The 1/N Expansion in Colored Tensor Models Răzvan Gurău ILQGS, 2011 #### Introduction #### **Colored Tensor Models** Colored Graphs Jackets and the 1/N expansion **Topology** Leading order graphs are spheres #### Conclusion ## **Space-time and Scales** Space-time is one of the most fundamental notions is physics. In many theories (e.g. quantum mechanics) it appears as a fixed background. The distances and lapses of time are measured with respect to this fixed background. Scales encode causality: effective physics at large distance is determined by fundamental physics at short distance. General relativity promotes the metric to a dynamical variable, and the length scales become dynamical! - ► How to define background independent scales separating fundamental and effective physics? - ▶ How to obtain the usual space time as an effective phenomenon? ### **Matrix Models** A success story: Matrix Models in two dimensions - ▶ An ab initio combinatorial statistical theory. - Have built in scales N. - ► Generate ribbon graphs ↔ discretized surfaces. - ► They undergo a phase transition ("condensation") to a continuum theory of large surfaces. Physics: quantum gravity in D = 2, critical phenomena, conformal field theory, the theory of strong interactions, string theory, etc. Mathematics: knot theory, number theory and the Riemann hypothesis, invariants of algebraic curves, enumeration problems, etc. All these applications rely crucially on the "1/N" expansion! ## Ribbon Graphs as Feynman Graphs Consider the partition function. $$Z(Q) = \int [d\phi] e^{-N\left(\frac{1}{2} \sum \phi_{a_1 a_2} \delta_{a_1 b_1} \delta_{a_2 b_2} \phi^*_{b_1 b_2} + \lambda \sum \phi_{a_1 a_2} \phi_{a_2 a_3} \phi_{a_3 a_1}\right)}$$ Ribbon vertex because the field ϕ has two arguments. The lines conserve the two arguments (thus having two strands). Strands close into faces. Z(Q) is a sum over ribbon Feynman graphs. ## **Amplitude of Ribbon Graphs** The Amplitude of a graph with ${\cal N}$ vertices is $$A = \lambda^{\mathcal{N}} N^{-\mathcal{L} + \mathcal{N}} \sum \prod_{\mathsf{lines}} \delta_{a_1 b_1} \delta_{a_2 b_2}$$ $$\sum \delta_{a_1b_1}\delta_{b_1c_1}\dots\delta_{w_1a_1} = \sum \delta_{a_1a_1} = N$$ $$A = \lambda^{\mathcal{N}} N^{\mathcal{N} - \mathcal{L} + \mathcal{F}} = \lambda^{\mathcal{N}} N^{2 - 2g(\mathcal{G})}$$ with $g_{\mathcal{G}}$ is the genus of the graph. 1/N expansion in the genus. Planar graphs $(g_{\mathcal{G}}=0)$ dominate in the large N limit. ## Ribbon Graphs are Dual to Discrete Surfaces Place a point in the middle of each face. Draw a line crossing each ribbon line. The ribbon vertices correspond to triangles. A ribbon graph encodes unambiguously a gluing of triangles. Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman rules). The dominant planar graphs represent spheres. ### From Matrix to COLORED Tensor Models surfaces ↔ ribbon graphs D dimensional spaces \leftrightarrow colored stranded graphs Matrix M_{ab} . $$S = N \Big(M_{ab} \bar{M}_{ab} + \lambda M_{ab} M_{bc} M_{ca} \Big)$$ $$g(\mathcal{G}) \geq 0$$ genus $$1/N$$ expansion in the genus $A(G) = N^{2-2g(G)}$ leading order: $$g(\mathcal{G}) = 0$$, spheres. Tensors $$T^{i}_{a_{1}...a_{D}}$$ with color i $$S = N^{D/2} \left(T^{i}_{...} \overline{T}^{i}_{...} + \lambda T^{0}_{...} T^{1}_{...} \dots T^{D}_{...