φaa(abcadaf) = 3 × 3 × .5 = .45. The feature index aa matches only once in the

string with a span at most 3 – for the sequence ada with 1 gap.

40 CHAPTER 2. LEAF PATH KERNELS

α Φα(x)
** 0.25
* EOP 0.5
* HCOMP:verb 1.0
* IMPER:verb 0.5
* LET V1:verb 0.5
HCOMP:verb * 1.0
HCOMP:verb HCOMP:verb 1.0
HCOMP:verb IMPER:verb 1.0
IMPER:verb * 0.5
IMPER:verb EOP 1.0
LET V1:verb * 0.5
LET V1:verb HCOMP:verb 1.0
SOP * 0.5
SOP LET V1:verb 1.0

Figure 2.9: Feature map for a (2,2) Wildcard kernel for the string x=“SOP

LET V1:verb HCOMP:verb HCOMP:verb IMPER:verb EOP”, λ = .5.

Figure 2.10 shows the feature representation of the head path of let according to

a (2,3) Subsequence kernel with λ1 = .5, λ2 = 3. The value of the feature SOP is

3 = λ2, because there is one letter and no gaps. The value of the feature HCOMP:verb

IMPER is x = λ2 × λ2 + λ2 × λ2 × λ1 = 13.5, because this feature occurs twice in the

head path – once without gaps, and once with one gap.

The details of the algorithms for computing the kernels can be found in the afore-

mentioned papers (Lodhi et al., 2000; Leslie and Kuang, 2003). To summarize, the

kernels can be implemented efficiently using tries.

2.7 Experiments

In this section we describe our experimental results using different string kernels

and different feature annotation of parse trees. We performed experiments using the

version of the Redwoods corpus described in §2.2.1. We discarded the unambiguous

sentences from the training and test sets. All models were trained and tested using

2.7. EXPERIMENTS 41

α Φα(x)
EOP 3.0
HCOMP:verb 6.0
HCOMP:verb EOP 4.5
HCOMP:verb HCOMP:verb 9.0
HCOMP:verb IMPER:verb 13.5
IMPER 3.0
IMPER:verb EOP 9.0
LET V1:verb 3.0
LET V1:verb HCOMP:verb 13.5
SOP 3.0
SOP HCOMP:verb 4.5
SOP LET V1:verb 9.0

Figure 2.10: Feature map for a (2,3) Subsequence kernel for the string x=“SOP

LET V1:verb HCOMP:verb HCOMP:verb IMPER:verb EOP”, λ1 = .5, λ2 = 3.

10-fold cross-validation. The i-th fold, consisting of training set train i and test set

test i, for i = 1, . . . , 10, was generated by placing every (10k + i)-th sentence in test i

and the remaining sentence in train i. Accuracy results are reported as percentage of

sentences where the correct analysis was ranked first by the model.

2.7.1 SVM Implementation

We learn Support Vector Machine (SVM) ranking models using the software package

SV M light (Joachims, 1999). We also normalized the kernels:

K ′(t1, t2) = K(t1,t2)√
K(t1,t1)

√
K(t2,t2)

.

For kernels that can be defined through relatively small feature maps Φ it is ad-

vantageous to explicitly generate feature vectors for all examples and to use SV M light

with a linear kernel. This is because it is likely the special optimization techniques

for linear kernels will make the computation faster. This is what we did for all kernels

implemented here, with the exception of the Distance-weighted n-gram kernel, which

requires an infinite dimensional feature map. After creating feature vectors for all

42 CHAPTER 2. LEAF PATH KERNELS

trees Φ(tij), we learned preference ranking SVMs (Joachims, 2002) with a linear ker-

nel. The ranking specified gave highest rank to the correct analysis of each sentence,

and lower equal ranks to all other analyses. This results in the same optimization

problem formulation as outlined in §2.1.1.

At the time the experiments were performed, SV M light did not contain implemen-

tation of non-linear kernels for preference ranking problems. The current version does

have this feature and additionally, the SV M struct extension of SV M light should also

provide capabilities for solving the kernelized version of the optimization problem in

§2.1.1.

Because these options were not available, we solved the optimization problem

through representing it as an equivalent binary classification problem, as described

in (Shen and Joshi, 2003). The trick is to have pairs of correct and incorrect analyses

be represented as single positive or negative instances. In particular, Shen and Joshi

(2003) propose to add a positive example for every ordered pair [ti
0, t

i
j] for every

training sentence i and incorrect analysis ti
j, j > 0, and a negative example for every

reversed pair [tij, t
i
0]. Shen and Joshi (2003) also show how to extend a kernel on

parse trees to an equivalent kernel on pairs of parse trees of this form and we use

their method. We found that we can cut the size of the training set in half, by adding

only positive examples – for the pairs [ti
0, t

i
j] – and constraining the intercept b to

b = 0. It is easy to show that this results in an optimization problem equivalent to

the one in §2.1.1.

The structure of the rest of the experiments section is as follows. First we describe

the results of a controlled experiment using a limited number of features, and aimed

at comparing models using local rule features to models using leaf projection paths in

§2.7.2. Next we describe models using more sophisticated string kernels on projection

paths in §2.7.3.

2.7. EXPERIMENTS 43

2.7.2 The Leaf Projection Paths View versus the Context-

Free Rule View

In order to evaluate the gains from the new representation, we describe the features

of three similar models, one using leaf projection paths, and two using derivation tree

rules. Additionally, we train a model using only the features from the head-path parts

of the projection paths to illustrate the gain of using the non-head path. As we will

show, a model using only the head-paths has almost the same features as a rule-based

tree model.

All models here use derivation tree nodes annotated with only the rule schema

name as in Figure 2.5 and the synsem.local.cat.head value. We will define these models

by their feature map from trees to vectors. It will be convenient to define the feature

maps for all models by defining the set of features through templates. The value

Φα(t) for a feature α and tree t, will be the number of times α occurs in the tree. It

is easy to show that the kernels on trees we introduce in §2.6.1, can be defined via a

feature map that is the sum of the feature maps of the string kernels on projection

paths.

As a concrete example, for each model we show all features that contain the node

“HCOMP:verb” from Figure 2.5, which covers the phrase plan on that.

Bi-gram Model on Projection Paths (2PP)

The features of this model use a projection path representation, where the keys are

not the words, but the le-types of the words. The features of this model are defined

by the following template : (locleType, nodei, nodei+1). The loc superscript indicates

whether this feature matches a head (h) or a non-head (nh) path as in our definitions

for keyed string representations of projection paths of §2.6.1, leType is the le-type of

the path leaf, and nodei, nodei+1 is a bi-gram from the path.

The node “HCOMP:verb” is part of the head-path for plan, and part of the non-

head path for on and that. The le-types of the words let, plan, on, and that are, with

abbreviations, v sorb, v e p, p reg, and n deic pro sg respectively. In the following

44 CHAPTER 2. LEAF PATH KERNELS

examples, the node labels are abbreviated as well; As before, EOP is a special symbol

for end of path and SOP is a special symbol for start of path. Therefore the features

that contain the node will be:

(hv e p,PLAN ON:verb,HCOMP:verb)

(hv e p,HCOMP:verb,EOP)

(nhp reg,SOP,HCOMP:verb)

(nhp reg,HCOMP:verb,HCOMP:verb)

(nhn deic pro sg,HCOMP:prep,HCOMP:verb)

(nhn deic pro sg,HCOMP:verb,HCOMP:verb)

Bi-gram Model on Head Projection Paths (2HeadPP)

This model has a subset of the features of Model 2PP — only those obtained by the

head path parts of the projection paths. For our example, it contains the subset of

features of 2PP that have location h, which are only the following:

(hv e p,PLAN ON:verb,HCOMP:verb)

(hv e p,HCOMP:verb,EOP)

Rule Tree Model I (Rule I)

The features of this model are defined by the two templates: (hleType, node, child1, child2)

and (nh leType, node, child1, child2). The location superscript on leType is an indica-

tion of whether the tuple contains the le-type of the head or the non-head child as

its first element. The features containing the node “HCOMP:verb” are ones from the

expansion at that node and also from the expansion of its parent:

(hv e p,HCOMP:verb,PLAN ON:verb,HCOMP:prep)

(nhp reg,HCOMP:verb,PLAN ON:verb,HCOMP:prep)

(hv sorb,HCOMP:verb,HCOMP:verb,HCOMP:verb)

(nhv e p,HCOMP:verb,HCOMP:verb,HCOMP:verb)

2.7. EXPERIMENTS 45

Rule Tree Model II (Rule II)

This model splits the features of model Rule I in two parts, to mimic the features of

the projection path models. It has features from the following templates:

(hleTypeHead, node, headChild)

(nh leTypeNonHead, node, nonHeadChild)

The location indicator shows again whether the tuple contains the le-type of the head

or the non-head child and additionally, whether the child node included is the head

or the non-head child. The features containing the “HCOMP:verb” node are:

(hv e p,HCOMP:verb,PLAN ON:verb)

(nhp reg,HCOMP:verb,HCOMP:prep)

(nhv e p,HCOMP:verb,HCOMP:verb)

This model has less features than model Rule I, because it splits each rule into its

head and non-head parts and does not have the two parts jointly. We can note that

this model has all the features of 2HeadPP, except the ones involving start and end

of path, due to the first template. The second template leads to features that are not

even in 2PP because they connect the head and non-head paths of a word, which are

represented as separate strings in 2PP.

Overall, we can see that models Rule I and Rule II have the information used by

2HeadPP (and some more information), but do not have the information from the

non-head parts of the paths in Model 2PP. Figure 1 shows the average parse ranking

accuracy obtained by the four models as well as the number of features used by each

model. Model Rule I did not do better than model Rule II, which shows that joint

representation of rule features was not very important. The large improvement of 2PP

over 2HeadPP (13% error reduction) shows the usefulness of the non-head projection

paths. The error reduction of 2PP over Rule I is also large – 9% error reduction.

Further improvements over models using rule features were possible by considering

more sophisticated string kernels and word keyed projection paths, as will be shown

in the following sections.

46 CHAPTER 2. LEAF PATH KERNELS

Model Features Accuracy
2PP 36,623 82.70
2HeadPP 11,490 80.14
Rule I 28,797 80.99
Rule II 16,318 81.07

Figure 2.11: Accuracy of models using the leaf projection path and rule representa-
tions.

No. Name Example
0 Node Label HCOMP

1 synsem.local.cat.head verb

2 Label from Phrase Struct Tree S

3 Le Type of Lexical Head v sorb le

4 Lexical Head Word let

Figure 2.12: Annotated features of derivation tree nodes. The examples are from one
node in the head path of the word let in Figure 2.5.

2.7.3 Experimental Results using String Kernels on Projec-

tion Paths

In the present experiments, we have limited the derivation tree node annotation to

the features listed in Figure 2.12. Many other features from the hpsg signs are

potentially helpful for disambiguation, and incorporating more useful features would

be a direction in which to extend the current work. However, given the size of

the corpus, a single model cannot usefully profit from a huge number of features.

Previous work (Toutanova and Manning, 2002; Toutanova et al., 2002; Osborne and

Baldbridge, 2004) has explored combining multiple classifiers using different features.

We report results from such an experiment as well.

Using Node Label and Head Category Annotations

The simplest derivation tree node representation that we consider consists of features

0 and 1 – schema name and category of the lexical head. All experiments in this

subsection are performed using this derivation tree annotation. We briefly mention

2.7. EXPERIMENTS 47

Kernel Features Accuracy
1-gram 44,278 82.21
Repetition 52,994 83.59
2-gram 104,331 84.15

Figure 2.13: Comparison of the Repetition kernel to 1-gram and 2-gram.

Kernel Accuracy
1-gram simple 82.08
1-gram weighted 82.92

Figure 2.14: Comparison of the un-weighted and distance-weighted 1-gram.

results from the best string kernels when using other node annotations, as well as a

combination of models using different features in the following subsection.

To evaluate the usefulness of our Repetition Kernel, defined in §2.6.2, we per-

formed several simple experiments. We compared it to a 1-gram kernel, and to a

2-gram kernel. The results – number of features per model and accuracy – are shown

in Figure 2.13. The models shown in this figure include both features from projection

paths keyed by words and projection paths keyed by le-types. The results show that

the Repetition kernel achieves a noticeable improvement over a 1-gram model (7.8%

error reduction), with the addition of only a small number of features. In most pro-

jection paths, repeated symbols will not occur and the Repetition kernel will behave

like a 1-gram kernel for the majority of cases. The additional information it captures

about repeated symbols gives a sizable improvement. The bi-gram kernel performs

better but at the cost of the addition of many features. It is likely that for large

alphabets and small training sets, the Repetition kernel may outperform the bi-gram

kernel.

We compared the distance weighted 1-gram kernel to the un-weighted 1-gram.

Results are shown in Figure 2.14.4 The gain in accuracy is .84 absolute and the rela-

tive reduction in error is 4.7%. This result is quite encouraging considering that the

only additional information this model is using compared to a simple 1-gram kernel

4For these experiments, the kernels were un-normalized. This accounts for the difference in
accuracy of the 1-gram kernel in Figure 2.13 and the 1-gram kernel in this figure.

48 CHAPTER 2. LEAF PATH KERNELS

is the distance between matching symbols. This approach is promising for modeling

many other numerical properties of syntactic analyses, such as weight of constituents,

distance between head words and dependents, and constituent parallelism for coor-

dination. By varying the variance σ of the weighting kernel, we can achieve multiple

resolutions of distance-weighting.

We do not use the Distance-weighted kernel in the rest of the experiments in this

section. For computational reasons, we could not incorporate it in more feature-

rich models. In short, the problem was storing the kernel matrix in memory which

required extensive engineering. However, it would certainly be very interesting to see

its performance in more sophisticated models and this is a subject of future research.

From this point on, we will fix the string kernel for projection paths keyed by words

— it will be a linear combination of a bi-gram kernel and a Repetition kernel. We

found that, because lexical information is sparse, going beyond 2-grams for lexically

headed paths was not useful. The projection paths keyed by le-types are much less

sparse, but still capture important sequence information about the syntactic frames

of words of particular lexical types.

To study the usefulness of different string kernels on projection paths, we first

tested models where only le-type keyed paths were represented, and then tested the

performance of the better models when word keyed paths were added (with a fixed

string kernel that interpolates a bi-gram and a Repetition kernel).

Figure 2.15 shows the accuracy achieved by several string kernels as well as the

number of features (in thousands) they use. As can be seen from the figure, the mod-

els are very sensitive to the discount factors used. Many of the kernels that use some

combination of 1-grams and possibly discontinuous bi-grams performed at approxi-

mately the same accuracy level, for example, the wildcard(2,1,λ) and subseq(2,g,λ1,λ2)

kernels. Kernels that use 3-grams have many more parameters, and even though they

can be marginally better when using le-types only, their advantage when adding word

keyed paths disappears. A limited amount of discontinuity in the Subsequence kernels

was useful. Overall Subsequence kernels were slightly better than Wildcard kernels.

The major difference between the two kinds of kernels is that the Subsequence kernel

2.7. EXPERIMENTS 49

Model Features Accuracy

le w & le le w & le

1gram 13K - 81.43 -
2gram 37K 141K 82.70 84.11
wildcard (2,1,.7) 62K 167K 83.17 83.86
wildcard (2,1,.25) 62K 167K 82.97 -
wildcard (3,1,.5) 187K 291K 83.21 83.59
wildcard (3,2,.5) 220K 82.90 -
subseq (2,3,.5,2) 81K 185K 83.22 84.96

subseq (2,3,.25,2) 81K 185K 83.48 84.75
subseq (2,3,.25,1) 81K 185K 82.89 -
subseq (2,4,.5,2) 102K 206K 83.29 84.40
subseq (3,3,.5,2) 154K 259K 83.17 83.85
subseq (3,4,.25,2) 290K - 83.06 -
subseq (3,5,.25,2) 416K - 83.06 -

combination model 85.40

Figure 2.15: Accuracy of models using projection paths keyed by le-type or both word
and le-type. Numbers of features are shown in thousands.

unifies features that have gaps in different places, and the Wildcard kernel does not.

For example, a ∗ b, ∗ab, ab∗ are different features for Wildcard, but they are the same

feature ab for Subsequence – only the weighting of the feature depends on the position

of the wildcard.

When projection paths keyed by words are added, the accuracy increases signif-

icantly. subseq(2,3,.5,2) achieved an accuracy of 84.96%, which is much higher than

the best previously published accuracy from a single model on this corpus (82.7% for a

model that incorporates more sources of information from the hpsg signs (Toutanova

et al., 2002)). The error reduction compared to that model is 13.1%. It is also higher

than the best result from voting classifiers (84.23% (Osborne and Baldbridge, 2004)).

We should note that we performed multiple training and test runs on the same 10

folds of data. Therefore some of the differences in performance between the models

cannot be trusted.

50 CHAPTER 2. LEAF PATH KERNELS

Other Features and Model Combination

Finally, we trained several models using different derivation tree annotations and built

a model that combined the scores from these models together with the best model

subseq(2,3,.5,2) from Figure 2.15. The combined model achieved our best accuracy

of 85.4%. The models combined were:

Model I A model that uses the Node Label and le-type of non-head daughter

for head projection paths, and Node Label and sysnem.local.cat.head for non-head

projection paths. The model uses the subseq(2,3,.5,2) kernel for le-type keyed paths

and bi-gram + Repetition for word keyed paths as above. The number of features of

this model is 237K and its accuracy is 84.41%.

Model II A model that uses, for head paths, Node Label of node and Node Label

and sysnem.local.cat.head of non-head daughter, and for non-head paths PS category

of node. The model uses the same kernels as Model I. The number of features of this

model is 311K and its accuracy is 82.75%.

Model III This model uses PS label and sysnem.local.cat.head for head paths,

and only PS label for non-head paths. The kernels are the same as Model I. The

number of features of this model is 165K and its accuracy is 81.91%.

Model IV This is a standard model based on rule features for local trees, with 2

levels of grandparent annotation and back-off. The annotation used at nodes is with

Node Label and sysnem.local.cat.head. The number of features of this model is 78K

and its accuracy is 82.6%.

2.7.4 A Note on Application to Penn Treebank Parse Trees

The representation of parse trees as leaf projection paths should be applicable to

Penn Treebank parse trees, and we would expect to see the same gains from jointly

modeling the head and non-head paths, and from applying string kernels to model

better structural similarity.

In order to apply this representation correctly, it is important that we perform

several transformations to Penn Treebank parse trees. We need to binarize the trees,

2.8. DISCUSSION AND CONCLUSIONS 51

so that every dependent of a word occurs on its head path. Additionally, we need to

retain information about direction (left, right) of dependent constituents with respect

to a head.

One approach is to perform head-outward binarization. Thus each node in the

transformed tree will represent a dependency relationship between the head and a

single child. Annotation of the introduced additional nodes in the binarization with

some predictive information, such as the phrase type of the dependent child, would

also be important.

It would be easiest to apply this representation to Penn Treebank parsing by re-

ranking top k parses from another model (Collins, 2000). Because the features are

highly non-local it would be infeasible to find an exact best analysis out of millions

of possible parses.

2.8 Discussion and Conclusions

We proposed a new representation of parse trees that allows us to connect more tightly

tree structures to the words of the sentence. Additionally this representation allows

for the natural extension of string kernels to kernels on trees. The major source of

accuracy improvement for our models was this representation, as even with bi-gram

features, the performance was higher than previously achieved. We were able to

improve on these results by using more sophisticated Subsequence kernels and by our

Repetition kernel which captures some salient properties of word projection paths.

Additionally, we proposed a Distance-weighting kernel which is a promising de-

vice for integrated modeling of symbolic and numeric properties of natural language

structures.

In future work, we aim to explore the definition of new string kernels that are

more suitable for this particular application and apply these ideas to Penn Treebank

parse trees. We also plan to explore annotation with more features from hpsg signs.

Chapter 3

A Joint Discriminative Model for

Shallow Semantic Parsing

Most work on statistical parsing has concentrated on parsing sentences into syntactic

structures. However, existing syntactic annotations for sentences from broad do-

mains, for example, newswire text in the Penn Treebank Wall Street Journal corpus

(Marcus et al., 1993), do not provide enough information for extracting meaning from

sentences.

In order to abstract away from syntactic variation and move toward semantic un-

derstanding of sentences, the task of shallow semantic parsing was defined (Fillmore,

1968; Baker et al., 1998; Palmer et al., 2005). The task is to annotate phrases in

sentences with their semantic roles with respect to a target predicate.

In this chapter, we concentrate on learning a model for shallow semantic parsing.

We assume we are given syntactic parses for sentences and want to learn a mapping

from syntactic parses to semantic parses, which specify semantic role labels for argu-

ment phrases. A possible approach to this task is to learn a classifier that labels each

phrase (parse tree node) independently. The main goal of our work is to look at the

problem as one of learning a mapping from a syntactic structure to a joint semantic

structure, which models correlations among multiple parts of the semantic structure.

We study the following questions:

52

3.1. DESCRIPTION OF ANNOTATIONS 53

What kind of global information can be usefully incorporated in machine learn-

ing models for this task?

How effective is global information at improving performance?

How can such models be built so as to overcome the computational complexity

of learning and search?

Defining a set of possible semantic roles for predicates is a challenging task and

the subject of continuous debate (Fillmore, 1968; Jackendoff, 1972; Schank, 1972;

Fillmore, 1976; Dowty, 1991). Several projects have created corpora annotated with

semantic roles, for example, FrameNet (Baker et al., 1998) and the Proposition Bank

(Palmer et al., 2005). We concentrate on solving this task in the context of the

Proposition Bank annotations. Parts of this work were reported in (Toutanova et al.,

2005a) and (Haghighi et al., 2005) and done in collaboration with Aria Haghighi.

3.1 Description of Annotations

The Proposition Bank (PropBank) labels semantic roles of verbs only. The following

examples illustrate the difference between semantic annotations in PropBank and

syntactic analyses. Consider the pair of sentences:

• [Harry Potter]agent gave [the Dursleys]recipient [a lesson in magic]theme

• [Harry Potter]agent gave [a lesson in magic]theme [to the Dursleys]recipient

The phrase “the Dursleys” has the same semantic role in both cases, but this is

not immediately obvious from the assigned parse tree structures. Another example

is the pair of sentences:

• [The wand]patient broke

• [Harry Potter]agent broke [the wand]patient

In both sentences the wand is the thing broken, but in the first case it is the

syntactic subject and the second it is the syntactic object. We can see that while

54 CHAPTER 3. SHALLOW SEMANTIC PARSING

the Penn Treebank makes it possible to extract subject, object, and other dependent

phrases, it does not indicate the roles of these phrases in the meaning of the sentence.

The PropBank corpus provides such annotations of phrases with semantic roles.

The level of semantics is more shallow than for example the level of semantic rep-

resentations employed in the Core Language Engine (Alshawi, 1992), but has broad

coverage. PropBank contains semantic annotations for the whole Wall Street Jour-

nal part of the Penn Treebank (Marcus et al., 1993). No attempt is made to model

aspect, modality, anaphora, or quantification. Nevertheless, the annotations provide

a domain independent representation of meaning which abstracts away from syntax,

and which should be very useful for natural language understanding tasks such as

information extraction, question answering, and machine translation.

The labels for semantic roles are grouped into two groups, core argument labels

and modifier argument labels, which correspond approximately to the traditional dis-

tinction between arguments and adjuncts. The meaning of the core argument labels is

determined individually for each verb. The semantics of the modifier argument labels

is general and consistent across verbs. The annotations are guided by specification

frames for each verb v, which specify the set of allowable core arguments and their

meaning. Every verb has a set of senses, and each sense can occur with a set of se-

mantic roles, called a roleset. The senses were defined by expert linguists to represent

different semantic and syntactic behavior of verbs. The senses are more coarse grained

than WordNet senses, with an average of 1.36 per verb. Inter-annotator agreement

for assigning verb senses is 94% (Palmer et al., 2005). For each sense of a verb, a

set of semantic roles is specified, together with a natural language description of the

meaning of each role.

The possible labels for core arguments are arg0, arg1, arg2, arg3, arg4,

arg5, and arga. The semantics of core argument labels is specific to individual verbs

and there are no guarantees that these argument labels have similar meanings across

verbs. However, the guidelines specify that arg0 and arg1 are the prototypical

agent and patient respectively, for all verbs. No generalizations across verbs can

be made for higher-numbered labels. In practice most statistical models built for

3.1. DESCRIPTION OF ANNOTATIONS 55

this task successfully use information from other verbs to assign semantic roles to the

arguments of a given verb. The possible labels for modifier arguments are listed in

Figure 3.1. The labels prd and ext can also be added to the numbered argument

labels to indicate predicative uses or extent. However, in line with previous work, we

ignore such uses. The labels are quite fine-grained and the inter-annotator agreement

reported for assigning argument labels was 95% (Palmer et al., 2005). Here is an

example specification for one sense of the verb accept, copied from (Palmer et al.,

2005).

Frameset accept.01 “take willingly”

• arg0: Acceptor

• arg1: Thing accepted

• arg2: Accepted-from

• arg3: Attribute

• Example: [He]arg0 [would]argm-mod[n’t]argm-neg accept [anything of value]arg1

[from those he was writing about]arg2. (wsj 0186)

For a thorough description of the PropBank annotations see (Palmer et al., 2005).

The annotations of PropBank are done relative to Penn Treebank parse trees.

Given a target predicate v, realized by a verb and sometimes verb particles, the

constituents or nodes of the syntactic parse t for a sentence s in which v occurs are

annotated with semantic roles with respect to v. Each semantic role of a predicate can

be filled by one or more (possibly empty) constituents. Figure 3.2 shows an example

parse tree annotated with semantic roles. Often multiple nodes are labeled with the

same role label in the case of split constituents or referring pronouns. Figure 3.3

shows an annotated tree that has examples of these phenomena. In the figure, the

pronoun who is a referring pronoun that refers to the preceding phrase the man, and is

included as part of the arg0 argument together with the man. The argument argm-

mod is a split constituent, that is, one consisting of multiple syntactic constituents.

This is because the semantic argument phrase may or may not is not a constituent

in the parse tree. In this case the semantic argument phrase is contiguous in the

56 CHAPTER 3. SHALLOW SEMANTIC PARSING

Modifier Argument Labels
argm-adv: general-purpose argm-loc: location
argm-ext: extent argm-dis: discourse connective
argm-neg: negation marker argm-mod: modal verb
argm-cau: cause argm-tmp: time
argm-pnc: purpose argm-mnr: manner
argm-dir: direction argm-prd: predication
argm-rec: reciprocal

Figure 3.1: Labels of modifying arguments occurring in PropBank.

S1

NP1-arg1

Final-hour trading

VP1

VBD1-pred

accelerated

PP1-arg4

TO1

to

NP2

108.1 million shares

NP3-argm-tmp

yesterday

Figure 3.2: An example tree from PropBank with semantic role annotations, for the
sentence Final-hour trading accelerated to 108.1 million shares yesterday.

sentence, but this is not always the case. The PropBank annotators were allowed to

specify arguments as consisting of multiple constituents whenever this was necessary.

If multiple constituents are part of the same semantic argument argx, we have

represented this annotation by adding the label argx to the left-most constituent

and adding the label c-argx to all other constituents.

3.2 Previous Approaches to Semantic Role Label-

ing

Traditionally, the problem of assigning semantics to sentences has been studied in

a variety of computational linguistics frameworks. Hand-built precise grammars,

such as Head-Driven Phrase Structure Grammar (Pollard and Sag, 1994) and Lexical

Functional Grammar (Maxwell and Kaplan, 1993) must specify all mappings from

syntactic realization to meaning. Such systems are usually developed for limited

3.2. PREVIOUS APPROACHES TO SEMANTIC ROLE LABELING 57

NP1

NP2-arg0

this man

,

,

SBAR

WHNP-c-arg0

who

S

VP1-mod

may

CC-c-mod

or

VP2-c-mod

may not

VP3

VB

have

VP4

VBN-pred

known

PP-arg2

about his child

Figure 3.3: The relevant part of an example tree with semantic roles filled by multiple
constituents, for the sentence Rosie reinvented this man, who may or may not have
known about his child, as a war hero for Lily’s benefit. When multiple constituents
are fillers of the same semantic role argx, the left-most constituent is labeled argx,
and the rest are labeled c-argx.

domains. Machine-learned systems for automatic assignment of semantics (Riloff,

1993; Miller et al., 1996) have been applied to slot-based semantics systems for limited

domains such as the Air Traveler Information System (ATIS) spoken dialogue domain

(Price, 1990), mergers and acquisitions, or terrorist attacks. Since those domains were

very limited in terms of the predicates and kinds of entities used, it was possible to

achieve high accuracy by shallow surface-based template matching techniques.

