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Black Hole Thermodynamics
The 0th, 1st, 2nd and 3rd laws of BH

0th law: the surface gravity κ
is constant on the horizon.

1st law:
δM = κ

8π δA + ΩδJ + ΦδQ� �� �
work terms

2nd law:
δA ≥ 0

3rd law: the surface gravity value κ = 0

(extremal BH) cannot be reached by any

physical process.

Ω ≡ horizon angular velocity
κ ≡surface gravity (‘grav. force’ at horizon)
If �a =killing generator, then �a∇a�b = κ�b.

Φ ≡electromagnetic potential.

�
Some definitions

stationary
state (1)
M, J, Q

stationary 
state (2)
M �, J �, Q�

(1)



Black Hole Thermodynamics
Hawking Radiation: QFT on a BH background 

Out state: thermal flux of particles 
as we approach the point i+

In state: vacuum far 
from i-

�N � =
Γ

exp
�

2π
κ (ω − Ωm − qΦ)

�
± 1

,

T∞ =
κ

2π

Temperature at infinity

From the first law
δM =

κ

8π
δA + ΩδJ + ΦδQ

One gets the 
ENTROPY

S =
A

4�2p

(2)



Black Hole entropy in LQG 
The standard definition of BH is GLOBAL

(need a quasi-local definition) 

(3)

?

LQG Paradigm:
Ashtekar-Bojowald (2005), 

Ashtekar-Taveras-Varadarajan (2008), 
Ashtekar-Pretorius-Ramazanoglu (2011). 

Usual old paradigm



Isolated Horizons
classical foundation of the problem 
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Initial Cauchy Data

• Manifold conditions: ∆ ≈ S2×R, foliated by a (preferred) family of 2-spheres

S and equipped with an foliation preserving equivalence class [�a] of transversal

future pointing vector fields.

• Dynamical conditions: All field equations hold at ∆.

• Matter conditions: On ∆ the stress-energy tensor Tab of matter is such that

−T a
b�b is causal and future directed.

• Conditions on the metric g determined by e, and on its levi-Civita derivative
operator ∇: (iv.a) The expansion of �a within ∆ is zero. (iv.b) [L�, D] = 0.

• Restriction to ‘good cuts.’ One has Da�b = ωa�b for some ωa intrinsic to ∆.

A 2-sphere cross-section S of ∆ is called a ‘good cut’ if the pull-back of ωa to

S is divergence free with respect to the pull-back of gab to S.

[Ashtekar, Beetle, Corichi, Dreyer, Fairhurst, Krishnan, Lewandowski, Wisniewski]

(4)



The plan
BH thermodynamics from a local perspective

(5)

1. (Classical) There is a well defined notion of quasilocal energy for a black

hole horizon close to equilibrium and an associated local first law of BH

mechanics. This provides a dynamical process version of first law for

isolated horizons.

2. (Quantum) The statistical mechanical treatment of the quantized horizon

degrees of freedom reproduce the expected results known from Hawking

semiclassical analysis (QFT on curved background calculation) for all val-

ues of the Immirzi parameter.

3. (Speculative for the moment) There might be potential observable effects

(damping of Hawing radiation for Fermionic fields).



Local laws of BH 
mechanics

BH thermodynamics from a local perspective
Ghosh-Frodden-AP available at 

http://inspirehep.net/record/940357

(6)

http://inspirehep.net/record/940357
http://inspirehep.net/record/940357


Black Hole Thermodynamics
Stationary BHs from a local perspective

H

χ = ξ + Ω ψ = ∂t + Ω ∂φ

ua =
χa

�χ�

Introduce a family of 
local stationary observers

~ZAMOS 
H

WO

Singularity

�2 << A

(7)



A thought experiment
throwing a test particle from infinity

Particle’s equation of motion

Conserved quantities

wa

ua

wa∇awb = q Fbcw
c

Symmetries of the background

Lξgab = Lψgab = LξAa = LψAa = 0

E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t

(8)



A thought experiment
throwing a test particle from infinity

Particle at infinity

wa

ua

Conserved quantities
E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

E = −waξa|∞ ≡ energy

L = waΨa|∞ ≡ angular momentum

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t

(9)



