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Introduction

Main Question

How do quantum gravity effects influence black holes?

Extensive literature with contributions from many researchers:
[Ashtekar, Bojowald, Modesto, Cartin, Khanna, Boehmer, Vandersloot, Chiou, Campiglia, Gambini, Pullin, Sabharwal, Brannlund, Kloster, De Benedictis,

Olmedo, Dadhich, Joe, Singh, Haggard, Rovelli, Vidotto, Corichi, Saini, Cortez, Cuervo, Morales-Técotl, Ruelas, Pawlowski, Bianchi, Giesel, Christodoulo,

D’Ambrosio, Alesci, Bahrami, Pranzetti, Husain, Kelly, Santacruz, Wilson-Ewing, Lewandowski, Zhang, Ma, Song, Bodendorfer, Mele, Münch, Navascués,

Mena Marugán, García-Quismondo, Perez, Speziale, Viollet, Han, Liu, Alonso-Bardaji, Brizuela, Vera,...]

• Eternal BH models: Based on results of LQC study quantum corrections Reviews: [Gambini,

Olmedo, Pullin ’22], [Ashtekar, Olmedo, Singh ’23]

• Dynamical process of gravitational collapse?

• Typical playground: spherical symmetric model with dust (perfect fluid, no pressure),
i.e. in classical GR Lemaître-Tolman-Bondi spacetimes

• Effective description: classical model with correction functions
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Introduction

• Most models describe Oppenheimer-Snyder scenario: homogeneous dust ball
embeddded in vacuum

• Use classical junction conditions to glue interior Friedmann model to exterior

• Question: Is there a discontinuity in the gravitational field after the bounce? [Achour, Brahma,

Uzan ’20]

• Can we have decoupled equations of motion as in classical case?

We want to contribute to this discussion by
• Construction of effective LTB models from underlying effective spherical symmetric

model as a 1+1 field theory under certain assumptions

• Start with general ansatz for effective model (not only motivated from µ-scheme and
its reduced quantization [Chiou, Ni, Tang ’12], [Gambini, Olmedo, Pullin ’20])

• In this setup we can have arbitrary dust mass profiles

• Can consider different coordinates (aerial gauge) due to underlying spherical
symmetric model to relate to other models
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Plan of the talk

1. Classical LTB in the canonical framework with connection variables

2. Constructing effective LTB models
◦ Analyze stability of LTB condition in effective dynamics

3. Concrete model: Adapt to improved LQC dynamics
◦ Analyze solution in marginal bound case
◦ Extended mimetic gravity is underlying Lagrangian

4. Polymerized vacuum solution and comparison to other models

5. Summary and Outlook
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Classical LTB model
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classical LTB sector in spherical sym.
spacetimes

• Work with real Ashtekar-Barbero variables, Hamiltonian has standard form

H =
∫

dx (NC +NxCx + λG)

• Impose spherical symmetry on triad and connection (A,E) [Bojowald Kastrup ’00], [Bojowald, Swiderski

’06]

• Spherical symmetric metric has form (with (Eϕ)2 = (E1)2 + (E2)2)

ds2 = −N(x, t)2dt2 + (Eϕ)2

|Ex|
(dx +Nxdt)2 + |Ex|dΩ2 .

• Can fix Gauß constraint to get rid off remaining gauge freedom
• Reduced phase space can be coordinatized by [Modesto ’04]

{Kx(x), Ex(y)} = Gδ(x, y) {Kϕ(x), Eϕ(y)} = Gδ(x, y)
• Add dust to the gravitational system: (T, PT )
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classical LTB sector in spherical sym.
spacetimes

Lemaitre-Tolman-Bondi sector

The LTB solution in these variables is given by [Lemaître ’33], [Tolman ’34], [Bondi ’47]

ds2 = −dt2 + ((Ex)′)2

4|Ex|(1 + E(x))
dx2 + |Ex| dΩ2 ,

with the dynamical equation for each shell

∂tE
x = ±2

√
Ex

√
E(x) + F(x)

(Ex)2 .