The first broad coverage statistical models for semantics were developed in the

context of the FrameNet (Baker et al., 1998) and PropBank (Palmer et al., 2005)

corpora. Even though the ontological commitments of these two corpora differ and

FrameNet was developed starting with unparsed text, whereas PropBank was devel-

oped as annotations consistent with Penn Treebank parse trees, the statistical models

developed in the two frameworks are easily transferrable from one to the other.

The semantic role labeling task is to assign labels to sequences of words in a sen-

tence. The sequences of words that bear labels are usually syntactic constituents, but

the current automatic syntactic parsers are not 100% percent accurate in determining

constituents. Therefore it is not apriori clear what the elementary units being labeled

by an automatic system should be, and whether syntactic parse information should

be used. The statistical models previously developed for this task have used differ-

ent units for labeling (words, syntactic chunks, constituents) and varying amounts of

58 CHAPTER 3. SHALLOW SEMANTIC PARSING

syntactic information as features for predicting the labeling.

The current consensus is that the most accurate systems for PropBank use parse

tree constituents as units for labeling and features from full syntactic analyses. This

is shown by the results of the CoNLL shared tasks in 2004 and 2005 (Carreras and

Màrquez, 2004; Carreras and Màrquez, 2005) and by several papers that specifically

compared different units and different features for labeling (Gildea and Palmer, 2002;

Punyakanok et al., 2005).

We therefore concentrate on using syntactic constituents as units for labeling, i.e.,

labeling nodes in a syntactic parse tree, and using syntactic features from the parse

tree. We give an overview of previous work in this setting only. The reader is referred

to, for example, (Carreras and Màrquez, 2004), for other approaches.

Before discussing the individual approaches, let us introduce some terminology.

We will talk about two subtasks of the semantic role labeling task: identification and

classification. In identification, the task is to classify nodes of the syntactic parse tree

t as either arg, an argument, or none, a non-argument. In classification, the task is,

given that a node is an argument, to determine its specific semantic role label. These

do not have to be sequential phases of a semantic role labeling algorithm, but it is

useful to think of them as separate for two reasons. Firstly, different features may be

more important for these two sub-tasks, and secondly, more efficient algorithms can

be designed by exploiting this decomposition.

All current systems for semantic role labeling use as a component a local classifier

from constituents to labels. Such a classifier uses a feature representation for con-

stituents and assigns a label based on this feature representation. The decisions for

different nodes in the parse tree are taken independently. We will use the term “local

model” to refer to such classifiers. In terms of a probabilistic model, if the labels of

all nodes are random variables, a local model assumes independence between any two

of these variables. This independence could either be marginal or given the input

features of the nodes (which exclude node labels).

It is evident that the labels and the features of arguments are highly correlated.

For example, there are hard constraints – that arguments cannot overlap with each

3.2. PREVIOUS APPROACHES TO SEMANTIC ROLE LABELING 59

other or the predicate, and also soft constraints – for example, is it unlikely that

a predicate will have two or more agent arguments, or that a predicate used in

the active voice will have a theme argument prior to an agent argument. We also

introduce the concept of a joint model for semantic role labeling. A joint model is one

that models the dependence of node labels on labels of other nodes. We emphasize

the treatment of joint information in previous work because the focus of our work is

exploiting such information.

Gildea & Jurafsky 2002

The work by Gildea and Jurafsky (2002) proposed the first data driven model for

broad coverage semantic role labeling in the context of the FrameNet corpus. It was

subsequently applied to the PropBank corpus, with minor modifications (Gildea and

Palmer, 2002; Pradhan et al., 2004). We will describe it in the context of PropBank

role labeling.

The approach uses different probabilistic models for identification and classifica-

tion. In identification, the estimated probability distribution is PID({arg,none}|n, t, v)

for a given node n in a syntactic tree t and a target predicate v. In classification, the

estimated distribution is PCLS(r|n, t, v,arg), where r ranges over all possible labels

of semantic roles and the distribution is conditional on the node being an argument.

The two distributions are estimated using deleted linear interpolation models over

a manually specified back-off lattice, based on different features. The union of features

used in the two models is presented in Figure 3.4. The features are defined relative

to a node n which we are classifying and also relative to a target predicate v and the

syntactic tree t. The figure also shows the values of these features for the node NP1

in the example parse tree in Figure 3.2.

Most of the feature names displayed in the figure are self-explanatory. The syntac-

tic path feature (Path) shows the sequence of nodes in the parse tree on the shortest

path from the constituent being classified to the predicate. Up and down arrows show

direction in the parse tree. The Path feature is indicative of the syntactic role of the

constituent; for example, the example path shown in the figure is a typical subject

path. The governing category Gov has only two values – S and VP, and also aims to

60 CHAPTER 3. SHALLOW SEMANTIC PARSING

Feature Value

Phrase Type: Syntactic Category of node NP

Predicate Lemma: Stemmed Verb accelerate

Path: Path from node to predicate NP↑S↓VP↓VBD

Position: Before or after predicate? before

Voice: Active or passive predicate voice active

Head Word of Constituent trading

Sub-Cat: CFG expansion of predicate’s parent VP→VBD PP NP

Gov: Category of first S or VP node dominating the predicate S

Figure 3.4: Features used in the Gildea & Jurafsky model. The feature values shown
are for the node NP1 in Figure 3.2.

inform roughly of grammatical function. If Gov is S, the constituent is more likely

to be a subject. The lexical features for the predicate and the constituent head-word

aim to capture predicate-specific regularities and selectional restrictions.

All features were used in the estimation of the classification model PCLS(r|n, t, v,arg).

The Path feature was slightly detrimental and was excluded in some versions of the

classification model. The identification model PID({arg,none}|n, t, v) used fewer

features – only Path, Predicate Lemma, and Head Word of Constituent.

The final probability distribution PSRL(l|n, t, v) over role labels including none

is obtained by chaining the two distributions as follows:

PSRL(none|n, t, v) = PID(none|n, t, v)

PSRL(r|n, t, v) = PID(arg|n, t, v) × PCLS(r|n, t, v,arg)

Here the random variable r ranges over possible semantic role labels only, and

l ranges over possible semantic role labels and the label none indicating a non-

argument. Having learned such a local semantic role labeling model, one can select

a labeling of the whole parse tree t given a target verb v by picking the best label

for each node independently, or equivalently by choosing the maximizing labeling of

the product of probabilities over parse tree nodes. In the work reported in (Gildea

and Jurafsky, 2002), the labeling was performed in two stages – first filtering out all

nodes in the parse tree for which the probability of having an argument label (arg)

according to the identification model PID is less than a threshold, and then selecting

the most likely assignment to all remaining nodes according to the classification model

3.2. PREVIOUS APPROACHES TO SEMANTIC ROLE LABELING 61

PCLS.

The evaluation of this model was done on the FrameNet corpus, using automatic

parses. The automatic parses were produced by the parser of Collins (Collins, 1997).

Many of the phrases that are fillers of semantic roles do not correspond to constituents

produced by the parser. However, for the FrameNet corpus, hand corrected parse trees

were not available.

The performance of this model was 55.1 F-Measure if a natural threshold of .5 was

used to filter constituents in identification, and 59.2 when the threshold was lowered

to .35 (if the probability PID(arg) > .35, the node was accepted as an argument

node).

Including Joint Information

Gildea & Jurafsky propose a method to model global dependencies by including

a probability distribution over multi-sets of semantic role labels given a predicate.

In this way the model can look at the assignment of all nodes in the parse tree

and evaluate whether the set of realized semantic roles is likely. If a necessary role

is missing or if an unusual set of arguments is assigned by the local model, this

additional factor can correct for some of the mistakes. The distribution over label

multi-sets is estimated again using interpolation of a relative frequency and a back-

off distribution. The back-off distribution assumes each argument label is present

or absent independently of the other labels, i.e., it assumes a Bernoulli Naive Bayes

model. The order of the roles is not modeled.

Let L = l1, l2, . . . , lm denote a complete assignment of labels to nodes n1, n2, . . . , nm

of the parse tree t given a predicate v. Let RoleSet(L) denote the assigned role multi-

set according to L. RoleSet(L) contains the set of non-none labels in L. Note

that many different labelings L will correspond to the same role multi-set. Then the

probability of L is given by:

P (L|t, v) ∝ P (RoleSet(L)|v)
∏

i=1···m

PSRL(li|ni, v, t)

P (li|v)

The maximizer of this product is found approximately using re-scoring of top k = 10

62 CHAPTER 3. SHALLOW SEMANTIC PARSING

assignments according to the local model. The division by the marginal probability

P (li|v) is included to counter the double generation of role labels.

Using this model improves the performance of the system in F-Measure from 59.2

to 62.85. This shows that adding global information improves the performance of

a role labeling system considerably. However the type of global information in this

model is limited to label multi-sets, and the global and local factors of the model are

estimated independently and then re-normalized to counter the double generation.

We will show that much larger gains are possible from joint modeling, when adding

richer sources of joint information using a more principled statistical model.

Another notable model developed for FrameNet was proposed by Thompson et al

in 2003 (Thompson et al., 2003). The main idea in that work was to define a joint

generative model over semantic role label sequences and the parse tree t. It models

the realized semantic roles as a sequence rather than a multi-set, and assumes a first

order Markov model for the sequence. A significant gain from using a first order

Markov model compared to a zero order Markov model was reported. However, the

sequence of phrases to be labelled is pre-specified by heuristics applied to the parse

tree to extract candidate argument phrases. Nested constituents are not considered

to be candidates - the parse tree is flattened into a sequence of candidate phrases,

which likely results in a significant accuracy loss. The none-labeled phrases are also

part of the sequence.

Pradhan et al. 2004, 2005

The model proposed by Pradhan et al. in 2004 (Pradhan et al., 2004; Pradhan et

al., 2005a) is a state-of-the art semantic role labeling model. The major developments

over the Gildea & Jurafsky model were the use of more sophisticated local classifiers

– Support Vector Machines – and the definition of new useful features. The system

uses one versus all classifiers for all labels l, including the none label. We will not

list all features used in that work. We will describe only the ones that we have used

in our system in §3.5.

The system also includes joint information in two ways:

• Dynamic class context: using the labels of the two nodes to the left as features

3.2. PREVIOUS APPROACHES TO SEMANTIC ROLE LABELING 63

in the one versus all classifiers. This is similar to SVM and MEMM sequence

models often used in information extraction. Decoding was done using YamCha1

(Kudo and Matsumoto, 2001) with TinySVM.2 Notice that here the previous

two nodes classified are most likely not the previous two nodes assigned non-

none labels. If a linear order on all nodes is imposed, then the previous two

nodes classified most likely bear label none.

• Re-scoring of an n-best lattice with a trigram language model over semantic

role label sequences. The target predicate is also a part of the sequence.

These ways of incorporating joint information resulted in small gains over a base-

line system using only the Gildea & Jurafsky features. The performance gain due to

joint information over a system using all features was not reported.

Note that when re-scoring an n-best lattice with a language model, we end up dou-

ble generating the labels. Only the top two hypotheses at each node were considered

in the lattice generation, where one of the hypotheses was always none. Therefore,

this model does not re-score different argument label options for the nodes. Global

information helps only to re-rank none versus the most likely arg label for each

node.

The system had the best published results on PropBank in 2004 and also a sim-

ilar system which did tagging of shallow parsed representations was the winner of

the CoNLL 2004 shared task on semantic role labeling. Their published results in

2004 were 89.4 F-Measure on all arguments using gold standard parse trees and 78.8

F-Measure using automatic parses produced by Charniak’s parser (Charniak, 2000).

We will compare our system’s results to these numbers later on, because there are

differences in the scoring measures that render the raw numbers not directly compa-

rable.

In their ACL 2005 paper (Pradhan et al., 2005b), the group introduced several

improvements to the system. One of them was calibrating the SVM scores to make

them behave more like probabilities. A second improvement was adding features from

1Available at http://chasen.org/̃ taku/software/yamcha/
2Available at http://chasen.org/̃ taku/software/TinySVM/

64 CHAPTER 3. SHALLOW SEMANTIC PARSING

a Combinatory Categorial Grammar parse of the sentence. A third improvement was

combining systems based on multiple syntactic views – constituency parsing with

Charniak’s parser, dependency parsing with MiniPar,3 a chunking representation,

and CCG parsing. The third improvement lead to gains only when the gold standard

syntactic parse was not given.

All of these improvements resulted in performance gains. The F-Measure on

gold standard parses for all arguments rose from 89.4 to 91.2 F-Measure and the

performance on automatic parses rose from 78.8 to 81.0 (79.9 when using only the

Charniak and the CCG parse).

For evaluation on gold standard parse trees, this new system is not directly com-

parable to previous work. This is because in previous work gold standard Penn Tree-

bank parses have been stripped of functional tag annotations and null constituents,

whereas gold standard CCG parses use such additional annotations. This is because

CCG bank was created from the WSJ Penn Treebank via a mapping algorithm that

uses the null constituents, traces, and functional tag annotations (for example, to

detect long-distance dependencies and to distinguish arguments from adjuncts (Hock-

enmaier, 2003a)). In preliminary experimentation (Palmer et al., 2005) found that

one can achieve significant gains by using the null constituents in the Penn Tree-

bank (over five percentage points gain in precision and recall). The work by (Gildea

and Hockenmaier, 2003) shows a similar positive results by using CCG gold stan-

dard parses for labeling, and also a two percentage point gain on core arguments

when using automatic parses. We also showed that the same is true for functional

tags.4 For automatic parses it is acceptable to compare to such systems using addi-

tional annotations, as long as the null constituents and functional tags are recovered

automatically.

Punyakanok et al. 2004, 2005

The main idea of the work of Punyakanok et al. (2004; Punyakanok et al. (2005) is

to build a semantic role labeling system that is based on local classifiers but also uses a

global component that ensures that several linguistically motivated global constraints

3Available at http://www.cs.ualberta.ca/̃ lindek/minipar.htm
4Unpublished experiments.

3.2. PREVIOUS APPROACHES TO SEMANTIC ROLE LABELING 65

on argument frames are satisfied.

For example, one global constraint is that the argument phrases cannot overlap

– i.e., if a node is labeled with a non-none label, all of its descendants have to be

labeled none. Another constraint is that arguments cannot include the predicate

node, but this constraint can also be handled at the local level by including a feature

with weight of negative infinity for nodes that dominate the predicate.

The proposed framework is integer linear programming (ILP), which makes it

possible to find the most likely assignment of labels to all nodes of the parse tree

subject to our specified constraints. Solving the ILP problem is NP-hard but it is

very fast in practice (Punyakanok et al., 2004).

In this framework the constraints that have been proposed to ensure global con-

sistency are categorical – a constraint is either violated or not. The constraints

themselves are not learned automatically but are specified by a knowledge engineer.

It turns out that enforcing the argument non-overlapping constraint does not lead

to large gains when a single parse tree t is labeled. However, if we are allowed to label

constituents in multiple parse trees, for example, the top k produced by Charniak’s

parser, or trees produced by Charniak’s and Collins’ parsers, enforcing the argument

non-overlapping and the other constraints becomes much more important. Thus, by

using nodes in multiple parse trees and using the ILP framework, the group from

UIUC (Punyakanok et al., 2005) obtained the best performance in the CoNLL 2005

shared task.

Other Work

Several other research groups proposed new features for semantic role labeling

(Xue and Palmer, 2004; Surdeanu et al., 2003; Carreras and Màrquez, 2005), and

other local classifiers – based on log-linear models, decision trees, random forest,

etc. A method that models joint information in a different way was also proposed

by (Cohn and Blunsom, 2005). It uses a tree conditional random field, where the

dependency structure is exactly defined by the edges in the syntactic parse tree. The

only dependencies captured are between the label of a node and the label of each of

its children. However, the arguments of the predicate can be arbitrarily far in the

66 CHAPTER 3. SHALLOW SEMANTIC PARSING

syntactic parse tree and therefore a tree CRF model is quite limited.

Using Multiple Sources of Syntactic Information

In addition to building models that label the nodes in a single parse tree, several

groups started looking at using multiple syntactic representations or multiple guesses

of a single parser. This is expected to be helpful when none of the parsers is completely

correct and each of the sources can contribute some correct information. Examples

of this work include (Pradhan et al., 2005b; Punyakanok et al., 2005; Haghighi et

al., 2005), and other systems that entered the CoNLL 2005 shared task (Carreras

and Màrquez, 2005). Also the idea of simultaneous syntactic and semantic parsing

was introduced (Yi and Palmer, 2005). These are important ideas which clearly

contributed to the performance of automatic semantic role labeling systems.

In our work we concentrate on using a single gold standard or automatic parse tree

and briefly report on an experiment using simple Bayesian combination over multiple

guesses of a single parser.

3.3 Ideas of This Work

Linguistic intuition tells us that a core argument frame is a joint structure, with

strong dependencies between arguments. For instance, in the sentence “[Final-hour

trading]theme accelerated [to 108.1 million shares]target [yesterday]argm-tmp” from Fig-

ure 3.2, the first argument is the subject noun phrase final-hour trading of the active

verb accelerated. If we did not consider the rest of the sentence, it would look more

like an agent argument, but when we realize that there is no other good candidate

for a theme argument, because to 108.1 million shares is a target and yesterday

is an argm-tmp, we would correctly label it theme.

Even though previous work has modeled some correlations between the labels of

parse tree nodes, many of the phenomena that seem very important to capture are not

modeled. The key properties that would make an approach able to model this joint

structure are: (i) no finite Markov horizon assumption for dependencies among node

labels, (ii) features looking at the labels of multiple argument nodes and internal

3.3. IDEAS OF THIS WORK 67

features of these nodes, and (iii) a statistical model capable of incorporating these

long-distance dependencies and generalizing well.

We show how to build a joint model of argument frames, incorporating novel

features into a discriminative log-linear model. This system achieves an error reduc-

tion of 17% on all arguments and 36.8% on core arguments over a state-of-the art

independent classifier for gold standard parse trees on PropBank.

Let us think of a graphical model over a set of m variables, one for each node in

the parse tree t, representing the labels of the nodes and the dependencies between

them. In order for a model over these variables to capture, for example, the statistical

tendency of some semantic roles to occur at most once (e.g., there is usually at most

one constituent labeled agent), there must be a dependency link between any two

variables. To estimate the probability that a certain node gets the role agent, we

need to know if any of the other nodes was labeled with this role.

We propose a similar model, which is globally conditioned on the observation (the

parse tree) and is thus similar to a Conditional Random Field (CRF) (Lafferty et al.,

2001) with a very rich graphical structure. This is very different from previous work on

CRF models for sequence classification tasks in NLP, because such previous work has

made strong independence assumptions (Lafferty et al., 2001; Sha and Pereira, 2003;

Cohn and Blunsom, 2005), usually an order n markov assumption on the sequence of

labels. For other tasks, CRF models going beyond markov independence assumptions

have been proposed. Examples are work on lfg parse disambiguation (Johnson et

al., 1999), Penn Treebank parse re-ranking (Collins, 2000), and our work on hpsg

disambiguation from the previous chapter. In this work, we explore how one can

build and do inference in a Conditional Random Field without any independence

assumptions on the label sequence.

Such a rich graphical model can represent many dependencies but there are two

dangers – one is that the computational complexity of training the model and search-

ing for the most likely labeling given the tree can be prohibitive, and the other is that

if too many dependencies are encoded, the model will over-fit to the training data

and will not generalize well.

68 CHAPTER 3. SHALLOW SEMANTIC PARSING

We propose a model which circumvents these two dangers and achieves significant

performance gains over a similar local model that does not add any dependency arcs

among the random variables. To tackle the efficiency problem, we adopt dynamic pro-

gramming and re-ranking algorithms. To avoid overfitting we encode only a small set

of linguistically motivated dependencies in features over sets of the random variables.

The re-ranking approach, similarly to the approach to parse re-ranking by (Collins,

2000), employs a simpler model – a local semantic role labeling algorithm, as a first

pass to generate a set of N likely joint assignments of labels to all parse tree nodes.

The joint model is restricted to these N assignments and does not have to search the

exponentially large space of all other possible ones.

We start describing our system in detail by first introducing the simpler local

semantic role labeling models, and later building on them to define joint models. Be-

fore we start presenting models, in §3.4 we describe the data and evaluation measures

used. The reader can skip the next section and continue on to §3.5, if he/she is not

interested in meticulous evaluation details.

3.4 Data and Evaluation Measures

For most of our experiments we used the February 2004 release of PropBank. We

also report results on the CoNLL 2005 shared task data in §3.7.2. In this section we

describe the data and evaluation measures for the February 2004 data. The CoNLL

data and evaluation measures are standard and do not require thorough description.

For the February 2004 data, we used the standard split into training, development,

and test sets – the annotations from sections 02–21 formed the training set, section

two4 the development, and section two3 the test set. We removed seven propositions

from the training section of the Feb04 data, because they contained arguments la-

beled argm-preposition, where preposition was one of on, by, with, in, at, and for.

These should not be valid modifier argument labels and our model would try to learn

parameter vectors for them had we not excluded these examples from the data. The

set of argument labels considered is the set of core argument labels plus the modifier

3.4. DATA AND EVALUATION MEASURES 69

labels from Figure 3.1. The training set contained 85,392 propositions, the test set

4,615, and the development set 2,626 propositions.

We evaluate semantic role labeling models on gold standard parse trees and parse

trees produced by Charniak’s automatic parser (Charniak, 2000), using the version

from March 18, 2005. For gold standard parse trees, we preprocess the trees to discard

empty constituents and strip functional tags. Using the trace information provided

by empty constituents is very useful to improve performance (Palmer et al., 2005;

Pradhan et al., 2005b; Gildea and Hockenmaier, 2003), but we have not used this

information in order to be able to compare our results to previous work and since

automatic systems that recover it are not publicly available.

There are several issues with the evaluation measures that make it hard to compare

results obtained by different researchers. The first issue is the existence of arguments

which consist of multiple constituents. In this case it is not clear whether partial credit

is to be given for guessing only some of the constituents comprising the argument

correctly.

The second issue is whether the bracketing of constituents has to be recovered

correctly. In other words, the issue is whether pairs of labelings, such as ”<arg0>

the </arg0> <arg0>man </arg0>” and ”<arg0> the man </arg0>”, are to be

considered the same or not. If they are to be considered the same, there are multiple

labelings of nodes in a parse tree that are equivalent. For example, suppose there is a

constituent A dominating words in the span [a, b], where a and b are word positions.

Suppose also that A has two children B and C, dominating spans [a, c] and [c + 1, b]

respectively. Then the labeling of the span [a, b] with a label arg0 corresponds to

labeling A with that label and labeling all of its descendants with none, or labeling

A with none, B and C with arg0, and all of their descendants with none.

The third issue is that when using automatic parsers, some of the constituents

that are fillers of semantic roles are not recovered by the parser. In this case it is not

clear how various research groups have scored their systems (using head-word match,

ignoring these arguments altogether, or using exact match). We chose to require exact

match rather than head-word match or other approximate matching.

70 CHAPTER 3. SHALLOW SEMANTIC PARSING

Here we describe in detail our evaluation measures for the results on the February

2004 data reported in this chapter. For both gold standard and automatic parses

we use two evaluation measures – constituent-based and argument-based. If we vary

the choice taken for the three issues listed above, we can come up with many (at

least eight) different evaluation measures. We chose to consider only two evaluation

measures, both of which seem reasonable. They differ with regard to bracketing and

multi-constituent arguments.

To describe the two evaluation measures, we will use as an example the correct

and guessed semantic role labelings shown in Figures 3.5(a) and 3.5(b). Both are

shown as labelings on parse tree nodes with labels of the form argx and c-argx.

The label c-argx is used to represent multi-constituent arguments. A constituent

labeled c-argx is assumed to be a continuation of the closest constituent labeled

argx to the left. Our semantic role labeling system produces labelings of this form

and the gold standard PropBank annotations are converted to this form as well.5

The constituent-based measures correspond more closely to the task of labeling

nodes in a parse tree. They require exact bracketing and allow partial credit for

labeling correctly only some of several constituents in a multi-constituent argument.

The argument-based measures do not require exact bracketing and do not give partial

credit for labeling correctly only some of several constituents in a multi-constituent

argument. The argument-based measures are more similar to the CoNLL 2005 shared

task evaluation measures. The two evaluation measures are illustrated in Figure 3.5.

More precisely, for constituent-based measures, a semantic role labeling of a sen-

tence is viewed as a labeling on contiguous spans of words of the form [wi,. . . ,wj]-

argx. Figure 3.5(c) gives the representation of the correct and guessed labelings

shown in Figures 3.5(a) and 3.5(b), in the first and second rows of the table, re-

spectively. The labeling [wi,. . . ,wk]-argx, [wk+1,. . . ,wj]-argx is different from the

labeling [wi,. . . ,wj]-argx. The labelings on parse tree nodes are converted to this

5This representation is not powerful enough to represent all valid labelings of multi-constituent
arguments, since it cannot represent the case where a new argument with label argx starts before
a previous multi-constituent argument with the same label argx has finished. However, this case
should be very rare.

3.4. DATA AND EVALUATION MEASURES 71

form by labeling each word span dominated by an argument constituent with the

semantic role of the constituent, substituting c-argx with argx. All remaining

contiguous word spans are implicitly labeled with none. The information whether

several constituents that are labeled the same are part of the same argument or not

is lost.

For argument-based measures, a semantic role labeling of a sentence is viewed as

a labeling on sets of words. These sets can encompass several non-contiguous spans.

Figure 3.5(c) gives the representation of the correct and guessed labelings shown in

Figures 3.5(a) and 3.5(b), in the third and fourth rows of the table, respectively.

To convert a labeling on parse tree nodes to this form, we create a labeled set for

each possibly multi-constituent argument. All remaining sets of words are implicitly

labeled with none. We can see that in this way, exact bracketing is not necessary

and also no partial credit is given when only some of several constituents in a multi-

constituent argument are labeled correctly.

We will refer to both contiguous word spans and word sets as “spans”. For both

the constituent and argument-based measures, we are comparing a guessed set of

labeled spans to a correct set of labeled spans. The spans labeled none are omitted.

We briefly define the various measures of comparison used below, using the exam-

ple guessed and correct labelings shown in Figure 3.5(c). The scoring measures are

illustrated in Figure 3.5(d).

The figure shows performance measures – F-Measure (F1) and Whole Frame Ac-

curacy (Acc.) – for constituent-based and argument-based scoring across nine dif-

ferent conditions. When the sets of labeled spans are compared directly, we obtain

the complete task measures, corresponding to the Id&Cls rows and all columns

in Figure 3.5(d). We also define several other measures to understand the perfor-

mance of the system on different types of labels. These other measures can be seen

as comparing the sets of labeled spans after an appropriate transformation is first

applied to them. Suppose we are comparing a correct set of labeled spans Scorrect

to a guessed set of labeled spans Sguessed . To obtain the scoring measures for a row

labeled Id, Cls, or Id&Cls, and a column labeled core, coarseargm, or all, we

72 CHAPTER 3. SHALLOW SEMANTIC PARSING

S

NP-arg0

He

S

VP-mod

may

CC-c-mod

or

VP-c-mod

may not

VP

VB

have

VP

VBN-pred

known

PP-arg2

about his child

(a) Correct labeling.

S

NP-arg0

He

S

VP-mod

may

CC-c-mod

or

VP-ADV

may not

VP

VB

have

VP

VBN-pred

known

PP-ARG3

about his child

(b) Guessed labeling.

Type Location Labeling

Constituent Correct [0, 0]-arg0, [1, 1]-mod, [2, 2]-mod, [3, 4]-mod, [7, 9]-arg2
Guessed [0, 0]-arg0, [1, 1]-mod, [2, 2]-mod, [3, 4]-adv, [7, 9]-arg3

Argument Correct {0}-arg0, {1, 2, 3, 4}-mod, {7, 8, 9}-arg2
Guessed {0}-arg0, {1, 2}-mod, {3, 4}-adv {7, 8, 9}-arg3

(c) Labelings of spans.

Task core coarseargm all

F1 Acc. F1 Acc. F1 Acc.

Constituent Id 100.0 100.0 100.0 100.0 100.0 100.0
Constituent Cls 50.0 0.0 80.0 0.0 60.0 0.0
Constituent Id&Cls 50.0 0.0 80.0 0.0 60.0 0.0

Argument Id 100.0 100.0 57.1 100.0 57.1 0.0
Argument Cls 50.0 0.0 50.0 0.0 50.0 0.0
Argument Id&Cls 50.0 0.0 28.6 0.0 28.6 0.0

(d) Scoring measures.

