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W. Kamiński, TP: arXiv:1001.2663

A. Ashtekar, TP unpublished
– p. 1



The problem
Loop quantization of the isotropic/homogeneous cosmological
models ⇒ changes of the dynamics at near-Planck densities causing
the Big Bounce.
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Observation: States sharply peaked throughout the evolution.

Problem: In numerical simulations one has to select an example of
the state for evolution:

is the preservation of the semiclassicality robust?

Addressing on the quantum level: Monte Carlo methods – probing
the space of solutions via random samples (brute force approach).

Need to run large number of time-costly simulations!

Any Alternative approach?
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Alternatives
If the system solvable analytically: One can find the relation between
dispersions at distant future and past.

Affirmative answer in sLQC: A. Corichi, P. Singh, arXiv:0710.4543
States sufficiently sharply peaked initially remain so!
Problem: We need exact solvability of the system.

Semiclassical dynamics: M. Bojowald at al, arXiv:0911.4950, ...

Choose canonical pair of variables X,P s.t. X,P and the
momenta Gm,n := 〈(X̂ −X)m(P̂ − P )n〉 form closed algebra with
evolution generator.
Capture the quantum dynamics as the EOMs for Gm,n.
Problem: Definiteness of the system of EOMs requires
|Gm,n| <∞: states decay faster than polynomially for both X,P .
If X,P chosen naively, for many systems such states may not
exist!

The goal: Flexible and reliable method of comparing the distant
future and past states.
The means: The scattering picture.
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Outline

An application to the simplest model:

The flat FRW universe: specification.

Geometrodynamical (WDW) vs LQC quantization.

Method introduction for Λ = 0

WDW limit of LQC state.
The definition of the scattering picture.
An application: relation between dispersions.

More complicated application: Λ > 0

WDW and LQC quantum system, deSitter limit.
The instantiations.
Appl: semiclassicality preservation between the cycles of
evolution.

Summary: Results and method properties.
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An example model
Flat isotropic universe with massless scalar field.

Spacetime: manifold M × R where M is topologically R
3.

M × {t} (where t ∈ R) – homogeneous slices.

Metric: g = −dt2 + a2(t)oq
oq - flat fiducial metric (dx2 + dy2 + dz2).

The treatment:
The degrees of freedom (canonical variables):

Geometry: (v, b), v - prop. to the volume of chosen fiducial
region.
Matter: (φ, pφ), φ - scalar field value

The quantization:
Matter: standard Schrödinger representation
Geometry:
· Wheeler-DeWitt: Schrödinger representation
· LQC: methods of Loop Quantum Gravity

Nontrivial Hamiltonian constraint: Dirac program.
Scalar field used as an internal time
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Wheeler-DeWitt quantization
All elements expressed in (c, p, φ, pφ). Standard quantization.

Kinematical Hibert space: (v ∝ sgn(p)|p|3/2)

Hkin = Hgrav ⊗Hφ, Hgrav = L2(R, dv), Hφ = L2(R, dφ).

Basic operators: (p̂, ĉ ∝ i∂p, φ̂, p̂φ ∝ i∂φ).

Basis: eigenstates (v|p̂ = v(v|, (φ|φ̂ = φ(φ|.
Quantum constraint:
[∂2φΨ](v, φ) = −[ΘΨ](v, φ) := 12πG[(v∂v)

2 + v∂v + 1/4]Ψ(v, φ).

Physical states: Ψ(v, φ) =
∫

R
dkΨ̃(k)ek(v)e

iωφ,

Ψ̃ ∈ L2(R, dk), ω =
√
12πG|k|, ek(v) = (1/

√
2πv)eik ln(v).

Observables:
p̂φ : Ψ̃(k) 7→ ~ω(k)Ψ̃(k),

ln(v)φo
: Ψ(v, φ) 7→ ei

√
Θ(φ−φo) ln(v)Ψ(v, φo).

Dynamics:
Two classes: ever contracting and ever expanding.
The dispersions σln(v)φ are constant.
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WDW dynamics
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LQC quantization
Geometry polymeric, matter standard, structure analogous

Kinematics:
Geometry space: Hgrav = L2(RBohrdµBohr).

Geometry basis: |v〉 : 〈v|v′〉 = δvv′ .

