O LinkedIn e terceiros usam cookies essenciais e não essenciais para fornecer, proteger, analisar e aprimorar nossos Serviços, e para exibir anúncios relevantes (inclusive anúncios profissionais e com vaga) dentro e fora do LinkedIn. Saiba mais na nossa Política de Cookies.

Selecione Aceitar para consentir ou Rejeitar para recusar cookies não essenciais para este uso. Você pode atualizar suas opções nas suas configurações quando quiser.

Aceite e cadastre-se no LinkedIn

Ao clicar em Continuar para se cadastrar ou entrar, você aceita o Contrato do Usuário, a Política de Privacidade e a Política de Cookies do LinkedIn.

Pular para conteúdo principal
LinkedIn
  • Artigos
  • Pessoas
  • Learning
  • Vagas
  • Jogos
Cadastre-se agora Entrar
Last updated on 19 de fev. de 2025
  1. Todos
  2. Engenharia
  3. Algoritmos

Sua equipe está dividida em velocidade do algoritmo versus legibilidade do código. Como você encontra o equilíbrio certo?

Quando sua equipe está dividida entre a velocidade do algoritmo e a legibilidade do código, é crucial encontrar um meio-termo que atenda tanto ao desempenho quanto à manutenção. Considere estas estratégias:

- Estabeleça padrões de codificação que priorizem a legibilidade sem sacrificar o desempenho.

- Implemente revisões de código para garantir que os algoritmos sejam eficientes, mas compreensíveis.

- Incentive a educação continuada para manter a equipe atualizada sobre as melhores práticas para equilibrar os dois aspectos.

Como você encontra o equilíbrio certo em seus projetos de codificação? Compartilhe suas estratégias.

Algoritmos Algoritmos

Algoritmos

+ Siga
Last updated on 19 de fev. de 2025
  1. Todos
  2. Engenharia
  3. Algoritmos

Sua equipe está dividida em velocidade do algoritmo versus legibilidade do código. Como você encontra o equilíbrio certo?

Quando sua equipe está dividida entre a velocidade do algoritmo e a legibilidade do código, é crucial encontrar um meio-termo que atenda tanto ao desempenho quanto à manutenção. Considere estas estratégias:

- Estabeleça padrões de codificação que priorizem a legibilidade sem sacrificar o desempenho.

- Implemente revisões de código para garantir que os algoritmos sejam eficientes, mas compreensíveis.

- Incentive a educação continuada para manter a equipe atualizada sobre as melhores práticas para equilibrar os dois aspectos.

Como você encontra o equilíbrio certo em seus projetos de codificação? Compartilhe suas estratégias.

Adicione sua opinião
Ajude outras pessoas compartilhando pelo menos mais (125 caracteres)
52 respostas
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Navneet Rabadiya

    SDE3 at Amazon | Writes at Roundz

    • Denunciar contribuição

    In my experience, the right balance depends on context. For critical performance areas, optimized algorithms take priority. But for maintainability, clarity is key. I follow a simple approach: ✅ Optimize only where needed—don’t prematurely sacrifice readability. ✅ Use meaningful variable names and comments to make complex logic understandable. ✅ Code reviews help refine both efficiency and clarity. At the end of the day, great code isn’t just fast—it’s also maintainable.

    Traduzido
    Gostei
    11
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Manohar Guvvu

    Senior Software developer | CS Grad Student @ SU | Ex-SDE II @ OLA | NIT Jamshedpur Alumnus

    • Denunciar contribuição

    Speed vs. Readability — Where Do You Draw the Line? In team projects, we often face a common dilemma: Algorithm performance vs. Code readability Both matter — performance drives results, but readable code ensures long-term maintainability and collaboration. Here’s how we strive for balance: ✅ Establish clear coding standards that favor readability without compromising speed. 🔍 Use code reviews to catch inefficiencies and improve clarity. 📚 Promote continuous learning to stay sharp on writing clean and efficient code. At the end of the day, the best solution is one that runs well and can be understood (and improved) by others. 💬 How do you strike this balance in your team or personal projects? Let’s share strategies.

    Traduzido
    Gostei
    9
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Jayvardhan Bhardwaj

    Machine Learning || DSA || Competitive Programming || Google DSC || Data Analysis || Web-Development

    • Denunciar contribuição

    Clear code is team's common language. When we write code that speaks plainly, we invite every team member to contribute, learn, and grow. This shared clarity not only cuts down on time spent on fixes but also builds a foundation of trust that drives smarter business choices. This simplicity in the process of code understanding, ultimately leads to better optimizations in the algorithm.

    Traduzido
    Gostei
    7
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Gahana R

    Engineering @Arctic Wolf🐺 ◆Ex - Sandvine ◆Microsoft Intern Engage'22 ◆Harvard WeAmplify'22 Scholar ◆Mentee @Goldman Sachs ECHP'23, @Codess.Cafe ◆Twilio Signal'23 ◆CSE'24🎓

    • Denunciar contribuição

    Balancing speed and readability in code is like choosing between a sports car and a comfy sedan—you want both, but not always at the same time. Here's how to strike the right balance 1. Know the mission – Prioritize speed for real-time systems, clarity for business logic. 2. Measure, don’t guess – Profile to optimize what truly matters. 3. Comment wisely – Future you (or your team) will appreciate it. 4. Encapsulate complexity– Use clean interfaces. 5. Optimize selectively – Keep the core fast, the wrapper readable. 6. Start clean, refine later – Readability first, optimize when needed. 7. Leverage modern tools – They simplify the process. 8. Collaborate – Code reviews prevent future headaches.