A thought experiment
throwing a test particle from infinity

wa

ua

At the local observer

Conserved quantities
E ≡ −waξa − qAaξa

L ≡ waψa + qAaψa

E�oc ≡ −waua ≡ local energy

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t

(10)



After absorption
seen from infinity

wa

ua

The BH readjusts parameters 

δM = E δJ = L

δQ = q

The area change from 1st law 

δM =
κ

8π
δA + ΩδJ + ΦδQ

κ

8π
δA = E − ΩL− Φq

E = −waξa|∞ ≡ energy

L = waΨa|∞ ≡ angular momentum

�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t

(11)



After absorption
seen by a local observer

wa

ua

At the local observer

E�oc ≡ −waua ≡ local energy

κ

8π
δA = E − ΩL− Φq

χ = ξ + Ω ψ = ∂t + Ω ∂φ ua =
χa

�χ�

E�oc = −waξa + Ωwaψa

�χ�

E�oc =
E − ΩL− qΦ

�χ�
�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t

(12)



After absorption
seen by a local observer

wa

ua

κ

8π
δA = E − ΩL− Φq

E�oc =
E − ΩL− qΦ

�χ�

Eloc =
κ

8π�χ�δA

κ ≡ κ

�χ�

Eloc =
κ

8π
δA

�2 << A

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t

(13)



Local first law
Local BH energy

H

wa

E�oc ≡ −waua ≡ local energy of the absorbed particle

δE = E�oc

The appropriate local energy notion
must be the one such that:

δE =
κ

8π
δA

(14)



Local first law
Local BH energy

H

wa

E�oc ≡ −waua ≡ local energy of the absorbed particle

The appropriate local energy notion
must be the one such that:

δE =
κ

8π
δA κ ≡ κ

||χ|| =
1
�

+ o(�)

E =
A

8π�

�2 << A

(15)



H

WO

Singularity

δTab

Local first law
A refined argument 

(dynamical and more local)

Na

ka

The Raychaudhuri equation

dθ

dV
= −8πδTabk

akb

δE =
κ

8π
δA

ξ =
∂

∂t
ψ =

∂

∂φ
χ =

∂

∂t
+ Ω

∂

∂t

(16)

(1)

(2)

(3)

(4)

Ja = δT a
bχ

b is conserved thus

�

H

dV dS Jbk
b =

�

WO

JbN
b with k(V ) = 1

�

H

dV dS δTab

χa

� �� �
κV ka kb = �χ �

�

WO

δTabu
aN b

� �� �
δE

− κ

8π�χ �

�

H

dV dS V
dθ

dV� �� �
−δA

= δE,



δE =
κ

8π
δA

Local first law for IHs
(a completely local argument) 

ds2 = 2dv(adrb) − 2(r − r0)[2dv(aωb) − κIHdvadvb] + qab + o[(r − r0)2]

Lχgab|H = 0

κ =
κIH

||χ|| =
1
�

Stationary observers exist

As for stationary BHs they are Rindler like

Similar argument using Gauss and
Raychaudhuri equation

(17)

Ashtekar-Beetle-Dreyer-Fairhurst-Krishnan-Lewandowski-Wisniewski PRL 85 (2000) 



δE =
κ

8π
δA

The Local first law is dynamical
Simple example: Vaidya spacetime

IH2

IH1

IH1

IH1

IH2

IH1

WO

(18)



A dynamical first law for IHs
Main classical results

H

wa

δE =
κ

8π
δA κ ≡ κ

||χ|| =
1
�

+ o(�)

E =
A

8π�

�2 << A

(19)



Quantization
Chern-Simons theory with 

spin-network punctures

(20)



The AREA gap and BH 
quantum transitions

Loop quantum gravity
The area gap is an energy gap

amin = 4πγ
√

3

a) By a rearrangement of the spin quantum numbers labelling spin network
links ending at punctures on the horizon without changing the number of
punctures N (in the large area regime this kind of transitions allows for area
jumps as small as one would like as the area spectrum becomes exponentially
dense in R+ [Rovelli 96]

b) By the emission or absorption of punctures with arbitrary spin (such tran-
sitions remain discrete at all scales and are responsible for a modification of
the first law: a chemical potential arises and encodes the mean value of the
area change in the thermal mixture of possible values of spins j).

