No fire walls in quantum gravity

Revisiting the Ashtekar-Bojowald paradigm with an emphasis on discreteness ILQGS
February 2015

Alejandro Perez Centre de Physique Théorique, Marseille, France.

A perpective on the information loss problem

- 1. No firewalls.(Almeheiri-Marolf-Polchinski-Sully)
- 2. No large quantum gravity effects at large semiclassical scales.

Black hole mechanics: analogy with thermodynamics

 $\Omega \equiv \text{horizon angular velocity}$ Some definitions $\begin{cases} \kappa \equiv \text{surface gravity (`grav. force' at horizon)} \\ \text{If } \ell^a = \text{killing generator, then } \ell^a \nabla_a \ell^b = \kappa \ell^b. \end{cases}$ $\Phi \equiv$ electromagnetic potential.

> 0th law: the surface gravity κ is constant on the horizon.

1st law:
$$\delta M = \frac{\kappa}{8\pi} \delta A + \Omega \delta J + \Phi \delta Q$$
 work terms

2nd law: $\delta A \ge 0$

3rd law: the surface gravity value $\kappa = 0$ (extremal BH) cannot be reached by any physical process.

Black Hole Entropy

Temperature at infinity

$$T_{\infty} = \frac{\kappa}{2\pi}$$

From the first law

$$\delta M = \frac{\kappa}{8\pi} \delta A + \Omega \delta J + \Phi \delta Q$$

One infers the ENTROPY

$$S = \frac{A}{4\ell_p^2}$$

Central Question for QG: how to get S from statistical mechanics

Quantum spacetime is made of discrete weave like excitations

(Ashtekar-Smolin-Rovelli)

The black hole weave

$$S_{stat} = rac{A}{4G_N\hbar} + \eta rac{\sqrt{A}}{\sqrt{\gamma G\hbar}}$$

(Ghosh-Noui-AP 2014)

(Alesci, Ashtekar, Baez, Barbero, Bianchi, Borja, Corichi, Diaz-Polo, Engle, Frodden, Ghosh, Krasnov, Livine, Lewandowski, Majumdar, Mitra, Noui, AP, Pranzetti, Rovelli, Sahlmann, Terno, Thiemann, Villasenor, etc.)

The hard problem: information loss paradox

(Hawking 1976)

Proposal 1: baby universe

Proposal 2: Remnants

Proposal 3:

(11)

information is to be recovered

in correlations between late and early hawking radiation

Proposal 3: information is to be recovered in correlations between late and early hawking radiation

(Almeheiri-Marolf-Polchinski-Sully

2013; S. L. Braunstein, S. Pirandola, and Kyczkowski, 2013)

Proposal 4: Planck Stars

Revisiting the Ashtekar-Bojowald paradigm

two ways of presenting the spacetime

The story told from the perspective of observers at future null infinity is a semiclassical one

FIG. 8: A qualitative representation of the Riemannian geometry of Σ and Σ' of Fig 5. The shaded regions are those 'touching' the quantum region.

9+

 Σ_1

 u_2

 u_1

 u_0

The Ashtekar-Bojowald paradigm:

Uncorrelated Hawking radiation

The Ashtekar-Bojowald paradigm:

Uncorrelated Hawking radiation

The constraint that a small (Planckian) amount of mass is radiated while the naked *would-be-singularity* is visible suggests **the lack of unitarity** of the EQFT degrees of freedom (arXiv:1409.0144 Bianchi-De Lorenzo-Smerlak).

Solution: EQFT unitarity is broken while fundamental quantum gravity unitarity holds. Information is retrieved in correlations of Planckian quantum geometry degrees of freedom (after would-be-singularity becomes visible) that are entangled with radiation in Hawking era.

Time symmetric pictures seem problematic

Quantum effects break time symmetry of the Haggard-Rovelli's **Fireworks** framework.

Gravitational collapse is highly time asymmetric

two ways of presenting the spacetime

The story told from the perspective of observers at future null infinity is a semiclassical one

FIG. 8: A qualitative representation of the Riemannian geometry of Σ and Σ' of Fig 5. The shaded regions are those 'touching' the quantum region.

9+

 Σ_1

 u_2

 u_1

 u_0

Gravitational collapse is highly time asymmetric

two ways of presenting the spacetime

The story told from the perspective of observers at future null infinity is a semiclassical one

FIG. 8: A qualitative representation of the Riemannian geometry of Σ and Σ' of Fig 5. The shaded regions are those 'touching' the quantum region.

9+

 Σ_1

 u_2

 u_1

 u_0

FIG. 5: Two instants of 'time' before and after the would-be-singularity. The spacial surface Σ is a latest surface where the space-time notion is still applicable. The surface Σ' is the earliest space-like surface in the flat emerging flat space-time across the would-be-singularity. The particles a and b are created close to the BH horizon. Particle b escapes to infinity as Hawking radiation. Particle a falls into the singularity, deposits its negative energy load, striped off its energy it emerges unitarily transformed into a defect \bar{a} in the quantum weave state describing flat space-time to the future of the would-be-singularity.

$$\langle T_{ab}u^au^b\rangle \approx -\frac{\ell_p^2M}{48r^5} \left[1 + \left(\frac{r}{u}\right)^4\right]$$

(22)

FIG. 6: 2d spherical black hole made from the gravitational collapse of a spherical pulse of energy M. The metric is flat inside the shell and Schwarzschild outside. Continuity of the metric across the shell implies the following relationship between retarded time u = t - r and $u_s = t - r_*$ (for r_* the standard tortoise coordinate): $u_s = u - 4M \log(1 + \frac{u}{4M})$ and $v_s = v$. Coordinates are chosen so that the shell collapse takes place at v = 0. The expectation value of the energy momentum tensor in the Unruh vacuum is known in close form [65] everywhere in the spacetime. The shaded area denotes qualitatively the region where observers falling along ∂_r detect energy densities smaller than some negative fixed value.

