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FRW model with massless scalar field

Symmetry reduction of gravity coupled to the massless
scalar field

{φ,pφ} = 1, {c, v} = 1, (1)

Only one constraint left

p2
φ

v
− vc2 = 0 (2)

Solving constraint (deparametrization through the scalar
field)

pφ = ±
√

v2c2 = ±|vc|, Θ = v2c2 (3)

Superselection + (we will see the problem ...)
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LQC models

What is Loop Quantum Cosmology:
LQC is not symmetry reduction of Loop Quantum Gravity,
but inspired quantization of homogeneous mini super
space.
Can we obtain it from LQG?
[Engle, Fleischhack, Hanusch, Thiemann, Vilensky...]

As relation to LQG unclear, can we trust that predictions of
LQC still holds in LQG?

Importance of LQC
It serves as a testing ground for LQG
It provides effective geometries for cosmological
computations (CMB , dressed metric)
[Agullo, Ashtekar, Dapor, Lewandowski, Singh, ...]
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LQC models

The Hilbert space (after symmetry reduction v → −v )

H =

{
f : Z+ → C,

∑
v

B(v)|f (v)|2 <∞

}

Operator ĤLQC = +
√

Θ̂LQC

Θ̂LQC = −B(v)−1(C(v)ĥ+1 + C0(v) + C(v − 1)ĥ−1)

where ĥ±1 are shifts by 1.

Case Λ = 0, k = 0
In what follows only asymptotic expansions of C,C0 and B
matter.

New model [Yang, Ding, Ma], [Dapor, Liegener] Θ̂LQC 5-term
difference equation.
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Details skipping constants...

Θ̂LQC = −B(v)−1(C(v)ĥ+1 + C0(v) + C(v − 1)ĥ−1)

with coefficients admitting expansion in v−1 with first terms

C(v) = v +
1
2

+ a +
b
v

+ O(v−2) (4)

C0(v) = −2v − 2a− 2b
v

+ O(v−2) (5)

B(v) =
1
v

+ O(v−2) (6)

Covers [Ashtekar, Pawłowski, Singh],
[Mena-Marugan, Martin-Benito, Olmedo]
[Ashtekar, Corichi, Singh],...
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Semi-classical dynamics

Observations about the limits
States peaked on high energy are also peaked on high
volumes. In the Fourier transform picture

L2(S1), v̂ = i∂c , ĥ+1 = eic (7)

it corresponds to high momenta (similar to large j limit in
spin foams).
Moreover large v limit also appears at late time.
Limit of physical interests c → 0 (small curvature).
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Semi-classical dynamics

Semi-classical dynamics [Bojowald], [Taveras]

Define Θeff as an expectation value in suitable coherent
state peaked at (v , c) (ambiguity)

Θeff = 4v2 sin2 c
2

+ O(1)? (7)

It can be computed by naive replacement

v̂ → v , ĥ+1 → eic (8)

the ordering ambiguity gives O(v).
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Semi-classical dynamics

Elliptic case:
Semi-classical behaviour captured in effective dynamics for
Λ < 0

ΘΛ
eff = v2

(
4 sin2 c

2
− Λ

)
+ O(v) (7)

when coefficient at v2 always nonzero (PDO).
The details of the classical evolution for Λ = 0, k = 0
depend on O(v) for large volume (late times), but not close
to the bounce (elliptic region).
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Semi-classical dynamics

Can we always trust semi-classical dynamics in elliptic
region? Is it in semi-classical limit local like the classical
dynamics?
Can we extend it to the late time asymptotics?
Numerical studies: States peaked on high energies follow
semi-classical trajectories (c(t), v(t))

±
√

Θeff = ±2|v |
∣∣∣sin

c
2

∣∣∣ (7)

Is it really true? [Dapor, WK, Liegener, in progress]
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Semi-classical dynamics

Semi-classical hamiltonian

±
√

Θeff = ±2|v |
∣∣∣sin

c
2

∣∣∣ (7)

We can attack evolution problem directly
[Bojowald], [Bojowald, Skirzewski], [Ashtekar, Corich, Singh],
[Dapor, WK, Liegener in progress].
Better?
Consider asymptotic behaviour of the eigenfunctions of Θ̂
and derive properties of evolution afterwards
[Ashtekar, Pawlowski, Singh], [WK, Pawlowski].
Better developed for LQC.
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Main result
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Eigenfunctions Θ̂eω = ω2eω (reminder)

v |ω| expansion for large energies ω
Turning point (large energies) better description
in Fourier representation
Asymptotic behaviour for large volume v , all ω 6= 0.
Sensitive to the details of the hamiltonian.
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Transfer matrix [Ashtekar, Pawlowski, Singh], [WK, Pawlowski]

Compute bn(ω) for ω ∈ C \ iZ order by order

dω(v) = exp

(∑
n=1

bn(ω)

vn

)
. (8)

such that (as a series in v−1)

C(v)dω(v + 1) + (B(v)ω2 + C0(v)) + C(v − 1)d−1
ω (v) = 0 (9)

There are two solutions d±ω (v).

b±1 (ω) = ±iω (10)
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Transfer matrix [Ashtekar, Pawlowski, Singh], [WK, Pawlowski]

Compute bn(ω) for ω ∈ C \ iZ order by order

dω(v) = exp

(∑
n=1

bn(ω)

vn

)
. (8)

Taking finite truncation we define

φ±N =
v∏

v ′=1

d±ω,N(v ′), (Θ̂− ω2)φ±N = O(v−N) (9)
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Transfer matrix [Ashtekar, Pawlowski, Singh], [WK, Pawlowski]

Compute bn(ω) for ω ∈ C \ iZ order by order

dω(v) = exp

(∑
n=1

bn(ω)

vn

)
. (8)

Transfer matrix M
(d =number of terms−1) approximate solutions, M
error ×‖M−1‖ is summable

then there exist solutions with given asymptotics.

