

Main Message:

Prospect for a new 4d quantum geometry

- Includes tetrads as basic variables (as opposed to just bi-vectors)
- Conjugated momenta: 2-connection, which is a two-form
- 2-curvature is a three-form: (space-time) diffeomorphism generator
- 2-curvature generates vertex translations (as opposed to edge translations)

Offers many advantages on the kinematic and dynamic level.

Overview

I.Motivation: 3D path integral for quantum gravity:

Trick: Enlarge configuration space

- 2. 4D quantum gravity does it work there?
- 3. We should enlarge even more: BFCG action
- 4. Quantization, spin bubble model and quantum geometry
- 5. Outlook

Almost no (2-category) abstract non-sense

Motivation: 3D gravity - path integral

$$Z = \int \mathcal{D}l \, e^{\frac{i}{\hbar} S_{\text{grav}}(l)}$$

Domain of integration very complicated to impose:

- lengths positive
- triangle inequalities
- tetrahedral inequalities

non-local complicated constraints action

Motivation: 3D gravity - path integral

$$Z = \int \mathcal{D}l \, e^{\frac{i}{\hbar} S_{\text{grav}}(l)}$$

Domain of integration very complicated to impose:

- lengths positive
- triangle inequalities
- tetrahedral inequalities

Trick: enlarge configuration space ... (and constrain again)

Triads and spin connection:

$$g = e \cdot e \ge 0$$
, ω

SU(2) gauge freedom (su(2)-valued one-forms)

Palatini action:

$$S = \int \text{Tr}(e \wedge F(\omega))$$

example for a BF action:

$$S = \int \operatorname{Tr}(B \wedge F(A))$$

$$(d-2)\text{-form}$$

defined in dimensions > I

[Horowitz 89]

path integral for Palatini action

path integral over flat connections

$$Z = \int \mathcal{D}[e]\mathcal{D}[\omega] \ e^{\frac{i}{2\ell_{\text{Pl}}} \int \text{Tr}(e \wedge F(\omega))} \quad \longrightarrow \quad Z = \int \mathcal{D}[\omega] \prod_{m} \delta(F_x[\omega])$$

$$Z = \int \mathcal{D}[\omega] \prod_{x} \delta(F_x[\omega])$$

path integral for Palatini action

path integral over flat connections

$$Z = \int \mathcal{D}[e]\mathcal{D}[\omega] \ e^{\frac{i}{2\ell_{\text{Pl}}} \int \text{Tr}(e \wedge F(\omega))} \quad \Longrightarrow \quad Z = \int \mathcal{D}[\omega] \ \prod_{x} \delta(F_x[\omega])$$

$$\rightsquigarrow$$

$$Z = \int \mathcal{D}[\omega] \prod_{x} \delta(F_x[\omega])$$

Regularize on a lattice (dual to a triangulation):

$$Z_{\text{PR-group}} = \left[\prod_{l} \int_{\text{SU}(2)} dg_l \right] \prod_{f} \delta \left(\stackrel{\longleftarrow}{\prod}_{l \ni f} g_l^{\epsilon(l,f)} \right),$$

path integral for Palatini action

$$\rightsquigarrow$$

path integral over flat connections

$$Z = \int \mathcal{D}[e]\mathcal{D}[\omega] \ e^{\frac{i}{2\ell_{\text{Pl}}} \int \text{Tr}(e \wedge F(\omega))} \quad \longrightarrow \quad Z = \int \mathcal{D}[\omega] \ \prod_{x} \delta(F_x[\omega])$$

$$\rightsquigarrow$$

$$Z = \int \mathcal{D}[\omega] \prod_{x} \delta(F_x[\omega])$$

Regularize on a lattice (dual to a triangulation):

$$Z_{\text{PR-group}} = \left[\prod_{l} \int_{\text{SU}(2)} dg_l \right] \prod_{f} \delta \left(\stackrel{\longleftarrow}{\prod}_{l \ni f} g_l^{\epsilon(l,f)} \right),$$

Variable transformation via group Fourier transform

$$\psi(g) = \sum_{j,m,n} \tilde{\psi}(j,m,n) D_{mn}^{j}(g)$$

Wigner (representation) matrices

into path integral

"State sum" over spin configurations (representation labels):

$$Z_{\text{PR-spin}} = \sum_{\{j_e\} \text{ tetra}} \{6j_{e \in \text{tetra}}\}$$

6j symbols (spin network evaluation) associated to tetrahedra

[Ponzano-Regge 1968; with positive CC: Turaev-Viro 90's]

Spins give length of edges. All inequalities implemented.

