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Motivations

1. There have been arguments against the singularity resoluti
LQC using path integrals. The canonical quantization id wel
understood and the singularity resolution is robust, sorevde the
path integral arguments break down?

2. Recent developements have allowed for the constructioewf n
spin foam models that are more closely related to the caabnic
theory. It is important to make connections to spin-foams by
building path integrals from the canonical theory when paes

3. A path integral representation of Loop Quantum Cosmolodlyaid
in studying the physics of more complicated LQC modkls-(1,
A # 0, Bianchi). Using standard path integral techniques one ca
argue why the effective equations are so surprisingly ateur



Introduction

¢ We construct a path integral for the exactly soluble Loop ripuia
Cosmology starting with the canonical quantum theory.

e The construction defines each component of the path intdgagh
has non-trivial changes from the standard path integral.

e We see the origin of singularity resolution in the path inékg
representation of LQC.

e The structure of the path integral features similaritiespim foam
models.

e The path integral can give an argument for the surprisingracy
of the effective equations used in more complicated models.
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Path Integrals - Overview

e Path Integrals: Covariant formulation of quantum theorgressed
as a sum over paths

e Formally the path integral can be written as
/ DA/ o / DgDpeSar/h (1)

e To define a path integral directly involves defining the congius
of these formal expressions:

1. What is the space of patlaét) over which we integrate?
2. D: What is the measure on this space of paths?
3. gq]: What is the phase associated with each path.
e Each of these components can be determined by construbgng t
path integral from the canonical thedwhen possible).



Standard Construction

e Outline the standard construction of a path integral reprdion
for Non-Relativistic Quantum Mechanics with a polynomial
Hamiltonian,H(q, p).

¢ We want path integral representation of the propagator
(X[ AV = (X T'|x, 1) 2)

e Split the exponential into a product of N identical terms.

AR At
K| e™/"x) where ¢ = N (3)
n=1

¢ Insert a complete basis in x between each exponential.

(x|~ 1Re/h / X1 [Xn_1) (X1 |7 F/ ) (4)



Step 2 - Expand im and Evaluate

e By definingxy = X' & %o = x this can be written in a simple form.

(X |e T AAY Ay — [/dxm] xn\e Be/hlxe_1)  (5)

e Inthe limitN — oo (¢ — 0) we can expand each term in the 2nd
product of egn (5) irz.

(ale™ ™ a-1) = (ol L= iAe/ha-1) + O()  (6)
e This can be written as an integral over momengyn

A 1 )
<Xn|e—|He/h|Xn_1> — ﬁ/dpne!pn(xn—xn—l)/h @)

X [1—ieH(pn, Xn—1, Xn) /11 + O(2)]



Step 3

e Inserting the matrix elemen(xn|e—ip'€/h|xn_1> into the expression
for the full matrix element and simplifying.

N—-1 N
e 0t = i [ [ / dxm] Il [%h / dpn} ®)

N
g 2rs(Pra 20/ TT 11 ek (P, Yo Xo1) /5 4 O()]
n=1

e The limitN — oo defines the measure of the phase space path
integral integral as the integral over the position at e&uoke t
between t & t’ and the integral over all momenta.

e Almost in path integral form, except the final product.



Infinite Product: Re-Exponentiation

e The infinite product has the form

N
Lim [I(1+ane+O(?) where = At/N 9)
—00 n=1

e If a, = a Vn: Recall from intro calculus
Lim (1+ae+ O(E))N = AT (10)
—0Q

e If the terms are not the same for all n this can be generalized.
Lim ﬂ(l + 8ne) = Limezn-1dne (11)
N—oo ne1 N—oo
Extending to the product in the previous slide

N N
Lim ]__[1[1—ieH(pn,xn,17xn)h+0(ez)] = exp —i/hNLiToz:leH(pmxnl,xn)]
n= n=

(12



Final Result

e Combining these results:
3 N-1 N g
(X |e AR — NL—i!l]O H [/ dxm} H [%/dpn}
m=1 n=1
exp (i/h 9x, p, N])

e Where we recognize S as the discretized action.

N
S%, P, N] = € (Pn(%n — Xn—1)/€ — H]Xy, Xa—1, Pr])

n=1

e Inthe limitN — oo this is the action

Sipl = [ ck(pi— H(xp)

(13)

(14)

(15)



Overview of Path Integral Construction

Strategy to construct path integral
1. Start from the propagatdx’, t’'|x, t)

a b w DN

Splite A4 into N copiese—i<H/?

Insert a complete basis between each factar61/7
Evaluate eacl(lxn|e—”q€/h|xn_1> to first order ine
Re-exponentiate resulting expression.