Basic operators: holonomies h = e
∫
γ
Adx, fluxes S =

∫

S
⋆Edσ.

The constraint: reexpressed in terms of ĥ, Ŝ

[Θψ](v) = −f+(v)ψ(v + 4) + fo(v)ψ(v)− f−(v)ψ(v − 4)

for large v: fo,±(v) ∝ v2.

The physical states: Ψ(v, φ) =
∫

R+ dkΨ̃(k)ek(v)e
iωφ

Ψ̃ ∈ L2(R+, dk), ω =
√
12πG|k|, Θek(v) = ω2(k)ek(v).

Dirac observables: analogous to WDW.

The dynamics:
in distant future and past agreement with GR,
bounce in the Planck regime (energy densities).
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LQC dynamics
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WDW limit of LQC states
fo,± - real: ek are standing waves.

Observation: converge to WDW standing waves.

ek(v) = ψ
k
(v) +O(|ek(v)|(k/v)2)

ψ
k
(v) := r(k)[eiα(k)ek(v) + e−iα(k)e−k(v)]

Comp. of LQC and WDW norms + self-adjointness of Θ: r(k) = 2

Analytical proof:
reformulation of the diff. equation in the 1st order form,
(local) decomp. of the LQC eigenf. in terms of WDW ones,
asymptotic properties of the resulting transfer matrix.

Properties of the phase shifts:
Analytic results for sLQC: simple analytic form of the
eigenfunctions in the momentum of v + stationary phase method
α(k) = −k(ln |k| − 1)− (3/4)π + o(k0)

α′(k) = − ln |k|+O(k−1 ln |k|)
Numerical results for: APS, sLQC, MMO:
α′(k) = − ln |k|+O(k−2)
|kα′′(k)| ≤ 1
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The phase shifts

Properties analyzed analytically and numerically:

Analytic results for sLQC: simple analytic form of the eigenfunctions
in the momentum of v + stationary phase method

α(k) = −k(ln |k| − 1)− (3/4)π + o(k0)

α′(k) = − ln |k|+O(k−1 ln |k|)
Numerical results for: APS, sLQC, MMO:

α′(k) = − ln |k|+O(k−2)

|kα′′(k)| ≤ 1

Very regular behavior!
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Phase shift properties

α′(k).
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Phase shift properties

kα′′(k).
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The scattering picture
WDW limit: ek(v) → ψ

k
(v)

Ψ̃(|k|) 7→ Ψ̃(k) = 2ei sgn(k)α(|k|) sgn(k)Ψ̃(|k|)
Two components: Ψ̃±(k) = θ(±k)Ψ̃(k)

The limits of observables:

limφ→±∞〈Ψ| ln(v)φ|Ψ〉 = 〈Ψ±| ln(v)φ|Ψ±〉,
limφ→±∞〈Ψ|∆ln(v)φ|Ψ〉 = 〈Ψ±|∆ln(v)φ|Ψ±〉 =: σ±.

Interpretation as a scattering process:

|Ψ〉in 7→ |Ψ〉out = ρ̂ |Ψ〉in , Ψ̃in(k) := Ψ̃+(k), Ψ̃out(k) := Ψ̃−(k)

The scattering matrix:

ρ(k, k′) = (ek|ρ̂|ek′) = e−i sgn(k′)α(|k′|)δ(k + k′).

The transformation: total reflection

Ψ̃(k) 7→ UΨ̃(k) := e2i sgn(k)α(|k|)Ψ̃(−k)
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The scattering
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The dispersion growth
An application: comparizon of the dispersions of ln(v)φ.

Action on Hphy: ln |v̂|φΨ̃ = [−i∂k − (∂kω(k))φÎ]Ψ̃

The relation between action on limits: 〈Ô〉± := 〈Ψ±|Ô|Ψ±〉
〈−i∂k〉− = 〈U−1[−i∂k]U〉+, 〈∆[−i∂k]〉− = 〈∆U−1[−i∂k]U〉+.

where U−1[−i∂k]U = −i∂k − 2α′
I.

The effects on dispersions: (σA+B ≤ σA + σB - Schwartz ineq.)

