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Plan: 
 
-In previous work we were able to quantize spherically symmetric vacuum gravity. 
The Hilbert space of states was found in closed form. 
 
 
-Later we considered a scalar field living on the quantum geometry and performed 
a Fock-like quantization for it. Hawking radiation with small corrections was found. 
 
 
-Today we would like to study the back reaction of the field on the geometry,  
assuming the formeris weak. For this we will compute the second order corrections 
to the metric as Dirac observables living on the Hilbert space that is a cross 
product of that of vacuum spherical gravity with the Fock-like Hilbert space of the  
scalar field. We will evaluate their expectation value. 
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Deriving the perturbative equations: 
 
We follow standard perturbative quantization techniques. We assume we have 
a one parameter family of fields and that the field equations, 

can be expanded in power series, 

and so on. 
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The action for the model: 

We start from spherically symmetric gravity coupled to a scalar field (see our 
previous papers), the total Hamiltonian is, 

Where: 

Redefining the lapse and shift leads to a 
Hamiltonian constraint with an Abelian 
algebra with itself.  
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The resulting action is: 

We have added a 2D cosmological constant. We will need it when we renormalize 
the contribution for the scalar field. Since we will concentrate on the s-mode of the 
scalar field, its vacuum contribution does not generate a 4D cosmological constant 
term proportional to the spatial volume, but a 2D one. 
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We will choose a gauge where Ex is a function of x only and where Kφ vanishes 
(manifestly static gauge). We will also assume φ=ε φ(1) , the scalar field is “weak” 
(it does not influence the metric at order zero nor one since the stress tensor is 
quadratic). 

We also assume the initial data for the metric is zero at first order. Since the first 
order equation does not couple to the matter field, that means the first order  
perturbations of the metric vanish. 
 
With the gauge fixing chosen the shift vanishes at all orders. 
 
Zeroth order equations: 
 
They imply that the zeroth order component of the lapse is a constant, we take 
it to be one. They also imply that Eφ is 

And we recognize in it the  
Schwarzschild solution 
(with a cosmological constant 
from 2D) 
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First order equations: 
 
As mentioned, the first order equations for the field, if one gives vanishing initial 
data just give zero contributions for the gravitational perturbations. For the fields 
the first order equations are,  

Which can be combined into the usual Zerilli-like second order (in the  
spatial and time derivatives) equation for the scalar field. This equation will 
provide the modes that are used to Fock quantize the field. 
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Second order equations: 
 
The equations for the scalar field and its momentum take the same form as the 
first order ones. 
 
The second order shift is set to zero by our gauge choice. 
 
The are two non-trivial equations at second order, one determines  
Eφ

(2) as a quadrature of the field variables.  
 

It should be emphasized that every quantity appearing in the quadrature are 
either well defined operators on the Fock space of the field or can be written as 
parameterized Dirac observables on the Hilbert space of zeroth order vacuum 
gravity. So we can straighforwardly “put a hat” on it. 
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The other equation determines the correction to the lapse, again as a quadrature 
and with all the quantities in the integrand either c-numbers of well defined  
parameterized Dirac observables on the physical Hilbert space of vacuum gravity, 
or on the Fock space of the scalar field, 
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Let us give a bit more details on the last point. For the scalar field we need to choose 
a vacuum. We will use the Unruh vacuum (though there is no 
obstruction to use other vacua). This will represent the Hawking radiation. 
So the complete state is, 

For the quantization of the scalar field we must make explicit its equation,  
written in terms of second order derivatives, 

Where we assumed harmonic time dependence (ω is the frequency), r* is 
the tortoise coordinate and rS=2GM. 
 
We can now use standard WKB techniques used in QFT in CST. 
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The only difference is that, since we are in a quantum space-time one has the 
dispersion relations typical on a lattice, 

With V the number of vertices in the spin network, Δ the separation of the  
vertices, iH the position of the last point before the horizon on the spin net. 
This also implies the existence of a maximum cutoff frequency 2/Δ. 
 
To compute the term in the quadrature (essentially the stress energy tensor) 
we use the standard technique of computing the Green’s function, (e.g. 
Candelas PRD 1980), 

Everything is now explicit, so the integral can be computed. 
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We can evaluate the integrals for large values of ω. This is enough because we will 
focus on the terms that would be divergent in the continuum in this first approach 
The explicit form is: 

The stress energy tensor that appears in the quadrature is  

And can be computed taking derivatives of GB and taking the limit t->t’ r*->r*’ 
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With the stress energy tensor under control we can go back to the second order 
equations of slides 8 and 9 and study them, first let us look at the equation for  
Eφ

(2) , 

We have introduced subscripts “B” to emphasize the bare nature of Newton’s 
constant and the cosmological constant. Notice that we have distinguished between 
the Newton constant that plays the role of “coupling constant” from rS (which also 
includes Newton’s constant) but that in the perturbative treatment really is a  
classical parameter of the zeroth order Hamiltonian. Normally such constants are 
not renormalized. 
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Substituting the expectation value we have, 

Is the geodesic distance squared.  

We would like to absorb this quantity in the coupling constants. This forces us 
to choose a spin network state with a uniform spacing in terms of the geodesic 
distance.  
 
Choosing, 
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Keeping this in mind, let us look at the other equation, the one for the lapse N(2). 

With the previous choices we get, 

This leads to a logarithmic divergence. This is reasonable, since we are dealing 
with an eternal black hole, there is an infinite amount of Hawking radiation 
between the horizon and infinity, so one would not expect the metric to be  
asymptotically flat.  
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This equation would lead us to renormalize Newton’s constant as  

And through a rescaling of the lapse one would end up with the renormalized 
Newton’s constant in front of the lower order terms, as expected. 
 
 
At this point, the limitations of the model get in the way. Because we have an 
eternal black hole with Hawking radiation ranging from the horizon to infinity, 
the radiation contributes a non-trivial amount to the ADM mass, therefore it  
cannot be treated as a perturbation. 
 
 
The good news is we now have in place all the tools to treat a more realistic 
situation, like for instance where we consider as background the collapse of  
a shell. There the radiation can be treated as a perturbation. We expect to make 
progress on this model in the next few months. 



Summary:	
  
•  We	
  were	
  able	
  to	
  formulate	
  the	
  back	
  reac2on	
  of	
  Hawking	
  

radia2on	
  living	
  on	
  a	
  quantum	
  space-­‐2me.	
  
•  We	
  concentrated	
  on	
  the	
  terms	
  that	
  in	
  the	
  con2nuum	
  would	
  

have	
  been	
  divergent.	
  Here	
  they	
  are	
  finite	
  but	
  large,	
  
sugges2ng	
  a	
  finite	
  renormaliza2on	
  is	
  in	
  order	
  so	
  the	
  micro-­‐
structure	
  does	
  not	
  influence	
  macro	
  variables.	
  

•  The	
  cosmological	
  constant	
  is	
  renormalized	
  to	
  zero	
  and	
  	
  
Newton’s	
  constant	
  also	
  is	
  renormalized.	
  

•  We	
  cannot	
  complete	
  the	
  calcula2on	
  for	
  an	
  eternal	
  black	
  hole,	
  	
  
we	
  expect	
  to	
  carry	
  it	
  out	
  for	
  a	
  collapsing	
  shell	
  rela2vely	
  soon.	
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