Figure 3.5: Constituent-based and argument-based scoring measures for the guessed
labeling.

3.4. DATA AND EVALUATION MEASURES 73

first apply one transformation to the two sets depending on the column, then a sec-

ond transformation depending on the row, and finally compare the resulting sets of

labeled spans to compute the F-Measure and Whole Frame Accuracy measures. The

transformations corresponding to the column all and the row Id&Cls are identity

transformations – i.e., we compare the original sets of labeled spans. We will describe

the transformations corresponding to the other columns and rows shortly. Once we

have the transformed Scorrect and Sguessed , we compute the Whole Frame Accuracy

and F-Measure as follows:

Whole Frame Accuracy: (Acc.) this is the percentage of propositions for which

there is an exact match between the proposed and correct labelings. For example,

the whole frame accuracy under both constituent and argument-based scoring for

Id&Cls and all is 0, because the correct and guessed sets of labeled spans shown

in Figure 3.5(c) do not match exactly. Even though this measure has not been

used extensively in previous work, we find it useful to track. Foremost, potential

applications of role labeling may require correct labeling of all (or at least the core)

arguments in a sentence in order to be effective, and partially correct labelings may

not be very useful. Moreover, a joint model for semantic role labeling optimizes Whole

Frame Accuracy more directly than a local model does.

F-Measure: Since there may be confusion about what we mean by F-Measure in

this multi-class setting, we are defining it here. F-Measure is defined as the harmonic

mean of precision and recall:

f =
2 × p × r

p + r

p =
true positive

true positive + false positive

r =
true positive

true positve + false negative

True positive are spans with correct label one of the core or modifier argument

labels (not none) and guessed label the same as the correct label. False positive are

spans whose guessed label is non-none and whose correct label is different from the

74 CHAPTER 3. SHALLOW SEMANTIC PARSING

guessed label. False negative are spans whose correct label is non-none and whose

guessed label is not the same as the correct one. In the graphs we show F-Measure

multiplied by 100 so that it is in the same range as Whole Frame Accuracy.

For example, for argument-based scoring, for the Id&Cls row and all column,

we are comparing the following correct and guessed sets of labeled spans:

Correct: {0}-arg0, {1, 2, 3, 4}-mod, {7, 8, 9}-arg2

Guessed: {0}-arg0, {1, 2}-mod, {3, 4}-adv {7, 8, 9}-arg3

The guessed labeling has one true positive ({0}-arg0), three false positive ({1, 2}-
mod, {3, 4}-adv, and {7, 8, 9}-arg3), and two false negative ({1, 2, 3, 4}-mod and

{7, 8, 9}-arg2). The F-Measure is thus .286.

For constituent-based scoring we are comparing the guessed labeling in row two

to the correct labeling in row one of 3.5(c). We have three true positive, two false

positive and two false negative. We thus obtain an F-Measure of .60. We can see

how the argument and constituent-based measures can give a different result. Our

guessed labeling has guessed two of the three constituents forming the mod argument

correctly, and constituent-based scoring gives it partial credit, but argument-based

scoring does not.

Core Argument Measures: (core) These measures are aimed to score the

system on core arguments only, without regard to modifier arguments. The transfor-

mation corresponding to the core column removes all spans labeled with a modifier

argument from a set of labeled spans, or equivalently, labels those spans with none.

In this way we are effectively ignoring the modifier arguments. For example, to obtain

the constituent-based measures for core Id&Cls , we need to compare the following

correct and guessed sets of labeled spans:

Correct: [0]-arg0, [7, 9]-arg2

Guessed: [0]-arg0, [7, 9]-arg3

The F-Measure is .50 and the Whole Frame Accuracy is 0.

Coarse Modifier Argument Measures: (coarseargm) Sometimes it is suffi-

cient to know a given span has a modifier role, without knowledge of the specific role

3.4. DATA AND EVALUATION MEASURES 75

label. In addition, deciding exact modifier argument labels was one of the decisions

with highest disagreement among annotators (Palmer et al., 2005). The transforma-

tion corresponding to the coarseargm column substitutes all modifier labels with a

generic argm label. Such performance measures were also used by (Xue and Palmer,

2004). We can see that for constituent-based scoring, the F-Measure for coarseargm

is higher than for all , because the [3, 4] span is counted as correctly labeled under

coarseargm .

Identification Measures: (Id) This measures how well we do on the arg vs

none distinction. The transformation corresponding to the Id rows substitutes all

non-none labels with a single generic arg label. For example, to compute core Id

we first apply the transformation for core which removes all non-core labeled spans,

and then the transformation corresponding to Id . We obtain the following sets of

labeled spans for argument-based core Id :

Correct: {0}-arg, {7, 8, 9}-arg

Guessed: {0}-arg, {7, 8, 9}-arg

The F-Measure is 1.0 and the Whole Frame Accuracy is 100%.

Classification Measures: (Cls) This is performance on argument spans which

were also guessed to be argument spans (but possibly the exact label was wrong).

In other words, these measures ignore the arg vs. none confusions. They ignore all

spans, which were incorrectly labeled none, or incorrectly labeled with an argument

label, when the correct label was none. This is different from classification accuracy

used in previous work to mean the accuracy of the system in classifying spans when

the correct set of argument spans is given. The transformation corresponding to the

Cls rows removes all spans from Sguessed and Scorrect , which do not occur in both sets.

For example, to compute the all Cls measures for argument-based scoring, we need

to compare the following sets of labeled spans:

Correct: {0}-arg0, {7, 8, 9}-arg2

Guessed: {0}-arg0, {7, 8, 9}-arg3

The rest of the spans were removed from both sets because they were labeled none

76 CHAPTER 3. SHALLOW SEMANTIC PARSING

according to one of the labelings and non-none according to the other. The F-

Measure is .50 and the Whole Frame Accuracy is 0%. Note that with our definitions

the following equality holds:

Id&Cls F-Measure = Id F-Measure × Cls F-Measure

The CoNLL evaluation measure is closer to our argument-based measure, but it also

distinguishes referring labels of the form r-argx. These labels are assigned to con-

stituents which are a part of multi-constituent arguments, and which represent refer-

ring pronouns. The decision of which constituents were to be labeled with referring

labels was made by using a set of rules, which are not publicly available. Therefore,

it is not clear whether information in addition to PropBank annotations is necessary

for these decisions.

Most of the results we report in this chapter use the argument-based measures, but

we also mention some key constituent-based results for closer comparison to previous

work. We also report results on the CoNLL 2005 shared task in §3.7.2.

3.5 Local Classifiers

As defined earlier, a classifier is local if it assigns a probability (or score) to the label

of an individual parse tree node ni independently of the labels of other nodes.

We use the standard separation of the task of semantic role labeling into identifi-

cation and classification phases. Formally, let L denote a mapping of the nodes in t

to a label set of semantic roles (including none) and let Id(L) be the mapping which

collapses L’s non-none values into arg. Then, like in the Gildea & Jurafsky system,

we can decompose the probability of a labeling L into probabilities according to an

identification model PID and a classification model PCLS .

PSRL(L|t, v) = PID(Id(L)|t, v) ×
PCLS(L|t, v, Id(L)) (3.1)

This decomposition does not encode any independence assumptions, but is a useful

3.5. LOCAL CLASSIFIERS 77

way of thinking about the problem. Our local models for semantic role labeling use

this decomposition. We use the same features for local identification and classification

models, but use the decomposition for efficiency of training. The identification models

are trained to classify each node in a parse tree as arg or none, and the classification

models are trained to label each argument node in the training set with its specific

label. In this way the training set for the classification models is smaller. Note that

we do not do any hard pruning at the identification stage in testing and can find the

exact labeling of the complete parse tree, which is the maximizer of Equation 3.1.

Thus we do not have an accuracy loss as in the two-pass hard prune strategy described

in (Pradhan et al., 2005a) and we do not have to fit a threshold for the identification

model as in the Gildea & Jurafsky or the Xue & Palmer (Xue and Palmer, 2004)

system.

We use log-linear models for multi-class classification for the local models. One

advantage of log-linear models over SVMs for us is that they produce probability

distributions and thus identification and classification models that can be chained in

a principled way, as in Equation 3.1.

The baseline features we used for local identification and classification models are

outlined in Figure 3.6. These features are a subset of features used in previous work.

The standard features at the top of the figure were defined by (Gildea and Jurafsky,

2002), and the rest are other useful lexical and structural features identified in more

recent work (Pradhan et al., 2004; Surdeanu et al., 2003; Xue and Palmer, 2004). We

also incorporated several novel features, described in the next subsection.

3.5.1 Additional Features for Displaced Constituents

We found that a large source of errors for arg0 and arg1 stemmed from cases such as

those illustrated in Figure 3.7, where arguments were dislocated by raising or control

verbs. Here, the predicate, expected, does not have a subject in the typical position

– indicated by the empty NP – since the auxiliary is has raised the subject to its

current position. In order to capture this class of examples, we use a binary feature,

Missing Subject, indicating whether the predicate is “missing” its subject, and use

78 CHAPTER 3. SHALLOW SEMANTIC PARSING

Standard Features (Gildea and Jurafsky, 2002)

Phrase Type: Syntactic Category of node
Predicate Lemma: Stemmed Verb
Path: Path from node to predicate
Position: Before or after predicate?
Voice: Active or passive relative to predicate
Head Word of Phrase
Sub-Cat: CFG expansion of predicate’s parent

Additional Features (Pradhan et al., 2004; Surdeanu et al., 2003)

First/Last Word
Left/Right Sister Phrase-Type
Left/Right Sister Head Word/POS
Parent Phrase-Type
Parent POS/Head-Word
Ordinal Tree Distance: Phrase Type concatenated with

length of Path feature
Node-LCA Partial Path: Path from constituent to lowest

common ancestor with predicate node
PP Parent Head Word: If parent is a PP, parent’s head word
PP NP Head Word/POS: For a PP, the head Word / POS

of its rightmost NP

Selected Pairs (Xue and Palmer, 2004)

Predicate Lemma & Path
Predicate Lemma & Head Word
Predicate Lemma & Phrase Type
Voice & Position
Predicate Lemma & PP Parent Head Word

Figure 3.6: Baseline Features

3.5. LOCAL CLASSIFIERS 79

S

NPi-arg1

the trade gap

VP

is S

NPi-arg1

-NONE-

VP

expected VP

to widen

Figure 3.7: Example of displaced arguments

this feature in conjunction with the Path feature, so that we learn typical paths to

raised subjects conditioned on the absence of the subject in its typical position.

In the particular case of Figure 3.7, there is another instance of an argument

being quite far from its predicate. The predicate widen shares the phrase the trade

gap with expect as a arg1 argument. However, as expect is a raising verb, widen’s

subject is not in its typical position either, and we should expect to find it in the

same positions as expected ’s subject. This indicates it may be useful to use the

path relative to expected to find arguments for widen. In general, to identify certain

arguments of predicates embedded in auxiliary and infinitival VPs we expect it to be

helpful to take the path from the maximum extended projection of the predicate –

the highest VP in the chain of VP’s dominating the predicate. We introduce a new

path feature, Projected Path, which takes the path from the maximal extended

projection to an argument node. This feature applies only when the argument is

not dominated by the maximal projection, (e.g., direct objects). These features also

handle other cases of discontinuous and non-local dependencies, such as those arising

due to control verbs. The performance gain from these new features was notable,

especially in identification. The performance on all arguments (argument-based

scoring) for the model using only the features in Figure 3.6 and the model using the

additional features as well, are shown in Figure 3.8.

80 CHAPTER 3. SHALLOW SEMANTIC PARSING

Task Features in Figure 3.6 + Additional Features

F1 Acc. F1 Acc.

Id 91.7 77.6 92.4 79.0
Cls 95.6 90.6 95.7 90.8
Id&Cls 87.6 70.8 88.4 72.3

Figure 3.8: Performance of local classifiers on all arguments, using the features in
Figure 3.6 only and using the additional local features. Argument-based scoring using
gold standard parse trees on section 23.

3.5.2 Enforcing the Non-overlapping Constraint

The most direct way to use trained local identification and classification models in

testing is to select a labeling L of the parse tree that maximizes the product of the

probabilities according to the two models as in Equation 3.1. Since these models are

local, this is equivalent to independently maximizing the product of the probabilities

of the two models for the label li of each parse tree node ni as shown below in

Equation 3.2.

P `
SRL(L|t, v) =

∏

ni∈t

PID(Id(li)|t, v) (3.2)

×
∏

ni∈t

PCLS(li|t, v, Id(li))

A problem with this approach is that a maximizing labeling of the nodes could pos-

sibly violate the constraint that argument nodes should not overlap with each other.

Therefore, to produce a consistent set of arguments with local classifiers, we must

have a way of enforcing the non-overlapping constraint.

Previous work has either used greedy algorithms to find a non-overlapping assign-

ment, or the expensive ILP approach of (Punyakanok et al., 2004). Here we describe

a fast exact dynamic programming algorithm to find the most likely non-overlapping

(consistent) labeling of all nodes in the parse tree, according to a product of probabil-

ities from local models, as in Equation 3.2. For simplicity, we describe the dynamic

program for the case where only two classes are possible – arg and none. The

3.5. LOCAL CLASSIFIERS 81

generalization to more classes is straightforward. Intuitively, the algorithm is simi-

lar to the Viterbi algorithm for context-free grammars, because we can describe the

non-overlapping constraint by a “grammar” that disallows arg nodes to have arg

descendants.

Below we will talk about maximizing the sum of the logs of local probabilities

rather than the product of local probabilities, which is equivalent. The dynamic

program works from the leaves of the tree up and finds a best assignment for each

tree, using already computed assignments for its children. Suppose we want the most

likely consistent assignment for subtree t with children trees t1, . . . , tk each storing the

most likely consistent assignment of nodes it dominates as well as the log-probability

of the assignment of all nodes it dominates to none. The most likely assignment for

t is the one that corresponds to the maximum of:

• The sum of the log-probabilities of the most likely assignments of the children

subtrees t1, . . . , tk plus the log-probability for assigning the node t to none

• The sum of the log-probabilities for assigning all of ti’s nodes to none plus the

log-probability for assigning the node t to arg.

Propagating this procedure from the leaves to the root of t, we have our most likely

non-overlapping assignment. By slightly modifying this procedure, we obtain the

most likely assignment according to a product of local identification and classification

models. We use the local models in conjunction with this search procedure to select

a most likely labeling in testing.

It turns out that enforcing the non-overlapping constraint does not lead to large

gains in performance. The results in Figure 3.8 are from models that use the dynamic

program for selecting non-overlapping arguments. To evaluate the gain from enforc-

ing the constraint, Figure 3.9 shows the performance of the same local model using

all features, when the dynamic program is used versus when a most likely possibly

overlapping assignment is chosen in testing.

The local model with basic + additional features with resolving overlaps is our first

pass model used in re-ranking to learn a joint model. This is a state of the art model.

82 CHAPTER 3. SHALLOW SEMANTIC PARSING

Enforcing constraint core all

F1 Acc. F1 Acc.

No 90.3 81.2 88.3 71.8
Yes 90.5 81.4 88.4 72.3

Figure 3.9: Performance of local model on all arguments when enforcing the non-
overlapping constraint or not.

Its F-Measure on all arguments is 88.4 with argument-based scoring and 89.9 with

constituent-based scoring. This is very similar to the best previously reported results

using gold standard parse trees without null constituents and functional tags – 89.4

F-Measure reported for the Pradhan et al (Pradhan et al., 2004) model. The results

in (Pradhan et al., 2004) are based on a measure which is more similar to constituent-

based scoring than argument-based scoring but does not correspond exactly to either

of them.6 The differences are due to the many possible choice points in defining the

scoring measures. Therefore, at present, we can compare our results to those of other

research only on the standard CoNLL evaluation measures.

A more detailed analysis of the results obtained by the local model is given in

Figure 3.10(a), and the two confusion matrices in Figures 3.10(b) and 3.10(c), which

display the number of errors of each type that the model made. The first confusion

matrix concentrates on core arguments and merges all modifying argument labels

into a single argm label. The second confusion matrix concentrates on confusions

among modifying arguments.

From the confusion matrix in Figure 3.10(b), we can see that the largest number

of errors are confusions of argument labels with none. The number of confusions

between pairs of core argument is low, as is the number between core and modifier

labels. If we ignore the column and row corresponding to none in Figure 3.10(b),

the number of off-diagonal entries is very small. This corresponds to the high F-

Measures on coarseargm Cls and core Cls, 98.1 and 98.0, respectively, shown in

Figure 3.10(a). The number of confusions of argument labels with none, shown in the

none column are larger than the number of confusions of non-none with argument

labels, shown in the none row. This shows that the model generally has higher

6Personal communication, July, 2005.

3.5. LOCAL CLASSIFIERS 83

precision than recall. We experimented with the precision-recall tradeoff but this did

not result in an increase in F-Measure.

From the confusion matrix in Figure 3.10(c) we can see that the number of con-

fusions between modifier argument labels is higher than the confusions between core

argument labels. This corresponds to the all Cls F-Measure of 95.7 versus the core

Cls F-Measure of 98.0. The per-label F-Measures, shown in the last column show

that the performance on some very frequent modifier labels is in the low sixties or

seventies. The confusions between modifier labels and none are quite numerous.

In general, to improve the performance on core arguments, we need to improve

the recall without lowering precision, i.e., when the model is uncertain which of

several likely core labels to assign, find additional sources of evidence to improve

the confidence. To improve the performance on modifier arguments, we need to also

lower the confusions among different modifier arguments. We will see that our joint

model improves the overall performance mainly by improving the performance on

core arguments, through increasing recall and precision by looking at wider sentence

context.

3.5.3 On Split Constituents

As discussed is §3.4, multiple constituents can be part of the same semantic argument

as specified by PropBank. An automatic system that has to recover such information

needs to have a way of indicating when multiple constituents labeled with the same

semantic role are a part of the same argument. Some researchers (Pradhan et al.,

2004; Punyakanok et al., 2004) have chosen to make labels of the form c-argx dis-

tinct argument labels and that become additional classes in a multi-class constituent

classifier. These c-argx are used to indicate continuing arguments as illustrated

in the two trees in Figure 3.5. We chose to not introduce additional labels of this

form, because they might unnecessarily fragment the training data. Our automatic

classifiers label constituents with one of the core or modifier semantic role labels, and

a simple post-processing rule is applied to the output of the system to determine

84 CHAPTER 3. SHALLOW SEMANTIC PARSING

Task core coarseargm all

F1 Acc. F1 Acc. F1 Acc.

Id 92.3 83.7 92.4 79.0 92.4 79.0
Cls 98.0 96.8 98.1 95.9 95.7 90.8
Id&Cls 90.5 81.4 90.6 76.2 88.4 72.3

(a) Summary performance results.

Guessed

Correct arg0 arg1 arg2 arg3 arg4 arg5 argm none F-Measure

arg0 2912 22 1 0 0 0 4 248 91.7
arg1 69 3964 15 1 1 0 12 302 91.8
arg2 7 25 740 3 2 0 9 151 82.4
arg3 1 5 3 83 1 0 5 36 70.3
arg4 0 1 3 0 63 0 0 7 88.1
arg5 0 0 0 0 0 5 0 0 100.0
argm 0 7 10 0 0 0 2907 322 91.0
none 173 248 87 15 2 0 204 – –

(b) coarseargm confusion matrix.

Guessed
Correct adv cau dir dis ext loc mnr mod neg pnc prd rec tmp core none F-Measure

adv 295 3 0 13 3 10 35 0 0 5 0 0 20 1 51 71.3
cau 0 48 0 1 0 2 3 0 0 2 0 0 3 0 6 81.4
dir 0 0 40 0 0 0 6 0 0 0 0 0 1 2 25 61.1
dis 13 0 0 214 0 3 2 0 0 0 0 0 8 0 31 79.9
ext 2 0 0 1 17 0 5 0 0 0 0 0 0 2 5 63.0
loc 4 0 0 2 0 251 3 0 0 2 1 0 8 1 45 77.5
mnr 17 0 5 0 2 12 196 0 0 0 0 0 4 5 66 65.8
mod 0 0 0 0 0 0 0 453 0 0 0 0 0 0 2 99.4
neg 0 0 0 0 0 0 0 0 200 0 0 0 0 0 2 99.0
pnc 4 2 0 0 0 1 0 0 0 59 0 0 5 3 26 64.8
prd 1 0 1 0 0 0 0 0 0 1 1 0 0 1 0 28.6
rec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.0
tmp 23 0 0 4 0 11 3 0 1 1 0 0 874 2 61 88.7
core 4 0 2 2 0 0 6 0 0 7 0 0 9 7927 744 92.3
none 28 0 9 28 0 41 30 3 1 5 0 0 59 525 – –

(c) Modifier arguments confusion matrix.

Figure 3.10: Performance measures for local model using all local features and en-
forcing the non-overlapping constraint. Results are on Section 23 using gold standard
parse trees and argument-based scoring.

3.6. JOINT CLASSIFIERS 85

which constituents that are labeled the same are to be merged as the same argu-

ment. This decision does not matter for constituent-based scoring, but is important

for argument-based scoring. The post-processing rule is the following: for every con-

stituent that bears a core argument label argx, if there is a preceding constituent

with the same label, re-label the current constituent c-argx. Therefore, according

to our algorithm, all constituents having the same core argument label are part of

the same argument, and all constituents having the same modifier labels are sepa-

rate arguments by themselves. This rule is very accurate for core arguments, but

it sometimes fails on modifier arguments. An evaluation of this rule on the CoNLL

evaluation measure shows that our upper bound in performance because of this rule

is about 99.0 F-Measure on all arguments.

3.6 Joint Classifiers

We proceed to describe our models incorporating dependencies between labels of

nodes in the parse tree. As we discussed briefly before, the dependencies we would

like to model are highly non-local. A factorized sequence model that assumes a finite

Markov horizon, such as a chain Conditional Random Field (Lafferty et al., 2001),

would not be able to encode such dependencies. We define a Conditional Random

Field but with a much richer dependency structure.

The Need for Re-ranking

For argument identification, the number of possible assignments for a parse tree with

n nodes is 2n. This number can run into the hundreds of billions for a normal-sized

tree. For argument labeling, the number of possible assignments is ≈ 20m, if m is the

number of arguments of a verb (typically between 2 and 5), and 20 is the approximate

number of possible labels if considering both core and modifying arguments. Training

a model which has such a huge number of classes is infeasible if the model does not

factorize due to strong independence assumptions. Therefore, in order to be able to

incorporate long-range dependencies in our models, we chose to adopt a re-ranking

86 CHAPTER 3. SHALLOW SEMANTIC PARSING

N core all
F1 Acc. F1 Acc.

1 90.5 81.4 88.4 72.3
5 96.9 93.5 95.0 88.9
10 98.0 95.6 97.3 92.1
30 98.9 97.5 98.4 95.4
100 99.4 98.8 99.0 97.2

(a) Tabular form.

60

65

70

75

80

85

90

95

100

0
 25
 50
 75
 100

N

F-
m

ea
su

re

Per Argument F-measure
 Whole Frame Accuracy

(b) Graphical form.

Figure 3.11: Oracle upper bounds for top N non-overlapping assignments from local
model on core and all arguments. Using gold standard parse trees and argument-
based scoring.

approach (Collins, 2000), which selects from likely assignments generated by a model

which makes stronger independence assumptions. We utilize the top N assignments

of our local semantic role labeling model P `
SRL to generate likely assignments. As can

be seen from Figure 3.11(a), for relatively small values of N , our re-ranking approach

does not present a serious bottleneck to performance. We used a value of N = 10

for training. In Figure 3.11(a) we can see that if we could pick, using an oracle, the

best assignment out of the top 10 assignments according to the local model, we would

achieve an F-Measure of 97.3 on all arguments. Increasing the number of N to 30

results in a very small gain in the upper bound on performance and a large increase

in memory requirements. We therefore selected N = 10 as a good compromise.

Generation of top N most likely joint assignments

We generate the top N most likely non-overlapping joint assignments of labels to

nodes in a parse tree according to a local model P `
SRL, by an exact dynamic pro-

gramming algorithm, which is a generalization of the algorithm for finding the top

non-overlapping assignment described in section 3.5.2.

3.6. JOINT CLASSIFIERS 87

Parametric Models

We learn log-linear re-ranking models for joint semantic role labeling, which use fea-

ture maps from a parse tree and label sequence to a vector space. The form of the

models is as follows. Let Φ(t, v, L) ∈ R
s denote a feature map from a tree t, tar-

get verb v, and joint assignment L of the nodes of the tree, to the vector space R
s.

Let L1, L2, · · · , LN denote top N possible joint assignments. We learn a log-linear

model with a parameter vector W , with one weight for each of the s dimensions of

the feature vector. The probability (or score) of an assignment L according to this

re-ranking model is defined as:

P r
SRL(L|t, v) =

e<Φ(t,v,L),W>

∑N
j=1 e<Φ(t,v,Lj),W>

(3.3)

The score of an assignment L not in the top N is zero. We train the model to maximize

the sum of log-likelihoods of the best assignments minus a quadratic regularization

term.

In this framework, we can define arbitrary features of labeled trees that capture

general properties of predicate-argument structure.

Joint Model Features

We will introduce the features of the joint re-ranking model in the context of the

example parse tree shown in Figure 3.2, which is repeated for convenience in Figure

3.12. We model dependencies not only between the label of a node and the labels of

other nodes, but also dependencies between the label of a node and input features of

other argument nodes. The features are specified by instantiation of templates and

the value of a feature is the number of times a particular pattern occurs in the labeled

tree.

Templates

For a tree t, predicate v, and joint assignment L of labels to the nodes of the tree,

we define the candidate argument sequence as the sequence of non-none labeled nodes

88 CHAPTER 3. SHALLOW SEMANTIC PARSING

S1

NP1-arg1

Final-hour trading

VP1

VBD1-pred

accelerated

PP1-arg4

TO1

to

NP2

108.1 million shares

NP3-argm-tmp

yesterday

Figure 3.12: An example tree from PropBank with semantic role annotations, for the
sentence Final-hour trading accelerated to 108.1 million shares yesterday.

[n1, l1, . . . , vPRED, . . . , nm, lm] (li is the label of node ni). A reasonable candidate

argument sequence usually contains very few of the nodes in the tree – about 2 to

7 nodes, as this is the typical number of arguments for a verb. To make it more

convenient to express our feature templates, we include the predicate node v in the

sequence. This sequence of labeled nodes is defined with respect to the left-to-right

order of constituents in the parse tree. Since non-none labeled nodes do not overlap,

there is a strict left-to-right order among these nodes. The candidate argument

sequence that corresponds to the correct assignment in Figure 3.2 will be:

[NP1-arg1, VBD1-pred, PP1-arg4, NP3-argm-tmp]

1. Features from Local Models: All features included in the local models

are also included in our joint models. In particular, each template for local

features is included as a joint template that concatenates the local template

and the node label. For example, for the local feature PATH, we define a

joint feature template, that extracts PATH from every node in the candidate

argument sequence and concatenates it with the label of the node. Both a

feature with the specific argument label is created and a feature with the generic

back-off arg label. This is similar to adding features from identification and

classification models. In the case of the example candidate argument sequence

above, for the node NP1 we have the features:

{(NP↑S↓VP↓VBD)-arg1, (NP↑S↓VP↓VBD)-arg}

When comparing a local and a joint model, we use the same set of local feature

3.6. JOINT CLASSIFIERS 89

templates in the two models. If these were the only features that a joint model

used, we would expect its performance to be roughly the same as the perfor-

mance of a local model. This is because the two models will in fact be in the

same parametric family but will only differ slightly in the way the parameters

are estimated. In particular, the likelihood of an assignment according to the

joint model with local features will differ from the likelihood of the same as-

signment according to the local model only in the denominator (the partition

function Z). The joint model sums over a few likely assignments in the denomi-

nator, whereas the local model sums over all assignments; also, the joint model

does not treat the decomposition into identification and classification models in

exactly the same way as the local model.

2. Whole Label Sequence: As observed in previous work (Gildea and Jurafsky,

2002; Pradhan et al., 2004), including information about the set or sequence of

labels assigned to argument nodes should be very helpful for disambiguation.