σ− ≤ σ+ + 2〈∆α′
I〉+

Estimate via dispersion in ω:
General inequality:
〈∆α′

I〉2+ = 〈(α′2 − 〈α′〉+)2 I〉+ ≤ 〈(α′2 − α′⋆)2 I〉+.

The choice: α′⋆ = α′(exp(λ⋆)), λ⋆ := 〈ln(k)〉+ and props. of α′

give: 〈∆α′
I〉2+ ≤ 〈(ln(k̂)− λ⋆I)2〉+ = 〈∆ln(k̂)〉2+ =: σ2

⋆

The final inequality:

σ− ≤ σ+ + 2σ⋆
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Summary
The results: Devised method of comparing the properties of distant
future and distant past states

does not require exact solvability
uses only asymptotic properties of phys. Hilbert space basis
is general (without restriction to particular types/shapes of states),
in genuinely quantum (no semiclassical approximations of any
kind),
application to FRW with massless scalar:
general triangle inequalities on dispersions. Strict upper bound
on eventual dispersion growth.
Just the upper bound, the actual dispersion may even shrink.

Universe’s memory has to be indeed very sharp !
generalization:

isotropic sector of Bianchi I
slightly weaker version: vacuum Bianchi I: arXiv:0906.3751

further extension: Λ > 0 (see 2nd part).
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Λ > 0 - WDW model

Hamiltonian constraint:

−∂2φ = Θo − πGγ2∆ΛI = ΘΛ

ΘΛ admits 1d family of selfadjoint extensions, labeled by β ∈ U(1)

Each extension ΘΛβ has continuous spectrum: Sp(|ΘΛβ |) = R
+

Physical states:

Ψ(v, φ) =
∫∞

0
dkΨ̃(k)eβk(v)e

iωφ, ω =
√
12πGk

eβk(v) =
1√
|v|

[c1(β,Λ, k)H
(1)
ik (av) + c2(β,Λ, k)H

(2)
ik (av)],

where a =
√

γ2∆Λ
12πG and H(1), H(2) - Hankel functions.

For each extension all eβk have common asymptotics

eβk = N(Λ, β, k)|v|−1 cos(Ω(Λ)|v|+ σ(Λ, β)) +O(|v|−3/2)

Dynamics: follows analytically extended classical trajectory.
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WDW: observables

Observables: analogous to Λ = 0 case.
Problem: the analog of |v|φ leads outside of Hphy !

Failure of semiclassical treatment:
If one selects canonical pair v, b the requirement
〈(|v̂|φ − 〈|v|φ〉)n〉 <∞ on some open φ ∈ O implies
∫

dkΨ̃(k)N(Λ, β, k)eiωφ = 0, ∀φ ∈ O
Since N(Λ, β, k) ∝

√
k we have: Ψ̃(k) ∼ k−3/2 ⇒ 〈∆pφ〉 = ∞.

For |v| ≪ 1 eβk ≈ eik ln |v|, thus at early times

〈∆pφ〉 = ∞ ⇒ 〈∆b|φ〉 = ∞
Impossible to built states well behaving in both v and b even for a
short time!

Solution:
Compactify v, for example use θa = arctan(|v|/a) or
Use truly measurable quantities, like Hubble parameter H or
energy density ρ.
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WDW dynamics for Λ > 0
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WDW dynamics for Λ > 0
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Λ > 0: LQC model
Allowed value Λ ∈ [0,Λc], where Λc = 8πGρc

The constraint (sLQC prescription):

−∂2φ = Θo − πGγ2∆ΛI = ΘΛ

ΘΛ admits 1d family of selfadjoint extensions, labeled by β ∈ U(1)

Each extension ΘΛβ has discrete spectrum: Sp(ΘΛβ) = {ω2
n}

where ωn = [
√
12π3G/f1(Λ)] · kn,

tan(g(Λ)kn) + tanh[(π − g(Λ))kn] tan(β) = 0, g(Λ) ∈ [0, π]

⇒ ωn = (nπ − β)/f2(Λ) +O(e−2πn(π−g(Λ))/g(Λ))

Physical states:

Ψ(v, φ) =
∑∞

n=0 Ψ̃ne
β
n(v)e

iωnφ

For each extensions common leading order asymptotics

eβn = Nn(Λ, β)|v|−1 cos(Ω(Λ)|v|+ σ(Λ, β)) +O(|v|−3/2)