    Traduzido
    Gostei
    7
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Nandish Shah

    Senior Digital Product Engineer @ Ramboll | GEN AI | Python, Engineering Automation

    • Denunciar contribuição

    Finding the right balance between algorithm speed and code readability requires context-driven decisions. Start by measuring performance to identify actual bottlenecks rather than optimizing prematurely. Readable code reduces bugs and maintenance costs, making it a long-term investment. When optimization is necessary, isolate complex algorithms in well-documented modules. Set clear team standards for when to prioritize each concern. Consider your product's maturity—early projects benefit from readability, while established products may need targeted optimization in critical areas. The best approach optimizes where it matters most while keeping everything else maintainable.

    Traduzido
    Gostei
    4
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Fabio Dallazen

    Senior Software Engineer | Ruby On Rails | Backend Developer | AWS

    • Denunciar contribuição

    This is a very common challenge! In my experience, starting with readable code is always a good choice. Once the code works and is clear, we can check if performance is really a problem — and then improve the algorithm if needed. Also, I believe that clear code helps the whole team understand, maintain, and even optimize it better in the future. How do you start with readability or performance first?

    Traduzido
    Gostei
    4
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Felix Fehse

    IT-Consultant | AI | Theoretical Quantum Physics

    • Denunciar contribuição

    The question assumes an incompatibility between the two - there is none. The fundamental problem to be solved defines the complexity of the code, anything beyond that is unnecessary and in my experience often arises from the desire to write "clean code" by introducing layers of abstractions. Instead, keep it straight forward, use variable names that are explanatory, e.g. "capacity" instead of "c", and document the underlying algorithm in comments. It is important to explain WHY the steps are taken instead of just what's happening.

    Traduzido
    Gostei
    3
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Francesco Pappalardo

    Deputy Director at Department of Drug and Health Sciences - University of Catania

    • Denunciar contribuição

    Balance speed and readability by prioritizing clear, maintainable code first, optimizing only critical performance bottlenecks. Profile the algorithm to pinpoint exact areas where speed matters most. Improve readability broadly, but selectively apply performance enhancements where necessary, documenting trade-offs. Regular code reviews and team discussions ensure alignment, so everyone understands why readability or speed was emphasized in specific scenarios.

    Traduzido
    Gostei
    2
  • Foto do perfil do contribuidor
    Foto do perfil do contribuidor
    Wai Lin K.

    Building Next Generation Software

    • Denunciar contribuição

    We use code as an abstraction layer to build software. Writing code is fundamentally about communicating ideas with other engineers, and since we spend 75% of our time reading existing code, readability must come first. Of course, the implementation must still meet the software specifications. When facing such decisions, we should ask ourselves: “What’s the highest level of readability we can achieve while still satisfying the software specification?” And above all, we must remember—premature optimization is the root of all evil.

    Traduzido
    Gostei
    2
Ver mais respostas
Algoritmos Algoritmos

Algoritmos

+ Siga

Classificar este artigo

Criamos este artigo com a ajuda da IA. O que você achou?
É ótimo Não é muito bom

Agradecemos seu feedback

Seu feedback é privado. Adicione sua reação para que sua rede tenha acesso a conversa.

Forneça mais informações

Denunciar este artigo

Outros artigos sobre Algoritmos

Não há mais conteúdo anterior
  • Struggling to align cross-functional teams' visions for algorithm optimization?

  • You're behind on the latest AI trends. How will you adjust your algorithm design to keep up?

  • You're behind on the latest AI trends. How will you adjust your algorithm design to keep up?

Não há mais próximo conteúdo
Ver todos

Leitura mais relevante

  • Programação (computação)
    Como você lida efetivamente com comentários conflitantes de vários revisores de código?
  • Programação (computação)
    Veja como você pode apresentar com confiança seu trabalho como programador para clientes ou partes interessadas.
  • Programação (computação)
    O que você faz se as partes interessadas do seu projeto de programação tiverem expectativas irrealistas?
  • Ciência da computação
    Qual é a melhor maneira de acompanhar seu progresso durante um desafio de algoritmo?

Conhecer outras competências

  • Programação (computação)
  • Desenvolvimento web
  • Metodologias Agile
  • Aprendizado de máquina
  • Desenvolvimento de software
  • Engenharia de dados
  • Analítica de dados
  • Ciência de dados
  • Inteligência artificial
  • Computação em nuvem

Tem certeza de que quer excluir sua contribuição?

Tem certeza de que quer excluir sua resposta?

  • LinkedIn © 2025
  • Sobre
  • Acessibilidade
  • Contrato do Usuário
  • Política de Privacidade do LinkedIn
  • Política de Cookies
  • Política de Direitos Autorais
  • Política da Marca
  • Controles de visitantes
  • Diretrizes da Comunidade
Gostei
12
52 contribuições