"State sum" over spin configurations (representation labels):

$$Z_{\text{PR-spin}} = \sum_{\{j_e\} \text{ tetra}} \{6j_{e \in \text{tetra}}\}$$

6j symbols (spin network evaluation) associated to tetrahedra

[Ponzano-Regge 1968;

with positive CC: Turaev-Viro 90's]

Spins give length of edges.
All inequalities implemented.

A very reasonable 3D quantum gravity theory:

- Well defined (after gauge fixing) path integral
- Diffeo-symmetry and consistent Hamiltonians / constraint algebra (translations of vertices)
- canonical quantization = path integral quantization
- equivalence to Chern-Simons quantization
- •

[Barrett, Bonzom, Crane, BD, Freidel, Livine, Louapre, Meusburger, Noui, Perez, Rovelli, ...]

"State sum" over spin configurations (representation labels):

$$Z_{\text{PR-spin}} = \sum_{\{j_e\} \text{ tetra}} \{6j_{e \in \text{tetra}}\}$$

6j symbols (spin network evaluation) associated to tetrahedra

[Ponzano-Regge 1968;

with positive CC: Turaev-Viro 90's]

Spins give length of edges.
All inequalities implemented.

A very reasonable 3D quantum gravity theory:

- Well defined (after gauge fixing) path integral
- Diffeo-symmetry and consistent Hamiltonians / constraint algebra (translations of vertices)
- canonical quantization = path integral quantization
- equivalence to Chern-Simons quantization
- •

[Barrett, Bonzom, Crane, BD, Freidel, Livine, Louapre, Meusburger, Noui, Perez, Rovelli, ...]

Holographic duals for finite boundaries. Reproduces BMS vacuum character in asymptotic limit.

[BD, Goeller, Livine, Riello '17, '18]

"State sum" over spin configurations (representation labels):

$$Z_{\text{PR-spin}} = \sum_{\{j_e\}} \prod_{\text{tetra}} \{6j_{e \in \text{tetra}}\}$$

6j symbols (spin network evaluation) associated to tetrahedra

[Ponzano-Regge 1968;

with positive CC: Turaev-Viro 90's]

Spins give length of edges.
All inequalities implemented.

A very reasonable 3D quantum gravity theory:

- Well defined (after gauge fixing) path integral
- Diffeo-symmetry and consistent Hamiltonians / constraint algebra (translations of vertices)
- canonical quantization = path integral quantization
- equivalence to Chern-Simons quantization
- •

[Barrett, Bonzom, Crane, BD, Freidel, Livine, Louapre, Meusburger, Noui, Perez, Rovelli, ...]

Holographic duals for finite boundaries. Reproduces BMS vacuum character in asymptotic limit.

[BD, Goeller, Livine, Riello '17, '18]

Open issues: sum over orientations, winding numbers (from holonomies), ...

(2+1)D quantum gravity

• Hilbert space spanned by spin network functions:

$$\psi(\{g_l\}) = \sum_{\{j_l\},\{\iota_\nu\}} \tilde{\psi}(\{j_l\},\{\iota_\nu\}) \prod_l D_{m_l n_l}^{j_l}(g_l) \prod_{\nu} \iota_{\nu}^{mm'n...}$$

- Quantum geometry operators, that measure lengths and (extrinsic curvature) angles.
- Arises also from quantization of (lattice) phase space:

$$\otimes_l T^*SU(2)$$

$$\{e_l^a, g_l\} = g_l \tau^a$$

Dimensions:

$$1 + 1 = 2$$

4D gravity?

Can we do a similar trick?