SLQC - Classical

We work with k=0 FRW model in the h; variables with a scalar

field. 2 s
a’°Vv 47T’Y Pa
_. v — 16
e With Poisson bracket
{b,v} =2/h (17)

Classically they have rande-co, o).
To simplify the constraint the lapse is chosen td\be: a>N’

The phase space action is then

/
S— / dt[byg + Py — %(pé — 31h?Gb?1?)] (18)



Argument Against Singularity Resolution

We can try to construct a path integral directly from thissslaal
theory.

The path integral will be something of the form,

WV v, t) = /DbDV...eiS/h (19)

The action evaluated along the classical path betwesamd.’ is

s= P _inww) (20)

V12rG

Quantum corrections are negligible whgn >> #
No quantum corrections to classical singular path®lo bounce!




SLQC - Physical Hilbert Space

¢ We will construct the path integral starting from the phgsidilbert
space of SLQC.

e The physical states are solutions to the quantum Hamilonia
constraint.

02 (v, ¢) = —Ov(v, ¢) (21)
e The physical Hilbert space can be obtained by group avegagin
procedure.
¢ Find that physical states satisfy a Schrodinger like eqoati

—i0y0(v, 6) = VOU (1, 0) (22)
e The physical inner product is.
1 _
Wl = 5 3 Sl doialvde)  (23)

v=4n\



Schrodinger Eqgr-~ Path Integral Construction

e We have SLQC written in the form of a Schrodinger equatiorh wit
as time, so we apply the construction above to obtain a p&thrial.

e Similar to the construction in non-relativistic quantumahanics
we want a path integral representation of the propagator.

W 16VP2) = (v, 6) (24)

e More generally we could construct the path integral from the
definition of the physical inner product in terms of groupraggng.



SLQC Propagator - Exact

We have some knowledge of the exact propagator.
One can show that

W, ¢, d)=0 if v/<0& v>0 (25)

This allows us to simplify the calculations by restrictirgptositive
or negativer

The propagator can be written as an integral.

w/A by B ,
W) = g [ b -t o)

+(Ap — —A9)



Step 1 - Split Exponential/Insert Complete Basis

¢ As before we split the exponential into N copies and insert a
complete basis af between each.

=< > Wl )] (27)

v=4n\

e Giving

W, ¢, ¢) = H[ Zw]ﬂ[ NEACI. 1>} (28)

e Important difference: Instead of continuous integralsdlae
discrete sums over at eachp.

e The next step is to compute each term of the product:

(0] vn_1) (29)



Step 2 - Evaluate Each Term in Product

Want to evaluate each term to first ordekin

(0l €8 1) (30)

Problem: Even computing to first order in epsilon requiresvking
the spectrum 0®

The resolution is to rewrite each term as

L — 0 9] €
e ns) = [ dpilpalO(pa) [ Nz @D

X eip¢ne/h< |e |62ﬁ(p¢n2 h®)|y >

We then only need to evaluate the the following to first order i

epsilon.
Nn

vn-1) (32)

<Vn|



Step 2b - Try Again

e Evaluating this term is simple given the action®f

<1/ |e| fLNn |1/ > )\ s %SWGU Vn+Vn_1
n n—1 o1 Un,Vn—1 € 2 4)2" 2

X [(5Vn71’n71+4>\ + 5Vn,anl—‘D\ - 25Vn71/n—1] + 0(62))

(33)

e Expressed as an integral by writing the delta functions tegials

over b.
1 A2 [7/A ENM 37G  vn+ v 14
— dbpe ! (n=vn-1)bn/2]q ) TS (Ab
Up_1 T2 0 e [ He—= 2 )2 Un 2 ( n)]

(34)



Step 3 - Re-exponentiate

e Combining together the results from the previous slides and
re-exponentiating the product we arrive at the path integra

(V' ', ¢) = Lim (

N-1
1 A /A 9] € 53]

N
h (I/n — I/nfl) Nn > 37T'Gh2 Un + Vn-1 _. o2 \
exp— ) e [p¢n —5 b - (05, — Sz 1S (Abp’

n=1

e Where the discretized action is

N

S = Do 5, (36)

2 €
n=1

N 3rGh? Un+ Un-1 .
—5 (Ff, — 5z vn-1m g sin?(Aby)

¢ There are non-trivial changes to the space of paths, measwue
action.



