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Space-time and Scales

Space-time is one of the most fundamental notions is physics. In many theories
(e.g. quantum mechanics) it appears as a fixed background. The distances and
lapses of time are measured with respect to this fixed background.

Scales encode causality: effective physics at large distance is determined by
fundamental physics at short distance.

General relativity promotes the metric to a dynamical variable, and the length
scales become dynamical!

» How to define background independent scales separating fundamental and
effective physics?

» How to obtain the usual space time as an effective phenomenon?
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Matrix Models

A success story: Matrix Models in two dimensions
» An ab initio combinatorial statistical theory.
» Have built in scales N.
» Generate ribbon graphs < discretized surfaces.
>

They undergo a phase transition (“condensation”) to a continuum theory of
large surfaces.

Physics: quantum gravity in D = 2, critical phenomena, conformal field theory, the
theory of strong interactions, string theory, etc.
Mathematics: knot theory, number theory and the Riemann hypothesis, invariants
of algebraic curves, enumeration problems, etc.

All these applications rely crucially on the “1/N" expansion!
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Ribbon Graphs as Feynman Graphs

Consider the partition function.

Z(Q) _ /[d(ﬁ] e_N(% Z¢31225a1b1632b2¢zlb2+kZ¢9122¢aza3¢a321)

¢ ¢

231N, 182

a,/\b‘
¢"’zﬁ3
Ribbon vertex because the field ¢ has two arguments.

The lines conserve the two arguments (thus having two strands).
Strands close into faces.

Z(Q) is a sum over ribbon Feynman graphs.
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Amplitude of Ribbon Graphs

The Amplitude of a graph with A/ vertices is

A= )\NN—L+N Z H 6alb1 522b2

lines

B
( Z 631b16b1c1 e 6W131 = Z (53131 =N

A= /\NNNfl:Jr}- — )\NN272g(g)

with gg is the genus of the graph. 1/N expansion in the genus. Planar graphs
(gg = 0) dominate in the large N limit.
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Ribbon Graphs are Dual to Discrete Surfaces

Conclusion

Place a point in the middle of each face. Draw
a line crossing each ribbon line. The ribbon
vertices correspond to triangles.

A ribbon graph encodes unambiguously a gluing of triangles.

Matrix models sum over all graphs (i.e. surfaces) with canonical weights (Feynman
rules). The dominant planar graphs represent spheres.
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From Matrix to C RED Tensor Models
D dimensional spaces <> colored
surfaces <> ribbon graphs stranded graphs
JIL L L N
i% ][l V<
Matrix M,p, Tensors T',,.. 2, with color i

S = N(Maoi + AMasMocMcp) S = NP/2(T7 T 4 ATO T2 TP)

g(G) > 0 genus w(G) > 0 degree
1/N expansion in the genus 1/N expansion in the degree
A(g) — N2—2g(g) A(g) ,w(g)

leading order: g(G) = 0, spheres. leading order: w(G) = 0, spheres.
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Colored Stranded Graphs

wlll w2

Clockwise and anticlockwise turning colored \\(
vertices (positive and negative oriented D T ‘ ’7 4//\
simplices).

m@
0

| ‘ Lo N
J‘ [ ‘L \\ QQ /

Lines have a well defined color and D parallel I o 1 >//\‘ 0 WR\(
strands (D — 1 simplices). o

0D

Strands are identified by a couple of colors (D — 2 simplices).
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" = I' . . 5
Let T, ., T2, ., tensor fields with color i=0...D .

D/2 Ti i i 5\ Ti
S = N / (Z T31~~»3D T31-~~3D + )\H Taii—l--~3i03/‘D»--3ii+1 + AH Taii—1-~~3r'03/'D---3ii+l>
Topology of the Colored Graphs

Amplitude of the graphs:
> the A/ = 2p vertices of a graph bring each NP/?
» the L lines of a graphs bring each N—P/2
> the F faces of a graph bring each N

A9 = ()\/_\)P N-L3+NE+F _ ()\S\)P N*P@‘F}—
But N(D+1)=2L=L=(D+1)p

Compute F !
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Jackets 1

Define simpler graphs. ldea: forget the interior strands! Leads to a ribbon graph.
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02 and 13: opposing edges of the tetrahedron. But 01, 23
and 12, 03 are perfectly equivalent. Three jacket (ribbon)
graphs.

o
G5

7(0)
! 7%(0) %D! jackets. Contain all the vertices and
2 05)% all the lines of G. A face belongs to
. (D —1)! jackets.

