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Motivations

1. There have been arguments against the singularity resolution in
LQC using path integrals. The canonical quantization is well
understood and the singularity resolution is robust, so where do the
path integral arguments break down?

2. Recent developements have allowed for the construction of new
spin foam models that are more closely related to the canonical
theory. It is important to make connections to spin-foams by
building path integrals from the canonical theory when possible.

3. A path integral representation of Loop Quantum Cosmology will aid
in studying the physics of more complicated LQC models (k = 1,
Λ 6= 0, Bianchi). Using standard path integral techniques one can
argue why the effective equations are so surprisingly accurate.



Introduction

• We construct a path integral for the exactly soluble Loop Quantum
Cosmology starting with the canonical quantum theory.

• The construction defines each component of the path integral. Each
has non-trivial changes from the standard path integral.

• We see the origin of singularity resolution in the path integral
representation of LQC.

• The structure of the path integral features similarities tospin foam
models.

• The path integral can give an argument for the surprising accuracy
of the effective equations used in more complicated models.
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Path Integrals - Overview

• Path Integrals: Covariant formulation of quantum theory expressed
as a sum over paths

• Formally the path integral can be written as
∫

DqeiS[q]/~ or
∫

DqDpeiS[q,p]/~ (1)

• To define a path integral directly involves defining the components
of these formal expressions:

1. What is the space of pathsq(t) over which we integrate?
2. D: What is the measure on this space of paths?
3. S[q]: What is the phase associated with each path.

• Each of these components can be determined by constructing the
path integral from the canonical theory(when possible).



Standard Construction

• Outline the standard construction of a path integral representation
for Non-Relativistic Quantum Mechanics with a polynomial
Hamiltonian,H(q, p).

• We want path integral representation of the propagator

〈x′|e−iĤ∆t/~|x〉 = 〈x′, t′|x, t〉 (2)

• Split the exponential into a product of N identical terms.

〈x′|
N∏

n=1

e−iĤǫ/~|x〉 where ǫ =
∆t
N

(3)

• Insert a complete basis in x between each exponential.

〈x′|e−iĤǫ/~

∫
dxn−1|xn−1〉〈xn−1|e−iĤǫ/~...|x〉 (4)



Step 2 - Expand inǫ and Evaluate

• By definingxN = x′ & x0 = x this can be written in a simple form.

〈x′|e−iĤ∆t/~|x〉 =

N−1∏

m=1

[∫
dxm

] N∏

n=1

〈xn|e−iĤǫ/~|xn−1〉 (5)

• In the limit N → ∞ (ǫ→ 0) we can expand each term in the 2nd
product of eqn (5) inǫ.

〈xn|e−iĤǫ/~|xn−1〉 = 〈xn|1− iĤǫ/~|xn−1〉 + O(ǫ2) (6)

• This can be written as an integral over momentumpn.

〈xn|e−iĤǫ/~|xn−1〉 =
1

2π~

∫
dpneipn(xn−xn−1)/~ (7)

× [1− iǫH(pn, xn−1, xn)/~ + O(ǫ2)]



Step 3

• Inserting the matrix elements〈xn|e−iĤǫ/~|xn−1〉 into the expression
for the full matrix element and simplifying.

〈x′|e−iĤ∆t/~|x〉 = Lim
N→∞

N−1∏

m=1

[∫
dxm

] N∏

n=1

[
1

2π~

∫
dpn

]
(8)

eiǫ
PN

n=1(pn(xn−xn−1)/ǫ~)
N∏

n=1

[1− iǫH(pn, xn, xn−1)/~ + O(ǫ2)]

• The limit N → ∞ defines the measure of the phase space path
integral integral as the integral over the position at each time
between t & t’ and the integral over all momenta.

• Almost in path integral form, except the final product.



Infinite Product: Re-Exponentiation

• The infinite product has the form

Lim
N→∞

N∏

n=1

(1 + anǫ+ O(ǫ2)) where ǫ = ∆t/N (9)

• If an = a ∀n: Recall from intro calculus

Lim
N→∞

(1 + aǫ+ O(ǫ2))N = ea∆T (10)

• If the terms are not the same for all n this can be generalized.

