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Abstract. Key ingredients in discourse meaning are reference markers: objects in
the formal representation that the discourse is about. It is well-known that reference
markers are not like first order variables. Indeed, it is the received view that reference
markers are like the variables in imperative programming languages. However, in a
computational semantics of discourse that treats reference markers as ‘dynamically
bound’ variables, every noun phrase will get linked to a dynamic variable, so it will
give rise to a marker index. Where do these indices come from? How do we handle
them when combining (or ‘merging’) pieces of discourse?

We will argue that reference markers are better treated as indices into context,
and we will present a theory of context and context extension based on this view.
In context semantics, noun phrases do not come with fixed indices, so the merge
problem does not arise. This solves a vexing issue with coordination that causes
trouble for all current versions of compositional discourse representation theory.

1. Introduction

We will start by briefly reviewing the discussion of DRT and compo-
sitionality, by presenting the standard view on how DRSs should be
merged. We show that this view leads to a puzzle with coordination.
This unsolved problem motivates the switch to a more sophisticated
theory of context and context extension than is present in current
rational reconstructions of DRT. We show that under this new recon-
struction the need for merge has disappeared, and the coordination
puzzle can be solved. Next we briefly turn to issues of salience and
salience update and the use of salience in pronoun reference resolution,
and list our conclusions.

2. Linking Pronouns: the Standard Dynamic Account

The by now standard dynamic account of the way pronouns get linked
to their antecedents has the following two kinds of basic ingredients:

— contexts,
— constraints on contexts.

A DRT-style representation (Kam81; KR93) for a piece of text uses
these ingredients as follows:
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Information conveyed by a piece of text grows, and this growth of
information is reflected in a representation update:

context new context
constraints update new constraints
on on

context context

In DRT, the details of this scheme are filled out as follows. An initial
DRS represents context and constraints on context for ‘a man entered’:

[x |

Mx
Ex

This initial representation changes through successive updates, as fol-
lows:

v | x|
B Mx M
Mx | — ‘A woman entered’ — | gy | — ‘He smiled at her’ — Ex
W
Ex Wy '
Ey
Ey
Sxy

Assume, now, that sentences to be added to an existing representation
have a representation of their own. Then we are faced with the problem
of how an initial piece representation has to be merged with a new piece
of representation to effect an information update.
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The example illustrates how we get in trouble in cases where the
representation of ‘a man’ and of ‘a woman’ employ the same variable.
This merge problem in the presence of clashing variables does not occur
in (Kam81) and in the DRT textbook (KR93), for these presentations
of DRT work with a top-down DRS construction algorithm, where
merging of DRSs is avoided because a new DRS is always constructed in
the context of an already existing DRS. The Classic DRT construction
algorithms always parses new sentences in the context of an existing
representation structure.

3. Merging DRSs

When dynamic semantics for NL first was proposed in (Kam81) and
(Hei82), the approach invoked strong opposition from the followers of
Montague (Mon73). Rational reconstructions to restore compositional-
ity were announced in (GS91) and carried out in (GS90; Chi92; Jan98;
Mus95; Mus96; Mus94; Eij97; EK97; KKP96; Kus00; Bek00), among
others. All of these reconstructions are based in some way or other on
DPL (GS91), and they all inherit the main flaw of this approach: the
destructive assignment problem, i.e., the fact that assigning a value to
a variable x destroys the old value of .

Interestingly, DRT itself did not suffer from this problem: the dis-
course representation construction algorithms of (Kam81) and (KR93)
are stated in terms of functions with finite domains, and carefully talk
about ‘taking a fresh discourse referent’ to extend the domain of a
verifying function, for each new NP to be processed.

The merge problem arises in carrying out a Montagovian or Fregean
programme of natural language analysis in a setting that takes context
and context change into account. Compositional versions of DRT pre-
suppose a definition of ‘merge’. In compositional DRT, a lexical entry
for the determiner ‘a’ might look like this.
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| x|

APQ. oPre(r.

And a lexical entry for the determiner ‘every’ might look like this:

APQ.| (x|
|—|on = Q

Two obvious questions: (i) How should the reference marker = be
picked? (ii) how should e be defined?