For example, including such information will make the model less likely to

pick multiple nodes to fill the same role or to come up with a labeling that

does not contain an obligatory argument. We added a whole label sequence

feature template that extracts the labels of all argument nodes, and preserves

information about the position of the predicate. The template also includes

information about the voice of the predicate. For example, this template will

be instantiated as follows for the example candidate argument sequence:

[voice:active, arg1, pred, arg4, argm-tmp]

We also add a variant of this feature which uses a generic arg label instead of

specific labels. This feature template has the effect of counting the number of

arguments to the left and right of the predicate, which provides useful global

information about argument structure. As previously observed (Pradhan et

al., 2004), including modifying arguments in sequence features is not helpful.

This corresponds to the standard linguistic understanding of adjuncts and was

confirmed in our experiments. We redefined the whole label sequence features

to exclude modifying arguments.

90 CHAPTER 3. SHALLOW SEMANTIC PARSING

One important variation of this feature uses the actual predicate lemma in

addition to “voice:active”.

3. Joint Syntactic-Semantic Features: this class of features is similar to the

whole label sequence features, but in addition to labels of argument nodes, it

includes syntactic features of the nodes. These features can capture the joint

mapping from the syntactic realization of the predicates’s arguments to its se-

mantic frame. The idea of these features is to capture knowledge about the label

of a constituent given the syntactic realization and labels of all other arguments

of the verb. This is helpful to capture syntactic alternations, such as the da-

tive alternation. For example, consider the sentence (i) “[Shaw Publishing]arg0

offered [Mr. Smith]arg2 [a reimbursement]arg1
” and the alternative realization

(ii) “[Shaw Publishing]arg0
offered [a reimbursement]arg1

[to Mr. Smith]arg2
”.

When classifying the NP in object position, it is useful to know whether the

following argument is a PP. If yes, the NP will more likely be an arg1, and

if not, it will more likely be an arg2. A feature template that captures such

information extracts, for each argument node, its phrase type and label. For

example, the instantiation of such a template in (ii) would be

[voice:active, NP-arg0, pred, NP-arg1, PP-arg2]

We also add a template that concatenates the identity of the predicate lemma

itself. We experimented with variations for what syntactic information to ex-

tract from each argument node and found that the phrase type and the head of

a directly dominating PP – if one exists – was most helpful.

We should note that Xue and Palmer (2004) define a similar feature template,

called syntactic frame, which often captures similar information. The impor-

tant difference is that their template extracts contextual information from noun

phrases surrounding the predicate, rather than from the sequence of argument

nodes. Because we use a joint model, we are able to use information about

other argument nodes when labeling a node.

4. Repetition Features

We also add features that detect repetitions of the same label in a candidate

3.6. JOINT CLASSIFIERS 91

argument sequence, together with the phrase types of the nodes labeled with

that label. For example, (NP-arg0, WHNP-arg0) is a common pattern of this

form. A variant of this feature template also indicates whether all repeated

arguments are sisters in the parse tree, or whether all repeated arguments are

adjacent in terms of word spans. These features can provide robustness to

parser errors, making it more likely to label adjacent phrases incorrectly split

by the parser with the same label.

We report results from the joint model and an ablation study of the contribution of

each of the types of joint features in §3.6.1.

Final Pipeline

Here we describe the application in testing of a joint model for semantic role labeling,

using a local model P `
SRL, and a joint re-ranking model P r

SRL. P `
SRL is used to generate

top N non-overlapping joint assignments L1, . . . , LN .

One option is to select the best Li according to P r
SRL, as in Equation 3.3, ignoring

the score from the local model. In our experiments, we noticed that for larger values

of N , the performance of our re-ranking model P r
SRL decreased. This was probably

due to the fact that at test time the local classifier produces very poor argument

frames near the bottom of the top N for large N . Since the re-ranking model is

trained on relatively few good argument frames, it cannot easily rule out very bad

frames. It makes sense then to incorporate the local model into our final score. Our

final score is given by:

PSRL(L|t, v) = (P `
SRL(L|t, v))α P r

SRL(L|t, v)

where α is a tunable parameter for how much influence the local score has in the

final score.7 Such interpolation with a score from a first-pass model was also used for

parse re-ranking in (Collins, 2000). Given this score, at test time we choose among

7We found α = 1.0 to work best.

92 CHAPTER 3. SHALLOW SEMANTIC PARSING

the top N local assignments L1, . . . , LN according to:

argmaxL∈L1,...,LN
α log P `

SRL(L|t, v) + log P r
SRL(L|t, v) (3.4)

3.6.1 Joint Model Results

We compare the performance of joint re-ranking models and local models. We used

N=10 joint assignments for training re-ranking models, and N=15 for testing. The

weight α of the local model was set to 1.

Figure 3.13 shows the summary performance of the local model (Local, repeated

from earlier figures), a joint model using only local features (JointLocal), a joint

model using local + whole label sequence features (LabelSeq), and a joint model

using all described types of features (AllJoint). The evaluation is on gold standard

parse trees, using argument-based scoring. In addition to performance measures, the

figure shows the number of binary features included in the model. The number of

features is a measure of the complexity of the hypothesis space of the parametric

model.

We can see that a joint model using only local features outperforms a local model

by .5 points of F-Measure. The joint model using local features estimates the feature

weights only using the top N consistent assignments thus making the labels of different

nodes non-independent according to the estimation procedure, which may be a cause

for the improved performance. Another factor could be that the model JointLocal

is a combination of two models as specified in Equation 3.4, which may lead to gains

as is usual for classifier combination.

The label sequence features added in Model LabelSeq result in another .5 points

jump in F-Measure on all arguments. An additional larger .8 gain results from the

inclusion of syntactic-semantic and repetition features. The error reduction of model

AllJoint over the local model is 36.8% in core arguments F-Measure, 33.3% in

core arguments whole frame accuracy, 17.0% in all arguments F-Measure, and

21.7% in all arguments whole frame accuracy.

All differences in all arguments F-Measure are statistically significant according

3.6. JOINT CLASSIFIERS 93

Model Num Features core coarseargm all
F1 Acc. F1 Acc. F1 Acc.

Local 5,201K 90.5 81.4 90.6 76.2 88.4 72.3
JointLocal 2,193K 90.9 82.6 91.1 78.3 88.9 74.3
LabelSeq 2,357K 92.9 86.1 92.6 81.4 90.4 77.0
AllJoint 2,811K 94.0 87.6 93.4 82.7 91.2 78.3

Figure 3.13: Performance of local and joint models on Id&Cls on section 23, us-
ing gold standard parse trees. The number of features of each model is shown in
thousands.

to a paired Wilcoxon signed rank test. JointLocal is significantly better than Local

(p < 2× 10−6), LabelSeq is significantly better than JointLocal (p < 2.2 × 10−16),

and AllJoint is significantly better than LabelSeq (p < 6 × 10−8). We performed

the Wilcoxon signed rank test on per-proposition all arguments F-Measure for all

models.

We can also note that the joint models have less features than the local model.

This is due to the fact that the local model has seen many more negative examples and

therefore more unique features. The joint features are not very numerous compared

to the local features in the joint models. The AllJoint model has around 30% more

features than the JointLocal model.

A more detailed analysis of the results obtained by the joint model AllJoint

is given in Figure 3.14(a) (Summary results), and the two confusion matrices in

Figures 3.14(b) and 3.14(c), which display the number of errors of each type that

the model made. The first confusion matrix concentrates on core arguments and

merges all modifying argument labels into a single argm label. The second confusion

matrix concentrates on confusions among modifying arguments. This Figure can be

compared to Figure 3.5.2, which summarizes the results for the local model in the

same form. The biggest differences are in the performance on core arguments, which

can be seen by comparing the confusion matrices in Figures 3.10(b) and 3.14(b). The

F-Measure on each of the core argument labels has increased by at least three points;

the F-Measure on arg2 has increased by 5.7 points, and the F-Measure on arg3

by eight points. The confusions of core argument labels with none have gone down

94 CHAPTER 3. SHALLOW SEMANTIC PARSING

Task core coarseargm all

F1 Acc. F1 Acc. F1 Acc.

Id 95.6 89.2 95.0 85.0 95.0 85.0
Cls 98.3 97.6 98.3 96.6 96.0 91.4
Id&Cls 94.0 87.6 93.4 82.7 91.2 78.3

(a) Summary performance results.

Guessed

Correct arg0 arg1 arg2 arg3 arg4 arg5 argm none F-Measure

arg0 3025 23 3 0 0 0 5 131 94.8
arg1 39 4147 17 1 0 0 7 153 95.0
arg2 6 34 821 2 2 0 9 63 88.1
arg3 0 7 2 99 0 0 5 21 78.3
arg4 0 0 2 0 68 0 0 4 93.8
arg5 0 0 0 0 0 5 0 0 100.0
argm 0 14 11 1 0 0 2975 245 92.0
none 124 137 70 16 1 0 217 – –

(b) coarseargm confusion matrix.

Guessed
Correct adv cau dir dis ext loc mnr mod neg pnc prd rec tmp core none F-Measure

adv 307 2 0 13 3 11 39 0 0 4 0 0 20 3 34 72.9
cau 2 47 0 1 0 2 3 0 0 2 0 0 3 0 5 80.3
dir 0 0 44 0 0 0 6 0 0 0 0 0 0 4 20 64.2
dis 12 0 0 217 0 2 2 0 0 0 0 0 7 0 31 81.0
ext 2 0 0 1 16 0 3 0 0 0 0 0 0 4 6 61.5
loc 4 0 1 3 0 250 4 0 0 1 1 0 10 2 41 76.8
mnr 17 0 5 0 1 13 224 0 0 1 0 0 6 4 36 69.7
mod 0 0 0 0 0 0 0 453 0 0 0 0 0 0 2 99.4
neg 0 0 0 0 0 0 0 0 199 0 0 0 0 0 3 98.8
pnc 3 2 1 0 0 0 0 0 0 74 0 0 3 4 13 76.3
prd 1 0 1 0 0 0 0 0 0 0 2 0 0 0 1 50.0
rec 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0.0
tmp 23 0 0 4 0 11 7 0 1 1 0 0 877 5 51 89.1
core 4 0 2 1 0 0 5 0 0 6 0 0 8 8303 372 95.6
none 31 1 9 25 0 45 43 3 1 5 0 0 54 348 – –

(c) Modifier arguments confusion matrix.

Figure 3.14: Performance measures for joint model using all features (AllJoint).
Results are on Section 23 using gold standard parse trees and argument-based scoring.

3.7. AUTOMATIC PARSES 95

Rank 1 2 3 4 5 6 7 8 9 10
Chosen 84.1 8.6 2.7 1.6 0.8 0.4 0.5 0.3 0.2 0.4

Figure 3.15: Percentage of test set propositions for which each of the top ten assign-
ments from the Local model was selected as best by the joint model AllJoint.

significantly, and also there is a large decrease in the confusions of none with arg1.

There is generally a slight increase in F-Measure on modifier labels as well, but the

performance on some of the modifier labels has gone down. This makes sense because

our joint features are targeted at capturing the dependencies among core arguments.

There may be useful regularities for modifier arguments as well, but capturing them

may require different joint feature templates.

Figure 3.15 lists the frequency with each each of the top k assignments from the

Local model was ranked first by the re-ranking model AllJoint. For example, for

84.1% of the propositions, the re-ranking model chose the same assignment that the

Local model would have chosen. The second best assignment according to the Local

model was promoted to first 8.6% of the time. The Figure shows statistics for the

top ten assignments only. The rest of the assignments, ranked 11 through 15, were

chosen as best by the re-ranking model for a total of 0.3% of the propositions.

The labeling of the tree in Figure 3.2 is a specific example of the kind of errors

fixed by the joint models. The local classifier labeled the first argument in the tree as

arg0 instead of arg1, probably because an arg0 label is more likely for the subject

position.

3.7 Automatic Parses

We now evaluate our models when trained and tested using automatic parses produced

by Charniak’s parser. The PropBank training set Sections 2–21 is also the training

set of the parser. The performance of the parser is therefore better on the training

set. When the constituents of an argument do not have corresponding constituents

in an automatically produced parse tree, it will be very hard for a model to get

the semantic role labeling correct. For constituent-based scoring, these argument

96 CHAPTER 3. SHALLOW SEMANTIC PARSING

Set Constituents Propositions
Training 2.9% 7.4%
Development 7.1% 17.3%
Test 6.2% 15.7%

Figure 3.16: Percentage of argument constituents that are not present in the auto-
matic parses of Charniak’s parser. Constituents shows the percentage of missing
constituents and Propositions shows the percentage of propositions that have miss-
ing constituents.

constituents cannot possibly be guessed correctly by the labeling system and there is

an upper bound on performance determined by the parser error. For argument-based

scoring the system can theoretically guess the correct set of words by labeling any

existing constituents that dominate a subset of the argument words. However, we

found that argument-based measures are usually lower than constituent-based ones

and in practice the same or lower upper bound applies to this scoring setting.

Figure 3.16 shows the percentage of argument constituents that are missing in the

automatic parse trees, produced by Charniak’s parser. The percentage of propositions

that have at least one missing argument constituent indicates an upper bound on the

whole frame accuracy achievable by labeling Charniak parse trees (for constituent-

based scoring). We can see that the percentage of missing constituents is quite high

and that the upper bound for whole frame accuracy is far from 100% – it is 84.3%

for the test set.

We report local and joint model results using argument-based scoring in Fig-

ures 3.17(a) and 3.17(b) respectively. We also compare the confusion matrices of

the local and joint models, ignoring the confusions among modifier argument labels

(coarseargm setting) in Figure 3.18. The error reduction of the joint over the local

model is 10.3% in core arguments F-Measure and 8.3% in all arguments F-Measure.

3.7.1 Using Multiple Automatic Parse Guesses

Semantic role labeling is very sensitive to the correctness of the given parse tree as

the above results show. If an argument does not correspond to a constituent in a

3.7. AUTOMATIC PARSES 97

Task core coarseargm all

F1 Acc. F1 Acc. F1 Acc.

Id 82.2 67.3 81.7 60.2 81.7 60.2
Cls 98.0 97.1 98.0 96.1 95.7 91.7
Id&Cls 80.6 65.6 80.1 58.1 78.2 55.3

(a) Summary performance of local model.

Task core coarseargm all

F1 Acc. F1 Acc. F1 Acc.

Id 84.2 70.5 83.4 64.0 83.4 64.0
Cls 98.0 97.3 98.1 96.4 95.9 92.0
Id&Cls 82.6 69.1 81.8 62.0 80.0 59.1

(b) Summary performance of joint model.

Figure 3.17: Comparison of local and joint model results on Section 23 using Char-
niak’s automatic parser and argument-based scoring.

parse tree or a constituent exists but is not attached or labeled correctly, our model

will have a very hard time guessing the correct labeling.

One way to address this problem is to consider alternative parses. Recent releases

of the Charniak parser (Charniak, 2000) have included an option to provide the top

k parses of a given sentence according to the probability model of the parser. We use

these alternative parses as follows: Suppose t1, . . . , tk are trees for sentence s with

probabilities P (ti|s) given by the parser. Then for a fixed predicate v, let Li denote

the best joint labeling of tree ti, with score scoreSRL(Li|ti) according to our final joint

model. Then we choose the labeling L which maximizes:

argmaxi∈{1,...,k}β log P (ti|S) + scoreSRL(Li|ti)

Figure 3.19 shows summary results for the test set when using top ten parses and

the joint model. The weighting parameter for the parser probabilities was β = 1.

We didn’t experiment extensively with different values of β. Preliminary experiments

showed that considering 15 parses was a bit better, and considering top 20 was a bit

98 CHAPTER 3. SHALLOW SEMANTIC PARSING

Guessed

Correct arg0 arg1 arg2 arg3 arg4 arg5 argm none F-Measure

arg0 2710 23 3 0 0 0 5 446 86.1
arg1 62 3423 14 0 0 0 10 855 79.7
arg2 6 23 610 0 0 0 7 291 69.0
arg3 1 4 2 62 1 0 4 60 55.4
arg4 0 1 0 0 50 0 1 22 73.5
arg5 0 0 0 0 0 2 0 3 57.1
argm 2 9 8 3 0 0 2446 778 78.7
none 330 740 194 25 11 0 497 – –

(a) coarseargm confusion matrix of local model.

Guessed

Correct arg0 arg1 arg2 arg3 arg4 arg5 argm none F-Measure

arg0 2808 32 4 0 0 0 4 339 88.2
arg1 34 3579 18 0 0 0 9 724 81.9
arg2 5 34 653 1 1 0 5 238 70.6
arg3 1 5 4 72 1 0 2 49 59.3
arg4 0 0 1 0 54 0 0 19 73.0
arg5 0 0 0 0 0 4 0 1 88.9
argm 2 15 10 2 1 0 2519 697 79.5
none 329 712 223 34 17 0 552 – –

(b) coarseargm confusion matrix of joint model.

Figure 3.18: coarseargm argument confusion matrices for local and joint model using
Charniak’s automatic parses.

3.7. AUTOMATIC PARSES 99

Task core coarseargm all

F1 Acc. F1 Acc. F1 Acc.

Id 85.2 72.1 84.0 65.7 84.0 65.7
Cls 98.2 97.4 98.1 96.5 96.2 92.6
Id&Cls 83.6 70.8 82.5 63.9 80.8 61.2

Figure 3.19: Performance of the joint model using top ten parses from Charniak’s
parser. Results are on Section 23 using argument-based scoring.

worse.

3.7.2 Evaluation on the CoNLL 2005 Shared Task

The CoNLL 2005 evaluation ensures results obtained by different teams are evaluated

in exactly the same way. To provide a basis for fair comparison with other work, we

report results on this data as well.

The CoNLL 2005 data is derived from Propbank version I, which is the latest

official release from 2005. The results we have been reporting in the previous sections

used the February 2004 data. In Propbank I, there have been several changes in the

annotation conventions, as well as error fixes and addition of new propositions. There

was also a change in the way PP arguments are annotated – in the February 2004 data,

some PP arguments are annotated at the head NP child, but in Propbank I, all PP

arguments are annotated at the PP nodes. In order to achieve maximal performance

with respect to these annotations, it would probably be profitable to change the

feature definitions to account for the changes. However, we did no adaptation of the

features.

The training set consists of the annotations in Sections 2 to 21, the development

set is section 24 (Devset), and one of the test sets is section 23 (Test WSJ). The other

test set is from the Brown corpus (Test Brown). The CoNLL annotations distinguish

referring arguments, of the form r-argx, as discussed briefly in §3.4. The evaluation

measure compares labeled sets of words, like our argument-based measures, with the

difference that r-argx is a separate argument label. For example, for the sentence:

“The book that I bought yesterday was good.”, the correct labeling would be: “[The

100 CHAPTER 3. SHALLOW SEMANTIC PARSING

book]arg1 [that]r-arg1 [I]arg0 bought [yesterday]argm-tmp was good”.

Our approach to dealing with referring arguments and for deciding when multiple

constituents labeled the same are part of the same argument was to label constituents

with only the set of argument labels and none and then map some of these labels

into referring or continuation labels. The rule for converting a label of argx into

r-argx was the following: the label is referring if and only if the phrase type of the

constituent starts with “WH”. The rule for deciding when to add continuation labels

was the same as for our systems for the February 2004 data – a constituent label

becomes continuing if and only if it is a core argument label and there is another

constituent with the same core argument label to the left. Therefore, for the CoNLL

2005 shared task we employ the same semantic role labeling system, just using a

different post-processing rule to map to CoNLL-style labelings of sets of words.

We tested the upper bound in performance due to our conversion scheme in the

following way – take the gold standard CoNLL annotations for the development set

(including referring and continuing labels), convert those to basic argument labels

of the form argx, then convert the resulting labeling to CoNLL-style labeling using

our rules to add the referring and continuing annotations back in. The F-Measure

obtained was 98.99.

Figure 3.20 shows the performance of the local and joint model on one of the

CoNLL test sets – Test WSJ (section 23)– when using gold standard parse trees.

Performance on gold standard parse trees was not measured in the CoNLL 2005

shared task, but we report it here to provide a basis for comparison with the results

of other researchers.

Next we present results using Charniak’s automatic parses on the development

and two test sets. We present results for the local and joint models using the max-

scoring Charniak parse tree. Additionally, we report results for the joint model using

top five Charniak parse trees according to the algorithm described in §3.7.1.

The performance measures reported here are higher than the results of our submis-

sion in the CoNLL 2005 shared task (Haghighi et al., 2005), because of two changes.

3.7. AUTOMATIC PARSES 101

Model Test WSJ
F1 Acc.

Local 87.61 71.41
Joint 89.89 75.64

Figure 3.20: Results on the CoNLL WSJ Test set, when using gold standard parse
trees.

Model Devset Test WSJ Test Brown
F1 Acc. F1 Acc. F1 Acc.

Local 75.13 51.60 77.03 53.24 65.37 34.83
Joint 77.20 55.79 78.68 56.43 67.67 38.68

Figure 3.21: Results on the CoNLL dataset, when using Charniak automatic parse
trees as provided in the CoNLL 2005 shared task data.

One was changing the rule that maps to continuing arguments to only add continua-

tion labels to core argument labels; in the previous version the rule added continuation

labels to all repeated labels. Another was finding a bug in the way the sentences were

passed in as input to Charniak’s parser.

Interestingly, the Charniak parses provided as part of the CoNLL shared task

data, uniformly ignore the distinction between forward and backward quotes and all

quotes are backward. For example, both quotes in “ phrase ” are tagged and regarded

as backward or closing quotes by the parser. This may be due to an incorrect input

to the parser. This may seem to be a minor detail but accounts for one point in

F-Measure on semantic role labeling and would have made the difference for winning

the competition for one of the top systems.

We first present results of our local and joint model using the parses provided as

part of the CoNLL 2005 data (and having wrong forward quotes) in Figure 3.21. We

then report results from the same local and joint model, and the joint model using

top five Charniak parses, where the parses have correct representation of the forward

quotes in Figure 3.22. If the Charniak parser was passed in as input a string of the

form “ phrase ”, it split the forward quotes into two separate tokens. We therefore

preprocessed the input string by concatenating all forward quotes to the following

word, like this: “phrase ”, which led to proper behavior on the part of the parser.

102 CHAPTER 3. SHALLOW SEMANTIC PARSING

Model Devset Test WSJ Test Brown
F1 Acc. F1 Acc. F1 Acc.

Local 75.80 53.05 78.00 55.31 65.55 35.70
Joint 77.93 57.20 79.71 58.65 67.79 39.43
Joint top 5 78.64 58.65 80.32 60.13 68.81 40.80

Figure 3.22: Results on the CoNLL dataset, when using Charniak automatic parse
trees, version of the Charniak parser from May 2005 with correct treatment of forward
quotes.

For these results we used the version of the Charniak parser from May 4, 2005.

The results were very similar to the results we obtained with the version from March

18, 2005. Note that the parser from May 4 we used does not incorporate the new

re-ranking model of Charniak and Johnson (Charniak and Johnson, 2005), which

improves upon (Charniak, 2000) significantly. The new re-ranking parser is also

freely available, but we did not use it for these experiments.

For comparison, the system we submitted to CoNLL 2005 had an F-Measure of

78.45 on the WSJ Test set. The winning system (Punyakanok et al., 2005) had an

F-Measure of 79.44 and our current system has an F-Measure of 80.32. For the Brown

Test set, our submitted version had an F-Measure of 67.71, the winning system had

67.75, and our current system has 68.81.

Figure 3.23 shows the per-label performance of our joint model using top five

Charniak parse trees, on the Test WSJ test set.

3.8 Conclusions

Reflecting linguistic intuition and in line with current work, we have shown that

there are substantial gains to be had by jointly modeling the argument frames of

verbs. This is especially true when we model the dependencies with discriminative

models capable of incorporating long-distance features.

For further improving performance in the presence of perfect syntactic parses, we

see the biggest avenues for improvement as the following:

3.8. CONCLUSIONS 103

Precision Recall Fβ=1

Overall 81.90% 78.81% 80.32
A0 88.37% 88.91% 88.64
A1 81.50% 81.27% 81.38
A2 73.44% 68.74% 71.01
A3 75.00% 55.49% 63.79
A4 74.74% 69.61% 72.08
A5 100.00% 80.00% 88.89
AM-ADV 64.86% 54.35% 59.14
AM-CAU 67.92% 49.32% 57.14
AM-DIR 55.74% 40.00% 46.58
AM-DIS 81.69% 75.31% 78.37
AM-EXT 65.00% 40.62% 50.00
AM-LOC 66.45% 56.75% 61.22
AM-MNR 62.50% 56.69% 59.45
AM-MOD 98.00% 98.00% 98.00
AM-NEG 97.83% 97.83% 97.83
AM-PNC 54.22% 39.13% 45.45
AM-PRD 100.00% 20.00% 33.33
AM-REC 0.00% 0.00% 0.00
AM-TMP 80.12% 72.31% 76.02
R-A0 93.15% 91.07% 92.10
R-A1 80.50% 82.05% 81.27
R-A2 61.54% 50.00% 55.17
R-A3 0.00% 0.00% 0.00
R-A4 0.00% 0.00% 0.00
R-AM-ADV 0.00% 0.00% 0.00
R-AM-CAU 100.00% 50.00% 66.67
R-AM-EXT 0.00% 0.00% 0.00
R-AM-LOC 76.92% 47.62% 58.82
R-AM-MNR 50.00% 33.33% 40.00
R-AM-TMP 74.00% 71.15% 72.55

V 97.32% 97.32% 97.32

Figure 3.23: Per-label performance of joint model using top five Charniak automatic
parse trees on the Test WSJ test set.

104 CHAPTER 3. SHALLOW SEMANTIC PARSING

• Improving the identification of argument nodes, by better handling of long-

distance dependencies, i.e., incorporating models which recover the trace and

null element information in Penn Treebank parse trees, such as (Levy and Man-

ning, 2004).

• Improving the accuracy on modifier labels, by improving the knowledge about

the semantic characteristics of specific words and phrases, i.e., improving lexical

statistics.

• Better handling of multi-constituent arguments; our current model uses a simple

rule in a post-processing step to decide which constituents labeled the same are

part of the same argument, but this could be done more intelligently by the

machine learning model.

• Building a joint model which does not use re-ranking over a local model, but

a more exact dynamic programming or approximation technique to deal with

computational complexity.

Since perfect syntactic parsers do not yet exist and the major bottleneck to the

performance of current semantic role labeling systems is syntactic parser performance,

the more important question is how to improve performance in the presence of parser

errors. We explored a simple approach of choosing from among the top k parses from

Charniak’s parser which resulted in an improvement. There should be better ways

of integrating syntactic and semantic parsing and work on alternative approaches al-

ready exists (Punyakanok et al., 2005; Yi and Palmer, 2005). This is a very promising

line of research.

Chapter 4

Random Walks for Estimating

Word Dependency Distributions

In the previous chapter we showed that it is very useful to increase the lexicalization of

structural features in syntactic parse selection. More broadly, since every word has its

own different semantics and often very specific syntax, the more reliable statistics we

can gather that are specific to individual words, the better our models will perform.

This chapter addresses the problem of estimating word dependency distributions

– distributions over words, conditioned on words. For example POBJ(n|v) is a depen-

dency distribution over object nouns for verbs. Parts of this work were reported in

(Toutanova et al., 2004a).

4.1 Introduction

Word dependency or co-occurrence probabilities are needed in many natural language

tasks. This includes lexicalized parsing, building language models, word sense dis-

ambiguation, and information retrieval. A touchstone problem in parsing and one

where knowledge about word dependencies is crucial is the problem of deciding the

attachment of preposition phrases (PPs). For example, in the sentence: He broke the

window with a hammer, the prepositional phrase with a hammer could either modify

105

106 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

the verb broke, and thus mean that the hammer was the instrument of the breaking

event, or it could modify the noun window and thus mean that the window perhaps

had a stained glass rendition of a hammer in it. People immediately recognize the

more plausible meaning using their world knowledge, but this knowledge is not read-

ily available to parsers. Previous research has shown that by using statistics of lexical

co-occurrences, much higher accuracy can be achieved in comparison to approaches

that only look at structure (such as preferring attachment to a verb or the closer

word, etc.) (Hindle and Rooth, 1993).

However, it is difficult to estimate word dependency probabilities because of the

extreme sparseness of data for individual words, and even more so for word pairs,

triples, and so on. For instance, (Bikel, 2004) shows that the parser of (Collins, 1999)

is able to use bi-lexical word dependency probabilities1 to guide parsing decisions only

1.5% of the time (28.8% for its most likely guess); the rest of the time, it backs off to

condition one word on just phrasal and part-of-speech categories. Even though the

28.8% number is more relevant, it is still very small. If a system could be built with

reasonably accurate knowledge about dependency probabilities between all words,

one would expect the performance gains on many tasks to be substantial.