Dynamics:
Agreement with GR for low energies.
Bounce in Planck regime.
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LQC dynamics for Λ > 0
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LQC dynamics for Λ > 0
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2nd order asymptotics
Analysis of the transfer matrix asymptotics:

eβn(v) = Nn[e
iαe+n (v) + e−iαe−n (v)] +O(v−3) (⋆)

e±n = |v|−1 e±iΩ|v| · e±iκ(n,Λ,β)/|v|, 1/|v| ≈ (1/a)(θa − π/2)

where: cos(4Ω(Λ)) = 1− 2Λ/Λc =: 1− 2λ,

κ(n,Λ, β) =
3πG(1−2λ)+ω2

n

12πG
√

λ(1−λ)
=: Aω2

n +B

Limit spaces:

“Standing wave form” of eβn:
split onto incoming and outgoing components.

For each comp. e±iΩ|v| is a global rotation, only e±n relevant.

e±n form wave packet regular in θa. Schrödinger type rather that
Klein-Gordon.

Transformation into limit spaces:

Define spaces H± spanned by e±n with IP inherited from Hphy

through the limit (⋆).

Hphy ∋ Ψ̃n 7→ Φ±
n := Ψ̃nMn ∈ H±
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WDW limit states
Taking the limit of the mass gap ∆ → 0 one can derive analogous
2nd order limit in WDW theory.

As Ω(Λ) depends implicitly on ∆ to ensure uniform convergence
one has to allow for flow Λ = Λ(∆).
Result: LQC wave packet has the WDW limit spanned by ek such
that:

eβk(v) = N(k)[eiαe+k (v) + e−iαe−k (v)] +O(v−3)

where
e±k = |v|−1 e±iΩ|v| · e±iκ(k,Λ,β)/|v|

with the same Ω and κ = κ(ω =
√
12πGk)

however the WDW model corresponds to the cosmological
constant

Λ/Λc = λ = arccos(1− 2λ).

Construction of the limit spaces H± analogous to LQC.
Again Schrödinger wave packets near θ = π/2.

If the wave packet sharply peaked about θ = π/2 then (up to
higher order corrections)

〈∆|θ̂a|φ〉WDW = 〈∆|θ̂a|φ〉lim
– p. 26



Instantiations
The continuous limit:

We identified the relations between Hphy, Hphy and the
appropriate limit spaces.

To build Hphy ↔ Hphy we need H± ↔ H±.
Problem: Identification of Φn and Φ(k) will produce zero norm
WDW states!

The instantiations:
Fix the moment φ = φo. By rotation Ψ̃(k) 7→ Ψ̃(k)eiωφo one can
bring it to φ = 0.

On H± the operator x̂ := θ̂a − π/2 takes the form x̂ = ia
2Aω∂ω

On H± one can build “sin(cx)/c” oper. via h : [hΦ̃]n = Φ̃n−1

sin(cx)/c = ai
2A[∆ω](ω+[∆ω]/2 [h− h−1] +O(e−aω),

where ∆ω = limn→∞[ωn − ωn−1].

If at φo state sharply peaked about x = 0: sin(cx)/c - good
replacement of x̂

Instantiation: Interpolation of Φ̃n s.th. actions of x̂n and
[sin(cx)/c]n agree up to n = 2.
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Instantiations + scattering
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The scattering, decoherence
The picture:

Instantiations provide identification of quasi-periodic state of LQC
with non-periodic WDW one at given time φo.
Once can build a sequence of instantiations at φn where
〈θ〉 ≈ π/2.
Transfer φn → φn+1: scattering of WDW state into another.
Evolution: sequence of scatterings (determined by instantiations).

Since ωn = (nπ − β)/f2(Λ) + δωn one cycle corresponds to

Ψ̃n 7→ e2πiδωnΨ̃n =: UΨ̃n

Application:

〈∆sin(cx)/c〉Hphy = 〈∆sin(cx)/c〉H± +O(v−3) .
After N ≫ 1 cycles

〈∆sin(cx)/c〉φo+N∆φ ≤ 〈∆sin(cx)/c〉φo
+N〈∆2π∂ωδω

ω 〉
where the last term 〈∆2π∂ωδω

ω 〉 ≤ C〈∆2πe−aω

ω 〉.
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Summary

Scattering picture successfully extended to the model with Λ > 0.