The classical DRT view on these questions can be found in (Zee89),
where the following compositional DRS definition is proposed.

— Basic DRSs: (0,0), (0,{Pro---rn_1}), (0,{L}), {z},0).
—  Merger of DRSs: 6" := (V5 U Vi, Cs5 U Cyr).
— TImplication of DRSs: § — ¢’ := (0,{6 = §'}).

The semantics that goes with this, with respect to some First Order
Model M = (M, 1), is given by:

©,0)] = (@, MY),

@, {Pro--rn_1})] = (0,{f € MY | M |5§ Pro---rn-1}),

@, {L 1] = (0,0),

({2}, 0)] = ({2}, MY),

§ed']:=[0] ® [0'], where (X, F) ® (YV,G) := (X UY,FNG),

§ = 0'] := [0] — [0'], where

F) = (Y,G) =

[
[
[
-
[
[
E@ {h € MU | Vf € F(if R[X]f then 3g € G with f[Y]g)}).

These definitions suggest that merging proceeds as follows in our ex-
ample case.
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This is certainly not the outcome one would like. So can such variable
clashes be avoided? Or can they get repaired (e.g., by means of an
alternative merge operation)? To see that these are vexing problems,
consider the following puzzle with coordination (cf. also (BB99)):

A man entered and a man left. (1)

A treatment of this example in compositional DRT will be based on
the following ingredients:

e
a man’: AQ. o Q.
| Ma|
‘entered’: \y. ‘ left’: Ay. ‘ ‘
| By | | Ly |
‘and’: Apg.p e q.

Composing these ingredients with functional applications, using the
above definition of e, gives the following (wrong) result:

‘a man entered and a man left’:

4. Attempts at

| = |
Mzx

Ex
Lx

a Solution

One way to solve the merge problem is by a change in the representation
of variables. In (Ver95), variables get replaced by so-called referent
systems. The basic idea of this modification is to distinguish between

the following two aspects of a variable:
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— variable name
— variable address or memory slot

Referent systems are like pointer structures in imperative program-
ming, with the slight twist that input under a name gets distinguished
from output under a name.

x

!

[

y

[] —
y— [ —
z— []

[

< R

!
=

Merging referent systems is done by tracing variables from input to
output.

l

[

['] ['] z— []
[] —a r— [] —ux [] - =
[] —y el v—=[] v |=y—[] =y
['] ['] z— []
['] ['] ']

This way of merging can be applied to merging ‘referent system’ DRSs,
as follows. In the following example, x is first linked to the referent m,
next to the referent n.

[m]
[ =< | =< | W
R T Mx’
Mx * Wx = \
Ex ‘ Ex ‘ Ex
Wx
Ex

The reference to m gets destroyed by the merge. To indicate that two
instances of the variable name x point to different data, a renaming of
the instances that refer to m is mandatory. The example shows that
replacing variables by referent systems does not in itself solve the merge
problem. In the example the referent m becomes unaccessible: there is
no variable name attached to it anymore.

A genuine solution to the merge problem in dynamic semantics
is provided by sequence semantics, also proposed by Vermeulen, in
(Ver93). In sequence semantics, a variable x gets interpreted as a stack
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[do, . ..,dn—1]. Each new introduction for x extends the stack by means
of an operation

[dO? e 7dn*1] = [dOa o 7dn715 dn]

The key idea of sequence semantics can be restated as follows: assume

that each variable z comes with a sequence z’, 2", 2’ ... of extensions.

‘ T ‘ z ‘ " ‘ " ‘ 2" ‘ . ‘

[do|di|de|ds]|di|-- |

New introductions are never destructive, for they refer to an extension:

| xx |
x| x| Mx
Mx i Wx = Ex
Ex Ex Wwx’
Ex’

Note that both z and 2’ remain accessible.

5. Abstraction over Context

In this section we will propose an account of contexts, context ex-
tension and abstraction over context based on what can be viewed
as a combination and simplification of referent systems and sequence
semantics. The main ingredients of our accounts are (i) passing contexts
as parameters and (ii) using types for constraining the indices used for
pointing into contexts.