• Comparing LTB to general spherical symmetric metric, we need

N = 1 Nx = 0 Gx(x) = Ex′

2Eϕ(x) −
√

1 + E(x) = 0

Gauge Fixings

The LTB sector can be reached by the two gauge fixings(
C −→ GT = T (x) − t

)
,

(
Cx −→ Gx = Ex′

2Eϕ
(x) −

√
1 + E(x)

)
Note: In marginally bound case (E = 0), in dust time gauge {Gx(x), Ctot

x (y)} ≈ 0
Stefan Weigl Effective LTB models 12.12.2023, International Loop Quantum Gravity Seminar 5/19



Effective LTB models
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Effective primary Hamiltonian

Start with partially gauge fixed effective system (dust time gauge):

Effective primary Hamiltonian

Consider effective model with temporal gauge fixed primary Hamiltonian

H∆
P [Nx] =

∫
dx (C∆ +NxCx)(x) , Cx = 1

G(EϕK ′
ϕ −Kx(Ex)′)

and the polymerized gravitational contribution of the scalar constraint

C∆(x) = Eϕ

2G
√
Ex

[
− (1 + f )Ex

(
4KxKϕ

Eϕ
+
K2
ϕ

Ex

)
+ h1

((
Ex′

2Eϕ

)2
− 1

)
+ 2E

x

Eϕ
h2

(
Ex′

2Eϕ

)′
]
.

The polymerization functions have classical limit

h1(Ex) → 1 h2(Ex) → 1 f (Kx/E
ϕ, Kϕ, E

x) → 0

Note: density weight unchanged since combination Kx/E
ϕ in f , thus{

C∆[N ], Cx[Nx]
}

= C∆[Nx(∂xN)]

⇒ Investigate dynamically stable reductions to LTB sector
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Conservation of C∆?

Conservation of C∆ (see Lemma 1 in [Giesel, Liu, Rullit, Singh, SW ’23])

We have [Tibrewala ’12], [Alonso-Bardaji, Brizuela ’21]{
H∆
P [Nx = 0], C∆(y)

}∣∣∣∣
Cx=0

= 0 ,

if there is no polymerization of Kx and

h1 − 2Ex∂Exh2
h2

=
−4Ex∂Exf (2) + ∂Kϕ

f (1)

2f (2) .

The polymerization functions are defined in this case as

C∆(x) = − Eϕ

2G
√
Ex

[
4Kxf

(2)(Kϕ, E
x)

Eϕ
+ f (1)(Kϕ, E

x)
Ex

− h1 . . .

]
(x)

⇒ Note: this is not equivalent with closure of constraint algebra since this should be
analyzed in fully gauge unfixed system
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Implementing polymerized LTB condition

• Introduce effective LTB condition (classical: G∆
x = Ex′

2Eϕ −
√

1 + E)

G∆
x = Ex′

2Eϕ
− g∆

(
Kx/E

ϕ, Kϕ, E
x, [∂nx(K,E)], E

)
• Investigate stability of effective LTB condition under effective dynamics [Bojowald, Harada,

Tibrewala ’08], [Bojowald, Reyes, Tibrewala ’09]

◦ We call such LTB conditions compatible

• Our strategy: work on the level of equations of motion

Question

For which G∆
x do the four EOM of K̇x, K̇ϕ, Ėx, Ėϕ reduce to only two in the sector

Nx = 0, Cx = 0, G∆
x = 0 ?

• First result: compatible LTB conditions are of the form

g∆ = g
(1)
∆ (Kϕ, E

x, E) + g
(2)
∆ (K̃x = ∂xKϕ

∂xEx , Kϕ, E
x)

• Contribution g(1)
∆ represents non-marginally and g(2)

∆ marginally bound case
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Implementing polymerized LTB condition

Key results on the form of the polymerization functions and compatible LTB condition:

Key results

1. Additional condition for Kx polymerization
⇒ Non-marginal: always no Kx polymerization allowed
⇒ Marginal: if g(2)

∆ = g
(2)
∆ (Kϕ, E

x) no Kx polymerization allowed

2. Separating LTB function dependence g(1)
∆ = g̃∆(Kϕ, E

x)
√

1 + E

g
(1)
∆ = g̃∆(Ex)

√
1 + E 1 − 2Ex∂Exg̃∆

g̃∆
=

−4Ex∂Exf (2) + ∂Kϕ
f (1)

2f (2)

second condition allows the conservation of C∆ when we further have

2Ex∂Exg̃∆ =
(

1 − h1−2Ex∂Exh2
h2

)
g̃∆ .

