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Spin-foams:
Original goal: define path integral dynamics for loop
quantum gravity. [Rovelli-Reisenberger 1996]

‘New' spin-foam models:
[Freidel, Krasnov, 2007; E., Pereira, Livine, Rovelli 2007; Kaminski, Kisielowski,
Lewandowski 2009; Conrady, Hnybida 2010; Han, Th1emann 2010]

Coh. State approach to FK For y>1, >LQG
2" class constraints (= EPRL for y<1)

New basic element common to all of these models:
The use of linear simplicity constraints [E., Pereira, Rovelli 2007]

(will define later)
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Spin-foam models are arrived at via the Plebanski formulation of gravity:

Gravity = BF theory + simplicity constraints

JEURE by
Plebanski constraint: eUKL(BﬁingL — %nwpono‘m‘sBé‘éBgL) =()
Solutions are in 5 sectors:

BF theory: B/, wi o=, (B + %*B) A

(Ix). Bl ='*e! Ned:for some e

(I1+) B! = x2e!gref Ae” for some elIL

(deg) EUKLUWP"B%B%L = 0 (degenerate case).

In sector (II+), BF action reduces to Holst action of gravity:

o Fy e ﬁ f <€]JKL€K Ne* + %6] /\6]) A F1J

the Legendre transform of which is the basis of LQG.
ﬁ_——_ll.
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What we will show, #1: Linear simplicity imposes
restriction to (I11), (deg).

That is: its better than original Plebanski constraint, but
the theory still includes more than grav. sector.

Many of us were aware of these different sectors at some level,
but it was never made precise.

, ; Tension i :
Basic variables: Definition of Plebanski sectors:

Discrete - >  Continuum

Most precise 1s probably in Conrady and Freidel 2008 “On the
semiclassical limit of 4d spin-foam models”, but even there, one has
only a discrete analogue of the Plebanski sectors. There is still a gap.

In this talk we will bridge this gap.




Furthermore:
The asymptotics of the EPRL model [Barrett et al., 2009] :

Ae’isgrav _I_Ae—’isgrav +B€§Sgrav +C€_§Sgrav

But e*Psrav by itself is required for the correct classical
limit! Whence come the other terms?

What we will show, #2: These extra terms are caused
precisely by the non-(II+) sectors allowed by linear
simplicity.

That is: We will show that the simplicity constraints
being too weak is the reason for the wrong
semiclassical limit.




What we will show, #3: How to modify EPRL
vertex amplitude to restrict to only (II+).

Resulting vertex amplitude still has all the
properties we like about EPRL (1.QG boundary
states, linear in the boundary state, SU(2) gauge-
invariant), plus

e Only a single term e'Resze in the
asymptotics

e Degenerate configurations are ex-
ponentially suppressed

'—_-m_—-——m-__m—mm—-—-J .
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I
Discrete Plebanski Sectors
Defined




Consider oriented 4-simplex S. Number tetrahedra a=0, ... 4.

t, with orientation as part of §.

Label triangles by unordered pair (ab) of tetrahedra on either side:
A,p, with orientation as part of 0t,.

S and each tetrahedron has its own "frame'.
Variables:
Spin(4) 5 G4: Parallel transport from ‘a’-frame to ‘S’-frame.

50(1,3)  Bey = (B_,,B,) fA B!’ in the ‘a’-frame.’

ab?’

Bap(S) := G4 > Bgp : Transported to the ‘S’-frame.

Constraint (Part of def. of var.s): \B \2 \Bg:,ta\z




Constraints (consistency):

: O i B IJ
Orientation: Bab = —Bba

Closure: Zb#a BcILbJ == Q18 NE e Necessary b/c we rec.:onstruct Bﬁi as
« |constant in the 4-simplex:

oza Bii =85, B''=/, dB"/=0

Definition. A discrete Plebansk: field is a set of bivectors
{BI1, b =05 47 suchithat

i) BL =~Bf}

(11) Zb;éa Big o

o Let M :=R*, as oriented affine manifold with stan-
dard €, 0,

e O, defines notion of straight line segments

o 0, lets us identify 7, M for all p, and lets us identify
each T;, M with space of constant vector fields.
h——_——_J‘_
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Definition. A geometrical 4-simplex in M is the convex hull of
five points in M, not all of which lie in same 3-plane.