Our account can also be viewed as a simplification of (Dek96) where
a rational reconstruction of DRT is given in terms of a system of
predicate logic extended with stack pointers, together with an encod-
ing in polymorphic relational type theory. The basic difference is that
while Dekker starts out from an version of predicate logic containing
both variables and stack pointers (Dek94), in our set-up all the stack
manipulation tools that we need get introduced by the type theory.
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We will take contexts to be essentially lists of reference markers that
encode discourse information and allow us to keep track of topics of
discourse.

In discourse processing, the order in which discourse topics are in-
troduced is crucial. Topics mentioned most recently are (other things
being equal) more readily accessible for reference resolution. Context
also provides additional information:

— Gender and number information.
— actor focus: agent of the sentence.
— discourse focus: ‘what is talked about’ in the sentence.

In this paper, we will take this additional information as secondary.

So how does one abstract over context? By representing a context
as a stack of items, and by handling these stacks as suggested in
Incremental Dynamics (Eijo1).

[eoferfefefeal |

Now existential quantification can be modelled as context extension:

[coferfeleltd=|alale|en|d]

Indices are used to refer to context elements:

[oj1j2fsf4]--[n-1]n]

[olalelealal | e |d]

Given this representation of context, we can replace merge by context
composition. It is convenient to introduce some type abbreviations for
that. We use [e] for the type of contexts, [e] — [e] — ¢ for the type of
context transitions (characteristic functions of binary relations on the
type of contexts). Use a :: a for “a is of type o”. Assume ¢, ¢’ :: [e]
and x :: e. Let ¢’z be the result of extending context ¢ with element
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x. This assumes (7) :: [e] — e — [e]. Note that we assume that type
arrows associate to the right, so that [e] — e — [e] gets interpreted as
[e] — (e — [e]). Now define context extension as follows:

3 = \ed Fz(cx =)

This definition of context extension essentially uses polymorphic type
theory (Hin97; Mil78). The type polymorphism is crucial, for it is
implicit in ¢’z = ¢ that the lengths of the contexts ¢ and ¢’ match.
In other words, the type of contexts is polymorphic, for a context may
have any finite length. The type of 3 is given by 3 :: [e] — [e¢] — ¢. This
is a polymorphic type, for 3 relates contexts of length n to contexts of
length n + 1, for any n.

The type polymorphism can be made explicit by writing the type of
a context ¢ as [e];, with ¢ a type variable indicating the context length,
but for convenience we omit these indices. What we do need, however,
is a means of referring to the length of a context c in a generic way. We
will use |c| for the length of context c.

Let T be an abbreviation of [e] — [e] — ¢, i.e., let T be the type of
context transitions. Then 3 :: T

Composition of context transitions is also easily defined in polymor-
phic type theory. Assume ¢, :: T, let ¢, :: [e] and define ( ;) as
follows:

¢ 5 = Aed 3 (gpec” N
Now the type of ; is given by:
(3)uT—->T-—T.

What this says is that ( ;) takes two context transitions and produces
another context transition.

If a context ¢ has length n, i.e., if the context elements run from
co to cp—1, indices referring to context elements should run from 0 to
n—1:

jof1]2fsfa]--|n-1]

[ofafelealal | e |

This can be achieved in a natural way by using natural numbers as
index types. Recall that under the Von Neumann encoding of natural
numbers it holds that n = {0,...,n—1}. Thus, an index of type n is an
index ranging over {0,...,n — 1}, and this is precisely what is needed
for indexing into a context of length n. If ¢ is a context of length n,
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i.e., c:: [e]y, then i :: n indicates that ¢ is of the appropriate type for
indexing into c. If we assume that Aci.c[i] :: [e],, — n — e, where n is the
type variable indicating context length, then we get (Ai.c[i]) :: n — e.
This illustrates how polymorphic type assigment can enforce the index
to be of the type that fits the size of the context.