FIG. 8: A qualitative representation of the Riemannian geometry of Σ and Σ' of Fig 5. The shaded regions are those 'touching' the quantum region.

compatible with Rovelli-Christodoulou arXiv:1411.2854

$$V(\Sigma) \propto M^3 (M/\ell_p)^{\alpha}$$
. (3)

where the missing proportionality constant and α depend on the interior dynamics. For instance one gets $\alpha =$ 5/2 if one (toy-)models the evaporation process with an advanced Vaidya metric. We can estimate the scaling of

Gravitational collapse is an irreversible process

- Gravitational collapse spacetime is highly asymmetric.
- Firewalls: Purification cannot take place during Hawking era.
- Purification via EQFT degrees of freedom after Hawking era on an effective non-singular background is not possible (Hayward scenario) (from results by Bianchi-De Lorenzo-Smerlak).
- Natural possibility: Purification via decoherence with Planckian quantum geometry structure.

• Initial and final "flat" space-times are not the same.

LQG IS NOT HOLOGRAPHIC

But what about all the holographic phenomenology? (e.g. the **Bousso bound**; a theorem by Bousso-Casini-Maldacena, Phys.Rev. D90 (2014) 4, 044002)

$$S_{\rho_0}(\rho) = -\text{Tr}[\rho \log \rho] + \text{Tr}[\rho_0 \log \rho_0].$$

a fact about EQFT degrees of freedom that does not contradict a non-holographic fundamental framework.

Bianchi's computation of BH entropy changes (Semiclassics: Einsteins equations+QFT) <u>arXiv:1211.0522</u>

$$\delta S_{thermo} = \frac{\delta A}{4G_N \hbar}$$

versus the computation of BH entropy in LQG (microstructure of quantum geometry)

$$S_{stat} = rac{A}{4G_N\hbar} + \eta rac{\sqrt{A}}{\sqrt{\gamma G\hbar}}$$

INFORMATION need not have WEIGHT

From Unruh 2012 "Decoherence without dissipation"

Consider two particles, which for sake of simplicity I will assume have the same mass, and live in a 1+1 dimensional spacetime. They interact only when in contact with each other, and their interaction is mediated by some hidden degrees of freedom which are represented by a number N of spin 1/2 objects, with spins operators \vec{S}_i . The interaction Hamiltonian is assumed to be of the form $\delta(x_1-x_2)\sum_i S_i^3$ where $S^3=\frac{1}{2}\sigma^3$ the third Pauli spin matrix, while the Kinetic energy is the usual $\frac{1}{2m}(p_1^2. + p_2^2)$.

$$Y = (x_1 + x_2)/2$$

$$y = (x_1 - x_2)$$
(1)

$$y = (x_1 - x_2) \tag{2}$$

the Schroedinger equation becomes

$$i\partial_t \Psi(t, Y, y, \{s_i\}) = -\frac{1}{m} \partial_Y^2 \Psi - \frac{1}{2m} \partial_y^2 \Psi + \mu \delta(y) (\sum_i S_i^3) \Psi$$
 (3)

From Unruh and Wald 95

$$H = \frac{1}{2} \int \left\{ \left[\pi(t,x) - h(x)q \right]^2 + \left[\partial_x \phi(t,x) \right]^2 \right\} dx + \frac{\omega}{2} (p^2 + q^2 - \frac{1}{2}) \left[1 + \alpha(S_z + s) \right] + F(S_z),$$

Conclusions

- Quantum geometry is expected to be 'atomistic' in non perturbative QG
- Smooth spacetime arises from coarse graining.
- Discrete Planckian structure explains Hawking entropy.
- Purification via EQFT degrees of freedom does not work:
- 1. During Hawking era due to the firewall problem.
- 2. After Hawking era on an effective non-singular background due to energy conservation.
- Natural possibility: Purification via decoherence with Planckian quantum geometry structure (important close to the would-be-singularity).
- Initial and final "flat" space-times are not the same: EQFT scattering approach cannot describe the fundamental physics.
- The firewall argument is a problem for ADS-CFT type of scenarios not for 'atomistic' QG theories.
- •In this scenario the Hawking evaporation process is analogous to standard irreversible processes (breaking a glass, burning a newspaper)

•Can one take into account non perturbative back reaction effects in spherical quantum gravity? (Gambini-Pullin theory with scalar matter to show 'time asymmetry' of *would-be-singularity*)

•Can one effectively describe the decoherence effect of EQFT? (quantum cosmology, structure formation effects, unitarity loss in QFT)

Thank you very much!

For further reading:
"No firewalls in quantum gravity:
the role of discreteness of quantum
geometry in resolving the
information loss paradox"

arXiv:1410.7062
to appear in CQG

Acknowledgments: I. Agullo, F.
Barbero, E. Bianchi, T. De Lorenzo,
R. Penrose, J. Pullin, A. Riello, C.
Rovelli, S. Speziale, M. Smerlak, and
D. Sudarsky for discussions.