Definition. An ordered 4-simplex o is

e a geometrical 4-simplex in M with an assignment of 0,...4
to each of its 5 vertices ordered such that (01,02,03,04) has
positive orientation.

e Fach tetrahedron is labeled by the number of the vertex it
does not contain.

Definition. Let A,, = Ayp(0) denote triangle between tetrahedra
a and b, with orientation

eﬁg] = €792 N,) (Vo)
where (Ng)a, (IVp)a are any covariant outward normals to tetrahe-

dra a and b, respectively. (same as orientation as part of dt,, where
to has orientation as part of do.)

h——_-—_J‘_
: . ' 10




Lemma 1. Given a discrete Plebanski field { B!/} and any choice of
ordered 4-simplex o in M, there exists a unique constant so(1, 3)-
valued 2-form B/ILZ such that [Barrett, Fairbairn, Hellmann, 2009]

BcILE] e anb Fs:
Heuristic counting argument:
— Each Bl is skew 4 x 4: 6 vars
— B/c Bapy = —Bpa, only one indep. B per triangle
— 10 triangles x6 = 60
N

Closure: Zb#a BCIL;)] = 0, Va: Each eq’n has 6 compts. 5
eq’ns — but only 4 of them are indep. .. # of indep. closure
constraint compts =4 X 6 = 24

— 60 — 24 = 36 indep. compts.

But B{Li has also 6 x 6 = 36 compts. ‘W
_.
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Definition. We call Bii so-det. the ‘2-form of {B1/} adapted to o’.

Recall: (I£) B/ =4e! Ae’ for some €],

(I1+£) B! = x2e!’gref At for some elIL

(deg) EUKLUWP"BUBKL = 0 (degenerate case).

If {B:/} has.2-form adapted to o in Pleb. sector (I£), (II+), or

(deg), we say that {B./} is in Plebanski sector (I+), (1I+),
or (deg) relative to o.

Lemma 2. If a discrete Plebanski field B!/ -5 1sin a given Plebanski
sector relative to a given ordered 4-simplex o, then it is in the same
Plebanski sector relative to any ordered 4-simplex.
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Sketch of proof:
e Let a disc. Pleb. field {B!/}, and two ordered 4-simplices
1J o' glJ
o

0,0’ be given, and let 7B, ~ denote corresp. 2-forms.

e JIG € IGL(4) mapping each vertex of ¢ into the corresp.
vertex of ¢, in order.

e Because of the positive orientation condition on the vertices
of o and o', G € IGL(4)" (preserves orientation of M).

e Only structure used in constructing "Bii from o and {B!/}:
orient. of M and 0,. .". construction is IGL(4)™ covariant.

e As G-o0 =o', it follows GDUBZL,{ = "’B{Li.

e But action of G is via a specific orient. preserving diffeo. Ple-
banski sectors are invariant under orient. preserving diffeos.

/ . .
e Hence "B{Li and Bl{i are in the same Plebanski sector. W

ﬁ_.
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Thus, notion of discrete Pleb. field { B/ ;
being in a given Plebanski sector :
is wndependent of 4-simplex used. :
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1.
Sectors of Linear Simplicity
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Linear simplicity

(1) For each a, 3N! such that
(* By (S)Y (N, ) 7= 0 for:all b.

(One condition per tetrahedron.)

