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Main Message:

Prospect for a new 4d quantum geometry

* Includes tetrads as basic variables (as opposed to just bi-vectors)
* Conjugated momenta: 2-connection, which is a two-form

* 2-curvature is a three-form: (space-time) diffeomorphism generator

* 2-curvature generates vertex translations (as opposed to edge translations)

# Offers many advantages on the kinematic and dynamic level.



Overview

| .Motivation: 3D path integral for quantum gravity:
Trick: Enlarge configuration space
2. 4D quantum gravity - does it work there?
3. We should enlarge even more: BFCG action
4. Quantization, spin bubble model and quantum geometry

5. Outlook
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Motivation: 3D gravity - path integral

Z=

Domain of integration very complicated to impose:
* lengths positive

+

* triangle inequalities } non-local complicated
constraints action

* tetrahedral inequalities

Trick: enlarge configuration space ... (and constrain_again)
N(z) gauge freedom

Triads and spin connection: g—e¢€-¢ >0 , W (su(2)-valued one-forms)

Palatini action: S = / Tr(e A F(w))

example for a BF action: S = / TI‘(B A F(A)) defined in dimensions >|
[Horowitz 89] (d _ 2) form



Path integral for first order 3D gravity

path integral for Palatini action s path integral over flat connections

7 = /D[G]D[w] e ) THENEW) o Z = /D[w] Hé(Fx[w])



Path integral for first order 3D gravity

path integral for Palatini action s path integral over flat connections

Regularize on a lattice (dual to a triangulation):
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Path integral for first order 3D gravity

path integral for Palatini action s path integral over flat connections
_ /D[Q]D[ €2£ fTI'(e/\F(w)) A Z — /D[CU] Hé(Fx W
X

Regularize on a lattice (dual to a triangulation):

_ _ T <0h N
ZPR— roup — / dgl 0 ( ge ’ ) )
group H oo [Io( 11,9

I f g4 g3

Variable transformation via group Fourier transform

= D ¥(j,m,n)Dyn(9) *

7,1,
Wigner (representation) matrices into path integral



Path integral for first order 3D gravity

“State sum” over spin configurations (representation labels):

. - 6j symbols (spin network
ZPR_Spm o Z H {6]e€tetra} evaluation) associated to

{je } tetra tetrahedra

[Ponzano-Regge |968;

with positive CC: Turaev-Viro 90’s] ,SA\F|)|ir‘]S give II':'ngth Ofl edgesr: y
Inequalities Iimpiementea.
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. - 6j symbols (spin network
ZPR_Spm - Z H {6]e€tetra} evaluation) associated to

{je } tetra tetrahedra

[Ponzano-Regge |968;

with positive CC: Turaev-Viro 90’s] ,SA\F|)|ir']S give II':'ngth Ofl edgesr: y
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A very reasonable 3D quantum gravity theory:

Well defined (after gauge fixing) path integral

Diffeo-symmetry and consistent Hamiltonians / constraint algebra (translations of veftices)
canonical quantization = path integral quantization

equivalence to Chern-Simons quantization

[Barrett, Bonzom, Crane, BD, Freidel, Livine, Louapre, Meusburger, Noui, Perez, Rovelli, ...]
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Path integral for first order 3D gravity

“State sum” over spin configurations (representation labels):

. - 6j symbols (spin network
ZPR_Spm o Z H {6]e€tetra} evaluation) associated to

{je } tetra tetrahedra

[Ponzano-Regge |968;

with positive CC: Turaev-Viro 90’s] ,SA\F|)|ir‘]S give II':’ngth Ofl edgesr: y
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A very reasonable 3D quantum gravity theory:

Well defined (after gauge fixing) path integral

Diffeo-symmetry and consistent Hamiltonians / constraint algebra (translations of veftices)
canonical quantization = path integral quantization

equivalence to Chern-Simons quantization

[Barrett, Bonzom, Crane, BD, Freidel, Livine, Louapre, Meusburger, Noui, Perez, Rovelli, ...]