} \right)$$ $$\omega(\mathcal{G}) \geq 0$$ degree $$1/N$$ expansion in the degree $A(\mathcal{G}) = N^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$ leading order: $$\omega(\mathcal{G}) = 0$$, spheres. ## **Colored Stranded Graphs** Clockwise and anticlockwise turning colored vertices (positive and negative oriented D simplices). Lines have a well defined color and D parallel strands (D-1 simplices). Strands are identified by a couple of colors (D-2 simplices). ## **Action** Let $T^i_{a_1...a_D}$, $\bar{T}^i_{a_1...a_D}$ tensor fields with color $i=0\ldots D$. $$S = N^{D/2} \Big(\sum_{i} \bar{T}^{i}_{a_{1} \dots a_{D}} T^{i}_{a_{1} \dots a_{D}} + \lambda \prod_{i} T^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} + \bar{\lambda} \prod_{i} \bar{T}^{i}_{a_{ii-1} \dots a_{i0} a_{iD} \dots a_{ii+1}} \Big)$$ ## Topology of the Colored Graphs ### Amplitude of the graphs: - the $\mathcal{N}=2p$ vertices of a graph bring each $N^{D/2}$ - the \mathcal{L} lines of a graphs bring each $N^{-D/2}$ - ▶ the F faces of a graph bring each N $$A^{\mathcal{G}} = (\lambda \bar{\lambda})^p N^{-\mathcal{L}\frac{D}{2} + \mathcal{N}\frac{D}{2} + \mathcal{F}} = (\lambda \bar{\lambda})^p N^{-p\frac{D(D-1)}{2} + \mathcal{F}}$$ But $$\mathcal{N}(D+1) = 2\mathcal{L} \Rightarrow \mathcal{L} = (D+1)p$$ ## Jackets 1 Define simpler graphs. Idea: forget the interior strands! Leads to a ribbon graph. 02 and 13: opposing edges of the tetrahedron. But 01, 23 and 12, 03 are perfectly equivalent. Three jacket (ribbon) graphs. (D-1)! jackets. $\frac{1}{2}D!$ jackets. Contain all the vertices and all the lines of \mathcal{G} . A face belongs to $$0, \pi(0), \pi^2(0), \dots$$ The degree of \mathcal{G} is $\omega(\mathcal{G}) = \sum_{\mathcal{I}} g_{\mathcal{J}}$. # **Jackets 2: Jackets and Amplitude** #### **Theorem** \mathcal{F} and $\omega(\mathcal{G})$ are related by $$\mathcal{F} = \frac{1}{2}D(D-1)p + D - \frac{2}{(D-1)!}\omega(\mathcal{G})$$ **Proof:** $\mathcal{N} = 2p$, $\mathcal{L} = (D+1)p$ For each jacket \mathcal{J} , $2p - (D+1)p + \mathcal{F}_{\mathcal{J}} = 2 - 2g_{\mathcal{J}}$. Sum over the jackets: $$(D-1)!\mathcal{F} = \sum_{\mathcal{J}} \mathcal{F}_{\mathcal{J}} = \frac{1}{2}D!(D-1)p + D! - 2\sum_{\mathcal{J}} g_{\mathcal{J}}$$ The amplitude of a graph is given by its degree $$\mathcal{A}^{\mathcal{G}} = (\lambda \bar{\lambda})^p \ \mathsf{N}^{-p\frac{D(D-1)}{2} + \mathcal{F}} = (\lambda \bar{\lambda})^p \ \mathsf{N}^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$$ ## **Topology 1: Colored vs. Stranded Graphs** **THEOREM:** [M. Ferri and C. Gagliardi, '82] Any *D*-dimensional piecewise linear orientable manifold admits a colored triangulation. We have clockwise and anticlockwise turning vertices. Lines connect opposing vertices and have a color index. All the information is encoded in the colors represented as Conversely: expand the vertices into stranded vertices and the lines into stranded lines with parallel strands ## **Topology 2: Bubbles** The vertices of \mathcal{G} are subgraphs with 0 colors. The lines are subgraphs with exactly 1 color. The faces are subgraphs with exactly 2 colors. The *n*-bubbles are the maximally connected subgraphs with n fixed colors (denoted $\mathcal{B}_{(\sigma)}^{i_1...i_n}$, with $i_1 < \cdots < i_n$ the colors). A colored graph $\mathcal G$ is dual to an orientable, normal, D dimensional, simplicial pseudo manifold. Its n-bubbles are dual to the links of the D-n simplices of the pseudo manifold. ## **Topology 3: Homeomorphisms and 1-Dipoles** A 