(1.) will be applied in the 4-simplex frame S. In the frame

of each tetrahedron a, we will impose a gauge-fired version of
(1.) with NIl.=NT.= (1 0,0,0):

b= 1, Bl ~0foralla#b

Solution parameterized by ‘reduced boundary data’
(naba Aaba Aba) .
Bap (B B+ ) %Aab(_naba nab)

ab’

ﬁ_.
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In 4-simplex frame S:

Bab(S) = GQDBab

1 -
| L X5 s, X ) B (A i, X

We have defined
e Meaning of Plebanski sectors for {Bq,(S5)}.

e Consequences of linear simplicity for {B,,(S)}.

17




The question 1s now well-defined.

1. Does linear simplicity imply {Bg(S)} is in
a Plebanski sector?

2. Which Plebanski sectors does linear simplic-
ity isolate?

We show the answers are
(1.) Yes and (2.) (II+), (II-), (deg)

18




Sketch of Proof:

IJ
Definition: (B%°")(0)!/ = A(Aab)%ﬁvf\’fb

where N, is outward pointing normal to tetrahedron a in o.

Lemma: {(B,,)(c)!’} is always in Plebanski sector (II+)!

Definition: If Y € SU(2) and five signs ¢, such that
St g D
we write {U2} ~ {U11.

Lemma: If {X -} ~ {XF} then {B""*(Aup, ngp, X))} is in (deg).

19




Reconstruction Theorem [Barrett et al., 2009]:

If e If linear simplicity is satisfied
o {Aup,ngp} is non-degenerate satisfying closure.
o { X} satisfies orientation constraint

o {XJ} A {Xs}

Then«3do:'such; that
B3 ( Ay, Mgy, XT) = uBE™(0)

where yu = £1 is indep. of ambig. in o.

Theorem: If {A.,,ny} is non-deg. and satisfies closure and
{X T} satisfies orientation,

(i) if {X} %4 {X;}}, then {B>¥®} is in (II4) or (II-), dep. on p.
(iL)if {X;} ~ {X;}}, then B®® is in (deg).




Summary:

Condition

Way imposed in EPRL
vertex

I ® Tetrahedron  non-
degeneracy
Closure
Orientation
Linear simplicity

Then: (II1), (II-), (deg)

Not imposed !

Imposed by asymptotics of
EPRL

Directly imposed

Possible cleaner result:

*Can we prove tetrahedron degeneracy implies (deg)?
(In fact this is what happens in EPRL vertex due to asymptotics!)
*If so, then first condition above can be dropped.

21




111

Vertex amplitude and
interpretation of the asymptotics
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SU(2) spin-nets on 0S: e

e Vi, — spin-k SU(2) rep. w

e one kqp and two Yup, Ypq € Vi, per triangle (ab)

e one SU(2) argument per triangle (ab)

e c: Vi x Vi — C — bilinear, skew symm. ‘e inner
product’ constructed from e€4p.

\Ij{k’abﬂpab} ({gab}) " Ha<b €(¢aba PEap (gab)wba)

W Hé’gG — Hggin@)

/o

tetrahedron node

23




Ay({kavs Yar}) = Av(¥{kap,1an})
e fSpin(4)5 Ha dG, (L\Ij{kabﬂpab}) (Gab)
where G := G;le.

e (5, integral can be viewed as integration over dis-
crete connection leading to the initial BF spin-

foam sum.

e In the asymptotic analysis [Barrett, et. al. 2009],
the GG, behave exactly like the parallel transports
from tetrahedra to the 4-simplex frame.

24




Perelomov coherent states: |k n) € V., n- L|k,n) = k|k,n)

Boundary coherent state:
\I,{kabanab} e \Ij{kabﬂpab} Wlth ‘¢ab> o ‘kab7 nab>

Is coherent boundary state corresponding to classical
reduced boundary data:

Aab — A(kab) = SWG’ykab, Ngp

(Note overall phase ambiguity in \If{kab,nab})

25




If {kqp, ngp} satisfies

>Tetrahedron non-degeneracy %

>Closure A

>Gluing constraint =~ 77T ! Eitiv o
then {kq.p, nqp} is Regge-like e

For Regge-like boundary data {k.p, ngs}, global phase am-

biguity in Wyg . o} can be fized [Barrett et al., 2009] —
Regge

yields the Regge state \I’{kab,nab}.