Sophisticated back-off and interpolation methods have been developed for lan-

guage modeling (Goodman, 2001). (Dagan et al., 1999) showed that performance

on zero-count events can be greatly improved if the model includes estimates based

on distributional similarity. Other kinds of similarity among words have also been

used to reduce sparseness. For instance, stemming words is a very traditional way of

somewhat lessening sparseness, and resources like WordNet (Miller, 1990) have been

used in many natural language models.

All of these ways of using associations and similarities between words to predict

the likelihood of unseen events have their advantages. Symbolic knowledge bases,

such as WordNet, have the advantage of being based on abundant world knowledge

and human intuition, but have the disadvantages of having incomplete coverage and

being non-probabilistic. Using stemming or lemmatized words has been helpful for

1Bi-lexical probabilities include two words, one in the conditioning context and one in the future,
in addition to possibly other variables, for example, P (salad|eat,V ,VP).

4.1. INTRODUCTION 107

reducing sparseness in some problems, and slightly harmful in others (Hull, 1996).

We propose a method for combining these information sources that induces a

distribution over words by learning a Markov Chain (random walk) model, where

the states correspond to words, such that its stationary distribution is a good model

for a specific word-distribution modeling task. The idea of constructing Markov

Chains whose stationary distributions are informative has been seen in several other

applications, such as the Google PageRank algorithm (Brin and Page, 1998), some

HITS (Kleinberg, 1998)-like link analysis algorithms (Ng et al., 2001), and for query

expansion in IR (Lafferty and Zhai, 2001). Our work is distinguished from these

approaches in that rather than using a carefully hand-picked Markov Chain, we will

automatically learn the parameters for the random walk. This allows us to construct

Markov Chains with many more parameters, that are much richer in structure and of

significantly greater complexity than seen in other applications. In doing so, we can

also allow our model to learn to exploit diverse knowledge sources such as WordNet,

morphology, and various features of words derived from dependency relations; all

of these simply become additional “features” made available to the random walk

learning algorithm. The proposed techniques are general and can be applied to other

problem domains, such as the web, citation, and clickstream data.

After completing this work, we became aware that an algorithm that estimates a

distribution of interest as the stationary distribution of a Markov Chain, whose pa-

rameters are learned from data, was previously developed by Jason Eisner in (Eisner,

2001; Eisner, 2002). The application was estimating the weights of sub-categorization

frames of verbs and is thus quite different from our application of incorporating mul-

tiple knowledge sources for inducing word dependency distributions. We discuss the

relation to that work in §4.7.

In this work, we choose PP attachment as a classic problem where lexical de-

pendency distribution are important, and show how random walk methods can be

applied to this problem. The focus of our work is on estimation of lexical distribution

and PP attachment is an illustration of doing that well.

108 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

4.2 Markov Chain Preliminaries

We briefly review the basic properties of Markov Chains (MC). For a more detailed

treatment, see, e.g., (Taylor and Karlin, 1998; Brémaud, 1999). In the following, we

will use P to denote a probability value and p to denote a probability mass function.

A stochastic process {St} is a family of random variables, where t ranges over an

index set T . A Markov process {St} is a stochastic process over a totally ordered index

set satisfying the Markov property : for any indices k < t < m, Sm is independent of

Sk given St. A discrete-time Markov Chain is a Markov process whose state space S is

finite or countable and whose index set T is the set of natural numbers T = (0, 1, . . .).

The Markov property for a discrete-time Markov Chain can be written as:

P (St = j|S0 = io, . . . , St−2 = it−2, St−1 = i) = P (St = j|St−1 = i)

∀t, j, i, i0, . . . , it−2

The Markov Chain is time-homogeneous or stationary, if the transition probabilities

do not depend on the time t. More formally:

∀t, i, j : P (St = j|St−1 = i) = P (S1 = j|S0 = i)

A discrete time stationary Markov Chain over a set of states S is specified by an

initial distribution p0(S) over S, and a set of state transition probabilities

p(St|St−1).The state transition probabilities can be represented by a matrix P, whose

entries are P ij = P (St = j|St−1 = i). A Markov Chain defines a distribution over

sequences of states, via a generative process in which the initial state S0 is first

sampled from according to p0, and then states St (for t = 1, 2, . . .) are sampled in

order according to the transition probabilities. From now on, when we mention a

Markov Chain (MC), we will mean a discrete-time stationary Markov Chain.

P (St = s) denotes the probability that the random variable St has value s. This

probability can also be referred to as the probability that the MC is in state s at

time t. We can compute the probability distribution p(St) at time t using the initial

4.2. MARKOV CHAIN PRELIMINARIES 109

distribution and the state transition probabilities in the following way:

p(S0) = p0

p(S1) = p0P

p(S2) = p0PP
... =

...

p(St) = p0P
t

A MC has a limiting distribution π if, for every state s, the chain started at s

converges to the same distribution π. Formally,

∀s lim
t→∞

p(St|S0 = s) = π

A MC has a stationary distribution π, if the chain stays in π if it is started

according to π. More formally π is a stationary distribution if and only if:

π = πP

If a MC has a limiting distribution π, it can be shown that it has a unique

stationary distribution which is also π (Taylor and Karlin, 1998).

The MCs used in (Brin and Page, 1998; Ng et al., 2001) have the property that

on each step, there is a probability γ > 0 of resetting according to the initial state

distribution p0. Thus, the state transition probabilities can be written

p(St|St−1) = γp0(St) + (1 − γ)p′(St|St−1) (4.1)

for some appropriate p′. This ensures that the MC has a limiting distribution, and

therefore it also has a unique stationary distribution (Brémaud, 1999). Additionally,

in practice this property also prevents the chain from getting stuck in small loops (Brin

and Page, 1998).

110 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

Given a MC S0, S1, . . ., given by the initial distribution p0 and the state transition

probabilities as specified in Equation 4.1, we can construct another MC S ′
0, S

′
1, . . .

with the initial state S ′
0 distributed according to p0, and state transitions given by

the p′ in Equation (4.1). It is straightforward to show that

π(s) = γ
∑∞

t=0
(1 − γ)tP (S ′

t = s) (4.2)

where π here is the limiting distribution of the original MC S0, S1, Equation 4.2

can be used to efficiently compute π. Also, because the quantity (1 − γ)t rapidly

becomes very small, when computing π, this sequence may be truncated after the

first few (on the order 1/γ) terms without incurring significant error.

Equation (4.2) gives a useful alternative view of π. Consider a random process in

which the state S0 is initialized according to p0. On each time step t, with probability

γ we “stop” the chain and output the current state St; and with probability 1 −
γ, we till take a state transition step and sample St+1 according to the transition

probabilities p′(St+1|St). This process is continued until the chain is stopped and a

state is output. Because the number of steps T taken in the chain until it is stopped

is distributed according to a geometric distribution with parameter (1 − γ), we can

see using Equation (4.2) that the random state output by this process will also be

distributed according to π.

For the application considered in this work, it will be useful to consider a gener-

alization of this random process. Specifically, we will construct a MC where, once

we have decided to stop the MC (which happens with probability γ on each step),

we will allow the state to transition one final time according to a new set of transi-

tion probabilities p′′(St+1|St) (different from the transition probabilities used in the

earlier steps of the walk), and finally output St+1. Note that if p′′(St+1|St) = 1 iff

St+1 = St, this reduces to the simpler type of random walk described earlier. In §4.6

we will see how permitting an extra state-transition step at the end allows us to build

significantly more expressive models.

4.3. RELATED WORK ON SMOOTHING 111

4.3 Related Work on Smoothing

.

Dealing with sparsity has been recognized as an extremely important issue in ma-

chine learning for natural language processing. A key application in which dealing

with sparsity is crucial is language modeling for speech recognition. Many smoothing

methods were developed or applied in the context of language modeling. Some exam-

ples include Lidstone (Lidstone, 1920), Good-Turing (Good, 1953), Katz (Katz, 1987),

Jelinek-Mercer (Jelinek and Mercer, 1980), Kneser-Ney (Kneser and Ney, 1995), and

Witten-Bell (Witten and Bell, 1991) smoothing. Such smoothing methods have been

applied in other natural language applications as well, such as lexicalized parsing

(Collins, 1997; Charniak, 2000).

Other relevant work has used word similarities to derive dependency distributions.

Examples include class-based language models (Brown et al., 1992), co-occurrence

smoothing (Essen and Steinbiss, 1992), and nearest neighbor-type smoothing based

on word similarities (Dagan et al., 1999; Lee, 1999). This work provides the basis of

our framework for smoothing based on multiple sources of information. We will show

in the discussion section how these smoothing methods are special instances of our

framework.

In n-gram language modeling, the probability of a sentence P (w1, w2, . . . , wn) is

decomposed into
∏

i=1,...,n

P (wi|wi−1, . . . , wi−n+1)

by making an order n Markov independence assumption. The individual n-gram lex-

ical probabilities for the model are estimated using some smoothing method. Empiri-

cal studies show that smoothing methods can vary widely in performance, depending

on the specific conditions of the task (Chen and Goodman, 1998). The individual

smoothing methods differ in the ways they adjust the mass of seen events to reserve

mass for unseen ones, and how they use the information from lower-order distributions

(containing less conditioning context) to estimate higher-order ones. For a thorough

overview of smoothing models for language modeling see, for example, (Chen and

112 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

Goodman, 1998; Goodman, 2001).

We briefly review Jelinek-Mercer smoothing here, because it is the basis for our

model. Chen and Goodman (1996) found that this method was one of the best-

performing under a variety of conditions, and the updated (Chen and Goodman, 1998)

also found that it was relatively good, outperformed consistently only by variations

of Kneser-Ney (Kneser and Ney, 1995). The form of Jelinek-Mercer smoothing is as

follows:

PJM(wi|wi−1, . . . , wi−n+1) = λ(wi−1, . . . , wi−n+1) × P̂ (wi|wi−1, . . . , wi−n+1) +

+ (1 − λ(wi−1, . . . , wi−n+1)) × PJM(wi|wi−1, . . . , wi−n+2)

(4.3)

After all variables are removed from the context, the recursion is terminated with the

uniform distribution 1
V

, where V is the vocabulary size. Here P̂ denotes a relative

frequency probability value, estimated from a training set. We see that the estimated

distribution conditioned on n − 1 previous words is obtained using the estimated

distribution conditioned on the previous n − 2 words, interpolated with a relative

frequency estimate of the full distribution. The interpolation parameters λ depend

on the particular n − 1 word context, to allow us to give more weight to the relative

frequency estimate in some cases. For example, if we have seen very large amounts

of data for a particular context, we can be more confident in the relative frequency

(maximum likelihood) estimate.

In practice, we cannot learn interpolation weights specific to every context. Good

performance is obtained if the interpolation parameters for contexts with similar

number of occurrence in the training data are binned into equivalence classes and

the parameters for those classes are tied. The interpolation parameters are fit to

maximize the likelihood of held-out data (Jelinek and Mercer, 1980). In §4.5.1, we

will see that our baseline PP attachment model uses a very similar form of smoothing.

4.3. RELATED WORK ON SMOOTHING 113

4.3.1 Estimating Distributions as Limiting Distributions of

Markov Chains

A well-known example of using the stationary distribution of a Markov Chain is the

Page-Rank algorithm (Brin and Page, 1998). The page rank of a web-page w is the

estimated frequency with which a random surfer visits the web page. It is defined as

the probability of w according to the stationary distribution of the following Markov

Chain, defined using the web graph. The initial distribution of the Markov Chain

p0 is uniform over all web pages. The state transition probabilities from a page

w are defined as interpolation of the uniform distribution over web pages p0 and a

uniform distribution over all web pages that the page w links to. Thus the form of the

transition matrix is as described in Equation 4.1. The parameter in the interpolation

can vary, but everything else is fixed.

Another example, in the domain of estimating word distributions, is a language

model for query expansion in IR (Lafferty et al., 2001). The goal is to estimate

a translation probability P (q|w) of a query word q given another word w for query

expansion. This is estimated as the limiting distribution of a Markov Chain started at

w and transitioning according to a mixture of the initial distribution and a distribution

obtained directly by using the word-document frequencies. Thus the Markov Chain is

of the same form as in Equation 4.1. There are no trainable parameters of the model

(the mixture weight was fixed to 0.5). This method is very similar to co-occurrence

smoothing (Essen and Steinbiss, 1992).

The work most closely related to the present work is (Eisner, 2001; Eisner, 2002),

which uses the limiting distribution of a Markov Chain, whose transition parameters

are learned automatically from data. The Markov Chain is used to estimate a con-

ditional distribution over subcategorization frames given verbs p(subcat |verb). The

transition matrix is parameterized using a log-linear model over a set of features in-

dicating relatedness among states of the Markov Chain (subcategorization frames).

We discuss the similarities and differences to this approach in §4.7.

114 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

4.4 The Prepositional Phrase Attachment Task

Prepositional phrases are one of the major sources of ambiguity in English. Following

most of the literature on prepositional phrase (PP) attachment (e.g., (Hindle and

Rooth, 1993; Brill and Resnik, 1994; Collins and Brooks, 1995; Stetina and Nagao,

1997; Harabagiu and Pasca, 1999; Pantel and Lin, 2000)), we focus on the most

common configuration that leads to ambiguities: V NP PP. Here, we are given a

verb phrase with a following noun phrase and a prepositional phrase. The goal is to

determine if the PP should be attached to the verb or to the object noun phrase. For

example, in the sentence:

(4.4) Never [hang]V [a painting]NP [with a peg]PP .

the prepositional phrase with a peg can either modify the verb hang or the object

noun phrase the painting. Here, clearly, with a peg modifies the verb hang.

Previous work has shown the central (but not exclusive) role played by the head

words of phrases in resolving such ambiguities, and we follow common practice in

representing the problem using only the head words of these constituents and of

the NP inside the PP. Thus the example sentence is represented as the following

quadruple:

v:hang n1:painting p:with n2:peg

The task is thus to decide the attachment Att given the four head words –

v, n1, p, n2. The variable Att has as value either va (for verbal attachment) or na

(nominal/noun attachment). Since all features are words, and the two types of at-

tachment correspond to different dependency relations, this disambiguation problem

is a good testing ground for evaluation of models for estimating word dependency

distributions.

The prepositional phrase ambiguity problem is naturally much harder when mul-

tiple prepositional phrases are present in the sentence and when other candidate

attachment sites are possible. There is some work on statistical classification models

4.4. THE PREPOSITIONAL PHRASE ATTACHMENT TASK 115

for more general settings (Merlo et al., 1997). Conversely, the binary PP attach-

ment problem is easier when more context from the sentence is used (Olteanu and

Moldovan, 2005). However, the limited context binary case we concentrate on here is

a good starting point for addressing such ambiguity problems. Furthermore, if good

probability estimates for lexical relations are obtained, they can be easily incorporated

into models dealing with the more general ambiguities.

4.4.1 Dataset

We work with the Penn Treebank Wall Street Journal data (Ratnaparkhi et al.,

1994), which consists of four-tuples of head words and a specification of the type of

attachment of the form [v, n1, p, n2,Att]. There are 20,801 samples in the training

set, 4,039 in the development set, and 3,097 samples in the test set. The dataset was

originally supplied by IBM. The examples were extracted from the Wall Street Journal

Penn Treebank (Marcus et al., 1993). We refer to this dataset as the IBM dataset.

We preprocessed the original data by lower-casing the verbs and prepositions, and by

substituting all digits with the X symbol. In this way many word tokens are unified

— for example all four-digit numbers (usually denoting years) are represented by

XXXX. Similar preprocessing was done in (Collins and Brooks, 1995). Figure 4.4.1

shows summary statistics of the training, development, and test sets. The number

of examples is shown, as well as the number of word types for each of the four head-

words. For the development and test sets, the number of tokens and types unseen in

training is also shown. The statistics are presented for the preprocessed data.

This same data has been used by many other researchers (Ratnaparkhi et al.,

1994; Collins and Brooks, 1995; Stetina and Nagao, 1997). The preprocessing may

possibly differ across systems but the difference in performance due to preprocessing

is very small as we will show in §4.5.1. A previous study of human performance

suggests an upper bound on attachment accuracy, given just the four-tuple of head

words, of 88.2% (Ratnaparkhi et al., 1994). Therefore it is plausible to accept a Bayes

error of about 10% for this task.

The upper bound rises to 93.2% when the whole sentence is presented to human

116 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

Training Devset Test
types tokens types tokens types tokens

all unkn all unkn all unkn all unkn all unkn all unkn
V 3,243 – 20,801 – 1281 253 4,039 279 1123 231 3,097 257
N1 4,172 – 20,801 – 1547 438 4,039 503 1261 276 3,097 303
N2 5,146 – 20,801 – 1762 518 4,039 563 1294 318 3,097 353
P 66 – 20,801 – 50 3 4,039 4 52 2 3,097 3

Figure 4.1: Dataset characteristics.

annotators. A reasonable lower bound is obtained by choosing the most frequent

attachment for a given preposition according to the training data. The accuracy of

this approach is 72.2%.

4.4.2 Previous Work on PP Attachment

We now review previous work on machine learning approaches for deciding the at-

tachment of the prepositional phrase in the V NP PP configuration, using at most

the four head words involved in the ambiguity.

Hindle & Rooth 93

The first statistical approach that explored co-occurrence statistics in data was

the unsupervised model of Hindle & Rooth proposed in the early 1990s (Hindle and

Rooth, 1993). It was trained and tested on a different dataset than the one we consider

in this work. Only three head words were considered V, N 1, and P. Michael Collins

(Collins, 1999) re-implemented this model as a supervised one trained on the IBM

training set. Its test set performance was 81.3%. The model is similar in a way to our

baseline generative model described in §4.5.1. It is a generative model for the triple

of head-words and the attachment site: p(Att, V, N1, P). However, the independence

assumptions made are much stricter than the ones we make. The assumed form of

the model is as follows:

p(va, V, N1, P) = p(V)p(N1)p(va|N1)p(P |V, va)

p(na, V, N1, P) = p(V)p(N1)p(na|N1)p(P |N, na) (4.5)

Since the probabilities p(V) and p(N1) participate in the joint probability of the tuple

4.4. THE PREPOSITIONAL PHRASE ATTACHMENT TASK 117

under both noun and verb attachment, they can be safely ignored for classification

purposes. We can see then that the model is based on estimation of probabilities

involving a single content word (p(Att |N1)) or a single word and the preposition

(p(P |V, va), p(P |N1, na)). We will see later that it is possible to do much better by

using estimates for pairs, triples, and quadruples of words.

Collins & Brooks 95

A better performing model using more lexical information was proposed by Collins

& Brooks in 1995 (Collins and Brooks, 1995). This is a supervised classification model.

It computes statistics based on the four head-words (V, N1, P, N2) and the attachment

site Att . The model is inspired by Katz back-off estimation (Katz, 1987). It estimates

the probability distribution p̃(Att |V, N1, P, N2) by looking at the counts of occurrence

of the the four head words with the two attachment types. The estimation procedure

is similar to a nearest neighbor algorithm in that it uses the counts of the most

specific context found. For example, if the test quadruple (v, n1, p, n2) has been seen

in training, the algorithm uses a relative frequency estimate based on that context,

i.e. P̂ (Att |v, n1, p, n2). If not, the algorithm tests if any of the triples involving the

preposition – (v, n1, p), (v, n2, p), or (n1, n2, p) – has been seen. If so, the estimate is

based on their pooled counts:

P̃ (Att = na|v, n1, p, n2) =
c(na, v, n1, p) + c(na, v, n2, p) + c(na, n1, n2, p)

c(v, n1, p) + c(v, n2, p) + c(n1, n2, p)

where c(x) denotes the count of the event x in the training data. If neither of these

word triples has been seen, the algorithm backs off to form an estimate based on

pairs, and if no pairs have been seen, it backs off further.

The overall performance of this model using the same standard training set that

we use (described in §4.4.1) was 84.1%. The model is simple to understand and

implement and has comparable performance to the best previously described machine-

learned models derived from the training data of word quadruples. We use this model

as the major comparison point from previous work in Sections 4.5.1 and 4.6.4.

A major observation about the performance of the algorithm reported in (Collins,

118 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

1999) was that the performance of the algorithm was quite good for examples where

a triple or the full quadruple was seen – 90.15% accuracy. However, only 26.5% of

the test cases fell into that category. When only a pair of words was seen in the

training data, the performance dropped to 82.7%. Therefore, it is crucial to improve

the estimates for unseen events, and this is the goal of our work.

Other machine learning methods

Early work on machine learned models for PP attachment includes, for example,

(Ratnaparkhi et al., 1994) (a maximum entropy model) and (Brill and Resnik, 1994)

(a transformation-based learning model). The accuracies obtained on the test set were

below 82%. Subsequent work used other machine learning algorithms such as nearest

neighbors (Jakub Zavrel and Veenstra, 1997) and boosting (Steven Abney, 1999).

Both algorithms reported an accuracy of 84.4%. The nearest neighbor approach

(Jakub Zavrel and Veenstra, 1997) is similar in spirit to our work because it defined a

similarity measure between word quadruples based on a similarity measure between

words. The similarity measure between words was derived using co-occurrence statis-

tics in a large corpus of text. Thus this measure incorporates a knowledge source

which is separate from the training data. We will see how our random walk models

can incorporate multiple such sources of knowledge.

The best performing data-driven algorithm, using the four input variables and the

same training and test sets with no other sources of information, is a Support Vector

Machine model by (Vanschoenwinkel and Manderick, 2003). Its accuracy on the test

set is 84.8%. The input features for the SVM are conjunctions of the four head-words.

The different conjunctions have weights derived by an information gain criterion.

Stetina & Nagao 97 (Stetina and Nagao, 1997)

The best performing algorithm for PP attachment learned from the same training

set and tested on the same test set is a model by Stetina & Nagao (Stetina and

Nagao, 1997), with accuracy of 88.1%, which is indistinguishable from the 88.2%

human performance. The algorithm uses unsupervised word sense disambiguation

into WordNet senses (Miller, 1990) for the training and test sets of PP attachment

quadruples. It induces decision trees for the classification decision, using as features

4.5. THE PP ATTACHMENT MODEL 119

the senses of words and their hypernyms. It may seem that after this result no more

work is needed on this version of the PP attachment task. Nevertheless, this algorithm

has the drawback that it does not provide word dependency distributions and is thus

harder to generalize to more general PP attachment ambiguities or other kinds of

syntactic ambiguities. In lexicalized syntactic parsing, we need to have probability

estimates for every head-dependent relationship, such as verb-object, verb-subject,

verb-adverb, noun-adjective, and noun-noun, in order to assign a score to an entire

parse tree.

4.5 The PP Attachment Model

We start by building a generative model for the probability distribution of the se-

quence of four head words and the attachment site p(V, N1, P, N2,Att), where V is a

verb, P a preposition, and N1 and N2 are the two head nouns involved in the attach-

ment problem. The joint model is built up from word-dependency distributions of the

same or more general kind as those common in lexicalized parsing models (Collins,

1997; Charniak, 2000). Using a model for this joint distribution, we can compute the

conditional distribution p(Att |V, N1, P, N2) and use that to predict the more likely

attachment type.

The generative model is illustrated as a Bayesian network in Figure 4.2. No

independence assumptions are illustrated in the figure, because we make only context-

specific independence assumptions. These are that given a verbal attachment, the

second noun is independent of the first noun, and that given a nominal attachment,

the second noun is independent of the verb. They determine the following special

form for the conditional probability table for the variable N2 (as earlier, we use lower

case p to denote a probability distribution and capital P to denote a probability value

):

p(N2|va, P, V, N1) = p(N2|va, P, V)

p(N2|na, P, V, N1) = p(N2|na, P, N1) (4.6)

120 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

Att
P

V

N1 N2

Figure 4.2: Bayesian network of the PP attachment generative model over the four
head word variables and the attachment class variable. Only context-specific inde-
pendence assumptions are made for the variable N2 described in Equation 4.6.

This context specific independence assumption is natural, because once the attach-

ment site is known, it makes sense that the word the preposition attaches to is more

important in predicting the dependent of the preposition. We made this assumption

because of the sparsity problem when estimating the full tri-lexical distribution (or

quadri-lexical if the preposition is counted). However this independence assumption

may be harmful if enough training data is available. From Figure 4.2 and Equation

4.6 it follows we can write the joint model decomposition as follows:

p(va, V, N1, P, N2) =

P (va)p(P |va)p(V |va, P)p(N1|va, P, V)p(N2|va, P, V) (4.7)

p(na, V, N1, P, N2) =

P (na)p(P |na)p(V |na, P)p(N1|na, P, V)p(N2|na, P, N1) (4.8)

In our final model each of the factors above, except for P (Att) and p(P |Att), is

estimated using random walks.

To illustrate the degree of data sparsity for this problem, Figure 4.3 shows the

4.5. THE PP ATTACHMENT MODEL 121

Figure 4.3: The sparsity of the data: the percent of times tuples in the test set had
appeared in the training set.

Factor % Non-Zero

Verbal P (p|va) 99.8
P (v|va , p) 64.8
P (n1|va, p, v) 15.7
P (n2|va, p, v) 13.8

Noun P (p|na) 99.5
P (v|p,na) 69.4
P (n1|na , p, v) 20.9
P (n2|na , p, n1) 17.4

percentage of test cases for which we had a non-zero relative frequency estimate from

the training set for each of the factors needed for Equations 4.7 and 4.8. Here we

include cases where the history was seen together with the future at least once. More

specifically, we count cases considering their correct class in the test set. For example,

of the test cases (v, n1, p, n2,Att) with Att = va in the test set, 64.8% had a verb v

and preposition p such that p was seen with v in the training set with Att = va, i.e.,

count(v, p, va) > 0. These sparsity statistics are collected in a different way compared

to both of Dan Bikel’s (Bikel, 2004) statistics for the frequency of use of bi-lexical

probabilities in Model 2 of Collins (1997) (1.5% and 28.8% of the time, depending on

the method of collection). This is because we count frequency with which non-zero

lexical probability was obtained for the correct analysis, whereas his two methods

count the frequency with which the conditioning context had a non-zero count across

all analyses (1.5% of the time) and the best scoring analysis (28.8% of the time).

As can be seen, for the factors involving two words in addition to the preposition,

more than 3/4 of the time we have not seen the tuple in the training set. The relative

frequency estimate p(N2|P, V, N1,Att) is non-zero only 5.6% of the time, but we do

not model this distribution directly because of our context specific independence

assumption described above.

122 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

Figure 4.4: Form of factors for Baseline model. Each factor is estimated as a linear
interpolation of the listed empirical distributions.

Factor Interpolated Distributions Num Estimated Parameters

Verbal P (p|va) P̂ (p|va), 1
Vp

0

P (v|va , p) P̂ (v|p, va), P̂ (v|va), P̂ (v), 1
Vv

4 × numBins

P (n1|va, p, v) P̂ (n1|va , p, v), P̂ (n1|va, p),P̂ (n1|va),P̂ (n1),
1

Vn1

5 × numBins

P (n2|va, p, v) P̂ (n2|va , p, v), P̂ (n2|va, p),P̂ (n2|va),P̂ (n2),
1

Vn2

5 × numBins

Noun P (p|na) P̂ (p|na), 1
Vp

0

P (v|na , p) P̂ (v|p,na), P̂ (v|na), P̂ (v), 1
Vv

4 × numBins

P (n1|na, p, v) P̂ (n1|na , p, v), P̂ (n1|na , p),P̂ (n1|na),P̂ (n1),
1

Vn1

5 × numBins

P (n2|na, p, n1) P̂ (n2|na , p, n1), P̂ (n2|na , p),P̂ (n2|na),P̂ (n2),
1

Vn2

5 × numBins

4.5.1 Baseline Model

We describe our baseline method for estimating the conditional probability tables of

our model. We refer to it as Baseline. We will see later that it is a special case of

our more general random walk models. Our baseline model can be seen as a linearly

interpolated model of relative frequency estimates as in Jelinek-Mercer smoothing

(Jelinek and Mercer, 1980), where the interpolation weights are fit on held-out data.

For example, the probability P (n2|va, p, v) is estimated as follows:

P (n2|va, p, v) = λ0(va, p, v)P̂ (n2|va, p, v)

+ λ1(va, p, v)P̂ (n2|va, p)

+ λ2(va, p, v)P̂ (n2|va)

+ λ3(va, p, v)P̂ (n2) + λ4(va, p, v)
1

Vn2

(4.9)

The other factors of the model are similarly estimated using interpolation of vary-

ing order distributions. Figure 4.4 lists the interpolation order for all factors. The

figure also shows the number of tunable interpolation parameters for each factor. The

P̂ distributions are relative frequency estimates from the training data. In Jelinek-

Mercer smoothing, the interpolation weight for a distribution depends on the binned

count of the conditioning context as described in §4.3, Equation 4.3. We also estimate

parameters based on binned counts, but we bin only the most specific contexts, for

4.5. THE PP ATTACHMENT MODEL 123

example, (va, p, v) in Equation 4.9, and the multiplier for each of the interpolated

distributions depends only on this bin. There is no difficulty in incorporating binned

counts for lower order contexts as well.

