Machine learning and quantum chemistry
unite to simulate catalyst dynamics
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Accuracy and speedup achieved with the Weighted Active Space Protocol
(WASP) for methane activation on titanium carbide. Credit: Seal et al.

Catalysts play an indispensable role in modern manufacturing. More than
80% of all manufactured products, from pharmaceuticals to plastics, rely
on catalytic processes at some stage of production. Transition metals, in
particular, stand out as highly effective catalysts because their partially
filled d-orbitals allow them to easily exchange electrons with other
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molecules. This very property, however, makes them challenging to
model accurately, requiring precise descriptions of their electronic
structure.

Designing efficient transition-metal catalysts that can perform under
realistic conditions requires more than a static snapshot of a reaction.
Instead, we need to capture the dynamic picture—how molecules move
and interact at different temperatures and pressures, where atomic
motion fundamentally shapes catalytic performance.

To meet this challenge, the lab of Prof. Laura Gagliardi at the University
of Chicago Pritzker School of Molecular Engineering (UChicago PME)
and Chemistry Department has developed a powerful new tool that
harnesses electronic structure theories and machine learning to simulate
transition metal catalytic dynamics with both accuracy and speed.

"Over the past decade, machine-learned potentials have significantly
advanced the way in which we simulate molecular dynamics, offering
speed and scalability. Yet, accurately capturing the electronic structure
of transition metal catalysts has remained an unsolved challenge. Our
new method bridges this gap by integrating multireference quantum
chemistry methods with machine-learned potentials, delivering both
accuracy and efficiency," Gagliardi said.

The results are published in Proceedings of the National Academy of
Sciences.

Enabling machine learning to speed up simulations

Over the past decade, the Gagliardi group has developed
multiconfiguration pair-density functional theory (MC-PDFT), a
quantum-chemistry method capable of describing the intricate electronic
structures of transition metal reactions. While MC-PDFT provides high
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https://www.pnas.org/doi/10.1073/pnas.2513693122

accuracy, it is prohibitively slow for simulating the dynamics of catalytic
systems—a critical step in predicting how catalysts truly behave under
realistic conditions.

To address this challenge, the team turned to machine-learned
interatomic potentials (ML-potentials), which can capture molecular
dynamics with remarkable efficiency. ML-potentials have been applied
widely in materials science, but until now, they had never been
successfully combined with multireference methods like MC-PDEFT.

The reason lies in a long-standing obstacle: labeling consistency.
Machine learning models require unique and reliable property
labels—such as energies and forces derived from wave functions—for
every molecular geometry along a reaction pathway. For multireference
quantum chemistry methods, assigning such labels uniquely had
remained an unsolved problem.

To overcome this challenge, Ph.D. student Aniruddha Seal, jointly
advised by Gagliardi and Prof. Andrew Ferguson, developed a novel
algorithm that generates consistent wave functions for new geometries as
a weighted combination of wave functions from previously sampled
molecular structures. The closer a new geometry is to a known one, the
more strongly its wave function resembles that of the known structure.
This approach ensures that every point along a reaction pathway is
assigned a unique, consistent wave function, making it possible to train
ML-potentials accurately on multireference data.

"Think of it like mixing paints on a palette,”" Seal explained. "If I want to
create a shade of green that's closer to blue, I'll use more blue paint and
just a little yellow. If I want a shade leaning toward yellow, the balance
flips. The closer my target color is to one of the base paints, the more
heavily it influences the mix. WASP works the same way: it blends
information from nearby molecular structures, giving more weight to
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those that are most similar, to create an accurate prediction for the new
geometry."

This innovation forms the basis of the Weighted Active Space Protocol
(WASP), a framework that combines the accuracy of MC-PDFT with
the efficiency of machine learning, developed through a close
collaboration with the Parrinello Group at the Italian Institute of
Technology, Genoa, bringing together expertise in electronic structure
theory and machine-learned potentials. WASP delivers dramatic
speedups: simulations with multireference accuracy that once took
months can now be completed in just minutes.

Impact: Bridging accuracy and efficiency in catalyst
design

By uniting accuracy and speed, WASP opens the door to designing
catalysts that can withstand realistic conditions—high temperatures and
high pressures. Transition metals are central to countless large-scale
processes, but their complexity has made catalyst rational design
challenging.

A prime example is the Haber—Bosch process, where iron serves as the
catalyst to convert nitrogen and hydrogen into ammonia. Despite being
developed more than a century ago, this iron catalyst still dominates
ammonia production worldwide. With WASP, researchers now have the
tools to explore alternatives that could increase efficiency, reduce
byproducts, and lower the environmental cost.

So far, WASP has been successfully demonstrated for thermally
activated catalysis—reactions driven by heat. The next frontier is
adapting the method to light-activated reactions, which are essential for
the design of new photocatalysts. Photocatalysts hold enormous promise
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for technologies, from water treatment to energy production.

The new tool is available publicly at
https://github.com/GagliardiGroup/wasp.

More information: Aniruddha Seal et al, Weighted Active Space
Protocol for Multireference Machine-Learned Potentials, Proceedings of
the National Academy of Sciences (2025). DOI:
10.1073/pnas.2513693122

Provided by University of Chicago

Citation: Machine learning and quantum chemistry unite to simulate catalyst dynamics (2025,
September 16) retrieved 1 October 2025 from https://phys.org/news/2025-09-machine-quantum-
chemistry-simulate-catalyst.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private
study or research, no part may be reproduced without the written permission. The content is
provided for information purposes only.

5/5


https://github.com/GagliardiGroup/wasp
https://dx.doi.org/10.1073/pnas.2513693122
https://dx.doi.org/10.1073/pnas.2513693122
https://phys.org/news/2025-09-machine-quantum-chemistry-simulate-catalyst.html
https://phys.org/news/2025-09-machine-quantum-chemistry-simulate-catalyst.html
http://www.tcpdf.org