Holographic duals for finite boundaries. Reproduces BMS vacuum character in asymptotic limit.
[BD, Goeller, Livine, Riello ’17,18]

Open issues: sum over orientations, winding numbers (from holonomies), ...



(2+1)D quantum gravity

 Hilbert space spanned by spin network functions:

vad) = D o{ak{w) HDmlnl 91 H -

Lt}

* Quantum geometry operators, that measure lengths and (extrinsic curvature) angles.

* Arises also from quantization of (lattice) phase space: X lT* SU (2)

. €1| edge of the {@?7 gl} — nga

triangulation
dual link >

Dimensions:

1+ 1

2



4D gravity!
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4D gravity!
Can we do a similar trick?

Palatini action

S

Tr x (e Ae) A F(w)

non-linear in tetrads

BF action
S

(topological) two-form

Plebanski action S

Tr BAF(A)+Tr¢B A B
Simplicity constraints impose™:

B =%e Ae

/
/TrB/\F(A)
/

BF action, Plebanski action, Palatini (-Holst) action and Ashtekar (-Barbero) variables

lead to similar phase space and quantum geometry.



(3+1)D Phase space and quantum geometry

A\

or QT SU (2)
encodes normal to triangle

(] encodes extrinsic curvature angle
( with caveat™)

Dimensions:

24+1=3



(3+1)D Phase space and quantum geometry

@lT*SO(4) or @lT*SU(2)
Bl encodes normal to triangle

(] encodes extrinsic curvature angle
( with caveat™)

Dimensions:

24+1=3

Tetrads need to be reconstructed from normals.
(Issue for matter couplings.)

Problem (leading to caveat™):

Triangle areas match,
Reconstructions from different but triangle shapes do not match.

tetrahedra do not fit (in shape).

[BD, Speziale '07; BD, Ryan 08, ]

-~
----



Simplicity constraints

Reconstructions from different

tetrahedra do not fit (in shape). Triangle areas match,

but triangle shapes do not match.
[BD, Speziale '07; BD, Ryan ’08, ]

[Freidel, Speziale ’10] Twisted Geometries

[BD, Ryan '07 ] Due to: Edge simplicity constraints are not imposed.

holeqge > e(B) = e(B)

[BD, Ryan 10 ] Are equivalent to secondary simplicity constraints
(and to reality conditions on Ashtekar connection).
Needed to reconstruct Levi-Civita connection.

Issue for spin foam/LQG- dynamics? [Alexandrov, Anza, Bonzom, Han, Hellmann,
Kaminski, Oliveira, Speziale, ...]
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Basic variables: A B
so(4) valued so(4) valued

connection one-form two-form

14+2=3

conjugated to each other

Geometry: (extrinsic) Areas

curvature® (normals to triangles)



Summary: Phase space from BF theory

Basic variables:

Geometry:

Hamiltonian:

A B

so(4) valued so(4) valued

connection one-form two-form

14+2=3

conjugated to each other

(extrinsic) Areas

curvature® (normals to triangles)

Problem: Generates edge translations (instead of vertex translations).
Reason: is a two-form.

[Waelbroeck, Zapata 94 ]: Propose to break symmetry down to vertex translations.
Would result in non-local expressions.

[Thiemann 96]: Action based on tetrahedra. Geometric interpretation lost.
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Basic variables: A B
so(4) valued so(4) valued

connection one-form two-form

14+2=3

conjugated to each other

Trick: enlarge phase space ... (and constrain again)

) E

4
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Basic geometric variables.



Enlarge phase space

Basic variables: A B
so(4) valued so(4) valued

connection one-form two-form

14+2=3

conjugated to each other

Trick: enlarge phase space ... (and constrain again)

) E

4
R* valued two-form R™ valued one-form

(2-connection) (tetrads)

2+1=3

conjugated to each other

2-curvature: G — d AE is a three-form. Will be important.
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[Mikovic,Vojinovic ’| 1]



T h e B F C G aCti on [Girelli, Pfeiffer, Popescu '07]

S = /TI‘SO(4)B /\ F(A) -+ TI'RALE /\ G(A, Z)

[Mikovic, Vojinovic ' | []
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T(A, E) — dAE Torsion

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers.