In Figure 4.4, numBins in the third column stands for the number of bins we

have chosen for the interpolation parameters. The number of estimated parameters

for our model thus depends on the chosen number of bins. The number of estimated

parameters for P (p|Att) is shown as 0. This is because, since this distribution is not

sparse, we used a simpler interpolation method that does not require parameter fitting

and estimated the interpolation weights as closed-form expressions depending on the

counts of the context (Witten-Bell smoothing, (Witten and Bell, 1991)). For a given

context, the interpolation weights are constrained to sum to 1. Therefore the number

of free parameters is one less than shown for each bin. If there is a single interpolation

parameter for each of the terms shown in each of the rows, i.e. numBins = 1, the

number of free trainable parameters of the model will be 22.

As in standard held-out Jelinek-Mercer interpolation, we fit the interpolation pa-

rameters to maximize the likelihood of a held-out set of samples. If we are maximizing

joint log-likelihood, we could use EM for optimization. However, since our final task

here is making a classification decision, we could be able to profit from discriminative

estimation (Klein and Manning, 2002; Ng and Jordan, 2002; Toutanova et al., 2003).

To test this hypothesis, we experimented with maximizing the conditional log-

likelihood of the held-out set instead. To maximize conditional log-likelihood with

respect to the interpolation parameters, we need more general optimization algo-

rithms than EM. To avoid constrained optimization, we handled the constraints
∑

i λi(context) = 1, ∀context and λi(context) ≥ 0 by representing λi(context) =

eγi(context)/
∑

i′ e
γi′ (context). The new model parameters are the γi(context) and they

are not constrained. Here context represents the conditioning context on which an

interpolation parameter depends, for example (va, p, v) for estimating P (n2|va, p, v),

and i′ ranges over the different levels of back-off. We also add a gaussian prior on the

new parameters γ. The regularized joint and conditional log-likelihood functions are

124 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

as follows:

JL :
∑

i=1,...,N log P (Atti, vi, n1
i, pi, n2

i) − 1
2σ2

∑

s=1,...,k γs
2 (4.10)

CL :
∑

i=1,...,N log P (Atti|vi, n1
i, pi, n2

i) − 1
2σ2

∑

s=1,...,k γs
2 (4.11)

Here i ranges over the held-out set of samples and s ranges over model parameters.

The number k of model parameters depends on the number of equivalence classes

(bins). If the number of bins is one, k is 28.

4.5.2 Baseline Results

For comparison with previous work, we train on the training set described in §4.4.1,

fit interpolation parameters on the development set and report results on the test set.

To avoid overfitting on the test set, we first performed experiments without evaluating

on the test set. To do this, we took the first 17,801 examples from the training set as

a preliminary training set and the remaining 3,000 examples as a preliminary test set

- called PreTest. The development set of 4,039 was used as a held-out set for fitting

interpolation parameters in these preliminary experiments as well. Limited memory

Quasi-Newton was used for numerical optimization.

We first study the performance of the Baseline model when trained on the re-

duced training set and tested on PreTest. We compare the performance of the model

when trained to maximize the regularized joint log-likelihood 4.10 versus the regu-

larized conditional log-likelihood 4.11, for varying values of the smoothing parameter

sigmaSquared of the Gaussian prior. A single equivalence class is used for all inter-

polation parameters. We found that increasing the number of equivalence classes did

not result in significant improvement in accuracy. Figure 4.5 shows the results of this

experiment; the results for joint log-likelihood training are on the left in 4.5(a), and

the results for conditional log-likelihood are on the right in 4.5(b). The horizontal

axis shows sigmaSquared on a logarithmic scale, varying between 2−15 and 215. The

joint log-likelihood is shown as an average per test sample, and the conditional log-

likelihood is shown scaled by the constant of 1
50

to make it more easily displayable on

4.5. THE PP ATTACHMENT MODEL 125

Joint Likelihood Maximization

82

83

84

85

86

-15
 -10
 -5
 0
 5
 10
 15

sigmaSquared

A
c
c
u

ra
c
y

Accuracy

-30

-27

-24

-21

-18

-15
 -10
 -5
 0
 5
 10
 15

d

Joint Log-likelihood
 Conditional Log-likelihood

(a) Joint likelihood maximization.

Conditional Likelihood Maximization

82

83

84

85

86

-15
 -10
 -5
 0
 5
 10
 15

sigmaSquared

A
c
c
u

ra
c
y

Accuracy

-30

-27

-24

-21

-18

-15
 -10
 -5
 0
 5
 10
 15

d

Joint Log-likelihood
 Conditional Log-likelihood

(b) Conditional likelihood maximization.

Figure 4.5: Performance of the Baseline model when trained to maximize the joint
or the conditional likelihood of the development set. Accuracy, average joint, and
scaled conditional log-likelihood on test set PreTest are shown for varying values of
the regularization parameter sigmaSquared .

the same graph.

We can see that the maximum accuracy achieved by the model trained for condi-

tional log-likelihood is higher than the maximum achieved by the model trained for

joint log-likelihood (85.33% versus 84.57%). For reference, the accuracy of the Collins

& Brooks model on PreTest is 83.37%. The behavior of the curves is intuitive – the

model trained for conditional log-likelihood achieved better conditional log-likelihood

and accuracy, and worse joint log-likelihood, as compared to the model trained for

joint log-likelihood. When the smoothing parameter sigmaSquared is very small, the

weight of the prior dominates and the model is forced to set all γ parameters near

zero. Then both models are nearly uniform and have the same performance. When

the variance sigmaSquared is increased, the performance improves for a while until

the prior becomes too weak and the model starts to over-fit slightly.

Figure 4.6 compares the accuracy of our baseline model to other previously re-

ported results on the same data set - the IBM dataset described in §4.4.1. The first

126 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

result reported in the figure is from the Collins & Brooks algorithm which we reviewed

in §4.4.2. This is the result exactly as reported in the paper (Collins and Brooks,

1995), and line two shows the result of our re-implementation on the preprocessed

dataset. The preprocessing was described in §4.4.1. The model in line three is our

implementation of the C&B model run on a version of the data further processed

to substitute all verbs with their root forms according to the morphological analyzer

developed by Kevin Humphreys , John Carroll, and Guido Minnen (Minnen et al.,

2001). Such an experiment was also reported in (Collins and Brooks, 1995). In lines

four, five, and six, we list previously reported results on the same dataset for other

machine learning algorithms, which we reviewed in §4.4.2.

Line seven shows the performance of Baseline when trained to maximize the

regularized joint log-likelihood with value of sigmaSquared=2−5, its optimal value

according to the PreTest experiment. Line eight is Baseline trained to maximize

conditional log-likelihood with sigmaSquared = 128 (the optimal value according to

the PreTest experiment.)

It is worth noting that our simple generative model with linearly interpolated

relative frequency estimates (and interpolation parameters fit discriminatively), per-

forms significantly better than the discriminative back-off C&B algorithm. Statistical

significance is measured using McNemar’s test (Everitt, 1977; Dietterich, 1998). The

model Baseline trained for regularized conditional log-likelihood outperforms the

C&B algorithm with significance < .005. The model trained for regularized joint

log-likelihood outperforms it at a lower significance level. Results of the statistical

significance tests are shown in the last column of Figure 4.6.

4.6 Random Walks for PP Attachment

We now describe our random walk model for the word dependency distributions

needed for equations 4.7–4.8. We illustrate with the case of estimating p(N2|P, V, va).

Instantiating the example in (3), this is P (N2 = peg |P = with, V = hang, va), the

probability that, given hang is modified by a PP whose head is with, peg is the head

4.6. RANDOM WALKS FOR PP ATTACHMENT 127

Figure 4.6: Baseline results on the final test set of 3,097 samples, compared to
previous work. In the significance column > means at level .05 and � means at level
.005.

Number Model Accuracy Signif

1 C&B (Collins and Brooks, 1995) 84.15%
2 C&B o.r. 84.18%
3 C&B stem verbs o.r. 84.50% not > 2
4 k-NN (Jakub Zavrel and Veenstra, 1997) 84.40%
5 boosting (Steven Abney, 1999) 84.40%
6 SVM (Vanschoenwinkel and Manderick, 2003) 84.80%
7 Baseline JL 85.37% > 2
8 Baseline CL 85.89% not > 7,� 2
9 Baseline CL stem verbs 86.05% not > 7,� 3

of the noun phrase governed by with. This is strictly a tri-lexical dependency, but

because prepositions can often be regarded as just a marker of the semantic role of

their object noun phrase, we can informally think of this as estimating the probability

of a particular sort of semantic dependency; here it is the likelihood of n2:peg bearing

a with-type dependency to the word v:hang. Thus, given the preposition, we can view

this as estimating a bi-lexical dependency between a verb v and a noun n2.

We will estimate this probability using a Markov Chain. More precisely, we will

construct a MC M (whose transition probabilities will depend on p, v, and the fact

that Att = va) so that its stationary distribution π is a good approximation to

P (n2|p, v, va).

We let the state space S of our random walk be W × {0, 1}, where W is the set

of all words. Thus, a state is a pair consisting of a word and a single “bit” taking

on a value of 0 or 1. As we will shortly see, the extra memory bit allows our walk

to “remember” if the word in the current state is a head (0) or a dependent (1), and

will permit us to build richer models.2 For P (n2|p, v, va), v is a head, and n2 is a

dependent (and the type of the dependency relationship is indicated by p). Below we

will write (w, 0) as hw and (w, 1) as dw, both for brevity, and to remind us of the

2Other examples of Markov Chains that can be thought of as random walks with an extra memory
bit include (Lafferty and Zhai, 2001; Ng et al., 2001).

128 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

extra bit’s meaning.

The initial distribution p0 of our Markov Chain puts probability 1 on the state hv

(i.e., we always start at the state for the head verb, with the bit-value 0).

Let us first walk through some cases using the “hang painting with peg” example,

with the small random walk model shown in Figure 4.7. We are trying to estimate

P (N2 = peg|V = hang, P = with,Att = va). (4.12)

If, in a training set of disambiguated PP-attachment examples, we have seen the event

(V = hang, P = with,Att = va) before, then clearly one possible estimate for the

probability in (4.12) might be given by its empirical distribution. Specifically, if peg

was frequently seen in the context of the event (V = hang, P = with,Att = va), then

we would like to assign a large probability to this event. One way to ensure that the

random walk frequently visits peg in this setting is therefore to have the probability of

transitioning from the initial state to some other state dw, representing a dependent

word, be monotonically increasing in the empirical distribution of P (N2 = w|V =

hang, P = with,Att = va).

Now, suppose that, because of data sparseness problems, we have not seen “v:hang

p:with n2:peg” in our training set, but that we have seen “v:hang p:with n2:pegs”

several times. Further, our stemmer indicates that peg and pegs have the same root

form. In this setting, we would still like to be able to assign a high probability to

P (peg|hang,with, va). I.e., we want π to give dpeg a large probability. Using the state

transitions described above, we already have a large probability of visiting dpegs. If

our random walk now gives a large probability of transitioning from dpegs to dpeg,

then we would be done. More broadly, we would like our random walk to be able to

make a transition from (w1, b1) to (w2, b2), if w1 and w2 are words with the same root

form, and b1 = b2.

Similarly, if we know that P (rivet |hang,with, va) has a large probability, and if

some external knowledge source tells us that rivet and peg are semantically closely

related, then we should infer that p(peg |hang,with, va) should also be fairly large.

This can be done by using a thesaurus, or a resource like WordNet, a large collection

4.6. RANDOM WALKS FOR PP ATTACHMENT 129

hang peg

fasten rivet

pegs

hook

hooks

Figure 4.7: A small words state space for learning the distribution Pwith(n2|v).

of words classified into a set of senses (synsets), which are organized in a hierarchy, and

permitting transitions between (w1, b1) and (w2, b2) if an external knowledge source

tells us that w1 and w2 are related, and b1 = b2.
3

More broadly, we have outlined above several different “types” of inferences that

can be made about what tuples v, p, n2 are likely. These types of inferences often

exploit external knowledge sources (such as a stemmer, or WordNet), and we have

shown several examples of how they can be encoded into a random walk framework,

so that the stationary distribution gives a large probability to events that we would

like our procedure to conclude are likely. Note in particular that if there are multiple

paths to a node, then that “reinforces” a particular conclusion. By combining multiple

steps of these inferences together, in Figure 4.7, we should be able to conclude that if

(a) hang with hooks, (b) fasten with hook and (c) fasten with rivet are likely; that (d)

hooks and hook have the same root, and if (e) rivet and peg are semantically related,

then hang with peg is also likely. Specifically, the sequence of states the random walk

3Of course, some of these could lead to incorrect inferences—even though hang with peg may
be likely, and WordNet indicates that peg and nail-polish are semantically related (via nail), it is
incorrect to infer that hang with nail-polish is therefore likely. However, we will later describe how a
learning algorithm is used to automatically decide the degree to which each of these inferences can
be trusted.

130 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

might visit based on this information is hhang
a→ dhooks

d→ dhook
b→ hfasten

c→ drivet
e→ dpeg. Thus, by considering multiple steps of the random walk, we can combine

multiple steps of inference together. But the model by its nature also captures that

long multi-step chains do not give much support to their conclusion.

4.6.1 Formal Model

We now describe our model formally. The reader may wish to review the Markov

Chain preliminaries of §4.2 at this point. We are using a Markov Chain model to

estimate a distribution p(dW |hW) over dependent words given head words for a par-

ticular dependency relationship. The state space S of our random walk is W×{0, 1},
where W is the set of all words, 0 indicates a head, and 1 a dependent state. Since we

need a conditional distribution over dependent states given a head state, we define

a separate Markov Chain for each head word. All Markov Chains that estimate the

same type of dependency relationship use a common transition matrix P as a build-

ing block. The Markov Chain for estimating a conditional distribution p(dW |hw∗)

for a fixed head word hw∗ is defined using an initial distribution p0,hw∗
and a state

transition distribution phw∗
(w′, b′|w, b) defined as follows:

p0,hw∗
(w, b) = 1 ⇐⇒ (w, b) = (w∗, 0)

phw∗
(w′, b′|w, b) = γ(hw∗)p0,hw∗

(w′, b′) + (1 − γ(hw∗))P (w′, b′|w, b)

In other words, the initial distribution places probability 1 on the given head

word, and the state transition distribution is obtained by interpolating the initial dis-

tribution with the distribution P , which is common for all head words. Here, slightly

abusing notation, P is used both as a distribution and as a matrix. The Markov

Chain for a given head word hw∗ is thus of the same form as the familiar Markov

Chains with a positive probability of resetting according to the initial distribution at

each state (Equation 4.1 in §4.2). As discussed in §4.2, the stationary distribution

of a Markov Chain of this form is the same as the distribution of states generated

according to the following generative process: start at state S0 distributed according

4.6. RANDOM WALKS FOR PP ATTACHMENT 131

to p0,hw∗
(i.e., start at hw∗); at each following step t+1, with probability γ(hw∗), stop

the process and output the previous state St, and with probability 1 − γ(hw∗), take

a step according to the transition distribution P .

We are interested in estimating the transition matrix P . We define P using a

set of different links, which should be thought of as “basic” transition distributions

that correspond to different possible inference steps. Each link type always leads

from states where the memory bit takes on some particular value b1 to states where

the bit takes on a value b2 (not necessarily different from b1). The final transition

distribution P will then be a mixture of the basic transition distributions, where the

mixture weights are learned automatically.

Let the links l1, . . . , lk be given by transition matrices P1, . . . , Pk. Each matrix Pi

has rows for states with memory bits startBit(i) and its rows are distributions over

successor states with memory bit endBit(i). For example, a morphology link might

be given by a transition matrix that specifies a uniform transition distribution from

dependent nouns to other dependent nouns with the same root form. The probability

of transitioning from (w, b) to (w′, b′) according to the estimated P is given by:

P (w′, b′|w, b) =
∑

i:startBit(i)=b,endBit(i)=b′

λi(w, b)Pi(w
′, b′|w, b)

The parameter λi(w, b) is the weight of link li for the state (w, b). It can also be

viewed as the probability of taking a link of type li given the current state (w, b). The

probabilities λi(w, b) sum to 1 over all links li having a starting bit startBit(i) = b.

Parameters of this form for all states are estimated automatically from data. Since

estimating separate parameters for each word would introduce too much sparsity,

we define equivalence classes of states for which we tie the parameters. Notice the

similarity to Jelinek-Mercer smoothing and our Baseline model, described in §4.5.1.

As mentioned in §4.2, we also add one more refinement to the model, by further

distinguishing between two different kinds of links: ones that can be followed at

any time, and ones that can be taken only in a final step of the walk (before the

generative process is stopped). We call the latter type final links. The intuition here

132 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

is that (due to the usual sparseness in NLP data) we do wish to include in our model

distributions that back off from conditioning on individual words and that therefore

can transition according to a highly-smoothed model. But, it would be undesirable to

allow transitions to backed-off distributions throughout the random walk. Specifically,

allowing such transitions would cause us to lose the intuition of the random walk as

exploring close neighbors of a word based on some similarity criterion. An additional

advantage of having a special stopping distribution is that we can disable transitions

to states that don’t have the desired memory bit; for example, because we want the

random walk to estimate p(dW |hw∗), the last state has to be a dependent. Thus in a

final step of the walk, we fix the the probability of following a link type leading to a

non-dependent state to zero.

Thus we learn two different transition distributions for the Markov Chains —

a distribution Pnfin(w′, b′|w, b), and a distribution Pfin(w′, b′|w, b). The final links

participate only in Pfin , whereas the other links participate in both Pfin and Pnfin .

The stationary distribution for a Markov Chain defined in this way, that estimates

the probability distribution over dependent states given a head word state hw∗, will

be:

π = γ(hw∗)
∑∞

t=0
(1 − γ(hw∗))

tp0,hw∗
(Pnfin)tPfin

This follows from the discussion in §4.2 and corresponds to Equation 4.2. For

computational reasons, we limit the maximum number of time steps to some number

d; we call d the maximum degree of the Markov chain. In this case the equation above

is truncated to t = d − 1 terms and re-normalized to sum to 1.4 Additionally, one

might think that the geometric distribution of the number of steps is too restrictive.

Especially when we have two separate types of states – head and dependent states,

there may be some inferences that are only possible at odd or even number of steps

and the geometric distribution may be inappropriate. Therefore, in the most general

form of the model we allow for arbitrary weighting factors for each time step t. The

form of the estimated distribution over dependents given a head state hw∗, using a

4The limit is d − 1 and not d because the final transition step according to Pnfin also counts
toward the number of steps.

4.6. RANDOM WALKS FOR PP ATTACHMENT 133

maximum degree d is defined as follows:

p̃(hw∗) =
∑d−1

t=0
γt(

hw∗)p0,hw∗
(Pnfin)tPfin (4.13)

The parameters of the model are the interpolation parameters in the final and non-

final transition matrices Pfin and Pnfin , as well as the weighting factors of the number

of steps t – γt(
hw∗).

PP Attachment Dependency Distributions

We have been describing a Markov Chain for a specific type of dependency distri-

bution p(dW |hW). This construction is directly applied to estimating the factors

needed for our generative PP attachment model, illustrated in Figure 4.2. The con-

ditional probability tables for the random variables V , N1, and N2 are estimated

using Markov chains. The conditional distribution for V is p(V |Att , P). For this

dependency distribution, the prepositions are heads, the verbs are dependents, and

the type of dependency relation is determined by Att . When Att = va, the prepo-

sition modifies the verb, and when Att = na, the preposition does not modify the

verb but modifies a noun phrase following the verb. We learn two separate pairs of

transition matrices ,(Pva ,fin , Pva,nfin) and (Pna ,fin , Pna ,nfin), for the two types of de-

pendency relationship. For the conditional distribution at N2, we need to estimate

p(N2|va, P, V) and p(N2|na, P, N1). These distributions are defined similarly to the

conditional distributions at N2 – p(N1|va, P, V) and p(N1|na, P, V). A separate pair

of finite and non-finite transition matrices is learned for each pair Att , P in the con-

ditioning context of the distributions over N1 and N2. For example, as informally

described in the beginning of §4.6, for the distribution over second nouns, we learn

transition matrices (Patt ,p,fin , Patt ,p,nfin), for each preposition p and each attachment

type att .

134 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

4.6.2 Parameter Estimation

The parameters of the model were fit to optimize the conditional log-likelihood of the

correct attachment sites for a development set of samples, disjoint from the training

and test sets, including quadratic regularization. That is, as in the Baseline model,

we maximized the objective:

∑

i=1,...,N

log P (Atti|vi, n1
i, pi, n2

i) − 1

2σ2

∑

s=1,...,k

θs
2

Here i ranges over the sample set, and s ranges over the model parameters. We per-

formed the optimization using a limited memory quasi-Newton method. Here again

as in Baseline, we use the logistic transformation to avoid constrained optimization.

We represent the probabilistic λ and γ parameters with real-valued unconstrained θ

parameters, as will be made precise shortly.

The number of parameters depends on the scheme for defining equivalence classes

over states. The parameters correspond to distributions over link types for states

and probabilities of number of time steps t. We experimented with binning the

parameters based on observed number of times of occurrence of words. For the link

type parameters in Pfin and Pnfin , the simplest model, having a single equivalence

class, performed on average as well as the more complex models. This scheme of

binning the parameters also ties the parameters of corresponding link types for the

matrices corresponding to different prepositions (but not different attachment types).

Section 4.6.5 illustrates the parameters for a specific model.

For the parameters for distributions over number of time steps t, we found that

binning the parameters in two bins was consistently helpful. We found that it was

advantageous to group the time step parameters not only based on the head word, but

also on the dependent word – i.e., based on count(hw,d w). The equivalence classing

that helped was to have a class of pairs of head and dependent words whose count

was 0 and another class for pairs whose count was greater than 0. Note that because

of this binning scheme the scores from the random walk model can no longer be

interpreted as probabilities, because they do not sum to one over dependent words.

4.6. RANDOM WALKS FOR PP ATTACHMENT 135

A binning scheme which caused a similar lack of probabilistic interpretation was used

in the parser of Charniak (Charniak, 2000). This is not a problem for our model

because we use it as a conditional model over attachment sites given the four head

words and it does sum to 1 over the two possible values of the attachment. This

binning scheme was only slightly but consistently better than a single equivalence

class over all words.

To estimate the objective function using the quasi-Newton method, we need to

be able to compute its value and gradient for a given parameter setting Θ. We

can compute the value of the conditional word distributions estimated using Markov

Chains in time linear in the maximum degree d of the walk, and linear in the size of

the state space. The algorithm for computation of derivatives that we use is quadratic

in d and linear in the size of the state space.

To describe the algorithms for computing the value and gradient of the objective

function, we recap the notation we are going to use. We concentrate on a single

Markov Chain model for estimating a dependency distribution such as p̃(dw|hw) of

dependent words given head words. Having done that, it is easy to combine the values

and gradients of the different factors in the conditional log-likelihood, using the rules

of differentiation of composite functions.

We will denote by Θ a vector of parameters – real-valued weights. We denote by

S the state space of the Markov Chain model, S = W ×{0, 1}. Each state s is a pair

of a word and a bit indicating head or dependent state and bit(s) is the bit of state s.

The Markov Chain models are built up of given link matrices Pi,nfin and Pi,fin . Let

λi,nfin(s) denote the probability of taking link type i at a non-final transition step.

As discussed above, the non-negative normalized parameters λi,nfin are defined via

real-valued parameters θi,nfin as follows:

λi,nfin(s) =
eθi,nfin(s)

∑

i′:startBit(i′)=bit(s) eθi′,nfin (s)

The representation of the λi,fin(s) is defined correspondingly. A maximum degree

of the walk d is specified. The probabilities over the number of non-final time steps

136 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

time = 0, . . . , d−1 are γtime(s) for a starting head state s. These parameters are also

defined via real-valued θ parameters.

γtime(s) =
eθtime(s)

∑d−1
time′=0 eθtime′ (s)

The non-final and final transition matrices depending on Θ are written as PΘ,nfin

and PΘ,fin . We will suppress the dependence on Θ when it is clear from the context.

We are interested in computing the value and gradient of p̃Θ(end |begin), where begin

and end are a head and dependent state observed in the held-out data to occur in

the dependency relationship. Let ~b′ denote a row vector which represents the initial

probability distribution of the Markov Chain starting at the state begin – i.e., ~b′ places

probability 1 on begin and 0 on all other states. Let ~eΘ denote the column vector with

entries ~eΘ(s) = PΘ,fin(end |s) for all states s ∈ S. Then the value of the estimated

dependency distribution is:

P̃Θ(end |begin) =
∑

time=0,...,d−1

γtime(begin)~b′P time
Θ,nfin~eΘ

The algorithm for computing the value of an estimated distribution according to

Equation 4.13 is as follows:

1. Initialize ~c′ = ~b′, P̃ (end |begin) = γ0(begin)~c′, time = 1

2. If time = d, goto 5.

3. ~c′ = ~c′PΘ,nfin , P̃ (end |begin) = P̃ (end |begin) + γtime
~c′, time = time + 1.

4. goto 2.

5. P̃ (end |begin) = P̃ (end |begin)~eΘ

As we can see, at each step three we need to multiply a vector with the non-final

transition matrix, multiply the vector by a number and add two vectors; then in step

five we perform a dot product. Therefore the estimated value can be computed in

time O(d(F+|Sd−1|)), where F+ is the number of non-zero entries in the non-final

4.6. RANDOM WALKS FOR PP ATTACHMENT 137

transition matrix (which is very sparse in our application) and |Sd−1| is the size of the

state space reachable within d − 1 transitions according to the non-finite transition

matrix from the start state begin.

The algorithm that we use for computing the gradient is similar to the Baum-

Welch (forward-backward) algorithm for computing derivatives for Hidden Markov

Models (Baum, 1972). More efficient algorithms may exist. For example, (Eisner,

2001) describes optimizations for a similar model.

To compute the derivative of an observed event P̃Θ(end |begin), we need to compute

expectations over number of times a particular transition has occurred. The hidden

variables are the number of time steps time before the Markov chain has stopped, the

link types that have been followed at each step and the intermediate states visited

between begin and end . To compute the gradient with respect to one of the un-

normalized real-valued parameters θi, we can first take gradients with respect to all

λ′
i (or γ′

i) parameters which depend on θi. For example, if λi = eθi
P

i′ eθ′
i
, then:

∂P̃Θ(end |begin)

∂θi
=

∑

i′

∂P̃Θ(end |begin)

∂λ′
i

∂λ′
i

∂θi

It is straightforward to differentiate with respect to the γtime(begin) parameters

because P̃Θ(end |begin) is a linear function of these. The derivative with respect to a

particular γtime(begin) is the following:

∂P̃Θ(end |begin)

∂γtime(begin)
= ~b′P time

Θ,nfin~eΘ

which is proportional to one of the terms needed for estimating the value of P̃Θ(end |begin).

Differentiating with respect to the λi,fin(s) parameters is similarly straightforward,

because a final transition is taken only once and therefore P̃Θ(end |begin) is a linear

expression of such parameters. We will give the expression of these derivatives after

introducing some notation in connection with the λi,nfin(s) derivatives.

Differentiating with respect to the λi,nfin(s) parameters is trickier because the non-

final transition matrix is raised to powers between 0 and d− 1. For these derivatives,

138 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

we apply a forward-backward style dynamic programming algorithm to compute the

probability that a given link type i has been taken from state s at time time. The

derivative with respect to the parameter λi,nfin(s) is proportional to the expected

number of times non-final link type i is followed starting from s. More specifically, if

the probability that we take link type Lq = li,nfin out of state Sq = s at a non-final

step q according to our Markov Chain model starting at begin and ending at end is

denoted by P̃Θ(end , Sq = s, Lq = li,nfin |begin), the derivative is:

∂P̃Θ(end |begin)

∂λi,nfin(s)
=

1

λi,nfin(s)

d−2
∑

time=0

P̃Θ(end , Stime = s, Ltime = li,nfin |begin)

.

To compute the necessary quantities, we will use forward and backward factors.

We define the forward probability αtime(s), time = 0, . . . d − 1 as the probability of

reaching state s in exactly time transition steps according to the non-final transition

distribution.