It is convenient to gloss over these details by using ¢ as a type for
context indices, and assuming that indices fit the sizes of contexts
throughout. More specifically, in types of the form ¢ — [e] — a we
will tacitly assume that the index fits the size of the initial context
[e]. Thus, ¢ — [e] — [e] — t is really a type scheme rather than
a type, although the type polymorphism remains hidden from view.
Since ¢ — [e] — [e] — t generalizes over the size of the context, it
is shorthand for the types 0 — [e]o — [e] — ¢, 1 — [e]1 — [¢] — ¢,
2 — [e]a — [e] — t, and so on.

In what follows, we will employ variables P,Q of type ¢ — [e] —
[e] — t, variables 1, j, 7' of type ¢, and variables ¢, ¢’ of type [e].

We call a function of type ¢+ — T an indexed context transition. In
the treatment of the indefinite determiner, we assume that the deter-
miner combines with two indexed context transitions and produces a
context transition. Assume that P and () are indexed context transi-
tions, i.e., assume P, :: ¢« — T. Then the new version of the lexical
entry for determiner ‘a’ runs like this:

APQc.(3 5 Pi; Qi)c where i = |c|.

The “¢(i) where i = |c|” is a piece of syntactic sugar that can be
removed, at the penalty of unreadability, by generic substitution of
le| for 7 in .

The type of this determiner entry is (t = 7) — (1t —=T) - T.In a
phrase

[sinplpET @ |[cy A lllve B ],

the common noun A and the verb phrase B get interpreted as indexed
context transitions, to be combined by the interpretation of the deter-
miner into a new context transition that interprets the sentence. This
illustrates the type lift * involved in incremental dynamics.

t* =T

e* =1

(@—=pf)" = o =5

In fact, the shift from e to ¢ will always take place “in context”. To
make this explicit, one might wish to define the type lift for a type
language built from the primitive ¢ with the operations e — « and
a— f.
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To define universal quantification, we first need a definition of con-
text negation:

—¢ = Aed.(c = A -3 pec)

If ¢ is a context transition, then —¢ is a new context transition, and —m¢
expresses the familiar negation as test from dynamic semantics: input
context is equal to output context, and the test succeeds for a given
input c iff there are no ¢-transitions from c. Note that — :: T — T.

Dynamic implication = can now be defined in terms of — and ; ,
as follows:

¢=1 = —(p; )

The type of = is given by (=) = T — T — T. In terms of this, we
phrase the lexical entry for the determiner ‘every’ as follows:

APQc.((3 5 Pi) = Qi))c where i = |c|.

This has the correct type (¢ — T') — (v — T) — T, and it assigns the
dynamic meaning familiar from DRT and DPL.

Predicate Lifting

We assume that the lexical meanings of CNs, VPs are given to us as one
place predicates (type e — t) and those of TVs as two place predicates
(type e — e — t). We therefore define blow-up operations for lifting
one-placed and two-placed predicates to the dynamic level. Assume
A to be an expression of type e — ¢, and B an expression of type
e — e — t; we use ¢, ¢ as variables of type [e], and j,j' as variables of
type ¢, and we employ postfix notation for the lifting operations:

A° = Njed (e = A Aclj))
B* = )\jj/Cc/.(C =cd A BCU]CU/])

Note that (°) = (e = t) ¢ —Tand (*) (e me—t) 51—t —T.
The operation o lifts a one-place predicate to a function of type ¢ — T,
the operation e lits a two-place predicate to a function of type t — + —
T. These type lifts are in accordance with the type lifting operation ,
for A°:: (e — t)* and B® :: (e — e — t)*.

It is instructive to compare our typing ¢ — T for a common noun
like man with the typing in (Dek96), where the translation of man has
the following type:

e— (e1,...,en) — (e1,...,€n),

where (eq,...,ey,) is the type of n-ary relations in the relational type
theory of (Ore59). This makes a common noun into a function for map-
ping individuals to relation transformers. This detour via polymorphic
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relational type theory turns out to be unnecessary. Passing contexts as
parameters, together with the use of typed indices, allows us to remain
within simple polymorphic type theory. Implementation as a functional
program in a functional programming language based on polymorphic
type theory is therefore straightforward.

6. Multidimensional Grammar

Following (Cre73), (Oeh94) and (Mus02), we use a multi-dimensional
set-up for our grammar formalism. We will use signs consisting of three
components: a syntactic term, a semantic term, and a sign type.