Lim
N→∞

N∏

n=1

(1 + anǫ) = Lim
N→∞

e
PN

n=1 anǫ (11)

Extending to the product in the previous slide

Lim
N→∞

N∏

n=1

[1−iǫH(pn, xn−1, xn)~+O(ǫ2)] = exp

[
−i/~ Lim

N→∞

N∑

n=1

ǫH(pn, xn−1, xn)

]

(12)



Final Result

• Combining these results:

〈x′|e−iĤ∆t/~|x〉 = Lim
N→∞

N−1∏

m=1

[∫
dxm

] N∏

n=1

[
1

2π~

∫
dpn

]
(13)

exp
(

i/~ S[x, p,N]
)

• Where we recognize S as the discretized action.

S[x, p,N] =

N∑

n=1

ǫ (pn(xn − xn−1)/ǫ− H[xn, xn−1, pn]) (14)

• In the limit N → ∞ this is the action

S[x, p] =

∫
dt(pẋ − H(x, p)) (15)



Overview of Path Integral Construction

Strategy to construct path integral

1. Start from the propagator〈x′, t′|x, t〉
2. Split e−i∆t/~bH into N copiese−iǫbH/~

3. Insert a complete basis between each factor ofe−iǫbH/~

4. Evaluate each〈xn|e−iĤǫ/~|xn−1〉 to first order inǫ

5. Re-exponentiate resulting expression.



SLQC - Classical

• We work with k=0 FRW model in the b,ν variables with a scalar
field.

ν = ε
a3oV

2πℓ2
Plγ

, b = −ε4πγG
3oV

pa

a2 (16)

• With Poisson bracket
{b, ν} = 2/~ (17)

• Classically they have range(−∞,∞).

• To simplify the constraint the lapse is chosen to beN = a3N′

• The phase space action is then

S =

∫
dt[ḃν

~

2
+ pφφ̇− N′

2
(p2

φ − 3π~
2Gb2ν2)] (18)



Argument Against Singularity Resolution

• We can try to construct a path integral directly from this classical
theory.

• The path integral will be something of the form,

〈ν ′, t′|ν, t〉 =

∫
DbDν...eiS/~ (19)

• The action evaluated along the classical path betweenν andν ′ is

S =
pφ√
12πG

ln(ν/ν ′) (20)

• Quantum corrections are negligible whenScl >> ~

• No quantum corrections to classical singular paths→ No bounce!



SLQC - Physical Hilbert Space

• We will construct the path integral starting from the physical Hilbert
space of SLQC.

• The physical states are solutions to the quantum Hamiltonian
constraint.

∂2
φψ(ν, φ) = −Θ̂ψ(ν, φ) (21)

• The physical Hilbert space can be obtained by group averaging
procedure.

• Find that physical states satisfy a Schrodinger like equation.

−i∂φψ(ν, φ) =
√̂

Θψ(ν, φ) (22)

• The physical inner product is.

〈ψ1|ψ2〉 =
λ

π

∑

ν=4nλ

1
|ν| ψ̄1(ν, φo)ψ2(ν, φo) (23)



Schrodinger Eqn→ Path Integral Construction

• We have SLQC written in the form of a Schrodinger equation with φ
as time, so we apply the construction above to obtain a path integral.

• Similar to the construction in non-relativistic quantum mechanics
we want a path integral representation of the propagator.

〈ν ′|eid
√

Θ∆φ|ν〉 = 〈ν ′, φ′|ν, φ〉 (24)

• More generally we could construct the path integral from the
definition of the physical inner product in terms of group averaging.



SLQC Propagator - Exact

• We have some knowledge of the exact propagator.

• One can show that

〈ν ′, φ′|ν, φ〉 = 0 if ν ′ < 0 & ν > 0 (25)

• This allows us to simplify the calculations by restricting to positive
or negativeν

• The propagator can be written as an integral.

〈ν ′, φ′|ν, φ〉 =
λ

2πν

∫ π/λ

0
db ei[ bν

2 − 1
λ

tan−1(e∆φ tan(λb/2))ν′](26)

+(∆φ→ −∆φ)



Step 1 - Split Exponential/Insert Complete Basis

• As before we split the exponential into N copies and insert a
complete basis ofν between each.