(21)

�AS |j1, j2 · · · � =
�
8πγ�2p

�

p

�
jp(jp + 1)

�
|j1, j2 · · · �



The AREA gap and BH 
quantum transitions

Loop quantum gravity
The area gap is an energy gap

amin = 4πγ
√

3

a) By a rearrangement of the spin quantum numbers labelling spin network
links ending at punctures on the horizon without changing the number of
punctures N (in the large area regime this kind of transitions allows for area
jumps as small as one would like as the area spectrum becomes exponentially
dense in R+ [Rovelli 96]

b) By the emission or absorption of punctures with arbitrary spin (such tran-
sitions remain discrete at all scales and are responsible for a modification of
the first law: a chemical potential arises and encodes the mean value of the
area change in the thermal mixture of possible values of spins j).

(22)

�H|j1, j2 · · · � =
�
γ�

2
p

�

�

p

�
jp(jp + 1)

�
|j1, j2 · · · �



A missing ingredient 
Solution: a physical input 

 Present ingredient: 
Quantum IH physical 

state

Quantum bulk state: Represented by 
a thermal bath at Unruh temperature 

as seen by stationary observers.

� ≡ arbitrary fixed proper distance to the horizon

Near horizon 
geometry

 Present ingredient: 
Quantum IH physical 

state

Missing ingredient: Quantum bulk 
semiclassical state describing a 

Schwarzschild geometry near the 
horizon

(23)



Entropy calculation in the Canonical Ensemble 
System is like a gas of non-interacting particles 

Ghosh-AP available at http://inspirehep.net/record/917420

The canonical partition function is given by

Z(N, β) =
�

{sj}

�

j

N !

sj !
(2j + 1)sje−βsjEj (1)

where Ej = �2g
�
j(j + 1)/�. A simple calculation gives

logZ = N log[
�

j

(2j + 1)e−βEj ] (2)

For the entropy we get

S = −β2 ∂

∂β
(
1

β
logZ) = logZ + β

A

8π�
. (3)

finally in thermal equilibrium at TU = �2p
κ
2π =

�2p
2π�

S = σ(γ)N+
A

4�2p
where σ(γ) = log[

∞�

j=1/2

(2j+1) exp−2πγ
�
j(j + 1)]

(24)

K. Krasnov (1999), S. Major (2001), F. Barbero E. 
Villasenor (2011)

http://inspirehep.net/record/917420
http://inspirehep.net/record/917420


Entropy calculation in the Canonical Ensemble 
System is like a gas of non-interacting particles

At thermal equilibrium the average energy �E� = − ∂
∂β logZ at T = TU is a

function of N only; this relates the number of punctures to the area

N = − A

4�2g σ
�(γ)

. (1)

Note that for all values of γ the number of punctures 0 ≤ N ≤ A
4
√
3π�2g

. Moreover,

for a fixed macroscopic area A, the number of punctures grows without limit as

γ → 0 while it goes to zero as γ → ∞.

There are two equivalent expressions for the BH entropy

S(A,N) = σ(γ)N +
A

4�2p
or S(A) =

A

4�2p

�
1− σ

σ�

�

(25)



Semiclassical consistency
back to the first law

S(A,N) = σ(γ)N +
A

4�2p
or S(A) =

A

4�2p

�
1− σ

σ�

�

The (thermodynamical) local first law versus the (geometric) local first law

δE =
κ

2π
δS + µ δN ⇐⇒ δE =

κ

2π
δA

Recall

µ = TU

∂S

∂N
|E =

κ

2π
σ(γ) (1)

Finally going from local to global (when one can, i.e., in a stationary background

BH spacetime)

δM =
κ

2π
δS +Ω δJ +Φ δQ+µ δN ⇐⇒ δM =

κ

2π
δA+Ω δJ +Φ δQ

where

µ =
κ

2π
σ(γ) (2)

(26)

(1)

(2)

(4)

(3)

(5)



Entropy calculation
The old view

σ(γ) = log[
∞�

j=1/2

(2j + 1) exp−2πγ
�
j(j + 1)]

(27)

The usual LQG calculation was performed in the microcanonical ensemble (with

an implicit assumption of a vanishing chemical potential) and gives

S =
γ0
γ

A

4�2p
=

γ0
γ

2π�

�2p
E

while semiclassical considerations (Hawking radiation) imply that

T−1
U =

∂S

∂E
=

2π

κ�2p

Thermal equilibrium at Unruh temperature is achieved only if the Immirzi pa-
rameter is fine tuned according to

γ = γ0 = 0.274067...