T h e B F C G aCti on [Girelli, Pfeiffer, Popescu '07]

S = /TTSO(4)B /\ F(A) -+ TI'RALE /\ G(A, Z)

— /TTSO(4)B A F(A) — TI’R4T(A, E) A 2.
T(A, E) — dAE Torsion

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers.

EOM: F(A)=0 daB —2ENX =0
G(A,2) =0 T(A,E)=0

Topological theory.



T h e B F C G aCti on [Girelli, Pfeiffer, Popescu '07]

S = /TI‘SO(4)B /\ F(A) -+ TI'RALE /\ G(A, Z)

— /TI'SO(4)B A F(A) — TI’R4T(A, E) A 2.
T(A, E) — dAE Torsion

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers.

Constrain:
S — /TI‘SO(4)B YA\ F(A) + TI'R4E A\ G(A, E) —|— Tr30(4) gb (B — *(E YA\ E))

[Mikovic,Vojinovic ’| |; Mikovic, Oliveira,Vojinovic ’ | 5-'1 8]
constraint analysis of (continuum) actions

Some EOM: ¢ = F

G=2x(FAE)
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*Construction of spin/ representation pictures (“‘spin bubble model”) was so far not available

*Conjectured to be given by a model of quantum flat space (KBF model)



Key problem

*Construction of spin/ representation pictures (“‘spin bubble model”) was so far not available

*Conjectured to be given by a model of quantum flat space (KBF model)

Plan: [Asante, BD, Girelli, Riello, Tsimiklis ‘19]

*Quantization of the BFCG action and correspondence with KBF model
*Key: solving part of the equations of motions (constraints), including edge simplicity constraints
*Construction of boundary Hilbert space:

with consistent constraints

*G-network functions



Path integral
S = /Tr80(4)B ANF(A) — TrraT(A, E) N Y

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers *

7= [ plapie) []o(F.(4) T[54, E)



Path integral
S = /Tr80(4)B ANF(A) — TrraT(A, E) N Y

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers *

_ / DIADIE] [[o(F.(4) []6(T.(4, B))

Regularize on a lattice: holonomies associated to dual links, four-vectors to edges:

Parallel transport

N

Zdiscr = /HdngdE H530(4) h()lf H6R4 Z _Eé)

ect

Trlangle closure constraint

| -Flathess constraint

Hypersurface Edge vector needs to be defined in one of

triangulation: the three adjacent tetrahedral reference

systems; parallel transported to the others.
three tetrahedra Y P P

meeting at an edge



Towards a spin bubble mode|

One would now (2-)group Fourier-transform:

* SO(4)-group Fourier transform: not useful, as there are parallel transport matrices
appearing in triangle closure constraints

* 2-group Fourier-transform: not known (no Peter-Weyl theorem)
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Towards a spin bubble mode|

One would now (2-)group Fourier-transform:

* SO(4)-group Fourier transform: not useful, as there are parallel transport matrices
appearing in triangle closure constraints

* 2-group Fourier-transform: not known (no Peter-Weyl theorem)

Way forward: [Asante, BD, Girelli, Riello, Tsimiklis ‘1 9]

* solve part of the delta-functions: triangle closures

* Key insight: includes edge simplicity constraints (half of |-flatness constraints)

hOle (g) >F, = F, (on hypersurface)

Continuum: daFE =0 = dadaE=0 = FANE=0

* make use of |-gauge invariance of path integral




Implementing torsion-freeness

(equivalent to primary and secondary simplicity constraints)

Step |:

proof Holonomies are Levi-Civita:

* triangle closure constraint
8 * g = Boost(6)Rot(FE)
* edge simplicity constraint T

[ BD, Ryan "10; Only free parameter:
Asante, BD, Girelli, Riello, Tsimiklis ‘19]

extrinsic curvature
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Step |:
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Step 2: Use this in the |-flatness constraints. This is an algebraic calculation and fixes:

— ——@(E) p— __@(Z) Length=norm of E

Just left with (£, 0) variables.