Syntactic Terms

For syntactic terms, we take closed linear lambda terms over word lists,
with the conventions of list notation and list concatenation adopted
from functional programming languages like Haskell (HT). A lambda
term is linear if each lambda operator binds exactly one variable. We
take S as the type of a word list.

Word list concatenation is given by + :: S — S — 5. We abbreviate
AxAy to Azy, and so on. We use z,y as variables over word lists, i.e.,
x,y :» S, and X as a variable over functions from word lists to word
lists, i.e., X :: § — S. Here are some example syntactic terms, with
their syntactic types.

[john] :: S

[john, loves, mary] :: S
Az.[loves|-Hzx : S — S
Azy.y-+-[loves| Hzx : S — S — S
Az.x+[loves, mary| :: § — S

AX. X [loves, mary| :: (S — S) — S

Semantic Terms

Semantic terms are expressions from polymorphic typed logic, over
basic types e and ¢, with the conventions for the use of [e] and ¢ that
were explained above.

Sign Types and Sign Type Reduction
The language of sign types is given by:

SignType := Ref | Noun | Sent | SignType — SignType

cacm.tex; 21/02/2003; 15:44; p.12



13

The functions ©,% reduce a sign type ® to a pair consisting of a
syntactic type ®¢ and a semantic type ®v.

Ref® (= § Ref’ =
Noun® := § NounV :=  —= T
Sent® = S SentV = T

(14~—913)0 = A® — B¢ (11——»13)@ = AY - BY

Note that the links Ref® = ¢, Noun¥ = ¢ — T and Sent” = T
constitute the basic type assignment of context logic.

Signs
Signs are triples consisting of a syntactic term S, a semantic term 7
and a sign type ®, under the constraint that S :: ¢ and 7 :: &Y.
Assume that Woman is a constant of type e — ¢. Then the following
triple is a sign:
([woman], Woman®, Noun).

To see that this is a sign, note that the typing constraints are satisfied,
for Noun® = S, which matches [woman] :: S, and Noun” = ¢ — T,
which matches Woman® :: v — T.

Assume that Love is a constant of type e — e — t. Then the
following triple is a sign:

(Azy.y++[loves|Hx, Love®, Ref — Ref — Sent)

The typing constraints are satisfied, for Axy.y-+-[loves]4++x :: § — S —
S, (Ref — Ref — Sent)® = S — S — S, Love® = 1 — 1 — T,
(Ref — Ref — Sent)” =1 — 1 — T.

Here are some further examples of signs. The check that these are
signs is left to the reader. (Assume Smile is a constant of type e — t.)

— Az X.X([every|+z),
APQc.((3 5 Pi) = Qi))c where i = |c],
Noun — (Ref — Sent) — Sent.

—  AX.X[every, woman)],
AQc.((3 5 Woman®i) = Qi)c where i = |c|,
(Ref — Sent) — Sent.
—  Az.z++[smiled],
Smile®,
Ref — Sent.

In the treatment of proper names, we will assume that appropriate
indices for proper names can get extracted from the input context.
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Indeed, it will be assumed that all proper names are linked to an-
chored elements in context. The incrementality of the context update
mechanism ensures that no anchored elements can ever be overwritten.

Suppose (1) = (e,[e]) — ¢ is the function that gives the first index
i in ¢ with ¢[i] = z. Then if n :: e and ¢ :: [¢] is a context in which n
occurs, T(n,c) gives the lowest index of n in ¢. In case there is no such
an index, this is not well-defined, but we will assume contexts that have
referents for all proper names. Let name :: e. We define:

name® = \Pcc .Picc’ where i = {(name,c).

Note that (¢) =z e — (0 = T) — T, and name® :: (1 — T) — T. Let
John be a constant of type e. Then the following triple is a sign:

(AX.X[john], John®, (Ref — Sent) — Sent).

Combining Signs
The simplest way of combining signs is by application in each of the
first two dimensions.

