From coarse graining for quantum gravity to topological charges in discretized gauge theories

José A. Zapata¹

Centro de Ciencias Matemáticas, UNAM zapata@matmor.unam.mx

November 2017 International Loop Quantum Gravity Seminar

¹Partially supported by grant PAPIIT-UNAM IN109415

Strategy of the talk

- The case of 2d gravity (2d abelian gauge theory)
- Four dimensional SU(2) gauge theory (relevant for LQG)
- Non-abelian gauge theories in arbitrary dimension

ldeas / subjects presented

- Parallel transport \leftrightarrow bundle and connection (mod. gauge)
- Truncation (real space renormalization):

LGT truncation + homotopy data

- Reconstruct bundle + connection up to a given accuracy (mod. gauge)
- Exact regularization of topological charges
 - 2d quantum gravity
 - Boundary terms in the presence of horizons in 4d LQG
- Remarks on this "revision" of loop quantization
 - Canonical kinematical SU(2) LQG is unchanged
 - The LQG generalized projector, calculated as a (renormalized) sum over histories, can be refined to include extra local data encoding gluing information.

In collaboration with Claudio Meneses arXiv:1701.00775 and ... to appear

Consider a cellular decomposition $\mathcal C$ of the base space M and an open cover covering the closed n dim cells.

We choose a base point b_{ν} for each k-cell c_{ν} (with $\partial c_{\nu} \approx S^{k-1}$) and consider paths contained in \bar{c}_{ν} with end points in any of the base points contained in \bar{c}_{ν} .

We consider (i) a parallel transport map[†]

$$PT: \mathsf{Paths}_{\nu} \to G, \quad \text{e.g. } PT(\gamma_1) = \theta_1 \in SO(2)$$

and (ii) a path system

$$\bar{c}_{\nu}\ni x\mapsto \gamma_{\nu}(x)\quad \text{with } s[\gamma_{\nu}(x)]=b_{\nu}, t[\gamma_{\nu}(x)]=x\quad \text{ for every k-cell.}$$

Together (i) and (ii) determine:

- lacksquare a local trivialization of a G-bundle over each $ar{c}_
 u$ (or $U_
 u$),
- gluing maps

$$\bar{c}_{\nu} \supset \bar{c}_{\tau} \ni x \longmapsto \varphi_{\nu\tau}(x) = \operatorname{PT}((\gamma_{\tau}(x))^{-1} \circ \gamma_{\nu}(x))$$

- mapping bdary cells $c_{ au}=c_{
 u}\cap c_{\mu}$ to G,
- a connection (mod. gauge).

Fruncation (real space renormalization) $2d \; SO(2)$ case

From the gluing functions in the continuum $\varphi_{\nu\tau}:\bar{c}_{\tau}\to G=SO(2)\approx S^1$ the truncation records only

- $lacksquare arphi_{
 u au}(x)\in S^1$ for $x=v_1, x=v_2$ and
- $m{\varphi}_{
 u au}$ the homotopy class of paths in S^1 with fixed end points.

Remarks on the truncation (2 dim)

- $\{\varphi_{\nu\tau}(v)\}$ can be calculated from LGT data.
- The truncated gauge field (LGT data + homotopy data) determines the transition functions up to homotopy.

 Reconstruct bundle + connection up to a given accuracy.

 *** Exact regularization of topological charges ***.
 - *** Exact regularization of topological charges ***.
- If $\dim M=2$ and $G=SU(2)\approx S^3$ the homotopy data $\{[\varphi_{\nu\tau}]\}$ is trivial. Hom. data about gluing a 2-face to its bdary faces is non trivial only if $\pi_1(G)$ is not trivial (e.g. $\pi_1(U(1))=\mathbb{Z}$, $\pi_1(SO(3,1))=\mathbb{Z}/2\mathbb{Z}$, $\pi_1(U(r))=\mathbb{Z}$.

Remarks on the truncation (n dim)

LGT data determines the evaluation of gluing functions (gluing a bdle over a k-cell to a bdle over an r-cell in its bdary) $\{\varphi_{\nu\tau}(v)\}$ on a discrete set of points.

- Record the homotopy type of functions gluing bundles over 2-cells to their closed boundary 1-cells
 - **rel. to fixed end pts. and subject to compat. conditions**.
 - Characterize the bdle over the 2-skeleton (up to eq.).
- Rec. the h. type of funs. gluing 3-cells to closed bdary 1-cells and bdary 2-cells **relative to fixed pts. and fixed homotopy types of curves and subject to compatibility conditions **:
 - cocycle and extendibility conds. (Fig. next slide)
 - Characterize the bdle over the 3-skeleton up to equivalence. (However, $\pi_2(G)$ is trivial for every Lie group.)