Implementing torsion-freeness

(equivalent to primary and secondary simplicity constraints)

Step |:
proof Holonomies are Levi-Civita:
* triangle closure constraint
& T | * g = Boost(§)Rot(FE)
* edge simplicity constraint T
[ BD, Ryan "10; Only free parameter:
Asante, BD, Girelli, Riello, Tsimiklis ‘19]

extrinsic curvature

Step 2: Use this in the |-flatness constraints. This is an algebraic calculation and fixes:

9 — ——@(E) p— __@(Z) Length=norm of E

Just left with (£, 0) variables.

Step 3: U(1) Fourier transform

6(0 £06(1)) = Z REICE=S10)

se/,




Spin bubble model for quantum flat space-time

[ Korepanov "02;
Obtain amplitudes of the KBF-model: Baratin, Freidel '07]
turn it into well-defined model via gauge fixing

Z = /D[Ze] Z ,u(fe,st)Hexp (ieUZSt@t(f))

{s+€Z} {es==%1} o teo

Sum over s; enforces flatness.



Spin bubble model for quantum flat space-time

[ Korepanov "02;
Obtain amplitudes of the KBF-model: Baratin, Freidel '07]
turn it into well-defined model via gauge fixing

Z = /D[Ze] Z ,u(ée,st)Hexp (ieUZSt@t(f))

{s+€Z} {es==%1} o teo

Sum over s; enforces flatness.

[Baratin, Freidel "14]

This state sum model can be reconstructed from 2-group representation theory.

(Simplex amplitude = Contraction of 2-intertwiners)

le and St are labels of representations and intertwiners of the Euclidean 2-group.

Obtain (Regge) gravity by constraining S; — at(le) :



Q uantum geom et 'y [Asante, BD, Girelli, Riello, Tsimiklis ‘9]

Boundary Hilbert space:

* quantization of all variables: (Bt, gl); (Ee, Zf)

* consistent quantization of all constraints: |-Flatness, 2-Flatness, |-Gauss, 2-Gauss

* (first class) subalgebra: |1-Gauss, 2-Gauss and Edge Simplicity

* reduced wave functions depend only on (6, 6’)

G-network functions
Future work: relate explicitly to 2-group representation theory.

e Hamiltonian:  2-Flatness constraint (G, = E ::Z}
fec
Generates vertex translations (diffeos) for the tetrad sector.

[Relation to Freidel, Livine, Pranzetti ’ 1 9]



Summary and Outlook

Higher gauge theory:
An alternative approach to quantum geometry:
* Includes tetrads.
* Geometric transparent Hamiltonian and Diffeomorphism constraints.

Constructed relation between 2-group and 2-representation picture of quantum flat space model.
*Boundary Hilbert space with all constraints.
*G-network functions. [Asante, BD, Girelli, Riello, Tsimiklis '19]



Summary and Outlook

Higher gauge theory:
An alternative approach to quantum geometry:
* Includes tetrads.
* Geometric transparent Hamiltonian and Diffeomorphism constraints.

Constructed relation between 2-group and 2-representation picture of quantum flat space model.

*Boundary Hilbert space with all constraints.
*G-network functions. [Asante, BD, Girelli, Riello, Tsimiklis 9]

Infinite many things to do, both on the mathematical (TQFT) and physical (QG) side:

(3+1)D flat space holography [Asante, BD, Haggard 18]

construct explicit 2-group Fourier transform (for more general 2-groups)
study defects: coupling to strings and particles

connection to tele-parallel gravity

generalize to homogeneously curved space-times (McDowell-Mansouri action)
* impose simplicity constraints: in phase space

* quantization: which spectra do survive!

* improve Hamiltonian constraints