We have two solutions (without conditions at 0) with
asymptotics

v±iω(1 + O(v−1)) (9)
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Properties of the solutions

The solution to

Θ̂eω(v) = ω2eω(v), eω(1) = 1 (10)

satisfying symmetric condition at 0
in our case asymptotics of solutions v±iω.
for any ω /∈ iZ satisfies

|eω(v)| = O
(

v |=ω|
)

(11)

Moreover, for ω real they are generalized eigenfunctions
for positive part of the spectrum of Θ̂ (spectrum R+)
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Argument

Let us assume that ψ ∈ D(v̂β) for β > 0. The function

f (ω) = 〈ψ,eω〉 := 〈vβψ, v−βeω〉, f (ω) = f (−ω) (12)

is holomorphic in a strip {z ∈ C : |=z| < β} \ iZ

W. Kamiński Volume in LQC



Argument

If eit
√

Θ̂ψ ∈ D(v̂β) then the same is true for the function

f̃ (ω) = 〈eit
√

Θ̂ψ,eω〉 (12)

From eigenfunction expansion f̃ (ω) = e−itωf (ω) for ω ∈ R+

The analytic extension e−itωf (ω) is not symmetric.
...unless f (ω) = 0 and Θ̂Ψ = 0
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A puzzling result

The result

State Ψ ∈ D(v̂β) can stay in D(v̂β) under the evolution only if it
is supported on nonpositive spectrum.

In APS and MMO it means that Ψ = 0.
The problem with the volume was suspected before
[Varadarajan’ 08], etc

Questions:
Why it was not noticed in numerical simulations?
Tension with results from the exactly solvable models like
[Ashtekar, Corichi, Singh]
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Example from WdW

Similar result can be proven in the context of WdW model

Θ = −(v∂v )2, H = L2(R+, v−1dv) (13)

Change of variables x = ln v ⇒ Klein-Gordon equation

positive momenta right moving, negative momenta left moving.

Let us consider a Gaussian state

Ψ̂t (p) = ei|p|t Ψ̂(p) (14)

Evolved state is non-smooth at p = 0.
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Fourier transform

Fourier transform dominated by p = 0 part

Ψt (x) =
Ct

x2 + O(x−3), Ct ≈ Ψ̂′t (0) (15)

Ψt (v) = Ct
ln2 v

+ O(ln−3 v) /∈ D(v̂β)

However Ψ̂′t (0) ≈ e−σp2
0 very small for cases used in

numerical studies.

Conjecture
Non-integrable part is so small that it is invisible in the
numerical simulations.
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Solvable models

We can divide our state into a smooth part

Ψ̂s
t (p) = eipt Ψ̂(p) (16)

and the remainder

R̂t (p) =

{
2i sin ptΨ̂(p), p < 0
0, p ≥ 0

(17)

The remainder is small but responsible for the problem with the
volume.
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Solvable models

Solvable models
Assumption that Rt can be omitted.

Now we know that it is not allowed
... but the evolved state still nicely peaked at the
semi-classically evolved v0(t), however not in the sense of
expectation values.
The expectation value of v̂ in Ψs

t follows semi-classical
trajectory (proposition for definition of the semi-classical
volume?).
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Locality

The evolution seems to depend on the hamiltonian far from the
region in which we evolve

2v sin
c
2
, 2|v |

∣∣∣sin
c
2

∣∣∣ , (16)

Semi-classical dynamics ←→ Quantum dynamics
local non-local in phase space.

Maybe still semi-local in some class of bounded observables?
In fact already 〈ln vt〉 well defined.
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Conclusions
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Physical consequences

Dressed metric approach [Ashtekar, WK, Lewandowski], [Agullo],
[Dapor, Lewandowski] etc.

Quantum field evolves as in the effective metric.
Based on approximations (hard to justify)
This metric is expressed through 〈v̂β〉t =∞.

Questions
1 Can we trust these approximations?
2 What we should place instead of ill-defined quantities?

Work in progress [Kolanowski, WK, Lewandowski, in prep.]

W. Kamiński Volume in LQC



Outlook

The evolution of the volume is ill-defined,
It is an issue for k = 0 and Λ = 0 model

1 not clear what happens for Λ > 0,
2 the problem disappears for Λ < 0,
3 It is probably also present in recent models DL-YDM

The reason is restriction to +
√

Θ sector.

Conjecture
Some versions of group averaging may lead to non-problematic
evolution (but observable will mix sectors)

Thank you!
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