Palatini action non-linear in tetrads

$$S = \int \operatorname{Tr} * (e \wedge e) \wedge F(\omega)$$

4D gravity?

Can we do a similar trick?

Palatini action non-linear in tetrads

$$S = \int \operatorname{Tr} * (e \wedge e) \wedge F(\omega)$$

BF action (topological)

$$S = \int \operatorname{Tr} B \wedge F(A)$$
two-form

4D gravity?

Can we do a similar trick?

Palatini action

non-linear in tetrads

$$S = \int \operatorname{Tr} * (e \wedge e) \wedge F(\omega)$$

BF action

(topological)

$$S = \int \operatorname{Tr} B \wedge F(A)$$
two-form

Plebanski action

$$S = \int \operatorname{Tr} B \wedge F(A) + \operatorname{Tr} \phi B \wedge B$$

Simplicity constraints impose*:

$$B = \star e \wedge e$$

BF action, Plebanski action, Palatini (-Holst) action and Ashtekar (-Barbero) variables lead to similar phase space and quantum geometry.

(3+1)D Phase space and quantum geometry

$$\otimes_l T^*SU(2)$$

 B_l encodes normal to triangle

encodes extrinsic curvature angle (with caveat*)

Dimensions: 2+1=3

(3+1)D Phase space and quantum geometry

or

$$\otimes_l T^*SU(2)$$

 B_{l} encodes normal to triangle

 g_l encodes extrinsic curvature angle (with caveat*)

Dimensions: 2+1=3

Tetrads need to be reconstructed from normals.

(Issue for matter couplings.)

Problem (leading to caveat*):

Reconstructions from different tetrahedra do not fit (in shape).

[BD, Speziale '07; BD, Ryan 08,]

Simplicity constraints

Reconstructions from different tetrahedra do not fit (in shape).

[BD, Speziale '07; BD, Ryan '08,]

[Freidel, Speziale '10] Twisted Geometries

[BD, Ryan '07] Due to: Edge simplicity constraints are not imposed.

$$hol_{edge} \triangleright e(B) = e(B)$$

[BD, Ryan '10] Are equivalent to secondary simplicity constraints (and to reality conditions on Ashtekar connection). Needed to reconstruct Levi-Civita connection.

Basic variables:

A so(4) valued connection one-form

B so(4) valued two-form

1 + 2 = 3

conjugated to each other

Geometry:

(extrinsic)

curvature*

Areas

(normals to triangles)

Basic variables:

A so(4) valued connection one-form

B so(4) valued two-form

1 + 2 = 3

conjugated to each other

Geometry:

(extrinsic)

curvature*

Areas

(normals to triangles)

Hamiltonian:

$$F(A) = 0$$

Problem: Generates edge translations (instead of vertex translations).

Reason: is a two-form.

[Waelbroeck, Zapata 94]: Propose to break symmetry down to vertex translations. Would result in non-local expressions.

[Thiemann 96]:

Action based on tetrahedra. Geometric interpretation lost.

Basic variables:

A so(4) valued connection one-form

B so(4) valued two-form

1+2=3 conjugated to each other

Would like
a (tetrad) one-form.
But then miss

a dimension.

Basic variables:

A so(4) valued connection one-form

B so(4) valued two-form

1 + 2 = 3

conjugated to each other

Would likea (tetrad) one-form.But then miss

a dimension.

Trick: enlarge phase space ... (and constrain again)

Enlarge phase space

Basic variables:

A so(4) valued connection one-form

B so(4) valued two-form

$$1+2=3 \\$$
 conjugated to each other

Trick: enlarge phase space ... (and constrain again)

$$\sum \qquad \qquad E \\ \mathbb{R}^4 \text{ valued two-form}$$
 (2-connection)
$$2+1=3 \\ \text{conjugated to each other}$$

Enlarge phase space

Basic variables:

B so(4) valued two-form

$$1+2=3 \\$$
 conjugated to each other

Trick: enlarge phase space ... (and constrain again)

$$\sum$$
 E \mathbb{R}^4 valued two-form (2-connection) E^4 valued one-form $2+1=3$ conjugated to each other

Basic geometric variables.