Evolution between pure deSitter epochs - chain of Wheeler-DeWitt
universes consecutively scattered one into another.

The instantiation procedure allowed to relate the dispersion in
compactified volume θa of the LQC state and its WDW limit at given
moment φo (in pure deSitter epoch).

The scattering corresponds to unitary rotation by e2πiδωn , where the
deviation δωn decays exponentially.

Consequence: The decoherence of the state between large number
N of pure deSitter epochs is bounded from above by (up to a known
constant) the dispersion of the operator Ne−aω/ω infinitesimal for the
states peaked about large p⋆φ.
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Appendix: The transfer matrix method
fo,± - real: ek are standing waves.

Observation: converge to WDW standing waves.

Verification: transfer matrices
1st order form of the difference equation:

~ek(v) =

[

ek(v)

ek(v − 4)

]

, A(v) =

[

fo(v)−ω2(k)
f+(v) − f−(v)

f+(v)

1 0

]

~ek(v + 4) = A(v)~ek(v)

Expressing in WDW basis:

~ek(v) = B(v)~χk(v), B(v) :=

[

ek(v + 4) e−k(v + 4)

ek(v) e−k(v)

]

.

Final form: ~χk(v + 4) = B−1(v)A(v)B(v − 4)~χk(v) =:M(v)~χk(v)

Limit of the transfer matrix: M(v) = I+O(v−3) ⇒
ek(v) = ψ

k
(v) +O(|ek(v)|(k/v)2)

ψ
k
(v) := r(k)[eiα(k)ek(v) + e−iα(k)e−k(v)]

Comparizon of norms: r(k) = 2
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Appendix: Comparizon between the norms
Evolution: mapping R ∋ φ 7→ ψ(·) := Ψ(·, φ) ∈ Hgrav

Inner products:
〈ψ|χ〉 = ∑

L+
0
ψ(v)χ(v), 〈ψ|χ〉 =

∫

R+ dv ψ(v)χ(v)

Distributional estimates:
splitting the domain:
X(k, k′) := 〈ek′ |ek〉 =

∑

L+
0 ∩[1,∞] ek′(v)ek(v)

extracting WDW limits:
X(k, k′) = +

∑

L+
0 ∩[1,∞][ψk′

(v)ψ
k
(v) +O(v−5/2)]

estimating the sum by the integral:
∑

ψ
k′
(v)ψ

k
(v) = (1/4)

∫

[1,∞[
dv

[

ψ
k′
(v)ψ

k
(v) +O(v−3/2)

]

relation:
∫

R+ dx eikx = 1
2

(∫

R
dx eikx − i

πk

)

Final relation: X(k, k′) = (r2(k)/8)〈ψ
k
|ψ

k′
〉+ F (k, k′)

Orthonormality: F (k, k′) = 0, r(k) = 2.
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Appendix: The limits of observables
Argumentation for past limit, problem symmetric in time.

Assumed localization in ln |v|φ of WDW limit: 〈ln |v|φ〉 <∞,
〈∆ln |v|φ〉 <∞.

Past wave packet follows the trajectory x̄(φ) = xo − β(φ− φo),
where β =

√
12πG.

f(v)φ - multiplication operator on ID’s Ψ(·, φ) ∈ Hgrav,
expectations - local sums: 〈f(v)φ〉 =

∑

L+
0
f(v)|Ψ(v, φ)|2,

analogous situation in WDW.

introduce x̃(φ) = xo − (β/2)(φ− φo) and split the local sums along it.

the following properties:
falloff conditions due to localization: parts for x > x̃ converge
(sufficiently fast) to complete sums.
relation between LQC and WDW norms: convergence of WDW
and LQC partial sums for states localized in k.

imply that:
limφ→−∞〈Ψ| ln(v)φ|Ψ〉 = 〈Ψ−| ln(v)φ|Ψ−〉,
limφ→−∞〈Ψ|∆ln(v)φ|Ψ〉 = 〈Ψ−|∆ln(v)φ|Ψ−〉.
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