(1)

(2)

(3)

(4)



Semiclassical consistency
back to the first law

S(A,N) = σ(γ)N +
A

4�2p
or S(A) =

A

4�2p

�
1− σ

σ�

�

The (thermodynamical) local first law versus the (geometric) local first law

δE =
κ

2π
δS + µ δN ⇐⇒ δE =

κ

2π
δA

Recall

µ = TU

∂S

∂N
|E =

κ

2π
σ(γ) (1)

Finally going from local to global (when one can, i.e., in a stationary background

BH spacetime)

δM =
κ

2π
δS +Ω δJ +Φ δQ+µ δN ⇐⇒ δM =

κ

2π
δA+Ω δJ +Φ δQ

where

µ =
κ

2π
σ(γ) (2)

(28)

(1)

(2)

(4)

(3)

(5)



Conclusions
(29)

• A local definition is needed which corresponds to large semiclassical BHs:

Isolated horizons [Ashtekar et al.] provides a suitable boundary condition.

• Yet a little bit more (near horizon geometry) is necessary for dealing with

BH thermodynamics.

• New [E. Frodden, A. Ghosh and AP (arXiv:1110.4055)]: A preferred no-

tion of stationary observers can be introduced. These are the suitable

observers for local thermodynamical considerations. There is:

1. a unique notion of energy of the system described by these observers

E = A/(8π�).

2. a universal surface gravity κ = 1/�.

3. and they are related by a local fist law

δE =
κ

8π�
δA.

4. The first law is of a dynamical nature.

• In progress [E. Wilson-Ewin, AP, D. Forni]: a first law for Rindler Horizons

holds

M, J, Q

M �, J �, Q�



(30)

At the quantum level

• The area gap of LQG=an energy gap in the local formulation.

• New [A. Ghosh and AP (PRL 107 2011)]: The entropy computation yields
and entropy formula that is consistent with Hawking semiclassical calcu-
lations for all values of the Immirzi parameter γ. One has

1. S = A
4�2p

+ µN .

2. The chemical potential µ = κ
2πσ(γ) where

σ(γ) = log[
�

j

(2j + 1) exp (−2πγ
�

j(j + 1))].

3. If one fixes γ = γ0 then µ = 0!

4. The usual law gets a LQG correction

δM =
κ

2π
δS+ΩδJ+ΦδQ+µδN ⇐⇒ δM =

κ

2π
δA+Ω δJ+Φ δQ

• There are possible observational effects [Ghosh, AP]. Also in progress
[Diaz-Polo, Borja] and [Pranzetti].



A potentially measurable effect

�N � =
Γ

exp
�

2π
κ (ω − Ωm− qΦ)

�
± 1

≈ Γexp
�
−2π

κ
(ω − Ωm− qΦ)

�

�NLQG� =
Γ∞

exp
�

2π

κ
(ω − ΩHm− qΦ) + σ(γ)n

�
± 1

≈ Γe−nσ(γ)exp
�
−2π

κ
(ω − Ωm− qΦ)

�

(31)

�Nn�
�N0�

≈ e−nσ =
1��

j(2j + 1) exp−2πγ
�

j(j + 1)
�n



A potentially measurable effect

�N � =
Γ

exp
�

2π
κ (ω − Ωm− qΦ)

�
± 1

≈ Γexp
�
−2π

κ
(ω − Ωm− qΦ)

�

�NLQG� =
Γ∞

exp
�

2π

κ
(ω − ΩHm− qΦ) + σ(γ)n

�
± 1

≈ Γe−nσ(γ)exp
�
−2π

κ
(ω − Ωm− qΦ)

�

�Nneutrinos�
�Nphotons�

≈ e−σ =
1

�
j(2j + 1) exp−2πγ

�
j(j + 1)
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About 80% of the energy of 
a primordial black hole is 
lost in the neutrino chanel

[Page 1976]

(32)



Thank you very much