{kap, ngp} is a vector geometry if it satisfies closure, and (roughly
speaking) data from different tetrahedra still ‘fit’, but data
in each tetrahedron can be be degenerate.

‘——_——_J_
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Strategy:

e Write the vertex as integral over the G,’s

Ay ({Kab, Nav }) = fsmn(4) Fl dGoe®15e]

e Critical points: stationary S and maximal ReS
Critical point equations: Restriction on boundary data
/ for critical points to exist.
e Closure (Zb?ﬁa kb ap=x0)

e Orientation (XF >ng, = — X5 b ny,).

Just as in classical discrete theory!
Is consistent with interp. of G, = (X, X")
as parallel transports to 4-simplex frame .

27




Theorem (EPRL asymptotics) (Barrett et al., 2009). Sup-
pose B = {kqp, ngp} satisfies closure. Then in the limit A — oo,

1. If B is Regge-like, then
S
2. If B is not Regge-like, but is a vector geometry, then
Ao(T akaynas}) ~ A 2N (2)

3. If B is not a vector geometry, then A, (¥ iy, n,,3) decays ex-
ponentially with .

28




e Each term corresponds to a critical point in the GG, integral
of the vertex, and therefore a particular value of the {G,}’s.

e Can now ask: At each critical point, to what
Plebanski sector does {B""*(A(kap), Ny, Go)} belong?

1st two terms ] (IT+), (II-),
for Regge-like 5 " respectively

All other
non-exponentially _ (deg)

suppressed terms
in all cases




Proper EPRL vertex amplitude
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Can give an explicit expression for the geometrical bivectors
of o gauranteed by Reconstruction Thm!:

BPY(5) = A(kab)Bab({Gartr })(Ga - N) A (G - N)

where A! := (1,0,0,0) and

5ab({Ga’b’}) e _Sgn[eijk (Gac : N)i(Gad ; N)] (Gae : N)k
€tmn (Gre - N)H(Gpa - N)™(Gpe - N)"]

where {c,d,e} = {0,...4}\ {a, b} in any order, and sgn(0) := 0.

T termis ofiG e (X0 X oG 8 NS R (6 - Y
where ¢ := %ia"
4-dim. closure of B%”™ (o) was S VuNI=0

key in deriving signs!
‘——_——_J‘_
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Recall B2 (kap, Nap, Go) = pBE"™ (o)

We now have an explicit expression for both sides and hence for !

 LaRt ngom(g)IJBgfys(kabanabaGa)IJ
= 3 (pos, Const.)ﬁab({Ga/br})tr(ﬂ;Xa_bX;;)nflb

Thus, condition for (II+):

Barl{ Garp Ptrir X . X nt > 0

Is sufficient to also impose non-degeneracy!

We will partially quantize this condition
and 1nsert 1t into the vertex amplitude.
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Rewrite in terms of spatial rotation generators.

Spin(4) generators:

1 il {
o By e Pl LB 1)B"
b e ( bl " b) SWG,Y((’Y B, (v +1)B,)
e s e B B SR
167TG’}/ 24 abs Y ) h ) — 9 Y )Xab, Y )Xab

SU(2) spatial rotation generators:

S s R I e e

Bar({Gatp Ptr(n X XL VE > 0

33




s Vi — e = R VA
k,m) — |57,5 . k,m) where st := %(1 o) ke

€. ‘/j—,j+ X ‘/j—,j+ =7 Ca 6(&’_ %Y CY+,6_ X 6_‘_) = €<CY_,6_)€<Q’+,6+).