(AX.X[john], John®)(Az.z+[smiled], Smile®)
L ([john, smiled], Aec’.c = ¢’ A Smile(c[i]) where i = {(John,c))

In this example we considered the first sign as a function that takes
the second sign as its argument. This boils down to using the following
application combinator:

C; = (a—=p)—a—p

Ch = \FX - FX.
The first line gives the type specification, the second line the definition.
The type specification indicates that the first argument of C'; can be

any function and the second argument any argument to that function.
We get:

C1(AX.X[john], John®)(Az.z+[smiled], Smile®)
L ([john, smiled], Aec’.c = ¢ A Smile(cli]) where i = {(John,c))

Other ways of combining signs are possible. ‘Consider the first sign
as an argument of the second sign’ would correspond to the following
combinator:

Cy 2 a—(a—p)—p
Cy = NXYF-FX.
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An operator that we will need is (3, for combining a transitive verb
with its direct object.

C3 2 (a—ma—=f)=(a=f)—a)ma—p
C3 = \RXy.X(Az.Rxy).

We illustrate this with an example in the syntax dimension:

Cs(Azy.y++[loved]+Hz) (A X. X [every, woman])

2, Ay.y++[loved, every, woman|
In the semantics dimension, this works out in the same way:

Cs (Love®) (AQc.((3 5 Woman®i) = Qi)c where i = |c|)
L Aje.((F 5 Woman®i) = (A" (¢ = " A Love®d[j]c[i])))c

where i = |¢|)

This can be simplified further by expansion of Woman®, Love® and the
definitions of 3, ; and =

4, Njed .c = ¢ ANVz(Woman(x) — Love(c[j], x)).

The following tree structures summarize what these combinators do:

e s Cy
S P
F A A F Ty
/\
Ay
S
R =z

It is also possible to define combinators that achieve the effects of
quantifier raising: see (Mus02) for details.

7. A Fragment
For the fragment, all we have to do is given specifications for the signs.
Sentence and Text Formation
(Azy.[if] Hz++[then]-+Hy, Apg.p = ¢, Sent — Sent — Sent)

(Azy.x+H[.]+y, Apq.p 3 q, Sent — Sent — Sent)

If NPis an NP sign and VP a VP sign, then Cy NP VP is a sentence
sign.
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Names
(AX.X[mary], Mary®, (Ref — Sent) — Sent)

Names combine with VPs to form sentences by means of combinator

Ch.

Pronouns

Anaphoric reference resolution is the process of fixing the references
of pronouns in a given context by linking the pronouns to appropri-
ate context indices. After reference resolution, the interpretation of a
pronoun is an index pointing to an appropriate context element.

([PRO;], j, Ref)

Pronouns combine with VPs to form sentences by means of combi-
nator Cs.

Determiners

Let : ([e] — t) — t be the function that gives true for a context
set P :: [e] — ¢ just in case P is not empty. Then | is an operation
for success. The sign type for all determiner signs is Noun — (Ref —
Sent) — Sent.

(AxX.X[every+z], APQc.(—(3 5 Plc| 5 mQ|c|))c)
(AzxX.X[some+Hz|, APQc.(3 5 Plc| 5 Qlc|)c)
(AzX.X[noHz], APQc.(—(3; Plc|; Qlc|))c)

( [

Az X. X [theHz], APQc.((Ad.c=cA
FaVy( (35 Pi (ily)e) < = =y))
3 A5 Pi s Qi)c where i = |c|)

Relative Clauses

Let € be the empty list. The relative clause formator that takes a sen-
tence with a gap for a referent in it, (syntactic type S — S, semantic
type ¢ — T, sign type Ref — Sent), fills the gap with the empty list,
and produces a function from nouns to nouns. Thus, the sign type of
the relative clause formator is (Ref — Sent) — Noun — Noun. The
syntactic and semantic parts look like this:

(AXz.x+[that]++X (¢), A\QP35.(Pj 5 Q7))

Common Nouns
([woman], Woman®, Noun).

(fman],  Man®, Noun).
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If CLAUSE is a clause sign (sign type Ref — Sent), THAT is the
relative clause operator sign, and CN is a noun sign, then a complex
common noun is construed by the following rule:

Co,CN(Cy THAT CLAUSE).