3. Classical LTB condition restricts inverse triad and holonomy corrections to

∂Kϕ
f (1) = 2f (2) + 4Ex∂Exf (2) h1 = h2 + 2Ex∂Exh2

"compatibility" "conservation"
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Implementing polymerized LTB condition

Consider system with compatible LTB condition and C∆ conserved (Lemma 1):

Dynamical equations (see Corollary 4 in [Giesel, Liu, Rullit, Singh, SW ’23])

The dynamics of such models decouple in radial x-direction

∂tE
x = 2

√
Exf (2)

∂tKϕ = − 1
2
√
Ex

(
f (1) − g̃2

∆(1 + E)(2h2 + 4Ex∂Exh2 − h1) + h1

)
• Equations applicable in marginally and non-marginally bound case
• Non-marginal: same result as implementing gauge fixing G∆

x and computing
associated Dirac bracket

• Result supports assumption of decoupled shells in dust collapse models, e.g. [Kiefer,

Schmitz ’19], [Giesel, Li, Singh’21]

• Solution parametrized by energy E(x0) and conserved quantity mass M(x0) of a shell
at x = x0
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Concrete model from improved LQC dynamics
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Matching LQC dynamics

General strategy

• Choose an effective LQC model as starting point

• Use Cor. 4 to identify effective spherically symmetric model and LTB condition

In this way we get

• Underlying spherical symmetric model, that has no areal gauge implemented yet

• Dynamically stable reduction to LTB sector through effective LTB condition

• Equations of motion are decoupled and coincide with chosen LQC model

Sometimes one can relate effective spherical symmetric model to an underlying
covariant Lagrangian
• In our model this will be extended mimetic gravity in comoving gauge
• Redefinition of time dependence of mimetic field corresponds to coordinate

transformations in the temporal coordinate
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Matching LQC dynamics

Adapt decoupled effective LTB sector to improved LQC dynamics [Ashtekar, Pawlowski, Singh ’06]

∂tv = 3vsin (2αb)
2α

, ∂tb = −1
2

(
E(x)
v

2
3

+ 3 sin2 (αb)
α2

)
,

where we defined v = (Ex)3/2, b = Kϕ√
Ex
, α = β

√
∆.

Underlying spherical symmetric model

The corresponding gauge unfixed effective spherical symmetric model is [Tibrewala ’12]

C∆ = −E
ϕ
√
Ex

2G

[
3
α2 sin2

(
αKϕ√
Ex

)
+ (2ExKx − EϕKϕ)

α
√
ExEϕ

sin
(

2αKϕ√
Ex

)
+

+
1 −

(
Ex′

2Eϕ

)2

Ex
− 2
Eϕ

(Ex′

2Eϕ

)′
]
.

No inverse triad corrections: compatible LTB condition is classical one

G∆
x = Gx = Ex′

2Eϕ
−

√
1 + E

and C∆ is conserved quantity.
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Effective LTB sector

We can write dynamical equation as modified Friedmann equation

Ṙ2

R2(x) =
(
κρ

6
+ E
R2

)(
1 − α2

(
κρ

6
+ E
R2

))
(x) ,

where the metric has the form (we work in LTB coordinates)

ds2 = −dt2 + (∂xR)2 dx2 +R2dΩ2 .

Marginally bound case

In marginally bound case E = 0 the solution is

R(x, t) =
√
Ex =

(
F(x)

(9
4(β̃(x) − t)2 + α2) )1

3

for homogeneous dust already in [Giesel, Han, Li, Liu, Singh ’22], [Fazzini, Rovelli, Soltani ’23]

• In vacuum: time symmetry, and metric is stationary

• No shell crossing singularities for vacuum and OS collapse, but in general
inhomogeneous case not true [Fazzini, Husain, Wilson-Ewing ’23]

• Horizons can form when M(x) = F
2G > Mc = 8α

3
√

3G [Kelly, Santacruz, Wilson-Ewing ’20], [Giesel, Han, Li, Liu,

Singh ’22], [Lewandowski, Ma, Yang, Zhang ’22]
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Extended mimetic model

Underlying covariant Lagrangian

Primary Hamiltonian can be generated from 2d action [Achour, Lamy, Liu, Noui ’18], [Han, Liu ’22]