1 =
π

λ

∑

ν=4nλ

|ν| |ν〉〈ν| (27)

• Giving

〈ν ′, φ′|ν, φ〉 =
N−1∏

n=1

[
π

λ

∑

νn

|νn|
]

N∏

n=1

[
〈νn|eiǫd√

Θ|νn−1〉
]

(28)

• Important difference: Instead of continuous integrals there are
discrete sums overν at eachφ.

• The next step is to compute each term of the product:

〈νn|eiǫd√
Θ|νn−1〉 (29)



Step 2 - Evaluate Each Term in Product

• Want to evaluate each term to first order inǫ

〈νn|eiǫd√
Θ|νn−1〉 (30)

• Problem: Even computing to first order in epsilon requires knowing
the spectrum of̂Θ

• The resolution is to rewrite each term as

〈νn|eiǫd√
Θ|νn−1〉 =

∫ ∞

−∞
dpφn |pφn |Θ(pφn)

∫ ∞

−∞
dNn

ǫ

2π~
(31)

x eipφn ǫ/~〈νn|e−iǫ Nn
2~

(pφn
2−~

2 bΘ)|νn−1〉

• We then only need to evaluate the the following to first order in
epsilon.

〈νn|eiǫ ~Nn
2

bΘ)|νn−1〉 (32)



Step 2b - Try Again

• Evaluating this term is simple given the action ofΘ̂

〈νn|eiǫ ~Nn
2

bΘ|νn−1〉 =
λ

πνn−1

(
δνn,νn−1 − iǫ

~Nn

2
3πG
4λ2 νn

νn + νn−1

2
(33)

× [δνn,νn−1+4λ + δνn,νn−1−4λ − 2δνn,νn−1] + O(ǫ2)
)

• Expressed as an integral by writing the delta functions as integrals
over b.

1
νn−1

λ2

π2

∫ π/λ

0
dbne−i(νn−νn−1)bn/2[1+iǫ

~Nn

2
3πG
λ2 νn

νn + νn−1

2
sin2(λbn)]

(34)



Step 3 - Re-exponentiate

• Combining together the results from the previous slides and
re-exponentiating the product we arrive at the path integral:

〈ν ′, φ′|ν, φ〉 = Lim
N→∞

(35)

1
ν0

N−1∏

n=1

[∑

vn

]
N∏

n=1

[
λ

π

∫ π/λ

0
dbn

∫ ∞

−∞
dpφn |pφn |Θ(pφn)

ǫ

2π~

∫ ∞

−∞
dNn

]

exp
i
~

N∑

n=1

ǫ

[
pφn −

~

2
(νn − νn−1)

ǫ
bn −

Nn

2
(p2

φn
− 3πG~

2

λ2 νn−1
νn + νn−1

2
sin2(λbn))

• Where the discretized action is

SN =
N∑

n=1

ǫ

[
pφn −

~

2
(νn − νn−1)

ǫ
bn (36)

−Nn

2
(p2

φn
− 3πG~

2

λ2 νn−1
νn + νn−1

2
sin2(λbn)

]

• There are non-trivial changes to the space of paths, measure, and
action.



Allowed Paths in b,ν

• Space of Paths: Defined by the range of integration at each time.

• Pathsν(φ) are discrete :ν(φ) ǫ (4λ,8λ,12λ, ...)

• Pathsb(φ) are continuous, but bounded:b(φ) ǫ [0, π/λ]

• We are integrating only over discrete quantum geometries
• Similar situation to that of spin foam models

◮ Would try to define path integral over continuous fields4e and4A
◮ Instead integrate over discrete geometries.

• The space of paths has been modified due to the kinematical
structure of LQC.

• The measure has changed - but is a natural measure on this space of
paths.



Phase∼ Effective Action

• The phase associated to each path is not the classical action.

SN =

N∑

n=1

ǫ

[
pφn −

~

2
(νn − νn−1)

ǫ
bn (37)

−Nn

2
(p2

φn
− 3πG

λ2 νn−1
νn + νn−1

2
sin2(λbn)

]

• This is a discretized version of an effective action which contains
non-perturbative quantum corrections.

S =

∫ φ′

φ
dφ

[
pφ − ~

2
ν̇b − N

2

(
p2

φ − 3πG~
2

λ2 ν2sin2(λb)

)]
(38)

• This is the effective action that well approximates the quantum
dynamics.