1-dipole: a line (say of color 0) connecting two vertices $v \in \mathcal{B}_{(\alpha)}^{1...D}$ and $w \in \mathcal{B}_{(\beta)}^{1...D}$ with $\mathcal{B}_{(\alpha)}^{1...D} \neq \mathcal{B}_{(\beta)}^{1...D}$. A 1-Dipole can be contracted, that is the lines together with the vertices v and w can be deleted from \mathcal{G} and the remaining lines reconnected respecting the coloring. Call the graph after contraction \mathcal{G}/d . **THEOREM:** [M. Ferri and C. Gagliardi, '82] If either $\mathcal{B}_{(\alpha)}^{1...D}$ or $\mathcal{B}_{(\beta)}^{1...D}$ is dual to a sphere, then the two pseudo manifolds dual to \mathcal{G} and \mathcal{G}/d are homeomorphic. It is in principle very difficult to check if a bubble is a sphere or not. ## Jackets, Bubbles, 1-Dipoles The *D*-bubbles $\mathcal{B}_{(\rho)}^{\widehat{i}}$ of \mathcal{G} are graphs with *D* colors, thus they admit jackets and have a degree. The degrees of \mathcal{G} and of its bubbles are not independent. ### **Theorem** $$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \left(p + D - \mathcal{B}^{[D]} \right) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$ #### **Theorem** The degree of the graph is invariant under 1-Dipole moves, $\omega(\mathcal{G}) = \omega(\mathcal{G}/d)$ ## **Degree** 0 **Graphs are Spheres** $$\omega(\mathcal{G}) = \frac{(D-1)!}{2} \Big(p + D - \mathcal{B}^{[D]} \Big) + \sum_{i,\rho} \omega(\mathcal{B}_{(\rho)}^{\hat{i}})$$ In a graph $\mathcal G$ with 2p vertices and $\mathcal B^{[D]}$ D-bubbles I contract a full set of 1-Dipoles and bring it to $\mathcal G_f$ with $2p_f$ vertices and exactly one D-bubble for each colors \widehat{i} . Every contraction: $p \to p-1$, $\mathcal B^{[D]} \to \mathcal B^{[D]} -1$ $$p - p_f = \mathcal{B}^{[D]} - \mathcal{B}_f^{[D]} = \mathcal{B}^{[D]} - (D+1) \Rightarrow p + D - \mathcal{B}^{[D]} = p_f - 1 \ge 0$$ Thus $$\omega(\mathcal{G}) = 0 \Rightarrow \omega(\mathcal{B}_{(\rho)}^{\hat{i}}) = 0.$$ #### **Theorem** If $\omega(\mathcal{G}) = 0$ then \mathcal{G} is dual to a D-dimensional sphere. **Proof:** Induction on D. D=2: the colored graphs are ribbon graphs and the degree is the genus. In D>2, $\omega(\mathcal{G})=0\Rightarrow\omega(\mathcal{B}_{(\rho)}^{\hat{i}})=0$ and all $\omega(\mathcal{B}_{(\rho)}^{\hat{i}})$ are a spheres by the induction hypothesis. 1-Dipole contractions do not change the degree and are homeomorphisms. \mathcal{G}_f is homeomorphic with \mathcal{G} and has $p_f=1$. The only graph with $p_f=1$ is a sphere. ### From Matrix to COLORED Tensor Models Tensors $T^{i}_{a_{1}...a_{D}}$ with color i $$S = N^{D/2} \left(T_{...}^{i} \bar{T}_{...}^{i} + \lambda T_{...}^{0} T_{...}^{1} \dots T_{...}^{D} + \bar{\lambda} \bar{T}_{...}^{0} \bar{T}_{...}^{1} \dots \bar{T}_{...}^{D} \right)$$ $$\omega(\mathcal{G}) = \sum_{\mathcal{J}} g_{\mathcal{J}} \geq 0$$ degree 1/N expansion in the degree $A(\mathcal{G}) = N^{D - \frac{2}{(D-1)!}\omega(\mathcal{G})}$ colored stranded graphs $\leftrightarrow D$ dimensional pseudo manifolds leading order: $\omega(\mathcal{G}) = 0$ are spheres ### **Conclusion: A To Do List** - ▶ Is the dominant sector summable? - Does it lead to a phase transition and a continuum theory? - What are the critical exponents? - Multi critical points? - More complex models, driven to the phase transition by renormalization group flow. - ▶ Generalize the results obtained using matrix models in higher dimensions.