Remarks on the truncation (n dim)

- Rec. the h. type of funs. gluing 4-cells to closed bdary
 1-cells, 2-cells and 3-cells * subject to compat. conds. *
 *** The gluing is "airtight" and known up to homotopy. ***
- For any Lie group $\pi_3(G) = \mathbb{Z}^m$ for some m and, in particular $\pi_3(SU(2)) = \mathbb{Z}$. (cell. dec. of M^4 with two 4-cells.)
- Coarse graining LGT data is naturally done by the pullback of Emb : $L_{\rm coarse} o L_{\rm fine}.$
- Coarse graining hom. data is done by gluing k-surfaces with bdary in G (that we know only up to relative homotopy class). The data needed for this gluing is part of the LGT data.

Exact regularization of topological charges / 2d LQG

 $\begin{array}{l} \dim M=2,\ G=SO(2)\approx S^1\\ 2\mathrm{d}\ \mathrm{gravity}\ \mathrm{in}\ \mathrm{a}\ \mathrm{spacetime}\ \mathrm{region}\ U\subset M\\ e\ \mathrm{dyad},\ A\ \mathrm{connection}\ 1\text{-form such that}\ de+A\wedge e=0,\\ F=dA=f\tau,\ f=d\omega,\ \tau=\begin{pmatrix}0&1\\-1&0\end{pmatrix} \end{array}$

$$S_U(e, A) = \frac{1}{8\pi G} \int_U \operatorname{sgn}(\det e) f = \frac{\operatorname{sgn}(\det e)}{8\pi G} \int_{\partial U} w$$

** S_U is inv. under variations of the fields in the interior of U ** Any (e,A) is an extremum of S_U .

Exercise: Loop quantize 2d gravity $(S_U \text{ is a pure bdary term})$

Essential ingredients: (i) $\mathcal{H}_{\Sigma_{lpha}}^{\mathrm{kin}}$,

- (ii) $\mathcal{A}_{U,\mathcal{C}}$ *space of truncated gauge fields*,
- (iii) exact regularization of $\int_U f$, ...

Exact regularization of topological charges $2\mathsf{d},\ G=SO(2)$

$$\int_{U} f = \sum_{\alpha} \int_{\partial c_{\alpha}} \omega_{\alpha} = \sum_{l \subset U^{\circ}} \int_{l = c_{\alpha} \cap c_{\beta}} (\omega_{\alpha} - \omega_{\beta}) + \sum_{l \subset \partial U} \int_{l} \omega_{\alpha}$$

Each of these integrals is easily calculated from (LGT + homotopy) data

Exact regularization of topological charges 2d, G=SO(2)

$$\int_{l=c_{\nu}\cap c_{\mu}} (\omega_{\nu} - \omega_{\mu}) = \frac{1}{2\pi} \int_{l=c_{\nu}\cap c_{\mu}} \psi_{\nu\mu}^{*} d\theta = \frac{1}{2\pi} \int_{\psi_{\nu\mu}(l)\subset SO(2)} d\theta,$$

where $\psi_{\nu\mu}=\varphi_{\mu l}^{-1}\cdot\varphi_{\nu l}:l\to SO(2)$ are the transition functions. It is determined by the boundary points of $\psi_{\nu\mu}(l)$ and a winding number.

Similarly,

$$\int_{l} \omega_{\nu} = \frac{1}{2\pi} \int_{l} \varphi_{\nu l}^{*} d\theta$$

is determined by the boundary points of $\varphi_{\nu l}(l)$ and the homotopy type of the curve.

If U=M the collection of open curves $\{\psi_{\nu\mu}(l)\subset SO(2)\}_{l\subset M}$ may be tied together to obtain a single closed curve in SO(2); the integral is determined by its winding number.

Exact regularization of topological charges $4\mathsf{d}$, G=SU(2)

This case involves similar ideas

$$\int_{M} \operatorname{Tr}(F \wedge F) = \sum_{\nu} \int_{\partial c_{\nu}} \operatorname{Tr}(F \wedge A + 1/3A \wedge A \wedge A)$$

$$= \frac{1}{8\pi} \sum_{\tau \subset M} \int_{\psi_{\nu\mu}(\tau = c_{\nu} \cap c_{\mu})} \operatorname{vol}_{SU(2)}$$

- One important difference is that we can evaluate $\int {
 m Tr}(F\wedge F)$ only for closed manifolds and not the contribution from each of its pieces.
- We could also regularize a "boundary action" (add a term only to some components of the spacetime boundary) corresponding to the Chern-Simons form (\ddagger). In the last formula the transition functions would be replaced by the gluing functions $\varphi_{\nu\tau}$.
- We could <u>not</u> give a regularization of the Chern-Simons action in three dimensions.

Remarks on this "revision" of loop quantization.

- Canonical kinematical SU(2) LQG is unchanged, but parallel transport data at each scale acquires the interpretation of being a homotopy class of continuum gauge fields.
- The LQG generalized projector, calculated as a (renormalized) sum over histories, can be refined to include extra local data encoding gluing information.
- The partition function (calculated on a closed manifold) would involve a sum of terms corresponding to "monopole contributions"; meaning that the space of gauge fields is composed by a collection of connected components each of which corresponds to connections over inequivalent bundles.
- C-S "boundary terms" relevant in the presence of certain types of horizons in 4d LQG can be regularized exactly.

Thank you for your attention!