(L\P{kabﬂpab}) (Gab) i H ¢ (Lkab Vab, p(Gab)Lkabwba)
a<b

(ﬁébb‘l’{kcd,wcd}) (Gea) = 6(Lkabﬁi%b,P(Gab)bkabwba)
I eCratea, p(Gea)ih s tuc)

c<d,(cd)#(ab)

(Eéab‘l’{kcd,wcd}) (Crp=i= 6(Lkab%b,P(Gab)bkabﬁiwba)
Il eCratea p(Gea)ihoytiac)

c<d,(cd)#(ab)
\——_——_J_
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Original vertex expression
Av({kab, Yav}) = Ao(¥ ik, p0})

. / H dGa (L\Ij{kab,wa,b}) (Gab)
Spin(4)° ",

s /S [T dGa T etk abs (Gt tryta)

pin(4)° o ash

(Gapiim G2 56
Modification
e Would like to insert

O (Bao({Garw Ptr(ri X, X0 )LL)

L Buti ‘Léb is not in paﬁh integral! Instead 4, a vector in an irrep
of L!,: Quantize L.

® L. actson 1, via the SU(2) generators L. . we insert into each
face factor

N .

Pav({Garv'}) = Plo,00) (Bar({Garw Dir(ri X 5 X35 1)

ﬁ_.
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Yields "Proper EPRL vertex amplitude’

AL (b)) = | o LTG0 TT lurs s pGot)in Pro{Gorw )
pin

a<b

Note: Projector can be put anywhere in each face factor (Pyp if on left of
p(Gap), Pyg if on right), and vertex is the same.

Properties:

=>»SU(2) Spin-net data on boundary: can use to define SF dynamics for LQG

=» Linear in the boundary state --- needed for final transition amplitude to
be linear in initial and antilinear in final state

<Pphys\ija Pphys\Iji>phyS

=»One can show: SU(2) gauge-invariant

=»One can show: In asymptotics

e Only single term e'SResse,
e All deg. configurations exp. suppressed.
\——_——_J_
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Final Message

By defining the continuum 2-form assoc. to {Bg} via
B =i _ B, we have proven that

e Linear simplicity allows Plebanski sectors
(II+),(II-), and (deg). Only (II+) is usual
GR.

e In the asymptotics of EPRL: The config. at the crit-
ical point for the term e!“Resze is in (II+). For all
other terms they are in (II-) or (deg).

That is, non-GR asymptotics of EPRL is due to linear
simplicity being too weak!

‘——_——_J_
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By supplementing Linear Simplicity precisely by imposing
(II+), we obtain a new vertex amplitude not only with

*Same desireable properties of the EPRL model (LQG
boundary states, SU(2) inv., linearity in the boundary
state), but also

« Correct asymptotics (exp( iSRegge )28
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Outlook

=2 Lorentzian case: expected to be straightforward (if anyone
is motivated to work with me on this, let me know.)

=> General 4-cell (a la KKL): Basic ideas need to be
rethought.

o B[L:{ is over-constrained: More free components
of {BXJ1 than of B[Li :

e In existing definition of B4, ({Gaer}), that there
are 5 tetrahedra per 4-simplex is used in key way.

39




Sum over orientations of the 4-simplex

Before this work, it was sometimes said that (II+) and (II-) terms in
asymptotics correspond to sum over orientations of 4-simplex.

The above arguments lead to a different interpretation.

Difficulties I have regarding “sum over orientation interp.':

(1.) eOrientation 1s usually fixed once and for all just to be able to integrate
In a path integral, one sums over dynamical variables

*Orientation 1s a dynamical variable in neither GR nor BF theory
.. why does it make physical sense for there to be a sum

over orientations in the path integral?

(2.) What about (deg) sector terms? Does the 4-simplex have no
orientation in this sector? We can still integrate forms, so it seems it
must have an orientation.

'_-__-——_—_-_-_-———____——-J .
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