Enlarge phase space

Basic variables:

A so(4) valued connection one-form

B so(4) valued two-form

$$1+2=3 \\$$
 conjugated to each other

Trick: enlarge phase space ... (and constrain again)

$$\sum \qquad \qquad E \\ \mathbb{R}^4 \text{ valued two-form} \\ \text{(2-connection)} \qquad \qquad \mathbb{R}^4 \text{ valued one-form} \\ 2+1=3 \\ \text{conjugated to each other}$$

2-curvature: $G = d_A \Sigma$

is a three-form. Will be important.

The BFCG action [Girelli, Pfeiffer, Popescu '07]

$$S = \int \operatorname{Tr}_{so(4)} B \wedge F(A) + \operatorname{Tr}_{\mathbb{R}^4} C \wedge G(A, \Sigma)$$

The BFCG action [Girelli, Pfeiffer, Popescu '07]

$$S = \int \operatorname{Tr}_{so(4)} B \wedge F(A) + \operatorname{Tr}_{\mathbb{R}^4} E \wedge G(A, \Sigma)$$

[Mikovic, Vojinovic 'I I]

The BFCG action

[Girelli, Pfeiffer, Popescu '07]

$$S=\int {
m Tr}_{so(4)} B\wedge F(A) \,+\, {
m Tr}_{{\Bbb R}^4} E\wedge G(A,\Sigma)$$
 [Mikovic, Vojinovic 'II]
$$=\int {
m Tr}_{so(4)} B\wedge F(A) \,-\, {
m Tr}_{{\Bbb R}^4} T(A,E)\wedge \Sigma \ T(A,E)=d_A E \quad {
m Torsion}$$

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers.

The BFCG action

[Girelli, Pfeiffer, Popescu '07]

$$S=\int {
m Tr}_{so(4)} B\wedge F(A) \,+\, {
m Tr}_{{\Bbb R}^4} E\wedge G(A,\Sigma)$$

$$=\int {
m Tr}_{so(4)} B\wedge F(A) \,-\, {
m Tr}_{{\Bbb R}^4} T(A,E)\wedge \Sigma \ T(A,E) = d_A E \quad {
m Torsion}$$

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers.

EOM:

$$F(A) = 0$$
$$G(A, \Sigma) = 0$$

$$d_A B - 2E \wedge \Sigma = 0$$
 Topological theory.
$$T(A, E) = 0$$

The BFCG action

[Girelli, Pfeiffer, Popescu '07]

$$S=\int {
m Tr}_{so(4)} B\wedge F(A) \,+\, {
m Tr}_{{\Bbb R}^4} E\wedge G(A,\Sigma)$$

$$=\int {
m Tr}_{so(4)} B\wedge F(A) \,-\, {
m Tr}_{{\Bbb R}^4} T(A,E)\wedge \Sigma \ T(A,E)=d_AE \quad {
m Torsion}$$

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers.

Constrain:

$$S = \int \operatorname{Tr}_{so(4)} B \wedge F(A) + \operatorname{Tr}_{\mathbb{R}^4} E \wedge G(A, \Sigma) + \operatorname{Tr}_{so(4)} \phi \left(B - *(E \wedge E) \right)$$

[Mikovic, Vojinovic '11; Mikovic, Oliveira, Vojinovic '15-'18] constraint analysis of (continuum) actions

Some EOM:
$$\phi = F$$

$$G = 2*(F \wedge E)$$

Key problem

- •Construction of spin/ representation pictures ("spin bubble model") was so far not available
- •Conjectured to be given by a model of quantum flat space (KBF model)

Key problem

- •Construction of spin/ representation pictures ("spin bubble model") was so far not available
- •Conjectured to be given by a model of quantum flat space (KBF model)

Plan: [Asante, BD, Girelli, Riello, Tsimiklis '19]

- •Quantization of the BFCG action and correspondence with KBF model
- •Key: solving part of the equations of motions (constraints), including edge simplicity constraints
- Construction of boundary Hilbert space:
 - with consistent constraints
 - G-network functions