S2 = 1
4G

∫
M2

d2x det(e)e2ψ
{

R + Lϕ (X, Y ) + λ
2
(
ϕ,jϕ

,j + 1
)}

,

in comoving gauge ϕ(t, x) = t, note det(e) = Eϕ
√
Ex coupling

• (smooth) mimetic field naturally defines foliation into spacelike surfaces defined by
ϕ = const., w.l.o.g. ϕ(x, t) = ϕ(t)

• Higher derivative coupling in X, Y relates to extrinsic curvature

X = −□hϕ + Y = ∂tE
ϕ

Eϕ
, Y = −hij∂iψ∂jϕ = ∂tE

x

2Ex
= sin(2αb)

2α
,

• Pendant of the Einstein equations of this model are

G∆
µν := Gµν − T ϕµν = −λ∂µϕ∂νϕ, ∂µϕ∂

µϕ = −1 .
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Polymerized vacuum solution

Polymerized vacuum

Specialize to matter profile F = Rs = const [Giesel, Han, Li, Liu, Singh ’23], [Fazzini, Rovelli, Soltani ’23]

R(x, t) =
(
Rs

(
9
4
z2 + α2

))1
3

, z := x− t

metric clearly stationary

• Corresponds to λ = C∆ = 0 but curvature non-vanishing

R = − 96α2

(4α2 + 9z2)2

due to non trivial coupling of ϕ in T ϕµν ⇒ QG effects
• Everything bounded, at bounce z = 0 no shell crossing singularity
• (smooth) signature change of Eϕ at the bounce

Eϕ(t, x) = 1
2
(Ex)′ = R(z)∂zR(z)

allowed due to det(e) coupling in Lagrangian and consistent with degeneracy of
metric
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Comparison to other models

Underlying covariant model allows to perform coordinate transformations in t and x
⇒ Relate to other models in the literature and discuss implications (shocks?)

• Polymerized vacuum:
◦ Transform to Schwarzschild-like coordinates (t, x) → (τ, z)

ds2 = −A(r)dτ 2 + 1
A(r)dr

2 + r2dΩ2 A(r) = 1 − 2Gms

r

(
1 − α2

r2
2Gms

r

)
same solution as [Kelly,Santacruz,Wilson-Ewing ’20],[Parvizi,Pawlowski,Tavakoli,Lewandowski ’21],[Lewandowski,Ma,Yang,Zhang ’22]

◦ transformation only well defined for monotonic R(z) (not at bounce)

• Areal gauge:
◦ Gauge fix Cx with Gar = Ex − r2, shift vector N r = − r

2αsin
(

2α
r Kϕ

)
⇒ We can exactly reproduce model in [Husain, Kelly, Santacruz, Wilson-Ewing ’22]

◦ We can transform our solution in LTB coordinates to Gullstrand-Painlevé

N r = −∂tR(t, x) = −sign(∂tR(t, x))
√

2GM(x)
r (...)

smooth signature change at bounce
◦ Not observed when working directly in radial coordinates in vacuum case

⇒ gives rise to discontinuity/shocks in OS collapse
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Comparison to other models

• Different global structure of spacetime can be seen in x = const geodesics
• These are also world lines of clock field ϕ, they intersect in (τ, r) after bounce

⇒ discontinuity in clock field [Fazzini, Rovelli, Soltani ’23] violates smoothness of mimetic field
• To have same global structure in r coordinates need to consider gluing of two

patches with different orientation [Münch ’21]
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• OS collapse: Gluing with effective junction conditions does not allow shocks without
violating smoothness of mimetic field
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Inhomogeneous dust collapse

• Consider inhomogeneous dust profile on initial
slice

• In OS collapse everything bounded
⇒now shell crossing singularity[Fazzini,Husain,Wilson-Ewing ’23]

• Prob. weak singularity: geodesics can pass
through

• Separates spacetime into regions with different
orientation

⇒ Needs further investigation, work in progress
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Figure: Kretschmann scalar
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Conclusion

Summary

• Our framework allows construction of effective LTB models with holonomy and
inverse triad corrections under certain assumptions (no polymerization of diffeo)

• Certain class of effective LTB models has decoupled dynamics
• LQC model as starting point: field theoretic model for inhomogeneous dust collapses
• Underlying mimetic model provides all coordinate transformations

Future work

• study further phenomenological properties like BH evaporation
• Extend analysis to LQC models with asymmetric bounce (work in progress)
• study polymerized vacua for more general polymerizations (work in progress)
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Thank you for your attention!
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