αtime def
= ~b′P time

Θ,nfin

Evidently the forward probabilities can be computed similarly to the algorithm for

computing the value of P̃Θ(end |begin), in time O(dF). We need space O(d|Sd−1|) to

store the d forward row vectors. Having computed the forward probabilities we can

compute the derivatives with respect to the final interpolation parameters as follows:

∂P̃Θ(end |begin)

∂λi,fin(s)
= (

d−1
∑

time=0

γtime(begin)αtime(s))Pi,fin(end |s)

The backward probability βremtime(s) for remtime = 1, . . . , d is defined as the

probability of ending at state end after remtime time steps, taking remtime − 1

non-final transitions and one final transition.

βremtime def
= P remtime−1

Θ,nfin ~eΘ

4.6. RANDOM WALKS FOR PP ATTACHMENT 139

We also define backward factors specific to non-final link types li,nfin . We define

βi,nfin
remtime(s), for remtime = 2, . . . , d, as the probability of reaching end from s

via taking the non-final link li,nfin first, then taking remtime − 2 additional non-final

transitions and then one final transition.

βi,nfin
remtime(s)

def
= λi,nfin(s)~bs

′
Pi,nfinP remtime−2

Θ,nfin ~eΘ

Here, the row vector ~bs

′
places probability 1 on s and 0 on all other states. Evidently,

we can calculate the β and βi,nfin factors recursively, starting from remtime = 1 via the

algorithm listed below. We use λi,nfin to denote the column vector of the parameters

for non-final link i for all states s. The total number of non-final links is m. The

transition matrix for non-final link type i is Pi,nfin . x•y stands for the coordinatewise

product of two vectors – a vector whose coordinates are products of the respective

coordinates of x and y.

1. remtime = 1, βremtime = ~eΘ, remtime = remtime + 1

2. If remtime = d + 1 goto 6

3. for (i = 1, . . . , m) { βi,nfin
remtime = λi,nfin • (Pi,nfinβremtime−1) }

4. βremtime =
∑m

i=1 βi,nfin
remtime

5. remtime = remtime + 1, goto 2

6. end

The space required for the βremtime and βi,nfin
remtime is O(d(m + 1)|Sd−1|). The

time required by the algorithm is O(d(F1 +F2 + · · ·+Fm +m|Sd−1|)), where Fi is the

size of matrix Pi,nfin . This is because in the loop in step three we are doing at most

Fi computations for each of the link types and in step four we are summing over m

vectors of size at most |Sd−1|.
Now having introduced the α and β factors, we are ready to compute the deriva-

tives with respect to the non-final interpolation parameters:

140 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

∂P̃Θ(end |begin)

∂λi,nfin(s)
=

1

λi,nfin

d−1
∑

time=1

γtime(begin)

time−1
∑

q=0

αq(s)βi,nfin
time−q+1(s)

If we implement this equation directly, we have an algorithm quadratic in d − 1,

which we need to apply for every state s ∈ Sd−1 and for every link type. If the γtime

parameters factored as γtime(begin) = γq(begin)γtime−q(begin) (which would be the

case if we had an un-normalized geometric distribution over time steps), we would

be able to make the algorithm linear in d, rather than quadratic. However, here we

chose to fit a general multinomial distribution over time steps and hence could not

apply this optimization. With only a few equivalence classes, further savings in time

and memory requirements are possible.

4.6.3 Link Types for PP Attachment

The particular links for PP attachment are different for every type of dependency

relationship needed for the generative model. The Markov Chains for computing the

conditional distributions over the N1 and N2 random variables are more complex than

the Markov Chains for computing the distributions at V . We will define the link types

in the context of the p(N2|va, P, V) distributions. There is a direct correspondence

between these link types and the ones used for any p(N |Att , P, H) distribution, where

N is N1 or N2, H is V or N1 and Att is va or na. For the Markov Chains computing

p(V |Att , P), the used link types correspond to a subset of the ones used for the

distributions over N1 and N2. This is because we do not wish to use similarity

measures among prepositions in the same way we use similarity measures among

nouns or verbs. In §4.6.5, we list the link types for all dependency relationships in a

concrete model.

For modeling P (N2|p, v, va), we have a separate pair of a final and non-final

Markov Chain transition matrix for each preposition p, with the link types given

below. The initial state distribution places probability 1 on the state hv. The first

eight link types are:

4.6. RANDOM WALKS FOR PP ATTACHMENT 141

1. V → N. Transitions from hw1 to dw2 with probability proportional to the

empirical probability of p(N2 = w2|V = w1, p, va). This transition probability

is smoothed with Lidstone smoothing (Lidstone, 1920), α = .01. (L1)

2. Morphology. Transitions from (w1, b) to (w2, b) for all words w2 that have the

same root form as w1, with probability proportional to the empirical count of w2

plus a small smoothing parameter α = .1 (Lidstone smoothing). Self-transitions

are included as well. (L2Nouns, L2Verbs)

3. WordNet Synsets. Transitions from states (w1, b) to (w2, b), for all words w2

in the same WordNet synonym-set as one of the top three most common senses

of w1, with probability proportional to the empirical count of w2 plus a small

smoothing parameter α = .1. Each morphological form of each word in the top

three senses is included. (L3Nouns, L3Verbs)

4. N → V. Transitions from dw1 to hw2 with probability proportional to the

empirical probability of p(V = w2|N2 = w1, p, va). Like link type L1, it is

smoothed using Lidstone smoothing, α = .01. (L4)

5. External corpus. Same as link L1, but the empirical probabilities are mea-

sured from an additional set of noisy samples, generated automatically by a

statistical parser. Specifically, the data is taken from the BLIPP corpus of Wall

Street Journal sentences parsed with Charniak’s parser. (L5)

6. V → V. Transitions from hw1 to hw2 with probability proportional to their

distributional similarity with respect to dependents they take. This is defined

more precisely in §4.6.4. (L6)

7. N → N. Analogously to the previous link type, these are transitions among

nouns with probability proportional to their distributional similarity with re-

spect to heads they modify. (L7)

8. V → V. Transitions from hw1 to hw2 with probability proportional to their

distributional similarity over noun objects when modified by p. (L8)

We also used the following final links which add over-smoothed back-off distribu-

tions at the end. These represent all levels in a linear back-off sequence estimated

142 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

from the training corpus, and a single level of back-off from the additional corpus of

noisy samples. Note that these distributions are the same for every state:

9-12. Backoff1 through Backoff4 Transitions to dw2 with probability proportional

to P (N2 = w2|P, va), P (N2 = w2|va), P (N2 = w2|.), and uniform respectively.

(L9,L10,L11,L12)

13. Backoff5. Transitions to dw2 with probability proportional to P̂ (N2 = w2|P, va)

estimated from the additional noisy corpus. (L13)

Additionally, we add identity links (self-loops), to avoid situations where no link type

can be followed.

For the Markov Chains estimating the distributions over verbs p(V |Att , P) there

is one fewer level of back-off.

The Baseline as a Markov Chain Model

From the description of the link types and the form of our Markov chains, it is clear

that our baseline model – Baseline, described in §4.5.1 – is a special case of a Markov

chain model, where the maximum degree of the walks is limited to d = 1 and the

only link types allowed are the relative frequency link L1 and the back-off links L9

through L12. Thus the models for estimating the distributions over N1 and N2 have

five link types each, and the models for estimating distributions over V have four link

types each (one less, because there is one less level of backoff).

If the maximum degree of the walk is d = 1, then there are no parameters for

weighting the different possible number of steps. Also, because only one transition

is taken, this is a transition according to the final distribution P fin. The estimated

distribution for N2 given va, P, V in this case is p(N2|va, P, V) = pp,va,fin(N2|V). The

parameters are thus the same as illustrated in Figure 4.4 for the Baseline model.

4.6. RANDOM WALKS FOR PP ATTACHMENT 143

4.6.4 Random Walk Experiments

The training, development and test sets we use were described in §4.4.1. Our algo-

rithm uses the training set to estimate empirical distributions and the development

set to train the parameters of the random walk. We report accuracy results on the

final test set. All results reported here are on the final test set and not the preliminary

test set PreTest, described in §4.6.

In addition to this training data set, we generate additional much noisier train-

ing data, using the BLLIP corpus. This data is used for defining the link types

L5,L6,L7,L8, and L13. BLLIP is a corpus of 1,796,386 automatically parsed English

sentences (Charniak, 2000), which is available from the Linguistic Data Consortium

(www.ldc.upenn.edu). From the parsed sentences, we extracted tuples of four head-

words and attachment site for ambiguous verb or noun PP attachments. We filtered

out all tuples that contained one or more words not occurring in the training, test,

or development sets. This made for a total of 567,582 tuples. We will call this data-

set BLLIP-PP. One can expect this data to be rather noisy, since PP attachment

is one of the weakest areas for state of the art statistical parsers. For the parser

(Collins, 1999), an accuracy of about 82.29/81.51 recall/precision is reported for any

dependency where the modifier is a PP, including unambiguous cases. Note that the

parser uses a wider context (mainly structural) from the sentences’s parse tree. An

automatically parsed corpus has been used before in an unsupervised prepositional

phrase attachment system (Pantel and Lin, 2000).

Figure 4.8 presents the results of our experiments. The Baseline and C&B

accuracy figures are repeated from Figure 4.6. The Baseline here uses σ = 128

for the Gaussian prior as before, and a single equivalence class for the interpolation

parameters.

Next we describe the incremental addition of links to our model, with discussion of

the performance achieved. For all models using Markov Chains, we fix the maximum

degree of the walks for estimating the uni-lexical dependencies P (v|p,Att) to d = 2,

and the maximum degree of all other walks, estimating bi-lexical dependencies, to

144 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

Figure 4.8: Summary of results on the final test set of 3,097 samples. In the signifi-
cance column > means at level .05 and � means at level .005.

Model Link Types Degree Accuracy Signif

Baselines 1 C&B 84.18%
2 C&B + stem verbs 84.50% not > 1
3 C&B on BLLIP-PP 85.53% > 1
4 Baseline L1,L8,L9,L10,L11 1,1 85.89% � 1
5 Baseline + stem verbs L1,L8,L9,L10,L11 1,1 86.05% � 2

Random 6 Morph Verbs + L2Verbs 2,3 86.08% not > 4, � 2
Walks 7 Morph Verbs and Nouns + L2Nouns 2,3 86.18% not > 4, � 2

8 Morph & Syn +L3Verbs,L3Nouns 2,3 86.53% not > 4, � 2
9 Morph & Syn & Back-links +L4 2,3 86.57% not > 4, � 2

10 Morph & Syn & Back-links +L6,L7 2,3 86.89% � 2, >3,> 4
& SimJSβ

11 Morph & Syn & Back-links +L5,L13 2,3 87.15% � 3,> 4
& SimJSβ

& BLIPP-PP

12 Final see text 2,3 87.54% > 9,� 3, � 4

d = 3.5

Figure 4.8 has six columns. The first column is used for numbering the models; the

second column lists a short description of the model; the third column lists the types

of links used in the corresponding model; the fourth column specifies the maximum

degrees of the Markov Chains for estimating the uni-lexical distributions (over verbs

V), and the bi-lexical ones (over first and second nouns N1, N2). The fifth column

lists the accuracy on the final test set, and the sixth column lists results of relevant

statistical significance tests. The significance tests are McNemar’s test using the

normal approximation.

1. Morphology. The morphology links are L2Verbs for verbs and L2Nouns

for nouns. The link between verbs (L2Verbs) was helpful. This link was

added to the Markov Chains for estimating p(V |Att , p), p(N1|Att , v, p), and

p(N2|va, v, p). The accuracy on the test set was 86.08%, as shown in row six

of Figure 4.8. To compare the gain from morphology achieved through random

walks to the gain achieved if we pre-process the training data to stem the verbs

and use the Baseline model, we list the results of the latter experiment in

5For computational reasons, we have only explored paths of maximum degree three for models
with many features. For smaller models, using higher degrees showed a slight gain. Thoroughly
investigating the contribution of longer walks is left to future research.

4.6. RANDOM WALKS FOR PP ATTACHMENT 145

Line five of the figure (repeated from Figure 4.6). The gain from verb mor-

phology when using random walks is a bit higher than the gain when stemming

the training data. Neither of the gains is statistically significant. Adding noun

morphology as well was also helpful as can be seen in row seven of the figure.

2. WordNet Synsets. As described in the definition of the synonym links

(L3Verbs and L3Nouns), we use WordNet in a simple way – for every word,

we find its top three most common senses, and make a link from the word to

all other words having those senses. The transition probability is proportional

to the smoothed number of occurrences of the target word. Thus the link is not

symmetric. We obtained accuracy gains from adding the synonym links, as can

be seen in row eight of the figure. The accuracy of a random walk model using

morphology and synonyms jumped to 86.53%. However, the difference between

this model and Baseline is not significant.

3. Back Link. Line nine shows a model which adds one more link type to the

model of Line eight – this a back link from dependents to heads, link type L4.

The accuracy of the model increased very slightly – from 86.53% to 86.57%.

We will show in the discussion section that adding this link amounts to incor-

porating the cooccurrence smoothing method of (Essen and Steinbiss, 1992).

4. Similarity based on Jensen-Shannon divergence. We add links between

states with the same memory bit with transition probabilities proportional to

their distributional similarity. For the sake of concreteness, consider a random

walk for estimating p(N2|va, p, v). Let qvi
denote the empirical distribution of

dependents of the preposition p modifying verb vi: p̂(N2|p, vi, va) estimated

from the BLLIP-PP corpus. We define a similarity function between verbs

simJSβ
(v1, v2) = exp(−βJS(qv1

, qv1
)). JS stands for Jensen-Shannon diver-

gence between two probability distributions (Rao, 1982) and is defined in terms

of the KL divergence D as:

JS(q1, q2) = 1
2
{D(q1|| q1+q2

2
) + D(q2|| q1+q2

2
)}

The same similarity function was used in (Dagan et al., 1999; Lee, 1999). We

146 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

add a link from verbs to verbs (link type L6) that has transitions from each

verb, to its top K closest neighbors in terms of the similarity simJSβ
. In our

experiments, β was 50, and K was 25. We did not extensively fit these param-

eters. It would be possible to also fit β by including it as a model parameter

and differentiating with respect to it, but we did not implement this solution.

The transition probability is the normalized value of the similarity. Similarly

we add links between nouns based on their similarity simJSβ
with respect to

the empirical distribution P̂ (V |va, p, n) in BLLIP-PP (link type L7). Crucially

these similarities are estimated from the additional noisy data in BLLIP-PP.

Estimating such distributional similarities from the training data was not nearly

as helpful, possibly due to sparseness.

Up until now we have been discussing the p(N2|va, p, v) dependency distribu-

tion. For the other dependency relations distributions – p(N2|na, p, n1), and

p(N1|Att , p, v), we similarly add links between the heads based on their simJSβ

with respect to the empirical distribution of their dependents in BLLIP-PP,

and between the dependents proportional to their similarity simJSβ
of head

distributions. The accuracy of the resulting model, when these links are added

is shown in row ten of Figure 4.8. This model adds only the distributional

similarity links to the model in row nine. Its accuracy was 86.89%, which is

the first significant improvement over the Baseline model. This model also

significantly outperforms the C&B model trained on the union of the original

training set and BLIPP-PP.

5. Empirical distribution links from BLIPP-PP. The model in line 11 adds

empirical distribution links from heads to dependents, based on noisy BLIPP-

PP additional training samples. The accuracy of this model is a bit higher than

the previous model – 87.14%, but it turns out the model may be overfitting

with this many link types. As we will see for the Final Model in line 12, it is

possible to do better by removing links from this model.

6. Final Model. The final model includes the links from the Baseline, L5, L13,

morphology for verbs, and the previously discussed simJSβ
links. In addition,

4.6. RANDOM WALKS FOR PP ATTACHMENT 147

one more kind of simJSβ
links was added – L8. The final model had an accuracy

of 87.54%, which is close to the upper bound. This model is obtained from the

previous model in line 11, by removing the verb and noun synonym links, the

noun morphology links, and adding the L8 links. The superiority of this model

to the previous one is possibly due to overfitting or local maxima. Finding ways

around local maxima is a subject of future research.

Other algorithms can also make use of additional noisy training data. We ran

the C&B algorithm on the union of the training data and BLIP-PP and its

accuracy was also improved as shown in row two of the figure. However, the

random walk model is able to make better use of the additional noisy data, as

it learns suitable weights for the estimates obtained from it.

Attempts in the past to use additional unsupervised data to improve lexical

estimates for statistical parsers have been relatively unsuccessful. For example

Charniak (1997) reports an experiment where 30 million words of text were

parsed automatically and added as additional training data for a parser es-

timating lexical dependency probabilities. The results showed a rather small

accuracy increase – 0.5% precision and recall. Taken in this context, the success

of the random walk model at fruitfully incorporating such data is encouraging.

4.6.5 Extended Example

We describe in more detail the link types in the model in Line 10 of Figure 4.8, and the

parameter settings that were learned from data. We also give examples of inference

paths that were followed for deriving probability estimates for test set quadruples.

The model in Line 10 includes morphology and synonym links, as well as back-

links and distributional similarity links. We describe the parameters learned for each

of the Markov Chains corresponding to different types of dependency relations. The

λi parameters are grouped into a single equivalence class. The γtime parameters fall

into two equivalence classes, depending on the observed count of the pair (begin, end),

as previously described.

148 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

Link Type Att = va Att = na
Non-Final Weight Final Weight Non-Final Weight Final Weight

P
L1→ V 1.000 0.009 1.000 0.002

P
L9→ V - 0.175 - 0.007

P
L10→ V - 0.013 - 0.326

P
L11→ V - 0.803 - 0.665

V
L2V erbsMorph→ V - 0.700 - 0.885

V
L3V erbsSynn→ V - 0.148 - 0.104

V
Identity→ V - 0.152 - 0.011

EqClass time = 0 time = 1 time = 0 time = 1
c(end , begin) = 0 0.922 0.078 0.799 0.201
c(end , begin) > 0 0.531 0.469 0.838 0.162

Figure 4.9: Link types and estimated parameters for p(V |Att , P) random walks.

• The Markov Chains for estimating p(V |Att , P) have maximum degree two. Two

pairs of transition matrices are learned for this type of walk – one for verbal

attachment, and one for noun attachment. Figure 4.9 shows the link types and

the estimated values of the parameters for the verb and noun attachment type.

• Generation of N1. The Markov Chains for estimating p(N1|Att , P, V) are similar

to the Markov Chains for p(N2|va, P, V), which we have been using as example

throughout. The maximum degree of these chains is d = 3. Figure 4.10 shows

the link types and link weights for the two types of attachments. While each

preposition p has its own pair of transition matrices, the link weights are tied

across prepositions. We thus have two pairs of link weights, one pair (non-final,

final) for each attachment type, as for the p(V |Att , P) chains.

• Generation of N2. Figure 4.11 shows the parameters of the p(N2|va, P, V) and

p(N2|na, P, N1) walks. In this case the link types for the two attachment types

are not exactly the same because for verb attachment the head is a verb, and

for noun attachment the head is a noun.

A test set case which this random walks model classified correctly and the Base-

line did not is, for example, the tuple:

4.6. RANDOM WALKS FOR PP ATTACHMENT 149

Link Type Att = va Att = na
Non-Final Weight Final Weight Non-Final Weight Final Weight

V
L1EmpDistr→ N1 0.580 0.266 0.826 0.003

V
L9Backoff1→ N1 - 0.005 - 0.061

V
L10Backoff2→ N1 - 0.071 - 0.016

V
L11Backoff3→ N1 - 0.062 - 4.0E-5

V
L12Backoff4→ N1 - 0.596 - 0.920

N1
L4BackLink→ V 0.865 - 0.909 -

V
L6JSβ→ V 0.188 - 0.143 -

N1

L7JSβ→ N1 0.002 0.006 0.001 0.081

V
L2V erbsMorph→ V 0.009 - 0.028 -

N1
L2NounsMorph→ N1 0.010 0.036 0.003 0.060

V
L3V erbsSynn→ V 0.217 - 0.000 -

N1
L3NounsSynn→ N1 0.115 0.902 0.087 0.824

V
Identity→ V 0.006 - 0.001 -

N1
Identity→ N1 0.007 0.055 0.000 0.033

EqClass
c(end , begin) = 0
c(end , begin) > 0

time = 0 time = 1 time = 2
0.380 0.025 0.585
0.001 0.005 0.994

time = 0 time = 1 time = 2
0.090 0.043 0.866
6.2E-4 6.7E-4 0.999

Figure 4.10: Link types and estimated parameters for p(N1|Att , P, V) random walks.

v:carry n1:fight p:against n2:imperialists Att :noun

This case is incorrectly classified by the C&B model as well. The correct attach-

ment is noun attachment, but no triple or quadruple that contains the preposition

“against” occurs in training. Only one pair containing the preposition occurs in the

training set – (n1:fight p:against), and it has a verb attachment, in:

v:launch n1:fight p:against n2:board Att :verb

Incidentally, this training set example shows the level of noise or indeterminacy in

the training data. This particular tuple could have arguably been assigned noun

attachment. Hindle and Rooth (1993) discuss such cases of prepositional pharse

attachment indeterminacy. The random walks model classified the above test set

example correctly. The Markov Chain for generating the first noun “fight”, P (N1 =

fight |Att , P = agains, V = carry), found multiple paths from the start state to the end

state (not using backoff links). The noun “fight” received non-zero probability under

150 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

Att = va Att = na
Link Type Non-Final Weight Final Weight Link Type Non-Final Weight Final Weight

V
L1EmpDistr→ N2 0.691 1.7E-4 N1

L1EmpDistr→ N2 0.504 0.770

V
L9Backoff1→ N2 - 0.005 N1

L9Backoff1→ N2 - 0.003

V
L10Backoff2→ N2 - 0.272 N1

L10Backoff2→ N2 - 0.084

V
L11Backoff3→ N2 - 0.574 N1

L11Backoff3→ N2 - 0.097

V
L12Backoff4→ N2 - 0.149 N1

L12Backoff4→ N2 - 0.045

N2
L4BackLink→ V 0.065 - N2

L4BackLink→ N1 0.040 -

V
L6JSβ→ V 0.071 - N1

L6JSβ→ N1 0.354 -

N2

L7JSβ→ N2 0.003 0.769 N2

L7JSβ→ N2 0.913 0.053

V
L2V erbsMorph→ V 0.236 - N1

L2NounsMorph→ N1 0.084 -

N2
L2NounsMorph→ N2 0.001 0.176 N2

L2NounsMorph→ N2 0.015 5.7E-4

V
L3V erbsSynn→ V 1.6E-4 - N1

L3NounsSynn→ N1 0.053 -

N2
L3NounsSynn→ N2 0.930 0.048 N2

L3NounsSynn→ N2 0.012 0.944

V
Identity→ V 6.3E-4 - N1

Identity→ N1 0.003 -

N2
Identity→ N2 3.4E-4 0.006 N2

Identity→ N2 0.020 0.002

EqClass
c(end , begin) = 0
c(end , begin) > 0

time = 0 time = 1 time = 2
0.002 8.6E-4 0.997
0.999 4.2E-4 9.1E-4

EqClass
c(end , begin) = 0
c(end , begin) > 0

time = 0 time = 1 time = 2
0.077 0.089 0.833
3.4E-4 0.992 0.007

Figure 4.11: Link types and estimated parameters for p(N2|va, P, V) and
p(N2|na, P, N1) random walks.

4.6. RANDOM WALKS FOR PP ATTACHMENT 151

carry

take

taking

taken

launch

conduct

took

action

fight

profits

(a) Verb attachment

carry

take

took

continue

taken

launched

action

charge

fight

embargo

write-offs

offensive

(b) Noun attachment

Figure 4.12: The relevant part of the state space for estimating P (N1 = fight |Att , P =
against, V = carry). The solid lines are link type L1 (empirical). The dotted lines
are verb synonyms and the dashed lines are SimJSβ

.

152 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

both the model for verb attachment and for noun attachment. Figures 4.12(a) and

4.12(b) show the collection of paths that led from the start to the end state (excluding

backoff links), under the two models – P (N1 = fight |va, P = against, V = carry), and

P (N1 = fight |na, P = against, V = carry).

For generating the second noun – “imperialists”, the random walk did not find

any path from the start state “carry”. Non-zero probability was only accumulated

through backoff links.

4.7 Discussion

4.7.1 Relation to the Transformation Model of Jason Eisner

We recently became aware that a very similar model was independently developed

by Jason Eisner (Eisner, 2001; Eisner, 2002). Eisner’s transformation model also

learns a target distribution as the stationary distribution of an appropriately defined

Markov chain. The transition probabilities of the Markov chain are also learned from

data through maximizing the penalized data log-likelihood. A Gaussian prior on the

model parameters was used as well. There are small differences between our model

and Eisner’s which we outline here.

The Markov chain’s transition probabilities do not have the special form of Equa-

tion 4.1, repeated here:

p(St|St−1) = γp0(St) + (1 − γ)p′(St|St−1)

Rather, there is a special halting state halt, and every state has a separate prob-

ability of transitioning to halt. In this respect, a model with a constant probability

γ of transitioning to a halting state is a special case. Eisner notes that the PageRank

algorithm (Brin and Page, 1998) is a special case of his framework, where there are

no learnable parameters.

Our method of defining halting probabilities is different from Eisner’s and it is

4.7. DISCUSSION 153

not a special case of his method, because as described in Section 4.6, we learn a

general multinomial distribution over the number of steps before halting, rather than

a geometric one.

The specific application in (Eisner, 2001) was the estimation of distributions over

subcategorization frames of verbs for parsing, e.g., P (NPhungNPPP |S, hung), mean-

ing the probability that a sentence symbol S headed by the verb hung will expand as

an NP to the left of the verb and another NP to the right, followed by a PP . The

sentence I hung the painting with a peg is an example occurrence of this subcategoriza-

tion frame for the verb hung . The states of the Markov chain over which a probability

distribution is estimated are subcategorization frames such as [NPhungNPPP].

There are several other differences compared to our model. The transition distri-

bution is not defined as a linear combination of pre-specified transition distributions

obtained from separate knowledge sources. Rather, the link structure is specified us-

ing the intuition that subcategorization frames differing only slightly, e.g. by a single

insertion or deletion, should be connected by a link. Each link lijbetween two states

si and sj is parameterized by a set of features f1
ij, . . . , fk

ij, with weights θ1
ij, . . . , θk

ij.

The transition probability P (sj|si) is defined through a log-linear model using these

features as follows: P (sj|si) = e
Pk

s=1
θs

ij

Z(si)
. All parameters θ are learned from the same

training set, whereas we use a training set to learn relative frequency transition prob-

ability estimates and a development set to fit interpolation parameters.

Several algorithms for computing the estimated distribution and its gradient with

respect to the parameters are proposed in (Eisner, 2001). These include algorithms

for approximate and exact estimation. If a limited number of time steps d is used for

approximation, the derivatives can be computed in time linear in d. Because we learn

a general multinomial distribution over number of steps of the walk, our algorithm is

quadratic in d. Eisner (2001) mentions exact algorithms for computing the stationary

distribution, including matrix inversion in time cubic in the size of the state space

(Press et al., 1992) and a faster bi-conjugate gradient method (Press et al., 1992;

Greenbaum, 1997).

154 CHAPTER 4. ESTIMATING WORD DEPENDENCY DISTRIBUTIONS

4.7.2 Relation to Other Models and Conclusions

Random walk models provide a general framework for unifying and combining various

notions of similarity-based smoothing. A walk of length one is just a linear interpo-

lation, with interpolation weights typically set empirically as we do here (with the

difference that we train to maximize conditional rather than joint likelihood).

A walk of length three following exactly one forward link (like L1), followed by

one backward link (like L4), and another forward link gives exactly the same estimate

as cooccurrence smoothing (Essen and Steinbiss, 1992; Lee, 1999). In cooccurrence

smoothing, the smoothed probability P̃ (d|h) of a dependent word given a head word

is defined as follows:6

P̃ (d|h) =
∑

h′,d′

P̂ (d′|h)P̂ (h′|d′)P̂ (d|h′)

We can see that this corresponds to summing over all paths of length three in a

random walk model where we have a single outgoing link type from every state – a

link from heads to dependents, and an inverse link from dependents to heads. Our

Markov Chain models contain much richer types of links.