Simplify Path Integral -
∫
DνDbDNDpφ →

∫
DνDb

• Possible to integrate out variables to obtain a simpler expression?

• Want configuration space path integral.

• We can integrate out N andpφ to obtain a path integral over b andν
only.

〈ν ′, φ′|ν, φ〉 = Lim
N→∞

1
ν0

N−1∏

n=1

[∑

vn

]
N∏

n=1

[
λ

π

∫ π/λ

0
dbn

]
(39)

exp
i
~

N∑

n=1

ǫ

[√
3πG~2

λ2 νn−1
νn + νn−1

2
sin(λbn) −

~

2
(νn − νn−1)

ǫ
bn

]

• Equivalent to solving the constraint→ Path integral on constraint
surface.



Configuration Space P.I.∼ Spin foam

• Can further integrate out b to obtain the following.

〈ν ′, φ′|ν, φ〉 = Lim
N→∞

∑

σN

A(σ) (40)

• WhereσN = (νN , νN−1, ...., ν1, ν0) is a sequence ofν
• A(σ) is the amplitude associated to each sequence, which is a

product of "vertex amplitudes"

A(σ) =
∏

n

A(νn, νn−1) (41)

• The vertex amplitudes are roughly

A(νn, νn−1) ≈ J νn−νn−1
2λ

(
ǫ

√
3πG
2λ2

√
νn−1(νn + νn−1)

)
(42)



Singularity Resolution

• Use path integral overν, b, pφ,N.

• The path integral is not dominated by the classical singular
solutions.

• The classical solutions are not in the space of paths we integrate
over.

◮ Classicallyb → ∞ at singularity.
◮ Pathsb(φ) in path integral are bounded.
◮ Minimum ν = 4λ

• The action appearing in the path integral is not the classical action,
so the there are different "classical paths" that contribute to the path
integral.

• The singularity resolution seems to arise due to both the restriction
to discrete geometries and to the effective action.



∑
ν

∫ π/λ
0 →

∫∞
−∞
∫∞
−∞

• We can see that the singularity resolution is due primarily to the
effective action.

• The discrete sums overν and the integrals over b can be
transformed into integrals over the whole real line ofν andb

∑

νn

∫ π/λ

0
db →

∫ ∞

−∞
dν
∫ ∞

−∞
db (43)

• This transforms the space of paths and the measure to those ofthe
standard path integral.

• The only change from the standard path integral is the action.

S[ν, b, pφ,N] =

∫
dφ[pφ − ~

2
bv̇ − N

2
(p2

φ − 3πG~
2

λ2 ν2 sin2(λb))]

(44)



Singularity Resolution

• The path integral is then dominated by the extrema of the effective
action.

S[ν, b, pφ,N] =

∫
dφ[pφ − ~

2
bv̇ − N

2
(p2

φ − 3πG~
2

λ2 ν2 sin2(λb))]

(45)

• The "classical solutions",xeff to this action are the bouncing
solutions.

• The action can be computed along these bouncing solutions
betweenν andν ′.

• Seff (xeff ) is large in units of~ → loop corrections are negligible.

• Provides an additional explanation for the accuracy of the effective
equations.



Physics of More Complex LQC Models

• Many of the results here can be extended to more complicated LQC
models including the k=1 case andΛ 6= 0.

• For these models there are also effective equations which
approximate the quantum dynamics with surprising accuracy.

• The accuracy is not well understood.

• Assumptions used to derive them from Geometric QM (Willis,
Taveras) fail in high curvature region.

• Extend path integral argument from k=0 case.

• Expect that the action appearing in the path integral is the effective
action which gives effective equations.

• This action evaluated along its "classical solutions" is large in units
of ~, so loop corrections are negligible.



Conclusions

• We construct a path integral representation for exactly soluble LQC
starting from the canonical quantization.

• Due to the kinematical structure of LQC the paths integratedover
are discrete quantum geometries. Similar to spin foam models.

• The path integral can be written as a sum over sequences ofν of an
amplitude for each sequence which is given by a product of "vertex
amplitudes".

• The modified action appearing in the path integral has bouncing
solutions as its "classical solutions" which provides an argument for
singularity resolution from the path integral representation.

• The path integral representation of more complicated LQC models
may provide an argument for the surprising accuracy of the effective
equations.
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