Path integral

$$S = \int \operatorname{Tr}_{so(4)} B \wedge F(A) - \operatorname{Tr}_{\mathbb{R}^4} T(A, E) \wedge \Sigma$$

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers

$$Z = \int \mathcal{D}[A]\mathcal{D}[E] \prod_{x} \delta(F_x(A)) \prod_{x} \delta(T_x(A, E))$$

Path integral

$$S = \int \operatorname{Tr}_{so(4)} B \wedge F(A) - \operatorname{Tr}_{\mathbb{R}^4} T(A, E) \wedge \Sigma$$

Torsion freeness and vanishing curvature imposed by Lagrange multiplyers

$$Z = \int \mathcal{D}[A]\mathcal{D}[E] \prod_{x} \delta(F_x(A)) \prod_{x} \delta(T_x(A, E))$$

Regularize on a lattice: holonomies associated to dual links, four-vectors to edges:

$$Z_{
m discr} = \int \prod_{l} dg_l \prod_{e} dE_e \prod_{f} \delta_{SO(4)} \left({
m hol}_f(g)
ight) \prod_{t} \delta_{\mathbb{R}^4} \left(\sum_{e \in t} \pm E'_e
ight)$$
 I-Flatness constraint

Triangle closure constraint

Hypersurface triangulation: three tetrahedra meeting at an edge

Edge vector needs to be defined in one of the three adjacent tetrahedral reference systems; parallel transported to the others.

Towards a spin bubble model

One would now (2-)group Fourier-transform:

- SO(4)-group Fourier transform: not useful, as there are parallel transport matrices appearing in triangle closure constraints
- 2-group Fourier-transform: not known (no Peter-Weyl theorem)

Towards a spin bubble model

One would now (2-)group Fourier-transform:

- SO(4)-group Fourier transform: not useful, as there are parallel transport matrices appearing in triangle closure constraints
- 2-group Fourier-transform: not known (no Peter-Weyl theorem)

Way forward: [Asante, BD, Girelli, Riello, Tsimiklis '19]

• solve part of the delta-functions: triangle closures

Towards a spin bubble model

One would now (2-)group Fourier-transform:

- SO(4)-group Fourier transform: not useful, as there are parallel transport matrices appearing in triangle closure constraints
- 2-group Fourier-transform: not known (no Peter-Weyl theorem)

Way forward: [Asante, BD, Girelli, Riello, Tsimiklis '19]

- solve part of the delta-functions: triangle closures
- Key insight: includes edge simplicity constraints (half of I-flatness constraints)

$$\operatorname{hol_e}(\mathbf{g}) \triangleright E_e = E_e$$
 (on hypersurface)

Continuum:
$$d_A E = 0 \quad \Rightarrow \quad d_A d_A E = 0 \quad \Rightarrow \quad F \wedge E = 0$$

• make use of I-gauge invariance of path integral

Implementing torsion-freeness

(equivalent to primary and secondary simplicity constraints)

Step I:

- triangle closure constraint
- edge simplicity constraint

[BD, Ryan '10; Asante, BD, Girelli, Riello, Tsimiklis '19] Holonomies are Levi-Civita:

$$g = \operatorname{Boost}(\theta) \operatorname{Rot}(E)$$
Only free parameter:

extrinsic curvature

Implementing torsion-freeness

(equivalent to primary and secondary simplicity constraints)

Step 1:

- triangle closure constraint
- edge simplicity constraint

[BD, Ryan '10; Asante, BD, Girelli, Riello, Tsimiklis '19] Holonomies are Levi-Civita:

$$g = \operatorname{Boost}(\theta) \operatorname{Rot}(E)$$

Only free parameter:

extrinsic curvature

Step 2: Use this in the I-flatness constraints. This is an algebraic calculation and fixes:

$$\theta = \pm \Theta(E) = \pm \Theta(\ell)$$
 Length=norm of E

Just left with (ℓ, θ) variables.