A walk of length two using only one kind of similarity between head states and

forward relative frequency links, is similar to distributional similarity smoothing (Da-

gan et al., 1999). The probability distribution defined using distributional similarity

is defined as follows:

PSIM(d|h) =
∑

h′∈S(h)

P̂ (d|h′)
e−βD(h||h′)

∑

h′′∈S(h) e−βD(h||h′′)

Here D(·||·) is Kullback-Leibler (KL) divergence and S(h) is a set of head words

which are closest. In later work, D was substituted with the symmetric Jensen-

Shannon divergence (Lee, 1999), as we do here for defining our distributional similar-

ity links L6 and L7. We can see that this expression is summing over walks of length

two where we first take a step according to a distributional similarity link between

6The original presentation was for bigram language models.

4.7. DISCUSSION 155

head words and then a relative frequency link from heads to dependents.

The random walks framework that we propose is much more general. A multitude

of link types can be defined in it, and they are automatically weighted by the learning

algorithm. Paths of shorter and longer lengths can be followed (though the most

highly contributing paths are the shorter ones). The generality of this approach to

similarity-based smoothing not only gives a high performance prepositional phrase

attachment system, but holds the promise of learning complex but effective random

walk models in other domains. An exciting immediate application of the framework

is for estimating more general kinds of word dependency relationships, such as other

bi-lexical dependencies required by a lexicalized statistical parser.

Bibliography

[Abney1997] Steven Abney. 1997. Stochastic Attribute-Value Grammars. Computa-

tional Linguistics, 23(4):597–618.

[Alshawi1992] Hiyan Alshawi, editor. 1992. The Core Language Engine. MIT Press.

[Baker et al.1998] Collin Baker, Charles Fillmore, and John Lowe. 1998. The Berke-

ley Framenet project. In Proceedings of COLING-ACL-1998.

[Baldridge and Osborne2003] Jason Baldridge and Miles Osborne. 2003. Active

learning for HPSG parse selection. In Proceedings of the 7th Conference on Natural

Language Learning.

[Baldridge and Osborne2004] Jason Baldridge and Miles Osborne. 2004. Active

learning and the total cost of annotation. In EMNLP.

[Baum1972] L. E. Baum. 1972. An inequality and associated maximization technique

in statistical estimation of probabilistic functions of a markov process. Inequalities,

627(3):1–8.

[Berg et al.1984] Christian Berg, Jens Christensen, and Paul Ressel. 1984. Harmonic

analysis on semigroups: theory of positive definite and related functions. Springer.

[Bikel2004] Daniel Bikel. 2004. A distributional analysis of a lexicalized sttaistical

parsing model. In Proceedings of the Conference on Empirical Methods in Natural

Language Processing (EMNLP).

156

BIBLIOGRAPHY 157

[Bod1998] Rens Bod. 1998. Beyond Grammar: An Experience Based Theory of

Language. CSLI Publications.

[Brémaud1999] Pierre Brémaud. 1999. Markov Chains: Gibbs Fields, Monte Carlo

Simulation, and Queues. Springer-Verlag.

[Bresnan2001] Joan Bresnan. 2001. Lexical-Functional Syntax. Blackwell.

[Brill and Resnik1994] E. Brill and P. Resnik. 1994. A rule-based approach to prepo-

sitional phrase attachment disambiguation. In Proceedings of COLING.

[Brin and Page1998] Sergey Brin and Lawrence Page. 1998. The anatomy of a large-

scale hypertextual Web search engine. WWW7/Computer Networks and ISDN

Systems, 30(1–7):107–117.

[Brown et al.1992] Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jen-

nifer C. Lai, and Robert L. Mercer. 1992. Class-based n-gram models of natural

language. Computational Linguistics, 18(4):467–479.

[Carreras and Màrquez2004] Xavier Carreras and Lúıs Màrquez. 2004. Introduction

to the CoNLL-2004 shared task: Semantic role labeling. In Proceedings of CoNLL.

[Carreras and Màrquez2005] Xavier Carreras and Lúıs Màrquez. 2005. Introduction

to the CoNLL-2005 shared task: Semantic role labeling. In Proceedings of CoNLL.

[Charniak and Johnson2005] Eugene Charniak and Mark Johnson. 2005. Coarse-to-

fine n-best parsing and MaxEnt discriminative reranking. In Proceedings of the

43rd Meeting of the Association for Computational Linguistics.

[Charniak1997] Eugene Charniak. 1997. Statistical parsing with a context-free gram-

mar and word statistics. In Proc. 14th National Conference on Artificial Intelli-

gence, pages 598 – 603.

[Charniak2000] Eugene Charniak. 2000. A maximum-entropy-inspired parser. In

Proceedings of NAACL, pages 132–139.

158 BIBLIOGRAPHY

[Chen and Goodman1996] Stanley F. Chen and Joshua T. Goodman. 1996. An em-

pirical study of smoothing techniques for language modeling. In Proceedings of the

Thirty-Fourth Annual Meeting of the Association for Computational Linguistics,

pages 310–318.

[Chen and Goodman1998] Stanley F. Chen and Joshua T. Goodman. 1998. An

empirical study of smoothing techniques for language modeling. Technical Report

TR-10-98, Harvard University.

[Chen and Vijay-Shanker2000] John Chen and K. Vijay-Shanker. 2000. Automated

extraction of TAGs from the Penn Treebank. In Proceedings of the 6th International

Workshop on Parsing Technologies.

[Chiang2000] David Chiang. 2000. Statistical parsing with an automatically-

extracted tree adjoining grammar. In Proceedings of the 38th Meeting of the Asso-

ciation for Computational Linguistics.

[Clark and Curran2004] Stephen Clark and James R. Curran. 2004. Parsing the

WSJ using CCG and Log-linear models. In Proceedings of the 42nd Meeting of the

Association for Computational Linguistics.

[Cohn and Blunsom2005] Trevor Cohn and Philip Blunsom. 2005. Semantic role

labelling with tree conditional random fields. In Proceedings of CoNLL shared

task.

[Collins and Brooks1995] Michael Collins and James Brooks. 1995. Prepositional

attachment through a backed-off model. In Proceedings of the Third Workshop on

Very Large Corpora, pages 27–38.

[Collins and Duffy2001] Michael Collins and Nigel Duffy. 2001. Convolution kernels

for natural language. In Proceedings of NIPS.

[Collins and Duffy2002] Michael Collins and Nigel Duffy. 2002. New ranking algo-

rithms for parsing and tagging: Kernels over discrete structures, and the voted

BIBLIOGRAPHY 159

perceptron. In Proceedings of the 40th Meeting of the Association for Computa-

tional Linguistics.

[Collins1997] Michael Collins. 1997. Three generative, lexicalised models for statis-

tical parsing. In Proceedings of the 35th Meeting of the Association for Compu-

tational Linguistics and the 7th Conference of the European Chapter of the ACL,

pages 16 – 23.

[Collins1999] Michael Collins. 1999. Head-Driven Statistical Models for Natural Lan-

guage Parsing. Ph.D. thesis, University of Pennsylvania.

[Collins2000] Michael Collins. 2000. Discriminative reranking for natural language

parsing. In Proceedings of the 17th International Conference on Machine Learning

(ICML), pages 175–182.

[Collins2001] Michael Collins. 2001. Parameter estimation for statistical parsing

models: Theory and practice of distribution-free methods. In IWPT. Paper written

to accompany invited talk at IWPT 2001.

[Copestake et al.1999] Ann Copestake, Daniel P. Flickinger, Ivan A. Sag, and Carl

Pollard. 1999. Minimal Recursion Semantics. An introduction. Ms., Stanford

University.

[Crammer and Singer2001] Koby Crammer and Yoram Singer. 2001. On the algorith-

mic implementation of kernel-based vector machines. Journal of Machine Learning

Research, 2(5):265–292.

[Crammer and Singer2003] Koby Crammer and Yoram Singer. 2003. Ultraconser-

vative online algoritms for multiclass problems. Journal of Machine Learning Re-

search.

[Dagan et al.1999] Ido Dagan, Lillian Lee, and Fernando Pereira. 1999. Similarity-

based models of cooccurrence probabilities. Machine Learning, 34(1–3):43–69.

160 BIBLIOGRAPHY

[Dietterich1998] Thomas G. Dietterich. 1998. Approximate statistical test for

comparing supervised classification learning algorithms. Neural Computation,

10(7):1895–1923.

[Dowty1991] David R. Dowty. 1991. Thematic proto-roles and argument selection.

Language, 67(3).

[Eisner2001] Jason Eisner. 2001. Smoothing a Probabilistic Lexicon via Syntactic

Transformations. Ph.D. thesis, University of Pennsylvania.

[Eisner2002] Jason Eisner. 2002. Transformational priors over grammars. In Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing

(EMNLP), pages 63–70.

[Essen and Steinbiss1992] Ute Essen and Volker Steinbiss. 1992. Cooccurrence

smoothing for stochastic language modeling. In ICASSP, volume 1, pages 161–

164.

[Everitt1977] B. S. Everitt. 1977. The analysis of contingency tables. Chapman and

Hall.

[Fillmore1968] Charles J. Fillmore. 1968. The case for case. In E. W. Bach and

R. T. Harms, editors, Universals in Linguistic Theory, pages 1–88. Holt, Rinehart

& Winston.

[Fillmore1976] Charles J. Fillmore. 1976. Frame semantics and the nature of lan-

guage. Annals of the New York Academy of Sciences: Conference on the Origin

and Development of Language and Speech, 280:20–32.

[Gärtner et al.2002] Thomas Gärtner, John W. Lloyd, and Peter A. Flach. 2002.

Kernels for structured data. In Inductive Logic Programming, pages 66–83.

[Gildea and Hockenmaier2003] Daniel Gildea and Julia Hockenmaier. 2003. Identify-

ing semantic roles using Combinatory Categorial Grammar. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing (EMNLP).

BIBLIOGRAPHY 161

[Gildea and Jurafsky2002] Daniel Gildea and Daniel Jurafsky. 2002. Automatic la-

beling of semantic roles. Computational Linguistics, 28(3):245–288.

[Gildea and Palmer2002] Daniel Gildea and Martha Palmer. 2002. The necessity of

parsing for predicate argument recognition. In Proceedings of the 40th Meeting of

the Association for Computational Linguistics.

[Good1953] I. J. Good. 1953. The population frequencies of species and the estima-

tion of population parameters. Biometrika, 40(16):237–264.

[Goodman2001] Joshua T. Goodman. 2001. A bit of progress in language modeling.

In MSR Technical Report MSR-TR-2001-72.

[Greenbaum1997] Anne Greenbaum. 1997. Iterative methods for solving linear sys-

tems. Society for Industrial and Applied Mathematics.

[Haghighi et al.2005] Aria Haghighi, Kristina Toutanova, and Christopher D. Man-

ning. 2005. A joint model for semantic role labeling. In Proceedings of CoNLL-2005

shared task.

[Harabagiu and Pasca1999] Sanda Harabagiu and Marius Pasca. 1999. Integrating

symbolic and statistical methods for prepositional phrase attachment. In Proceed-

ings of FLAIRS-99, pages 303–307.

[Haussler1999] David Haussler. 1999. Convolution kernels on discrete structures. In

UC Santa Cruz Technical Report UCS-CRL-99-10.

[Hindle and Rooth1993] Donald Hindle and Mats Rooth. 1993. Structural ambiguity

and lexical relations. Computational Linguistics, 19(1):103–120.

[Hockenmaier and Steedman2002a] Julia Hockenmaier and Mark Steedman. 2002a.

Acquiring compact lexicalized grammars from a cleaner treebank. In Proceedings

of Third International Conference on Language Resources and Evaluation.

[Hockenmaier and Steedman2002b] Julia Hockenmaier and Mark Steedman. 2002b.

Generative models for statistical parsing with combinatory categorial grammar. In

Proceedings of the 40th Meeting of the Association for Computational Linguistics.

162 BIBLIOGRAPHY

[Hockenmaier2003a] Julia Hockenmaier. 2003a. Data and Models for Statistical Pars-

ing with Combinatory Categorial Grammar. Ph.D. thesis, School of Informatics,

University of Edinburgh.

[Hockenmaier2003b] Julia Hockenmaier. 2003b. Parsing with generative models of

predicate-argument structure. In Proceedings of the 41st Meeting of the Association

for Computational Linguistics.

[Hull1996] David Hull. 1996. Stemming algorithms – A case study for detailed

evaluation. Journal of the American Society for Information Science, 47(1):70–84.

[Jackendoff1972] Ray Jackendoff. 1972. Semantic Interpretation in Generative Gram-

mar. MIT Press.

[Jakub Zavrel and Veenstra1997] Walter Daelemans Jakub Zavrel and Jorn Veen-

stra. 1997. Resolving PP attachment ambiguities with memory-based learning.

In CoNLL.

[Jelinek and Mercer1980] Frederick Jelinek and Robert L. Mercer. 1980. Interpolated

estimation of markov source parameters from sparse data. In Proceedings of the

Workshop on Pattern Recognition in Practice.

[Joachims1999] Thorsten Joachims. 1999. Making large-scale SVM learning practical.

In B. Scholkopf, C. Burges, and A. Smola, editors, Advances in Kernel Methods -

Support Vector Learning.

[Joachims2002] Thorsten Joachims. 2002. Optimizing search engines using click-

through data. In Proceedings of the ACM Conference on Knowledge Discovery and

Data Mining (KDD).

[Johnson et al.1999] Mark Johnson, Stuart Geman, Stephen Canon, Zhiyi Chi, and

Stefan Riezler. 1999. Estimators for stochastic unification-based grammars. In

Proceedings of the 37th Meeting of the Association for Computational Linguistics.

[Johnson1998] Mark Johnson. 1998. PCFG models of linguistic tree representations.

Computational Linguistics, 24(4).

BIBLIOGRAPHY 163

[Katz1987] Slava M. Katz. 1987. Estimation of probabilities from sparse data for the

language model component of a speech recognizer. Proceedings of IEEE Transac-

tions on Acoustics, Speech and Signal Processing, 35(3):400 – 401.

[Klein and Manning2002] Dan Klein and Christopher Manning. 2002. Conditional

structure versus conditional estimation in NLP models. In Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing (EMNLP).

[Klein and Manning2003] Dan Klein and Christopher D. Manning. 2003. Accurate

unlexicalized parsing. In Proceedings of the 41st Meeting of the Association for

Computational Linguistics.

[Kleinberg1998] Jon Kleinberg. 1998. Authoritative sources in a hyperlinked envi-

ronment. In 9th ACM-SIAM Symposium on Discrete Algorithms.

[Kneser and Ney1995] Reinhard Kneser and Hermann Ney. 1995. Improved backing-

off for m-gram language modeling. In Proceedings of the IEEE International Con-

ference on Acoustics, Speech and Signal Processing, pages 181–184.

[Kudo and Matsumoto2001] Taku Kudo and Yuji Matsumoto. 2001. Chunking with

support vector machines. In Proceedings of NAACL.

[Lafferty and Zhai2001] John Lafferty and Chengxiang Zhai. 2001. Document lan-

guage models, query models, and risk minimization for information retrieval. In

SIGIR, pages 111–119.

[Lafferty et al.2001] John Lafferty, Andrew McCallum, and Fernando Pereira. 2001.

Conditional random fields: Probabilistic models for segmenting and labeling se-

quence data. In Proceedings of ICML-2001.

[Lee1999] Lillian Lee. 1999. Measures of distributional similarity. In 37th Annual

Meeting of the Association for Computational Linguistics, pages 25–32.

[Leslie and Kuang2003] Christina Leslie and Rui Kuang. 2003. Fast kernels for in-

exact string matching. In COLT 2003, pages 114–128.

164 BIBLIOGRAPHY

[Levy and Manning2004] Roger Levy and Chris Manning. 2004. Deep dependencies

from context-free statistical parsers: correcting the surface dependency approxi-

mation. In Proceedings of the 42nd Meeting of the Association for Computational

Linguistics.

[Lidstone1920] G. J. Lidstone. 1920. Note on the general case of the Bayes-Laplace

formula for inductive or a posteriori probabilities. Transactions of the Faculty of

Actuaries, 8:182–192.

[Lodhi et al.2000] Huma Lodhi, John Shawe-Taylor, Nello Cristianini, and Christo-

pher J. C. H. Watkins. 2000. Text classification using string kernels. In Proceedings

of NIPS, pages 563–569.

[Magerman1995] David M. Magerman. 1995. Statistical Decision-tree models for

parsing. In Proceedings of the 33rd Meeting of the Association for Computational

Linguistics.

[Marcus et al.1993] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann

Marcinkiewicz. 1993. Building a large annotated corpus of English: The Penn

Treebank. Computational Linguistics, 19(2):313–330.

[Maxwell and Kaplan1993] John T. Maxwell and Ronald M. Kaplan. 1993. The

interface between phrasal and functional constraints. Computational Linguistics,

19(4):571–590.

[McDonald et al.2005] Ryan McDonald, Koby Crammer, and Fernando Pereira. 2005.

Online large-margin training of dependency parsers. In Proceedings of the 43rd

Meeting of the Association for Computational Linguistics.

[Merlo et al.1997] P. Merlo, M. Crocker, and C. Berthouzoz. 1997. Attaching multiple

prepositional phrases: Generalized backed-off estimation. In Proceedings of the

Conference on Empirical Methods in Natural Language Processing (EMNLP), pages

149–155.

BIBLIOGRAPHY 165

[Miller et al.1996] Scott Miller, David Stallard, Robert Bobrow, and Richard

Schwartz. 1996. A fully statistical approach to natural language interfaces. In

Proceedings of the 34th annual meeting on Association for Computational Linguis-

tics.

[Miller1990] George Miller. 1990. WordNet: an on-line lexical database. International

Journal of Lexicography, 4(3).

[Minnen et al.2001] Guido Minnen, John Carroll, and Darren Pearce. 2001. Applied

morphological processing of English. Natural Language Engineering, 7(3):207–223.

[Miyao and Tsujii2005] Yusuke Miyao and Jun’ichi Tsujii. 2005. Probabilistic dis-

ambiguation models for wide-coverage HPSG parsing. In Proceedings of the 43rd

Meeting of the Association for Computational Linguistics.

[Miyao et al.2004] Yusuke Miyao, Takashi Ninomiya, and Jun’ichi Tsujii. 2004.

Corpus-oriented grammar development for acquiring a Head-driven Phrase Struc-

ture Grammar from the Penn Treebank. In Proceedings of IJCNLP-04.

[Ng and Jordan2002] Andrew Ng and Michael Jordan. 2002. On discriminative vs.

generative classifiers: A comparison of logistic regression and Naive Bayes. In NIPS

14.

[Ng et al.2001] Andrew Y. Ng, Alice X. Zheng, and Michael Jordan. 2001. Link

analysis, eigenvectors, and stability. In Proceedings of the Seventeenth International

Joint Conference on Artificial Intelligence (IJCAI-01).

[Oepen et al.2002] Stephan Oepen, Kristina Toutanova, Stuart Shieber, Chris Man-

ning, and Dan Flickinger. 2002. The LinGo Redwoods treebank: Motivation and

preliminary applications. In Proceedings of COLING 19, pages 1253–1257.

[Olteanu and Moldovan2005] Marian Olteanu and Dan Moldovan. 2005. PP-

attachment disambiguation using large context. In Proceedings of the Conference

on Empirical Methods in Natural Language Processing (EMNLP).

166 BIBLIOGRAPHY

[Osborne and Baldbridge2004] Miles Osborne and Jason Baldbridge. 2004.

Ensemble-based active learning for parse selection. In Proceedings of HLT-NAACL.

[Palmer et al.2005] Martha Palmer, Dan Gildea, and Paul Kingsbury. 2005. The

proposition bank: An annotated corpus of semantic roles. Computational Linguis-

tics.

[Pantel and Lin2000] P. Pantel and D. Lin. 2000. An unsupervised approach to

prepositional phrase attachment using contextually similar words. In Proceedings

of the 38th Meeting of the Association for Computational Linguistics, pages 101–

108.

[Pollard and Sag1994] Carl Pollard and Ivan A. Sag. 1994. Head-Driven Phrase

Structure Grammar. University of Chicago Press.

[Pradhan et al.2004] Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Martin,

and Dan Jurafsky. 2004. Shallow semantic parsing using support vector machines.

In Proceedings of HLT/NAACL-2004.

[Pradhan et al.2005a] Sameer Pradhan, Kadri Hacioglu, Valerie Krugler, Wayne

Ward, James Martin, and Dan Jurafsky. 2005a. Support vector learning for se-

mantic argument classification. Machine Learning Journal.

[Pradhan et al.2005b] Sameer Pradhan, Wayne Ward, Kadri Hacioglu, James Mar-

tin, and Daniel Jurafsky. 2005b. Semantic role labeling using different syntactic

views. In Proceedings of the 43rd Meeting of the Association for Computational

Linguistics.

[Press et al.1992] William H. Press, Saul A. Teukolsky, William T. Vetterling, and

Brian P. Flannery. 1992. Numerical Recipes in C: The Art of Scientific Computing.

Cambridge University Press.

[Price1990] P. J. Price. 1990. Evaluation of spoken language systems: The ATIS

domain. In Proceedings of the ARPA Human LanguageTechnology Workshop.

BIBLIOGRAPHY 167

[Punyakanok et al.2004] Vasin Punyakanok, Dan Roth, Wen tau Yih, Dav Zimak,

and Yuancheng Tu. 2004. Semantic role labeling via generalized inference over

classifiers. In Proceedings of CoNLL-2004.

[Punyakanok et al.2005] Vasin Punyakanok, Dan Roth, and Wen tau Yih. 2005. The

necessity of syntactic parsing for semantic role labeling. In Proceedings of the

International Joint Conference on Artificial Intelligence (IJCAI).

[Rao1982] Radhakrishna C. Rao. 1982. Diversity: Its measurement, decomposition,

aportionment and analysis. The Indian Journal of Statistics, 44(A):1–22.

[Ratnaparkhi et al.1994] Adwait Ratnaparkhi, Jeff Reynar, and Salim Roukos. 1994.

A maximum entropy model for prepositional phrase attachment. In Workshop on

Human Language Technology.

[Riezler et al.2000] Stefan Riezler, Detlef Prescher, Jonas Kuhn, and Mark Johnson.

2000. Lexicalized stochastic modeling of constraint-based grammars using log-linear

measures and EM training. In Proceedings of the 38th Meeting of the Association

for Computational Linguistics, pages 480—487.

[Riezler et al.2002] Stefan Riezler, Tracy H. King, Ronald M. Kaplan, Richard

Crouch, John T. Maxwell, III, and Mark Johnson. 2002. Parsing the Wall Street

Journal using a Lexical-Functional Grammar and discriminative estimation tech-

niques. In Proceedings of the 40th Meeting of the Association for Computational

Linguistics.

[Riloff1993] Ellen Riloff. 1993. Automatically constructing a dictionary for informa-

tion extraction tasks. In National Conference on Artificial Intelligence.

[Schank1972] Roger C. Schank. 1972. Conceptual dependency: A theory of natural

language understanding. Cognitive Psychology, 3:552–631.

[Sha and Pereira2003] Fei Sha and Fernando Pereira. 2003. Shallow parsing with

conditional random fields. In HLT-NAACL.

168 BIBLIOGRAPHY

[Shen and Joshi2003] Libin Shen and Aravind K. Joshi. 2003. An SVM-based voting

algorithm with application to parse reranking. In Proceedings of CoNLL, pages

9–16.

[Srinivas and Joshi1999] Bangalore Srinivas and Aravind K. Joshi. 1999. Supertag-

ging: An approach to almost parsing. Computational Linguistics, 25:237–265.

[Steedman1996] Mark Steedman. 1996. Surface Structure and Interpretation. MIT

Press.

[Stetina and Nagao1997] Jiri Stetina and Makoto Nagao. 1997. Corpus based PP

attachment ambiguity resolution with a semantic dictionary. In Proc. 5th Workshop

on Very Large Corpora, pages 66–80.

[Steven Abney1999] Yoram Singer Steven Abney, Robert E. Shapire. 1999. Boost-

ing applied to tagging and PP attachment. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP).

[Surdeanu et al.2003] Mihai Surdeanu, Sanda Harabagiu, John Williams, and Paul

Aarseth. 2003. Using predicate-argument structures for information extraction. In

Proceedings of the 41st Meeting of the Association for Computational Linguistics.

[Suzuki et al.2003] Jun Suzuki, Tsutomu Hirao, Yutaka Sasaki, and Eisaku Maeda.

2003. Hierarchical directed acyclic graph kernel: Methods for structured natural

language data. In Proceedings of the 41st Meeting of the Association for Compu-

tational Linguistics, pages 32 – 39.

[Taskar et al.2004] Ben Taskar, Dan Klein, Michael Collins, Daphne Koller, and

Christopher D. Manning. 2004. Max-margin parsing. In Proceedings of the Con-

ference on Empirical Methods in Natural Language Processing (EMNLP).

[Taylor and Karlin1998] H. M. Taylor and S. Karlin. 1998. An Introduction to

Stochastic Modeling. Academic Press, San Diego, third edition.

BIBLIOGRAPHY 169

[Thompson et al.2003] Cynthia A. Thompson, Roger Levy, and Christopher D. Man-

ning. 2003. A generative model for semantic role labeling. In Proceedings of

ECML-2003.

[Toutanova and Manning2002] Kristina Toutanova and Christopher D. Manning.

2002. Feature selection for a rich HPSG grammar using decision trees. In Pro-

ceedings of CoNLL.

[Toutanova et al.2002] Kristina Toutanova, Christopher D. Manning, Stuart Shieber,

Dan Flickinger, and Stephan Oepen. 2002. Parse disambiguation for a rich HPSG

grammar. In Proceedings of Treebanks and Linguistic Theories, pages 253–263.

[Toutanova et al.2003] Kristina Toutanova, Mark Mitchell, and Christopher D. Man-

ning. 2003. Optimizing local probability models for statistical parsing. In Proceed-

ings of the 14th European Conference on Machine Learning (ECML).

[Toutanova et al.2004a] Kristina Toutanova, Christopher D. Manning, and An-

drew Y. Ng. 2004a. Random walks for estimating word dependency distributions.

In Proceedings of the 21st International Conference on Machine Learning (ICML).

[Toutanova et al.2004b] Kristina Toutanova, Penka Markova, and Chrostopher D.

Manning. 2004b. The leaf projection path view of parse trees: Exploring string

kernels for HPSG parse selection. In Proceedings of the Conference on Empirical

Methods in Natural Language Processing (EMNLP).

[Toutanova et al.2005a] Kristina Toutanova, Aria Haghighi, and Christopher D.

Manning. 2005a. Joint learning improves semantic role labeling. In Proceedings of

the 43rd Meeting of the Association for Computational Linguistics.

[Toutanova et al.2005b] Kristina Toutanova, Christopher D. Manning, Dan

Flickinger, and Stephan Oepen. 2005b. Stochastic HPSG parse disambiguation

using the Redwoods corpus. Journal of Logic and Computation.

170 BIBLIOGRAPHY

[Tsochantaridis et al.2004] Ioannis Tsochantaridis, Thomas Hofmann, Thorsten

Joachims, and Yasemin Altun. 2004. Support vector machine learning for inter-

dependent and structured output spaces. In Proceedings of the 21st International

Conference on Machine Learning (ICML).

[Vanschoenwinkel and Manderick2003] Bram Vanschoenwinkel and Bernard Mander-

ick. 2003. A weighted polynomial information gain kernel for resolving prepositional

phrase attachment ambiguities with support vector machines. In IJCAI.

[Vapnik1998] Vladimir Vapnik. 1998. Statistical Learning Theory. Wiley, New York.

[Wahlster2000] Wolfgang Wahlster, editor. 2000. Verbmobil: Foundations of Speech-

to-Speech Translation. Springer.

[Weston and Watkins1998] Jason Weston and Chris Watkins. 1998. Multi-class Sup-

port Vector Machines. Technical Report TR-98-04, Department of Computer Sci-

ence, Royal Holloway, Univeristy of London.

[Witten and Bell1991] Ian H. Witten and Timothy C. Bell. 1991. The zero-frequency

problem: Estimating the probabilities of novel events in adaptive text compression.

IEEE Transactions on Information Theory, 37,4:1085–1094.

[Xia1999] Fei Xia. 1999. Extracting tree adjoining grammars from bracketed corpora.

In Proceedings of the 5th Natural Language Processing Pacific Rim Symposium

(NLPRS-99).

[Xue and Palmer2004] Nianwen Xue and Martha Palmer. 2004. Calibrating features

for semantic role labeling. In Proceedings of the Conference on Empirical Methods

in Natural Language Processing (EMNLP).

[Yi and Palmer2005] Szu-ting Yi and Martha Palmer. 2005. The integration of syn-

tactic parsing and semantic role labeling. In CoNLL Shared task.