Allowed Paths in by

e Space of Paths: Defined by the range of integration at ea&h tim
o Pathsy(¢) are discrete v(¢) € (4X,8),12),...)

o Pathsb(¢) are continuous, but boundeb(¢) e [0, 7/ )]

e We are integrating only over discrete quantum geometries

¢ Similar situation to that of spin foam models

» Would try to define path integral over continuous figtdsaind*A
» Instead integrate over discrete geometries.

e The space of paths has been modified due to the kinematical
structure of LQC.

e The measure has changed - but is a natural measure on thésafpac
paths.



Phase- Effective Action

e The phase associated to each path is not the classical.action

N

h(vn— vn—
S o= Y e |:p¢n _ Ewb” (37)
n=1
_M 2 3rG Vn+Vn_1 .

2%, - St )

e This is a discretized version of an effective action whichtams
non-perturbative quantum corrections.

¢ h.. N[, 31Gh ,.,

¢ This is the effective action that well approximates the duan
dynamics.



Simplify Path Integral -/ DvDbDNDp,, — [ DvDb

e Possible to integrate out variables to obtain a simpleresgion?
e Want configuration space path integral.
e We can integrate out N armj to obtain a path integral over b and

only.
N—1 N x/
W, o, &) = Limiﬂ [Z H[ / ] (39)
\/SwGhz Mt (Abn)_g( _V”_l)bn]

N—oo 0
Py Z 2 2 ¢

e Equivalent to solving the constraint Path integral on constraint
surface.




Configuration Space P4 Spin foam

e Can further integrate out b to obtain the following.

. ¢'lv.¢) = Lim 3 " A(0) (40)

e Whereoy = (vn, UN-1, -..., V1, ) IS @ Sequence of
e A(o) is the amplitude associated to each sequence, which is a
product of "vertex amplitudes"

A(o) = [ Avn, vh-1) (41)
n
¢ The vertex amplitudes are roughly

3rG
A(l/n, l/n_l) ~ \]Vn*Vn71 € —2\/1/n—1(1/n + Vn—l) (42)
o 2\




Singularity Resolution

e Use path integral over, b, py, N.

e The path integral is not dominated by the classical singular
solutions.
e The classical solutions are not in the space of paths weratieg
over.
» Classicallyb — oo at singularity.
» Pathsb(¢) in path integral are bounded.
» Minimumv = 4\
e The action appearing in the path integral is not the clakai#on,
so the there are different "classical paths" that conteibbatthe path
integral.

e The singularity resolution seems to arise due to both theictaen
to discrete geometries and to the effective action.



> foTr/A - f_ococ f—ococ

e We can see that the singularity resolution is due primaalihe
effective action.

e The discrete sums overand the integrals over b can be
transformed into integrals over the whole real linezaindb

/A oo 00
3 / db — / dv / db (43)
Un 0 —00 —00

¢ This transforms the space of paths and the measure to thtise of
standard path integral.

e The only change from the standard path integral is the action

37Gh?
)\2

N

h
Sv, b, py, N] = /dqb[pqs — V- §(p$ -

V2 sir?(\b))]
(44)



Singularity Resolution

e The path integral is then dominated by the extrema of the e
action.

h N 3rGh? , .
..o, N| = [ dolp, — b~ 5 (5 — 512 SiF(Ab))]

(45)

e The "classical solutions¥%g; to this action are the bouncing
solutions.

e The action can be computed along these bouncing solutions
betweerv andv/’.

e Si (Xt ) is large in units oft — loop corrections are negligible.

e Provides an additional explanation for the accuracy of ffectve
equations.



Physics of More Complex LQC Models

e Many of the results here can be extended to more complicafsd L
models including the k=1 case and# 0.

e For these models there are also effective equations which
approximate the quantum dynamics with surprising accuracy

e The accuracy is not well understood.

e Assumptions used to derive them from Geometric QM (Willis,
Taveras) fail in high curvature region.

e Extend path integral argument from k=0 case.

e Expect that the action appearing in the path integral is tleeté/e
action which gives effective equations.

e This action evaluated along its "classical solutions" igdan units
of 7, so loop corrections are negligible.



Conclusions

¢ We construct a path integral representation for exactlytdelLQC
starting from the canonical quantization.

e Due to the kinematical structure of LQC the paths integratest
are discrete quantum geometries. Similar to spin foam nsodel

e The path integral can be written as a sum over sequencesfain
amplitude for each sequence which is given by a product atéxe
amplitudes”.

e The modified action appearing in the path integral has bognci
solutions as its "classical solutions" which provides ajuarent for
singularity resolution from the path integral represeatat

e The path integral representation of more complicated LQ@ats0
may provide an argument for the surprising accuracy of tfectfe
equations.
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