Implementing torsion-freeness

(equivalent to primary and secondary simplicity constraints)

Step I:

- triangle closure constraint
- edge simplicity constraint

[BD, Ryan '10; Asante, BD, Girelli, Riello, Tsimiklis '19] Holonomies are Levi-Civita:

$$g = \operatorname{Boost}(\theta) \operatorname{Rot}(E)$$

Only free parameter:

extrinsic curvature

Step 2: Use this in the I-flatness constraints. This is an algebraic calculation and fixes:

$$\theta = \pm \Theta(E) = \pm \Theta(\ell)$$

Length=norm of E

Just left with (ℓ, θ) variables.

Step 3: U(I) Fourier transform

$$\delta(\theta \pm \Theta(l)) = \sum_{s \in \mathbb{Z}} e^{is(\theta \pm \Theta(l))}$$

Spin bubble model for quantum flat space-time

Obtain amplitudes of the KBF-model:

[Korepanov `02; Baratin, Freidel `07] turn it into well-defined model via gauge fixing

$$Z = \int \mathcal{D}[\ell_e] \sum_{\{s_t \in \mathbb{Z}\}, \{\epsilon_\sigma = \pm 1\}} \mu(\ell_e, s_t) \prod_{\sigma} \exp\left(i\epsilon_\sigma \sum_{t \in \sigma} s_t \Theta_t(\ell)\right)$$

Sum over s_t enforces flatness.

Spin bubble model for quantum flat space-time

Obtain amplitudes of the KBF-model:

[Korepanov `02; Baratin, Freidel `07] turn it into well-defined model via gauge fixing

$$Z = \int \mathcal{D}[\ell_e] \sum_{\{s_t \in \mathbb{Z}\}, \{\epsilon_\sigma = \pm 1\}} \mu(\ell_e, s_t) \prod_{\sigma} \exp\left(i\epsilon_\sigma \sum_{t \in \sigma} s_t \Theta_t(\ell)\right)$$

Sum over s_t enforces flatness.

[Baratin, Freidel \ 14]

This state sum model can be reconstructed from 2-group representation theory.

(Simplex amplitude = Contraction of 2-intertwiners)

 $l_e\,$ and $\,s_t\,$ are labels of representations and intertwiners of the Euclidean 2-group.

Obtain (Regge) gravity by constraining $\,s_t=a_t(l_e)$.

Boundary Hilbert space:

- quantization of all variables: $(B_t,g_l);(E_e,\Sigma_f)$
- consistent quantization of all constraints: I-Flatness, 2-Flatness, I-Gauss, 2-Gauss
- (first class) subalgebra: I-Gauss, 2-Gauss and Edge Simplicity
- reduced wave functions depend only on (ℓ, θ)

G-network functions

Future work: relate explicitly to 2-group representation theory.

• Hamiltonian: 2-Flatness constraint $G_c = \sum_{f \in c} \pm \Sigma_f'$

Generates vertex translations (diffeos) for the tetrad sector.

Summary and Outlook

Higher gauge theory:

An alternative approach to quantum geometry:

- Includes tetrads.
- Geometric transparent Hamiltonian and Diffeomorphism constraints.

Constructed relation between 2-group and 2-representation picture of quantum flat space model.

- •Boundary Hilbert space with all constraints.
- •G-network functions.

[Asante, BD, Girelli, Riello, Tsimiklis '19]

Summary and Outlook

Higher gauge theory:

An alternative approach to quantum geometry:

- Includes tetrads.
- Geometric transparent Hamiltonian and Diffeomorphism constraints.

Constructed relation between 2-group and 2-representation picture of quantum flat space model.

- •Boundary Hilbert space with all constraints.
- •G-network functions.

[Asante, BD, Girelli, Riello, Tsimiklis '19]

Infinite many things to do, both on the mathematical (TQFT) and physical (QG) side:

• (3+1)D flat space holography

- [Asante, BD, Haggard 18]
- construct explicit 2-group Fourier transform (for more general 2-groups)
- study defects: coupling to strings and particles
- connection to tele-parallel gravity
- generalize to homogeneously curved space-times (McDowell-Mansouri action)
- impose simplicity constraints: in phase space
- quantization: which spectra do survive?
- improve Hamiltonian constraints
- •