VPs
(Azx.x-+[laughed|, Laugh®, Ref — Sent)

(Az.z++[smiled], Smile®, Ref — Sent)

For VPs consisting of a TV and a direct object, the rule is given
by C3TV NP, where TV is the TV sign and NP the sign for the direct
object.

TVs
(Azy.y+[loved]++z, Love®;,  Ref — Ref — Sent)

(Axy.y+t[respected]++z, Respect®, Ref — Ref — Sent)

8. Solution of the Coordination Puzzle

Sign for ‘a man’:

AX . X[a, man],
AQc.((F 5 Man®i) 5 Qi)c where i = |c|,
(Ref — Sent) — Sent

Sign for ‘entered’:
Az.x+[entered]|, Enter®, Ref — Sent.
Sign for ‘a man entered’, after reduction:

[a, man, entered],
Aed Fx(d = o A Man x A Enterz,
Sent

Sign for ‘a man left’, after reduction:

[a, man, left],
Aed Fx(d = o A Man x A\ Leave x,
Sent

Sign for ‘a man entered and a man left’, after some reduction:
[a, man, entered, and, a, man, left],

Aed Jx(Man x A\ Enter x A ¢’z = )

)
Aed Fx(Man x A Leave x A ¢’z = '),
Sent.
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Sign for ‘a man entered and a man left’, after final reduction:

[a, man, entered, and, a, man, left],
Aed Az (Man x A Enter x A Jy(Man y A\ Leave y A ¢’z’y = '),
Sent.

9. Conclusion

Anaphoric reference resolution in context logic is determined on the fly,
on the basis of:

— Syntactic properties of the sentence that contains the pronoun.
— Information conveyed in the previous discourse.

— Background information shared by speaker and hearer (the com-
mon ground).

An account of how the simple contexts discussed above can be enriched
to allow for salience updates is provided in (Eij02). The basic change
is the replacement of contexts with contexts under permutation, type
ple]. Let x : ¢ be the operation that extends context ¢ with object x,
while at the same time pushing x to the most salient position in the
new context. Then the new definition of context extension runs like
this:

3 = Aed Fz((x:c) =)

Here it is assumed that ¢,c’ = ple], P,Q :: ¢ — ple] — ple] — . The
new translation of ‘a man’ effects a salience reshuffle:

AQcc - Fx(Man(z) A Qi(x : ¢)c’) where i = |c|.

Context semantics is flexible enough to take syntactic effects on salience
ordering into account, for lambda abstraction allows us to make flexible
use of the salience updating mechanism. To see why this is so, note that
in systems of typed logic, predicate argument structure is a feature of
the ‘surface syntax’ of the logic. Consider the difference between the
following formulas:

(Azy.Kay)(b)(j)
(Azy. Kyx)(5)(b)
(Ax.Kbx)(5)
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All of these reduce to Kbj, but the predicate argument structure is
different. Surface predicate argument structure of lambda expressions
can be used to encode the relevant salience features of surface syntax,
and we can get the right salience effects from the surface word order
of examples like Bill kicked John versus John got kicked by Bill versus
John, Bill kicked.

Anaphoric reference resolution can now be implemented by a mech-
anism for picking the indices of the entities satifying the appropriate
gender constraint from the current context, in order of salience. The
result of reference resolution is a list of indices, in an order of preference
determined by the salience ordering of the context.

Thus, the meaning of a pronoun, given a context, is an invitation to
pick indices from the context. This can be further refined in a set-up
that also stores syntactic information (about gender, case, and so on)
as part of the contexts.

The proposed reference resolution mechanism provides an order-
ing of resolution options determined by syntactic structure, semantic
structure, and discourse structure. This shows that pronoun reference
resolution can be brought within the compass of dynamic semantics in
a relatively straightforward way, and that the mechanism can be viewed
as an extension of pronoun reference resolution mechanisms proposed
for DRT (WA86; BB99). With minimal modification, the proposal also
takes the so-called ‘actor focus’ from the centering theory of local co-
herence in discourse (GS86; GJW95) into account. Contexts ordered
by salience are a suitable datastructure for further refinement of the
reference resolution mechanism by means of modules for discourse focus

and world knowledge (WJP98).
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