0,1,2,... 0,7(0), 7(0), ...

The degree of G is w(G) = >, 87.
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Jackets 2: Jackets and Amplitude

Theorem
F and w(G) are related by

]—':%D(D—l)p—}—D— w(G)

2
(D —1)!

Proof: N =2p, L=(D+1)p
For each jacket 7, 2p— (D + 1)p+ F7 =2 — 2g7.

Razvan Gurau,
Conclusion

Sum over the jackets: (D —1)\F =3, F7= iD(D—1)p+ D! — 2> 787

The amplitude of a graph is given by its degree

A9 — ()\)\)p N~ p2BlV 7 ()\)\) oy (9)
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Topology 1: Colored vs. Stranded Graphs

THEOREM: [M. Ferri and C. Gagliardi, '82] Any D-dimensional piecewise linear
orientable manifold admits a colored triangulation.

We have clockwise and anticlockwise turning vertices. Lines connect opposing
vertices and have a color index. All the information is encoded in the colors

represented as 3

Conversely: expand the vertices into stranded vertices and the lines into stranded
lines with parallel strands
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Topology 2: Bubbles

The vertices of G are subgraphs with 0 colors. The lines are subgraphs with exactly
1 color. The faces are subgraphs with exactly 2 colors.

The n-bubbles are the maximally connected subgraphs with n fixed colors (denoted
Bi,y", with iy < --- </, the colors).

@ GO @9
') 8

& O &

A colored graph G is dual to an orientable, normal, D dimensional, simplicial
pseudo manifold. Its n-bubbles are dual to the links of the D — n simplices of the
pseudo manifold.

B

@j
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Topology 3: Homeomorphisms and 1-Dipoles

;I L .D. . O\D/°
Ly w . ; .
270 T2 e

A 1-dipole: a line (say of color 0) connecting two vertices v € Bj;5° and
1..D 1..D 1..D
w € B(B) with B(a) # B(B) .
A 1-Dipole can be contracted, that is the lines together with the vertices v and w

can be deleted from G and the remaining lines reconnected respecting the coloring.
Call the graph after contraction G/d.

THEOREM: [M. Ferri and C. Gagliardi, '82] If either B(l('x')'D or B(IB')'D is dual to a
sphere, then the two pseudo manifolds dual to G and G/d are homeomorphic.

It is in principle very difficult to check if a bubble is a sphere or not.
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Jackets, Bubbles, 1-Dipoles

The D-bubbles B?p) of G are graphs with D colors, thus they admit jackets and
have a degree. The degrees of G and of its bubbles are not independent.

TheoremD ' _
—1)! i
w(G) = & (p +D— B[D]> + 32, w(B )

Theorem
The degree of the graph is invariant under 1-Dipole moves, w(G) = w(G/d)
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Degree 0 Graphs are Spheres
w(G) = @(P +D— BlD]) + Z,-,,,w(sz))

In a graph G with 2p vertices and BIP! D-bubbles | contract a full set of 1-Dipoles
and bring it to G with 2pf vertices and exactly one D-bubble for each colors /.
Every contraction: p — p — 1, BIPl — BIPl _1

p—pr=BP —BPI— Bl _(D4+1)= p+D—-BP =pr—1>0
Thus w(G) = 0 = w(B],)) = 0.
Theorem
If w(G) = 0 then G is dual to a D-dimensional sphere.

Proof: Induction on D. D = 2: the colored graphs are ribbon graphs and the
degree is the genus. In D > 2, w(G) = 0 = w(B(,)) = 0 and all w(B(,)) are a
spheres by the induction hypothesis. 1-Dipole contractions do not change the
degree and are homeomorphisms. G¢ is homeomorphic with G and has pr = 1.
The only graph with ps = 1 is a sphere.
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From Matrix to C RED Tensor Models

Tensors T',,.. ., with color i
S=NPR(T T +ATOT! .. TP 43T T ... 72)
w(G) =>_ 787 > 0 degree
1/N expansion in the degree A(G) = NP~ oEme(9)
colored stranded graphs <+ D dimensional pseudo manifolds

leading order: w(G) = 0 are spheres
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Conclusion: A To Do List

Is the dominant sector summable?

Does it lead to a phase transition and a continuum theory?
What are the critical exponents?

Multi critical points?

More complex models, driven to the phase transition by renormalization group
flow.

Generalize the results obtained using matrix models in higher dimensions.



	Introduction
	Colored Tensor Models
	Colored Graphs
	Jackets and the 1/N expansion
	Topology
	Leading order graphs are spheres

	Conclusion

